1
|
Ferrero E, Vaz FM, Cheillan D, Brusco A, Marelli C. The ELOVL proteins: Very and ultra long-chain fatty acids at the crossroads between metabolic and neurodegenerative disorders. Mol Genet Metab 2025; 144:109050. [PMID: 39946831 DOI: 10.1016/j.ymgme.2025.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
In lipid metabolism, the fatty acid (FA) elongation system synthesises a wide array of FAs, crucial for various biological functions. The role of this system is to lengthen FA carbon chains to produce FAs with ≥C16, and notably, very long-chain FAs (VLCFAs, C24-C26) and ultra long-chain FAs (ULCFAs, C28 to ≥C36). Elongation occurs in the endoplasmic reticulum (ER) through the actions of a complex of four ER-embedded enzymes, which includes the ELOVL proteins. Together with desaturases that introduce double bonds, these processes significantly increase the variety of FAs. VLCFAs and ULCFAs are required for the biosynthesis of complex lipids, notably glycero(phospho)lipids, ether(phospho)lipids and sphingolipids. The FA elongation system is therefore fundamental for membrane biogenesis and lipid homeostasis, and also for signalling pathways associated with inflammation and cell proliferation. This review focuses on the elongase enzymes, encoded by the ELOVL genes, which catalyze the first and rate-limiting step of the FA elongation cycle. We summarize the physiological roles of the elongase system, with emphasis on the less-characterized ULCFAs, their biological functions, and the functional tools, biomarkers and lipidomic studies used to study them. Additionally, we discuss how ELOVL enzyme defects contribute to disorders at the intersection of metabolic and neurodegenerative conditions, driven by disrupted lipid metabolism and misfolded enzymes in the ER and Golgi.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands.
| | - David Cheillan
- Unité Pathologies Métaboliques, Érythrocytaires et Dépistage Périnatal, Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire Carmen INSERM INRAE, Centre Hospitalier Lyon Sud, 69310 Pierre Bénite, France
| | - Alfredo Brusco
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
| | - Cecilia Marelli
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; Expert Center for Neurogenetic Diseases, CHU of Montpellier, 34095 Montpellier, France.
| |
Collapse
|
2
|
Fessler JL, Stiles MA, Agbaga MP, Ahmad M, Sherry DM. The Spinocerebellar Ataxia 34-Causing W246G ELOVL4 Mutation Does Not Alter Cerebellar Neuron Populations in a Rat Model. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2082-2094. [PMID: 38850484 PMCID: PMC11489227 DOI: 10.1007/s12311-024-01708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant disease that arises from point mutations in the fatty acid elongase, Elongation of Very Long Chain Fatty Acids 4 (ELOVL4), which is essential for the synthesis of Very Long Chain-Saturated Fatty Acids (VLC-SFA) and Very Long Chain-Polyunsaturated Fatty Acids (VLC-PUFA) (28-34 carbons long). SCA34 is considered a neurodegenerative disease. However, a novel rat model of SCA34 (SCA34-KI rat) with knock-in of the W246G ELOVL4 mutation that causes human SCA34 shows early motor impairment and aberrant synaptic transmission and plasticity without overt neurodegeneration. ELOVL4 is expressed in neurogenic regions of the developing brain, is implicated in cell cycle regulation, and ELOVL4 mutations that cause neuroichthyosis lead to developmental brain malformation, suggesting that aberrant neuron generation due to ELOVL4 mutations might contribute to SCA34. To test whether W246G ELOVL4 altered neuronal generation or survival in the cerebellum, we compared the numbers of Purkinje cells, unipolar brush cells, molecular layer interneurons, granule and displaced granule cells in the cerebellum of wildtype, heterozygous, and homozygous SCA34-KI rats at four months of age, when motor impairment is already present. An unbiased, semi-automated method based on Cellpose 2.0 and ImageJ was used to quantify neuronal populations in cerebellar sections immunolabeled for known neuron-specific markers. Neuronal populations and cortical structure were unaffected by the W246G ELOVL4 mutation by four months of age, a time when synaptic and motor dysfunction are already present, suggesting that SCA34 pathology originates from synaptic dysfunction due to VLC-SFA deficiency, rather than aberrant neuronal production or neurodegeneration.
Collapse
Affiliation(s)
- Jennifer L Fessler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd, BMSB-100, Oklahoma City, OK, 73104, United States of America.
| | - Megan A Stiles
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, OK, 73104, United States of America
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd, BMSB-100, Oklahoma City, OK, 73104, United States of America
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, OK, 73104, United States of America
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd, BMSB-100, Oklahoma City, OK, 73104, United States of America
| | - David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd, BMSB-100, Oklahoma City, OK, 73104, United States of America.
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America.
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America.
| |
Collapse
|
3
|
Hu G, Do DN, Manafiazar G, Kelvin AA, Sargolzaei M, Plastow G, Wang Z, Davoudi P, Miar Y. Identifying selection signatures for immune response and resilience to Aleutian disease in mink using genotype data. Front Genet 2024; 15:1370891. [PMID: 39071778 PMCID: PMC11272623 DOI: 10.3389/fgene.2024.1370891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Aleutian disease (AD) brings tremendous financial losses to the mink industry. Selecting AD-resilient mink has been conducted to control AD. Such selections could have altered the patterns of genetic variation responding to selection pressures. This study aimed to identify selection signatures for immune response (IRE) and resilience to AD. A total of 1,411 mink from an AD-positive facility were used. For IRE, 264 animals were categorized according to the combined results of enzyme-linked immunosorbent assay (ELISA) and counterimmunoelectrophoresis (CIEP). For resilience, two grouping methods were used: 1) general resilience performance (GRP, n = 30) was evaluated based on the feed conversion ratio, Kleiber ratio, and pelt quality; and 2) female reproductive performance (FRP, n = 36) was measured based on the number of kits alive 24 h after birth. Detection methods were the pairwise fixation index, nucleotide diversity, and cross-population extended haplotype homozygosity. A total of 619, 569, and 526 SNPs were identified as candidates for IRE, GRP, and FRP, respectively. The annotated genes were involved in immune system process, growth, reproduction, and pigmentation. Two olfactory-related Gene Ontology (GO) terms were significant (q < 0.05) for all traits, suggesting the impact of AD on the sense of smell of infected mink. Differences in detected genes and GO terms among different color types for IRE indicated variations in immune response to AD among color types. The mitogen-activated protein kinase (MAPK) signaling pathway was significant (q < 0.05) for FRP, suggesting that AD may disrupt MAPK signaling and affect FRP. The findings of this research contribute to our knowledge of the genomic architecture and biological mechanisms underlying AD resilience in mink.
Collapse
Affiliation(s)
- Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Ghader Manafiazar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, Canada
- Select Sires Inc., Plain City, OH, United States
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| |
Collapse
|
4
|
Christoffer C, Harini K, Archit G, Kihara D. Assembly of Protein Complexes in and on the Membrane with Predicted Spatial Arrangement Constraints. J Mol Biol 2024; 436:168486. [PMID: 38336197 PMCID: PMC10942765 DOI: 10.1016/j.jmb.2024.168486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Gupta Archit
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Kato R, Takenaka Y, Ohno Y, Kihara A. Catalytic mechanism of trans-2-enoyl-CoA reductases in the fatty acid elongation cycle and its cooperative action with fatty acid elongases. J Biol Chem 2024; 300:105656. [PMID: 38224948 PMCID: PMC10864336 DOI: 10.1016/j.jbc.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
The fatty acid (FA) elongation cycle produces very-long-chain FAs with ≥C21, which have unique physiological functions. Trans-2-enoyl-CoA reductases (yeast, Tsc13; mammals, TECR) catalyze the reduction reactions in the fourth step of the FA elongation cycle and in the sphingosine degradation pathway. However, their catalytic residues and coordinated action in the FA elongation cycle complex are unknown. To reveal these, we generated and analyzed Ala-substituted mutants of 15 residues of Tsc13. An in vitro FA elongation assay showed that nine of these mutants were less active than WT protein, with E91A and Y256A being the least active. Growth complementation analysis, measurement of ceramide levels, and deuterium-sphingosine labeling revealed that the function of the E91A mutant was substantially impaired in vivo. In addition, we found that the activity of FA elongases, which catalyze the first step of the FA elongation cycle, were reduced in the absence of Tsc13. Similar results were observed in Tsc13 E91A-expressing cells, which is attributable to reduced interaction between the Tsc13 E91A mutant and the FA elongases Elo2/Elo3. Finally, we found that E94A and Y248A mutants of human TECR, which correspond to E91A and Y256A mutants of Tsc13, showed reduced and almost no activity, respectively. Based on these results and the predicted three-dimensional structure of Tsc13, we speculate that Tyr256/Tyr248 of Tsc13/TECR is the catalytic residue that supplies a proton to trans-2-enoyl-CoAs. Our findings provide a clue concerning the catalytic mechanism of Tsc13/TECR and the coordinated action in the FA elongation cycle complex.
Collapse
Affiliation(s)
- Ryoya Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuka Takenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Bauwens M, Celik E, Zur D, Lin S, Quinodoz M, Michaelides M, Webster AR, Van Den Broeck F, Leroy BP, Rizel L, Moye AR, Meunier A, Tran HV, Moulin AP, Mahieu Q, Van Heetvelde M, Arno G, Rivolta C, De Baere E, Ben-Yosef T. Mutations in SAMD7 cause autosomal-recessive macular dystrophy with or without cone dysfunction. Am J Hum Genet 2024; 111:393-402. [PMID: 38272031 PMCID: PMC10870129 DOI: 10.1016/j.ajhg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
Sterile alpha motif domain containing 7 (SAMD7) is a component of the Polycomb repressive complex 1, which inhibits transcription of many genes, including those activated by the transcription factor Cone-Rod Homeobox (CRX). Here we report bi-allelic mutations in SAMD7 as a cause of autosomal-recessive macular dystrophy with or without cone dysfunction. Four of these mutations affect splicing, while another mutation is a missense variant that alters the repressive effect of SAMD7 on CRX-dependent promoter activity, as shown by in vitro assays. Immunostaining of human retinal sections revealed that SAMD7 is localized in the nuclei of both rods and cones, as well as in those of cells belonging to the inner nuclear layer. These results place SAMD7 as a gene crucial for human retinal function and demonstrate a significant difference in the role of SAMD7 between the human and the mouse retina.
Collapse
Affiliation(s)
- Miriam Bauwens
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Elifnaz Celik
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, 4031 Basel, Switzerland
| | - Dinah Zur
- Ophthalmology Division, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Siying Lin
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the Institute of Ophthalmology, London, UK; Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, 4031 Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Michel Michaelides
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the Institute of Ophthalmology, London, UK; Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Andrew R Webster
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the Institute of Ophthalmology, London, UK; Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Filip Van Den Broeck
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Head & Skin, Ghent University, 9000 Ghent, Belgium
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Head & Skin, Ghent University, 9000 Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, 9000 Ghent, Belgium; The Division of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leah Rizel
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Abigail R Moye
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, 4031 Basel, Switzerland
| | - Audrey Meunier
- Department of Ophthalmology, Centre Hospitalier Universitaire Saint-Pierre, 1000 Brussels, Belgium
| | - Hoai Viet Tran
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland; Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Alexandre P Moulin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Quinten Mahieu
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Mattias Van Heetvelde
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Gavin Arno
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the Institute of Ophthalmology, London, UK; Institute of Ophthalmology, University College London, London EC1V 9EL, UK; North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3BH, UK
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, 4031 Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tamar Ben-Yosef
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
7
|
Mura E, Parazzini C, Tonduti D. Rare forms of hypomyelination and delayed myelination. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:225-252. [PMID: 39322381 DOI: 10.1016/b978-0-323-99209-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Parazzini
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Heyen S, Schneider V, Hüppe L, Meyer B, Wilkes H. Variations of intact phospholipid compositions in the digestive system of Antarctic krill, Euphausia superba, between summer and autumn. PLoS One 2023; 18:e0295677. [PMID: 38157351 PMCID: PMC10756546 DOI: 10.1371/journal.pone.0295677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The biochemical composition of Antarctic krill, Euphausia superba, is largely determined by their feeding behaviour. As they supply energy for animals of a higher trophic level and are also commercialized for human consumption, the interest in research on the species is high. Lipids, especially phospholipids, make up a high proportion of dry weight in krill. Seasonal changes are well documented in the fingerprint of free fatty acids analysed after hydrolysis of phospholipids, but the underlying intact polar lipids are rarely considered. In this study, we evaluated the compositions of intact phospholipids (IPLs) in the stomach, digestive gland and hind gut of Antarctic krill caught in summer and autumn at the Antarctic Peninsula region. Using high-resolution mass spectrometry, the fatty acid composition of 179 intact phospholipids could be resolved. Most IPLs were phosphatidylcholines, followed by phosphatidylethanolamines. Several very long chain polyunsaturated fatty acids up to 38:8, which have not been reported in krill before, were identified. The composition shifted to higher molecular weight IPLs with a higher degree of unsaturation for summer samples, especially for samples of the digestive gland. The data supplied in this paper provides new insights into lipid dynamics between summer and autumn usually described by free fatty acid biomarkers.
Collapse
Affiliation(s)
- Simone Heyen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Vivien Schneider
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lukas Hüppe
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Marine Functional Biodiversity (HIFMB), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Torrissen M, Ytteborg E, Svensen H, Stoknes I, Nilsson A, Østbye TK, Berge GM, Bou M, Ruyter B. Investigation of the functions of n-3 very-long-chain PUFAs in skin using in vivo Atlantic salmon and in vitro human and fish skin models. Br J Nutr 2023; 130:1915-1931. [PMID: 37169355 PMCID: PMC10630148 DOI: 10.1017/s0007114523001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
The purpose of this study was to investigate the effect of dietary n-3 very-long-chain PUFA (n-3 VLC-PUFA) on the maturation and development of skin tissue in juvenile Atlantic salmon (Salmo salar) in vivo, as well as their effects on skin keratocyte and human skin fibroblast cell migration in vitro. Atlantic salmon were fed different dietary levels of n-3 VLC-PUFA from an initial weight of 6 g to a final weight of 11 g. Changes in skin morphology were analysed at two time points during the experiment, and the effects on skin tissue fatty acid composition were determined. Additionally, in vitro experiments using human dermal fibroblasts and primary Atlantic salmon keratocytes were conducted to investigate the effect of VLC-PUFA on the migration capacity of the cells. The results demonstrated that increased dietary levels of n-3 VLC-PUFA led to an increased epidermis thickness and more rapid scale maturation in Atlantic salmon skin in vivo, leading to a more mature skin morphology, and possibly more robust skin, at an earlier life stage. Additionally, human skin fibroblasts and salmon skin keratocytes supplemented with n-3 VLC-PUFA in vitro showed more rapid migration, indicating potentially beneficial effects of VLC-PUFA in wound healing. In conclusion, VLC-PUFA may have beneficial effects on skin tissue development, function and integrity.
Collapse
Affiliation(s)
- Martina Torrissen
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
- Epax Norway, 6006Ålesund, Norway
- NMBU (Norwegian University of Life Sciences), 1433Ås, Norway
| | - Elisabeth Ytteborg
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | | | | | - Astrid Nilsson
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Gerd Marit Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Marta Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
- NMBU (Norwegian University of Life Sciences), 1433Ås, Norway
| |
Collapse
|
10
|
Tobin D, Svensen H, Stoknes I, Dornish M. Genotoxicity evaluation of a fish oil concentrate containing Very Long Chain Fatty Acids. Toxicol Rep 2023; 11:249-258. [PMID: 37752908 PMCID: PMC10518352 DOI: 10.1016/j.toxrep.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023] Open
Abstract
Very long chain fatty acids (VLCFAs) are lipids found in fish with a chain length longer than C22. They represent a minor lipid fraction composing of less than 1% of the total lipid. EPAX® EVOLVE 05 is a concentrate of VLCFAs providing roughly 10 times the amount found in fish. Here we report genotoxocity studies performed in cell culture and using a rat model. No genotoxicity was noted in a bacterial reverse mutation test (AMES test). An in vitro micronucleus assay was negative with a 4-hr test item incubation but a 24-hr incubation resulted in a positive signal. This prompted further study using an in vivo Sprague Dawley rat model. Test item exposure was demonstrated by plasma measurements from Sprague Dawley rats with peak absorption at 2-4 h post administration, as expected for fatty acids. The micronucleus assay showed no genotoxicity for fish oil containing VLCFAs. Together, the data shows that VLCFAs up to the test dose of 1200 mg/kg b.w. do not show genotoxicity.
Collapse
|
11
|
Honzíková T, Agbaga MP, Anderson RE, Brush R, Ahmad M, Musílková L, Šejstalová K, Alishevich K, Beneš R, Šimicová P, Berčíková M, Filip V, Kyselka J. Novel Approaches for Elongation of Fish Oils into Very-Long-Chain Polyunsaturated Fatty Acids and Their Enzymatic Interesterification into Glycerolipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17909-17923. [PMID: 37947776 PMCID: PMC10682991 DOI: 10.1021/acs.jafc.3c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Elongation of the Very-Long-Chain Fatty Acids-4 (ELOVL4) enzyme that is expressed in neuronal tissues, sperm, and testes mediates biosynthesis of very-long-chain polyunsaturated fatty acids (VLC-PUFAs) from dietary long chain PUFAs (LC-PUFAs). The VLC-PUFAs are critical for neuronal and reproductive function. Therefore, mutations in ELOVL4 that affect VLC-PUFA biosynthesis contribute to retinal degenerative diseases including Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3). Recent studies have also shown not only a depletion of retinal VLC-PUFAs with normal aging but also a more significant loss of VLC-PUFAs in donor eyes of patients with age-related macular degeneration (AMD). However, currently, there are no natural sources of VLC-PUFAs to be evaluated as dietary supplements for the attenuation of retinal degeneration in animal models of STGD3. Here, we report the development of a novel chemical approach for elongation of eicosapentaenoic (C20:5 n-3) and docosahexaenoic (C22:6 n-3) acids from fish oils by 6 carbon atoms to make a unique group of VLC-PUFAs, namely all-cis-hexacosa-11,14,17,20,23-pentaenoic acids (C26:5 n-3) and all-cis-octacosa-10,13,16,19,22,25-hexaenoic acids (C28:6 n-3). The three-step elongation approach that we report herein resulted in a good overall yield of up to 20.2%. This more sustainable approach also resulted in improved functional group compatibility and minimal impact on the geometrical integrity of the all-cis double bond system of the VLC-PUFAs. In addition, we also successfully used commercial deep-sea fish oil concentrate as an inexpensive material for the C6 elongation of fish oil LC-PUFAs into VLC-PUFAs, which resulted in the making of gram scales of VLC-PUFAs with an even higher isolation yield of 31.0%. The quality of fish oils and the content of oxidized lipids were key since both strongly affected the activity of the PEPPSI-IPr catalyst and ultimately the yield of coupling reactions. Downstream enzymatic interesterification was used for the first time to prepare structured glycerolipids enriched with VLC-PUFAs that could be evaluated in vivo to determine absorption and transport to target tissues relative to those of the free fatty acid forms. It turned out that in the synthesis of structured triacylglycerols and glycerophospholipids with VLC-PUFAs, the polarity of the immobilized lipase carrier and its humidity were essential.
Collapse
Affiliation(s)
- Tereza Honzíková
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Martin-Paul Agbaga
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Robert Eugene Anderson
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Richard Brush
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Mohiuddin Ahmad
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Lenka Musílková
- The
Department of Chemistry of Natural Compounds, Faculty of Food and
Biochemical Technology, University of Chemistry
and Technology, Technická
5, 166 28 Prague, Czechia
| | - Karolína Šejstalová
- The
Department of Chemistry of Natural Compounds, Faculty of Food and
Biochemical Technology, University of Chemistry
and Technology, Technická
5, 166 28 Prague, Czechia
| | - Katsiaryna Alishevich
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Radek Beneš
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Petra Šimicová
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Markéta Berčíková
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Vladimír Filip
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Jan Kyselka
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| |
Collapse
|
12
|
Christoffer C, Harini K, Archit G, Kihara D. Assembly of Protein Complexes In and On the Membrane with Predicted Spatial Arrangement Constraints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563303. [PMID: 37961264 PMCID: PMC10634698 DOI: 10.1101/2023.10.20.563303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gupta Archit
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
13
|
Farnoodian M, Bose D, Barone F, Nelson LM, Boyle M, Jun B, Do K, Gordon W, Guerin MAK, Perera R, Ji JX, Cogliati T, Sharma R, Brooks BP, Bazan NG, Bharti K. Retina and RPE lipid profile changes linked with ABCA4 associated Stargardt's maculopathy. Pharmacol Ther 2023; 249:108482. [PMID: 37385300 PMCID: PMC10530239 DOI: 10.1016/j.pharmthera.2023.108482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-mediated signaling in the retina and RPE are potential causes for lacking treatments for this disease. Here we report altered lipidomic in mouse and human Stargardt models. This work provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Devika Bose
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Francesca Barone
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Luke Mathew Nelson
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Marisa Boyle
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Khanh Do
- Faculty of Medicine, Phenikaa University, Hanoi, Viet Nam
| | - William Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Marie-Audrey Kautzmann Guerin
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Rasangi Perera
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Tiziana Cogliati
- Division of Aging Biology, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Kuroha S, Katada Y, Isobe Y, Uchino H, Shishikura K, Nirasawa T, Tsubota K, Negishi K, Kurihara T, Arita M. Long chain acyl-CoA synthetase 6 facilitates the local distribution of di-docosahexaenoic acid- and ultra-long-chain-PUFA-containing phospholipids in the retina to support normal visual function in mice. FASEB J 2023; 37:e23151. [PMID: 37585289 DOI: 10.1096/fj.202300976r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Docosahexaenoic acid (DHA) and ultra-long-chain polyunsaturated fatty acids (ULC-PUFAs) are uniquely enriched in membrane phospholipids of retinal photoreceptors. Several studies have shown that di-DHA- and ULC-PUFA-containing phospholipids in photoreceptors have an important role in maintaining normal visual function; however, the molecular mechanisms underlying the synthesis and enrichment of these unique lipids in the retina, and their specific roles in retinal function remain unclear. Long-chain acyl-coenzyme A (CoA) synthetase 6 (ACSL6) preferentially converts DHA into DHA-CoA, which is a substrate during DHA-containing lipid biosynthesis. Here, we report that Acsl6 mRNA is expressed in the inner segment of photoreceptor cells and the retinal pigment epithelial cells, and genetic deletion of ACSL6 resulted in the selective depletion of di-DHA- and ULC-PUFA-containing phospholipids, but not mono-DHA-containing phospholipids in the retina. MALDI mass spectrometry imaging (MALDI-MSI) revealed the selective distribution of di-DHA- and ULC-PUFA-containing phospholipids in the photoreceptor outer segment (OS). Electroretinogram of Acsl6-/- mice exhibited photoreceptor cell-derived visual impairment, whereas the expression levels and localization of opsin proteins were unchanged. Acsl6-/- mice exhibited an age-dependent progressive decrease of the thickness of the outer nuclear layers, whereas the inner nuclear layers and OSs were normal. These results demonstrate that ACSL6 facilitates the local enrichment of di-DHA- and ULC-PUFA-containing phospholipids in the retina, which supports normal visual function and retinal homeostasis.
Collapse
Affiliation(s)
- Sayoko Kuroha
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Yusaku Katada
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Yosuke Isobe
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Haruki Uchino
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Kyosuke Shishikura
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | | | | | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| |
Collapse
|
15
|
Nagaraja RY, Stiles MA, Sherry DM, Agbaga MP, Ahmad M. Synapse-Specific Defects in Synaptic Transmission in the Cerebellum of W246G Mutant ELOVL4 Rats-a Model of Human SCA34. J Neurosci 2023; 43:5963-5974. [PMID: 37491316 PMCID: PMC10436685 DOI: 10.1523/jneurosci.0378-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Elongation of very long fatty acids-4 (ELOVL4) mediates biosynthesis of very long chain-fatty acids (VLC-FA; ≥28 carbons). Various mutations in this enzyme result in spinocerebellar ataxia-34 (SCA34). We generated a rat model of human SCA34 by knock-in of a naturally occurring c.736T>G, p.W246G mutation in the Elovl4 gene. Our previous analysis of homozygous W246G mutant ELOVL4 rats (MUT) revealed early-onset gait disturbance and impaired synaptic transmission and plasticity at parallel fiber-Purkinje cell (PF-PC) and climbing fiber-Purkinje cell (CF-PC) synapses. However, the underlying mechanisms that caused these defects remained unknown. Here, we report detailed patch-clamp recordings from Purkinje cells that identify impaired synaptic mechanisms. Our results show that miniature EPSC (mEPSC) frequency is reduced in MUT rats with no change in mEPSC amplitude, suggesting a presynaptic defect of excitatory synaptic transmission on Purkinje cells. We also find alterations in inhibitory synaptic transmission as miniature IPSC (mIPSC) frequency and amplitude are increased in MUT Purkinje cells. Paired-pulse ratio is reduced at PF-PC synapses but increased at CF-PC synapses in MUT rats, which along with results from high-frequency stimulation suggest opposite changes in the release probability at these two synapses. In contrast, we identify exaggerated persistence of EPSC amplitude at CF-PC and PF-PC synapses in MUT cerebellum, suggesting a larger readily releasable pool (RRP) at both synapses. Furthermore, the dendritic spine density is reduced in MUT Purkinje cells. Thus, our results uncover novel mechanisms of action of VLC-FA at cerebellar synapses, and elucidate the synaptic dysfunction underlying SCA34 pathology.SIGNIFICANCE STATEMENT Very long chain-fatty acids (VLC-FA) are an understudied class of fatty acids that are present in the brain. They are critical for brain function as their deficiency caused by mutations in elongation of very long fatty acids-4 (ELOVL4), the enzyme that mediates their biosynthesis, results in neurologic diseases including spinocerebellar ataxia-34 (SCA34), neuroichthyosis, and Stargardt-like macular dystrophy. In this study, we investigated the synaptic defects present in a rat model of SCA34 and identified defects in presynaptic neurotransmitter release and dendritic spine density at synapses in the cerebellum, a brain region involved in motor coordination. These results advance our understanding of the synaptic mechanisms regulated by VLC-FA and describe the synaptic dysfunction that leads to motor incoordination in SCA34.
Collapse
Affiliation(s)
- Raghavendra Y Nagaraja
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Megan A Stiles
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
16
|
Ferrero E, Di Gregorio E, Ferrero M, Ortolan E, Moon YA, Di Campli A, Pavinato L, Mancini C, Tripathy D, Manes M, Hoxha E, Costanzi C, Pozzi E, Rossi Sebastiano M, Mitro N, Tempia F, Caruso D, Borroni B, Basso M, Sallese M, Brusco A. Spinocerebellar ataxia 38: structure-function analysis shows ELOVL5 G230V is proteotoxic, conformationally altered and a mutational hotspot. Hum Genet 2023; 142:1055-1076. [PMID: 37199746 PMCID: PMC10449689 DOI: 10.1007/s00439-023-02572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy
| | - Marta Ferrero
- Experimental Zooprophylactic Institute of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Erika Ortolan
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Antonella Di Campli
- Institute of Protein Biochemistry, Italian National Research Council, Naples, Italy
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Marta Manes
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | | | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Matteo Rossi Sebastiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Sallese
- Centre for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy.
| |
Collapse
|
17
|
Swinkels D, Baes M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol Ther 2023; 247:108440. [PMID: 37201739 DOI: 10.1016/j.pharmthera.2023.108440] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The fatty acid composition of photoreceptor outer segment (POS) phospholipids diverges from other membranes, being highly enriched in polyunsaturated fatty acids (PUFAs). The most abundant PUFA is docosahexaenoic acid (DHA, C22:6n-3), an omega-3 PUFA that amounts to over 50% of the POS phospholipid fatty acid side chains. Interestingly, DHA is the precursor of other bioactive lipids such as elongated PUFAs and oxygenated derivatives. In this review, we present the current view on metabolism, trafficking and function of DHA and very long chain polyunsaturated fatty acids (VLC-PUFAs) in the retina. New insights on pathological features generated from PUFA deficient mouse models with enzyme or transporter defects and corresponding patients are discussed. Not only the neural retina, but also abnormalities in the retinal pigment epithelium are considered. Furthermore, the potential involvement of PUFAs in more common retinal degeneration diseases such as diabetic retinopathy, retinitis pigmentosa and age-related macular degeneration are evaluated. Supplementation treatment strategies and their outcome are summarized.
Collapse
Affiliation(s)
- Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
18
|
Tamura Y, Sassa T, Nishizawa T, Kihara A. Incomplete Elongation of Ultra-long-chain Polyunsaturated Acyl-CoAs by the Fatty Acid Elongase ELOVL4 in Spinocerebellar Ataxia Type 34. Mol Cell Biol 2023; 43:1-17. [PMID: 36748939 PMCID: PMC9980445 DOI: 10.1080/10985549.2023.2169563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) are autosomal dominant diseases characterized by cerebellar atrophy and ataxia. The SCA subtype SCA34 is caused by specific mutations in the gene ELOVL4, which encodes a fatty acid (FA) elongase that synthesizes ultra-long-chain (ULC; ≥C26) FAs. However, the pathogenesis and molecular mechanism that confers dominant inheritance remains unknown. Here, a cell-based assay demonstrated that each of the five known SCA34 mutants produced shorter ULC polyunsaturated FA-containing phosphatidylcholines (ULC-PCs) than wild-type protein, in the following order of severity: Q180P and T233M > W246G > I171T and L168F. Next, we generated knock-in mouse embryonic stem cells that contained heterozygous Q180P, heterozygous W246G, or homozygous W246G mutations. Neuronal differentiation-dependent production of ULC-PCs was reduced in heterozygous Q180P and homozygous W246G cells relative to control cells, and we observed shortening of the FA moiety in all mutant cells. This FA shortening was consistent with our prediction that amino acid residues substituted by SCA34 mutations are located in the transmembrane helices that interact with the ω-end region of the FA moiety of the substrate acyl-CoA. Hence, reduced levels and shortening of ULC-PCs in neurons may cause SCA34, and incomplete elongation of ULC polyunsaturated acyl-CoAs by mutated ELOVL4 may induce dominant inheritance.
Collapse
Affiliation(s)
- Yuka Tamura
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takumi Nishizawa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Sajovic J, Meglič A, Volk M, Maver A, Jarc-Vidmar M, Hawlina M, Fakin A. Stargardt-like Clinical Characteristics and Disease Course Associated with Variants in the WDR19 Gene. Genes (Basel) 2023; 14:genes14020291. [PMID: 36833218 PMCID: PMC9957452 DOI: 10.3390/genes14020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Variants in WDR19 (IFT144) have been implicated as another possible cause of Stargardt disease. The purpose of this study was to compare longitudinal multimodal imaging of a WDR19-Stargardt patient, harboring p.(Ser485Ile) and a novel c.(3183+1_3184-1)_(3261+1_3262-1)del variant, with 43 ABCA4-Stargardt patients. Age at onset, visual acuity, Ishihara color vision, color fundus, fundus autofluorescence (FAF), spectral-domain optical coherence tomography (OCT) images, microperimetry and electroretinography (ERG) were evaluated. First symptom of WDR19 patient was nyctalopia at the age of 5 years. After the age of 18 years, OCT showed hyper-reflectivity at the level of the external limiting membrane/outer nuclear layer. There was abnormal cone and rod photoreceptor function on ERG. Widespread fundus flecks appeared, followed by perifoveal photoreceptor atrophy. Fovea and peripapillary retina remained preserved until the latest exam at 25 years of age. ABCA4 patients had median age of onset at 16 (range 5-60) years and mostly displayed typical Stargardt triad. A total of 19% had foveal sparing. In comparison to ABCA4 patients, the WDR19 patient had a relatively large foveal preservation and severe rod photoreceptor impairment; however, it was still within the ABCA4 disease spectrum. Addition of WDR19 in the group of genes producing phenocopies of Stargardt disease underlines the importance of genetic testing and may help to understand its pathogenesis.
Collapse
Affiliation(s)
- Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marija Volk
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Šlajmerjeva 4, 1000 Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Šlajmerjeva 4, 1000 Ljubljana, Slovenia
| | - Martina Jarc-Vidmar
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
20
|
Monir RL, Schoch JJ. Acral collodion membrane associated with ichthyosis due to a heterozygous pathogenic variant of ELOVL4 gene. Pediatr Dermatol 2023. [PMID: 36623811 DOI: 10.1111/pde.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023]
Abstract
A female twin presented at birth with a collodion membrane on the hands and feet. After the membrane resolved over the first months of life, she was initially diagnosed with acral self-healing collodion membrane. However, she subsequently developed brown well-defined geometric scales on the trunk and extremities, consistent with ichthyosis. Genetic testing showed a heterozygous pathogenic variant in ELOVL4, a gene associated with syndromic ichthyosis with developmental delay, seizures, and spasticity. Although acral collodion membrane is considered to be a benign variant of the more generalized collodion, usually described as "self-healing," it may be the initial presentation of more diffuse ichthyosis.
Collapse
Affiliation(s)
- Reesa L Monir
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jennifer J Schoch
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
21
|
Gyening YK, Chauhan NK, Tytanic M, Ea V, Brush RS, Agbaga MP. ELOVL4 Mutations That Cause Spinocerebellar Ataxia-34 Differentially Alter Very Long Chain Fatty Acid Biosynthesis. J Lipid Res 2023; 64:100317. [PMID: 36464075 PMCID: PMC9823237 DOI: 10.1016/j.jlr.2022.100317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
The FA Elongase-4 (ELOVL4) enzyme mediates biosynthesis of both very long chain (VLC)-PUFAs and VLC-saturated FA (VLC-SFAs). VLC-PUFAs play critical roles in retina and sperm function, whereas VLC-SFAs are predominantly associated with brain function and maintenance of the skin permeability barrier. While some ELOVL4 mutations cause Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3), other ELOVL4 point mutations, such as L168F and W246G, affect the brain and/or skin, leading to Spinocerebellar Ataxia-34 (SCA34) and Erythrokeratodermia variabilis. The mechanisms by which these ELOVL4 mutations alter VLC-PUFA and VLC-SFA biosynthesis to cause the different tissue-specific pathologies are not well understood. To understand how these mutations alter VLC-PUFA and VLC-SFA biosynthesis, we expressed WT-ELOVL4, L168F, and W246G ELOVL4 variants in cell culture and supplemented the cultures with VLC-PUFA or VLC-SFA precursors. Total lipids were extracted, converted to FA methyl esters, and quantified by gas chromatography. We showed that L168F and W246G mutants were capable of VLC-PUFA biosynthesis. W246G synthesized and accumulated 32:6n3, while L168F exhibited gain of function in VLC-PUFA biosynthesis as it made 38:5n3, which we did not detect in WT-ELOVL4 or W246G-expressing cells. However, compared with WT-ELOVL4, both L168F and W246G mutants were deficient in VLC-SFA biosynthesis, especially the W246G protein, which showed negligible VLC-SFA biosynthesis. These results suggest VLC-PUFA biosynthetic capabilities of L168F and W246G in the retina, which may explain the lack of retinal phenotype in SCA34. Defects in VLC-SFA biosynthesis by these variants may be a contributing factor to the pathogenic mechanism of SCA34 and Erythrokeratodermia variabilis.
Collapse
Affiliation(s)
- Yeboah Kofi Gyening
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Neeraj Kumar Chauhan
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Madison Tytanic
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Vicki Ea
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Richard S Brush
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA; Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Martin-Paul Agbaga
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA; Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
22
|
Gorusupudi A, Nwagbo U, Bernstein PS. Role of VLC-PUFAs in Retinal and Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:257-261. [PMID: 37440042 DOI: 10.1007/978-3-031-27681-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Very-long-chain polyunsaturated fatty acids (VLC-PUFAs) are a special class of fatty acids that are present in the retina and a few other human tissues. They cannot be synthesized de novo and are rarely present in dietary sources. Structurally, these lipids are composed of a proximal end with a typical saturated fatty acid character and a distal end more characteristic of common PUFAs. They have not been studied in detail until recently due to their low abundance in these tissues and technical difficulties in assaying these lipids by conventional chromatography. This unique class of lipids has chain lengths greater than 24 carbons, with the longest typically 38 carbons long. There is increasing interest in understanding their roles in the maintenance of retinal membrane integrity and the prevention of macular degeneration and inherited retinal diseases.
Collapse
Affiliation(s)
- Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
23
|
Abstract
In 2001, the first large animal was successfully treated with a gene therapy that restored its vision. Lancelot, the Briard dog that was treated, suffered from a human childhood blindness called Leber's congenital amaurosis type 2. Sixteen years later, the gene therapy was approved by the U.S. Food and Drug Administration. The success of this gene therapy in dogs led to a fast expansion of the ocular gene therapy field. By now every class of inherited retinal dystrophy has been treated in at least one animal model and many clinical trials have been initiated in humans. In this study, we review the status of viral gene therapies for the retina, with a focus on ongoing human clinical trials. It is likely that in the next decade we will see several new viral gene therapies approved.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- University of Massachusetts Medical School, Ophthalmology, Worcester, Massachusetts, United States;
| | - Claudio Punzo
- University of Massachusetts Medical School, Ophthalmology, 368 Plantation Street, Albert Sherman Center, AS6-2041, Worcester, Massachusetts, United States, 01605;
| |
Collapse
|
24
|
James G, Bohannan W, Adewunmi E, Schmidt K, Park HG, Shchepinov MS, Agbaga MP, Brenna JT. Pharmacokinetics and metabolism in mouse retina of bis-allylic deuterated docosahexaenoic acid (D-DHA), a new dry AMD drug candidate. Exp Eye Res 2022; 222:109193. [PMID: 35870486 PMCID: PMC11238729 DOI: 10.1016/j.exer.2022.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022]
Abstract
Docosahexaenoic acid (DHA; 22:6n-3) rich photoreceptors function in a highly oxidizing microenvironment. Lipid peroxidation and inflammation contribute to initiation and progression of eye diseases including age-related macular degeneration (AMD). Deuteration of DHA at the bis-allylic positions (D-DHA) increases its resilience to oxidative damage in vitro. We studied the pharmacokinetics of dietary D-DHA as a therapy for replacing natural retinal DHA in vivo. Mice were fed 0.5% D-DHA for 77 days then switched to natural DHA (H-DHA) for 74 days. Tissue were harvested for analyses at various time points. D-DHA substitution levels were 75%-80% in the CNS and above 90% in all other tissues by day 77. D-DHA accretion was rapid in plasma and liver (t1/2a ∼2.8 d), followed by heart and red blood cells (t1/2a ∼8.5 d), then ocular tissues (choroid-RPE, neural retina, and optic nerve with t1/2a of 10.1, 23.4, and 26.3 days, respectively), while CNS accretion was slowest (t1/2a of 29.0-44.3 days). D-DHA elimination rates were comparable to, or slower than, accretion rates except for optic nerve. Retina had very long chain D-PUFA (D-VLC-PUFA) with 5 and 6 double bonds up to C36, as well as D-EPA and D-DPA derived metabolically from D-DHA. The neural retina and optic nerve reached the therapeutic target window (20%-50%) in 2-4 weeks. Biosynthesis of D-VLC-PUFA is consistent with normal metabolism. D-DHA crosses the blood-retina-barrier, enters visually active tissues, and is metabolized as its natural DHA parent where, as shown previously (Liu et al., 2022), it protects against lipid peroxidation.
Collapse
Affiliation(s)
- Genevieve James
- Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA.
| | - Whitney Bohannan
- Departments of Cell Biology, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; Departments of Ophthalmology and Dean McGee Eye Institute, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; University of Oklahoma Health Sciences Center, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA.
| | - Eniola Adewunmi
- Departments of Cell Biology, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; Departments of Ophthalmology and Dean McGee Eye Institute, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; University of Oklahoma Health Sciences Center, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA.
| | - Karsten Schmidt
- Retrotope, Inc., 4300 El Camino Real, Suite 201, Los Altos, CA, 94022, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA.
| | | | - Martin-Paul Agbaga
- Departments of Cell Biology, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; Departments of Ophthalmology and Dean McGee Eye Institute, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA; University of Oklahoma Health Sciences Center, 608 Stanton L, Young Blvd, Oklahoma City, OK, 73104, USA.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
25
|
Balbo I, Montarolo F, Genovese F, Tempia F, Hoxha E. Effects of the administration of Elovl5-dependent fatty acids on a spino-cerebellar ataxia 38 mouse model. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:8. [PMID: 35933444 PMCID: PMC9357323 DOI: 10.1186/s12993-022-00194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Background Spinocerebellar ataxia 38 (SCA38) is a rare autosomal neurological disorder characterized by ataxia and cerebellar atrophy. SCA38 is caused by mutations of ELOVL5 gene. ELOVL5 gene encodes a protein, which elongates long chain polyunsaturated fatty acids (PUFAs). Knockout mice lacking Elovl5 recapitulate SCA38 symptoms, including motor coordination impairment and disruption of cerebellar architecture. We asked whether, in Elovl5 knockout mice (Elovl5−/−), a diet with both ω3 and ω6 PUFAs downstream Elovl5 can prevent the development of SCA38 symptoms, and at which age such treatment is more effective. Elovl5−/− mice were fed either with a diet without or containing PUFAs downstream the Elovl5 enzyme, starting at different ages. Motor behavior was assessed by the balance beam test and cerebellar structure by morphometric analysis. Results The administration from birth of the diet containing PUFAs downstream Elovl5 led to a significant amelioration of the motor performance in the beam test of Elovl5−/− mice, with a reduction of foot slip errors at 6 months from 2.2 ± 0.3 to 1.3 ± 0.2 and at 8 months from 3.1 ± 0.5 to 1.9 ± 0.3. On the contrary, administration at 1 month of age or later had no effect on the motor impairment. The cerebellar Purkinje cell layer and the white matter area of Elovl5−/ −mice were not rescued even by the administration of diet from birth, suggesting that the improvement of motor performance in the beam test was due to a functional recovery of the cerebellar circuitry. Conclusions These results suggest that the dietary intervention in SCA38, whenever possible, should be started from birth or as early as possible.
Collapse
Affiliation(s)
- Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Genovese
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy.,Department of Neuroscience, University of Torino, Torino, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy. .,Department of Neuroscience, University of Torino, Torino, Italy.
| |
Collapse
|
26
|
Cheng V, Rallabandi R, Gorusupudi A, Lucas S, Rognon G, Bernstein PS, Rainier JD, Conboy JC. Influence of very-long-chain polyunsaturated fatty acids on membrane structure and dynamics. Biophys J 2022; 121:2730-2741. [PMID: 35711144 PMCID: PMC9382336 DOI: 10.1016/j.bpj.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
The unique attributes of very-long-chain polyunsaturated fatty acids (VLC-PUFAs), their long carbon chains (n > 24) and high degree of unsaturation, impart unique chemical and physical properties to this class of fatty acids. The changes imparted by VLC-PUFA 32:6 n-3 on lipid packing and the compression moduli of model membranes were evaluated from π-A isotherms of VLC-PUFA in 1,2-distearoyl-sn-3-glycero-phosphocholine (DSPC) lipid monolayers. To compare the attractive or repulsive forces between VLC-PUFA and DSPC lipid monolayers, the measured mean molecular areas (MMAs) were compared with the calculated MMAs of an ideal mixture of VLC-PUFA and DSPC. The presence of 0.1, 1, and 10 mol % VLC-PUFA shifted the π-A isotherm to higher MMAs of the lipids comprising the membrane and the observed positive deviations from ideal behavior of the mixed VLC-PUFA:DSPC monolayers correspond to repulsive forces between VLC-PUFAs and DSPC. The MMA of the VLC-PUFA component was estimated using the measured MMAs of DSPC of 47.1 ± 0.7 Å2/molecule, to be 15,000, 1100, and 91 Å2/molecule at 0.1, 1, and 10 mol % VLC-PUFA:DSPC mixtures, respectively. The large MMAs of VLC-PUFA suggest that the docosahexaenoic acid tail reinserts into the membrane and adopts a nonlinear structure in the membrane, which is most pronounced at 0.1 mol % VLC-PUFA. The presence of 0.1 mol % VLC-PUFA:DSPC also significantly increased the compression modulus of the membrane by 28 mN/m compared with a pure DSPC membrane. The influence of VLC-PUFA on lipid "flip-flop" was investigated by sum-frequency vibrational spectroscopy. The incorporation of 0.1 mol % VLC-PUFA increased the DSPC flip-flop rate fourfold. The fact that VLC-PUFA promotes lipid translocation is noteworthy as retinal membranes require a high influx of retinoids which may be facilitated by lipid flip-flop.
Collapse
Affiliation(s)
- Victoria Cheng
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Steven Lucas
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Gregory Rognon
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Jon D Rainier
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
27
|
Zhang Y, Pang S, Sun B, Zhang M, Jiao X, Lai L, Qian Y, Yang N, Yang W. ELOVLs Predict Distinct Prognosis Value and Immunotherapy Efficacy In Patients With Hepatocellular Carcinoma. Front Oncol 2022; 12:884066. [PMID: 35912257 PMCID: PMC9334671 DOI: 10.3389/fonc.2022.884066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary malignancy of the liver with high prevalence worldwide and poor prognosis. It has been verified that elongation of very-long-chain fatty acids gene family (ELOVLs), a group of genes that responsible for elongation of saturated and polyunsaturated fatty acids, participate in the pathogenesis and development of multiplex disease including cancers. However, the functions and prognosis of ELOVLs in HCC are still indistinguishable. Methods First, we searched the mRNA expression and survival data of ELOVLs in patients with HCC via the data of The Cancer Genome Atlas (TCGA). The prognosis value of ELOVLs on HCC was assessed by Kaplan–Meier plotter and Cox regression analysis. reverse transcription quantitative- polymerase chain reaction (RT-qPCR), Western blot (WB), and immunohistochemistry were applied to assess the specific mRNA and protein expression of ELOVLs in HCC clinical specimens of our cohort. Then, the functional enrichment of ELOVL1 especially the pathways relating to the immune was conducted utilizing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) analysis. Additionally, TIMER, CIBERSOR, and tumor immune dysfunction and exclusion (TIDE) were employed to evaluate the relationship between ELOVL1 and immune responses. Last, the correlation of ELOVL1 with genome heterogeneity [microsatellite instability (MSI), tumor mutational burden (TMB), mutant-allele tumor heterogeneity (MATH), homologous recombination deficiency (HRD), purity, ploidy, loss of heterozygosity (LOH), and neoantigens] and mutational landscape were also evaluated basing on the date in TCGA. Results Significant expression alteration was observed in ELOVLs family at the pan-cancer level. In liver cancer, ELOVL1 and ELOVL3 were strongly associated with poor prognosis of HCC by survival analysis and differential expression analysis. Immunohistochemistry microarray, WB, and RT-qPCR confirmed that ELOVL1 but not ELOVL3 played an important role in HCC. Mechanistically, functional network analysis revealed that ELOVL1 might be involved in the immune response. ELOVL1 could affect immune cell infiltration and immune checkpoint markers such as PD-1 and CTLA4 in HCC. Meanwhile, high expression of ELOVL1 would be insensitive to immunotherapy. Correlation analysis of immunotherapy markers showed that ELOVL1 has been associated with MSI, TMB, and oncogene mutations such as TP53. Conclusion ELOVLs play distinct prognostic value in HCC. ELOVL1 could predict the poor prognosis and might be a potential indicator of immunotherapy efficacy in HCC patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shujie Pang
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Minbo Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiao Jiao
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Linying Lai
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ning Yang
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Ning Yang, ; Wenzhuo Yang,
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Ning Yang, ; Wenzhuo Yang,
| |
Collapse
|
28
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
29
|
Verra DM, Spinnhirny P, Sandu C, Grégoire S, Acar N, Berdeaux O, Brétillon L, Sparrow JR, Hicks D. Intrinsic differences in rod and cone membrane composition: implications for cone degeneration. Graefes Arch Clin Exp Ophthalmol 2022; 260:3131-3148. [PMID: 35524799 DOI: 10.1007/s00417-022-05684-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE In many retinal pathological conditions, rod and cone degeneration differs. For example, the early-onset maculopathy Stargardts disease type 1 (STGD1) is typified by loss of cones while rods are often less affected. We wanted to examine whether there exist intrinsic membrane differences between rods and cones that might explain such features. METHODS Abca4 mRNA and protein levels were quantified in rod- and cone-enriched samples from wild-type and Nrl-/- mice retinas; rod- and cone-enriched outer segments (ROS and COS respectively) were prepared from pig retinas, and total lipids were analyzed by flame ionization, chromatography, and tandem mass spectrometry. Immunohistochemical staining of cone-rich rodent Arvicanthis ansorgei retinas was conducted, and ultra-high performance liquid chromatography of lipid species in porcine ROS and COS was performed. RESULTS Abca4 mRNA and Abca4 protein content was significantly higher (50-300%) in cone compared to rod-enriched samples. ROS and COS displayed dramatic differences in several lipids, including very long chain poly-unsaturated fatty acids (VLC-PUFAs), especially docosahexaenoic acid (DHA, 22:6n-3): ROS 20.6% DHA, COS 3.3% (p < 0.001). VLC-PUFAs (> 50 total carbons) were virtually absent from COS. COS were impoverished (> 6× less) in phosphatidylethanolamine compared to ROS. ELOVL4 ("ELOngation of Very Long chain fatty acids 4") antibody labelled Arvicanthis cones only very weakly compared to rods. Finally, there were large amounts (905 a.u.) of the bisretinoid A2PE in ROS, whereas it was much lower (121 a.u., ~ 7.5-fold less) in COS fractions. In contrast, COS contained fivefold higher amounts of all-trans-retinal dimer (115 a.u. compared to 22 a.u. in rods). CONCLUSIONS Compared to rods, cones expressed higher levels of Abca4 mRNA and Abca4 protein, were highly impoverished in PUFA (especially DHA) and phosphatidylethanolamine, and contained significant amounts of all-trans-retinal dimer. Based on these and other data, we propose that in contrast to rods, cones are preferentially vulnerable to stress and may die through direct cellular toxicity in pathologies such as STGD1.
Collapse
Affiliation(s)
- Daniela M Verra
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Perrine Spinnhirny
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Cristina Sandu
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Stéphane Grégoire
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Olivier Berdeaux
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Lionel Brétillon
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Janet R Sparrow
- Departments of Ophthalmology, and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - David Hicks
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France.
| |
Collapse
|
30
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
31
|
Ng TK, Cao Y, Yuan XL, Chen S, Xu Y, Chen SL, Zheng Y, Chen H. Whole exome sequencing analysis identifies novel Stargardt disease-related gene mutations in Chinese Stargardt disease and retinitis pigmentosa patients. Eye (Lond) 2022; 36:749-759. [PMID: 33846575 PMCID: PMC8956586 DOI: 10.1038/s41433-021-01525-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To delineate the disease-causing mutations of the Stargardt disease-related genes in Chinese patients diagnosed with Stargardt disease or retinitis pigmentosa (RP) by whole exome sequencing analysis. METHODS A total of 123 sporadic RP or Stargardt disease patients and 2 Stargardt disease families were recruited. All sporadic patients and the probands of the families were subjected to whole exome sequencing analysis. The candidate mutations were verified by direct sequencing based on the cosegregation pattern and in 200 control subjects and by the bioinformatics analyses. RESULTS A total of three reported ABCA4 mutations were identified in the probands of the two Stargardt disease families. The probands and the affected family members with either homozygous or compound heterozygous mutations showed typical Stargardt disease features, which was absent in their unaffected family members. The cosegregation pattern confirmed the mode of recessive inheritance. Moreover, two sporadic Stargardt disease patients were identified to carry two novel ABCA4 and one PROM1 mutations. In addition, 13 novel variants were found in 119 sporadic RP patients in 7 Stargardt disease-related genes, and 8 novel missense variants were conserved across different species and predicted to be damaging to the protein. All 15 novel variants were absent in our 200 control subjects. CONCLUSIONS This study revealed 22.4% study subjects carrying Stargardt disease-related gene mutations with total 15 novel variants in seven Stargardt disease-related genes, assuring that targeted next-generation sequencing analysis is a high throughput strategy to facilitate the clinical diagnosis from suspicious patients and recommended as a routine examination for inherited retinal dystrophies.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yingjie Cao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuqian Zheng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Haoyu Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
32
|
Bernstein PS. Nourishing Better Vision: The ARVO 2021 Mildred Weisenfeld Award Lecture. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 35285848 PMCID: PMC8934560 DOI: 10.1167/iovs.63.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Paul S Bernstein
- Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
33
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
34
|
He Y, Phan K, Bhatia S, Pickford R, Fu Y, Yang Y, Hodges JR, Piguet O, Halliday GM, Kim WS. Increased VLCFA-lipids and ELOVL4 underlie neurodegeneration in frontotemporal dementia. Sci Rep 2021; 11:21348. [PMID: 34725421 PMCID: PMC8560873 DOI: 10.1038/s41598-021-00870-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Rare, yet biologically critical, lipids that contain very long chain fatty acids (VLCFA-lipids) are synthesized in the brain by the enzyme ELOVL4. High levels of VLCFA-lipids are toxic to cells and excess VLCFA-lipids are actively removed by ABCD1 in an ATP-dependent manner. Virtually nothing is known about the impact of VLCFA-lipids in neurodegenerative diseases. Here, we investigated the possible role of VLCFA-lipids in frontotemporal dementia (FTD), which is a leading cause of younger-onset dementia. Using quantitative discovery lipidomics, we identified three VLCFA-lipid species that were significantly increased in FTD brain compared to controls, with strong correlations with ELOVL4. Increases in ELOVL4 expression correlated with significant decreases in the membrane-bound synaptophysin in FTD brain. Furthermore, increases in ABCD1 expression correlated with increases in VLCFA-lipids. We uncovered a new pathomechanism that is pertinent to understanding the pathogenesis of FTD.
Collapse
Affiliation(s)
- Ying He
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Katherine Phan
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Surabhi Bhatia
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Yue Yang
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - John R Hodges
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Olivier Piguet
- Brain and Mind Centre and School of Psychology, The University of Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia.
- Neuroscience Research Australia, Sydney, NSW, Australia.
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
35
|
Ozaki K, Irioka T, Uchihara T, Yamada A, Nakamura A, Majima T, Igarashi S, Shintaku H, Yakeishi M, Tsuura Y, Okazaki Y, Ishikawa K, Yokota T. Neuropathology of SCA34 showing widespread oligodendroglial pathology with vacuolar white matter degeneration: a case study. Acta Neuropathol Commun 2021; 9:172. [PMID: 34689836 PMCID: PMC8543940 DOI: 10.1186/s40478-021-01272-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022] Open
Abstract
Spinocerebellar ataxia type 34 (SCA34) is an autosomal dominant inherited ataxia due to mutations in ELOVL4, which encodes one of the very long-chain fatty acid elongases. SCA38, another spinocerebellar ataxia, is caused by mutations in ELOVL5, a gene encoding another elongase. However, there have been no previous studies describing the neuropathology of either SCA34 or 38. This report describes the neuropathological findings of an 83-year-old man with SCA34 carrying a pathological ELOVL4 mutation (NM_022726, c.736T>G, p.W246G). Macroscopic findings include atrophies in the pontine base, cerebellum, and cerebral cortices. Microscopically, marked neuronal and pontocerebellar fiber loss was observed in the pontine base. In addition, in the pontine base, accumulation of CD68-positive macrophages laden with periodic acid-Schiff (PAS)-positive material was observed. Many vacuolar lesions were found in the white matter of the cerebral hemispheres and, to a lesser extent, in the brainstem and spinal cord white matter. Immunohistological examination and ultrastructural observations with an electron microscope suggest that these vacuolar lesions are remnants of degenerated oligodendrocytes. Electron microscopy also revealed myelin sheath destruction. Unexpectedly, aggregation of the four-repeat tau was observed in a spatial pattern reminiscent of progressive supranuclear palsy. The tau lesions included glial fibrillary tangles resembling tuft-shaped astrocytes and neurofibrillary tangles and pretangles. This is the first report to illustrate that a heterozygous missense mutation in ELOVL4 leads to neuronal loss accompanied by macrophages laden with PAS-positive material in the pontine base and oligodendroglial degeneration leading to widespread vacuoles in the white matter in SCA34.
Collapse
|
36
|
Zhai Y, Benson MD, MacDonald IM. Corneal involvement in a case of autosomal dominant Stargardt-like macular dystrophy (STGD3) with ELOVL4 mutation. Ophthalmic Genet 2021; 43:134-136. [PMID: 34596007 DOI: 10.1080/13816810.2021.1983848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yi Zhai
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew D Benson
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Rugolo F, Bazan NG, Calandria J, Jun B, Raschellà G, Melino G, Agostini M. The expression of ELOVL4, repressed by MYCN, defines neuroblastoma patients with good outcome. Oncogene 2021; 40:5741-5751. [PMID: 34333551 DOI: 10.1038/s41388-021-01959-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells exhibit dysregulation of critical genes including those involved in lipid biosynthesis, with subsequent defects in metabolism. Here, we show that ELOngation of Very Long chain fatty acids protein 4 (ELOVL4), a rate-limiting enzyme in the biosynthesis of very-long polyunsaturated fatty acids (n-3, ≥28 C), is expressed and transcriptionally repressed by the oncogene MYCN in neuroblastoma cells. In keeping, ELOVL4 positively regulates neuronal differentiation and lipids droplets accumulation in neuroblastoma cells. At the molecular level we found that MYCN binds to the promoter of ELOVL4 in close proximity to the histone deacetylases HDAC1, HDAC2, and the transcription factor Sp1 that can cooperate in the repression of ELOVL4 expression. Accordingly, in vitro differentiation results in an increase of fatty acid with 34 carbons with 6 double bonds (FA34:6); and when MYCN is silenced, FA34:6 metabolite is increased compared with the scrambled. In addition, analysis of large neuroblastoma datasets revealed that ELOVL4 expression is highly expressed in localized clinical stages 1 and 2, and low in high-risk stages 3 and 4. More importantly, high expression of ELOVL4 stratifies a subsets of neuroblastoma patients with good prognosis. Indeed, ELOVL4 expression is a marker of better overall clinical survival also in MYCN not amplified patients and in those with neuroblastoma-associated mutations. In summary, our findings indicate that MYCN, by repressing the expression of ELOVL4 and lipid metabolism, contributes to the progression of neuroblastoma.
Collapse
Affiliation(s)
- Francesco Rugolo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Jorgelina Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Giuseppe Raschellà
- Laboratory of Health and Environment, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
38
|
Al-Khuzaei S, Broadgate S, Foster CR, Shah M, Yu J, Downes SM, Halford S. An Overview of the Genetics of ABCA4 Retinopathies, an Evolving Story. Genes (Basel) 2021; 12:1241. [PMID: 34440414 PMCID: PMC8392661 DOI: 10.3390/genes12081241] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Stargardt disease (STGD1) and ABCA4 retinopathies (ABCA4R) are caused by pathogenic variants in the ABCA4 gene inherited in an autosomal recessive manner. The gene encodes an importer flippase protein that prevents the build-up of vitamin A derivatives that are toxic to the RPE. Diagnosing ABCA4R is complex due to its phenotypic variability and the presence of other inherited retinal dystrophy phenocopies. ABCA4 is a large gene, comprising 50 exons; to date > 2000 variants have been described. These include missense, nonsense, splicing, structural, and deep intronic variants. Missense variants account for the majority of variants in ABCA4. However, in a significant proportion of patients with an ABCA4R phenotype, a second variant in ABCA4 is not identified. This could be due to the presence of yet unknown variants, or hypomorphic alleles being incorrectly classified as benign, or the possibility that the disease is caused by a variant in another gene. This underlines the importance of accurate genetic testing. The pathogenicity of novel variants can be predicted using in silico programs, but these rely on databases that are not ethnically diverse, thus highlighting the need for studies in differing populations. Functional studies in vitro are useful towards assessing protein function but do not directly measure the flippase activity. Obtaining an accurate molecular diagnosis is becoming increasingly more important as targeted therapeutic options become available; these include pharmacological, gene-based, and cell replacement-based therapies. The aim of this review is to provide an update on the current status of genotyping in ABCA4 and the status of the therapeutic approaches being investigated.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | | | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| |
Collapse
|
39
|
Piotter E, McClements ME, MacLaren RE. Therapy Approaches for Stargardt Disease. Biomolecules 2021; 11:1179. [PMID: 34439845 PMCID: PMC8393614 DOI: 10.3390/biom11081179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being the most prevalent cause of inherited blindness in children, Stargardt disease is yet to achieve the same clinical trial success as has been achieved for other inherited retinal diseases. With an early age of onset and continual progression of disease over the life course of an individual, Stargardt disease appears to lend itself to therapeutic intervention. However, the aetiology provides issues not encountered with the likes of choroideremia and X-linked retinitis pigmentosa and this has led to a spectrum of treatment strategies that approach the problem from different aspects. These include therapeutics ranging from small molecules and anti-sense oligonucleotides to viral gene supplementation and cell replacement. The advancing development of CRISPR-based molecular tools is also likely to contribute to future therapies by way of genome editing. In this we review, we consider the most recent pre-clinical and clinical trial data relating to the different strategies being applied to the problem of generating a treatment for the large cohort of Stargardt disease patients worldwide.
Collapse
Affiliation(s)
- Elena Piotter
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
40
|
Sander CL, Sears AE, Pinto AF, Choi EH, Kahremany S, Gao F, Salom D, Jin H, Pardon E, Suh S, Dong Z, Steyaert J, Saghatelian A, Skowronska-Krawczyk D, Kiser PD, Palczewski K. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol 2021; 220:e202101063. [PMID: 34132745 PMCID: PMC8240855 DOI: 10.1083/jcb.202101063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors rely on distinct membrane compartments to support their specialized function. Unlike protein localization, identification of critical differences in membrane content has not yet been expanded to lipids, due to the difficulty of isolating domain-specific samples. We have overcome this by using SMA to coimmunopurify membrane proteins and their native lipids from two regions of photoreceptor ROS disks. Each sample's copurified lipids were subjected to untargeted lipidomic and fatty acid analysis. Extensive differences between center (rhodopsin) and rim (ABCA4 and PRPH2/ROM1) samples included a lower PC to PE ratio and increased LC- and VLC-PUFAs in the center relative to the rim region, which was enriched in shorter, saturated FAs. The comparatively few differences between the two rim samples likely reflect specific protein-lipid interactions. High-resolution profiling of the ROS disk lipid composition gives new insights into how intricate membrane structure and protein activity are balanced within the ROS, and provides a model for future studies of other complex cellular structures.
Collapse
Affiliation(s)
- Christopher L. Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Avery E. Sears
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Antonio F.M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Elliot H. Choi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Shirin Kahremany
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Fangyuan Gao
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Hui Jin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Els Pardon
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Susie Suh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Jan Steyaert
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Philip D. Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Department of Chemistry, University of California, Irvine, Irvine, CA
| |
Collapse
|
41
|
Nagaraja RY, Sherry DM, Fessler JL, Stiles MA, Li F, Multani K, Orock A, Ahmad M, Brush RS, Anderson RE, Agbaga MP, Deák F. W246G Mutant ELOVL4 Impairs Synaptic Plasticity in Parallel and Climbing Fibers and Causes Motor Defects in a Rat Model of SCA34. Mol Neurobiol 2021; 58:4921-4943. [PMID: 34227061 PMCID: PMC8497303 DOI: 10.1007/s12035-021-02439-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Spinocerebellar ataxia (SCA) is a neurodegenerative disorder characterized by ataxia and cerebellar atrophy. A number of different mutations gives rise to different types of SCA with characteristic ages of onset, symptomatology, and rates of progression. SCA type 34 (SCA34) is caused by mutations in ELOVL4 (ELOngation of Very Long-chain fatty acids 4), a fatty acid elongase essential for biosynthesis of Very Long Chain Saturated and Polyunsaturated Fatty Acids (VLC-SFA and VLC-PUFA, resp., ≥28 carbons), which have important functions in the brain, skin, retina, Meibomian glands, testes, and sperm. We generated a rat model of SCA34 by knock-in of the SCA34-causing 736T>G (p.W246G) ELOVL4 mutation. Rats carrying the mutation developed impaired motor deficits by 2 months of age. To understand the mechanism of these motor deficits, we performed electrophysiological studies using cerebellar slices from rats homozygous for W246G mutant ELOVL4 and found marked reduction of long-term potentiation at parallel fiber synapses and long-term depression at climbing fiber synapses onto Purkinje cells. Neuroanatomical analysis of the cerebellum showed normal cytoarchitectural organization with no evidence of degeneration out to 6 months of age. These results point to ELOVL4 as essential for motor function and cerebellar synaptic plasticity. The results further suggest that ataxia in SCA34 patients may arise from a primary impairment of synaptic plasticity and cerebellar network desynchronization before onset of neurodegeneration and progression of the disease at a later age.
Collapse
Affiliation(s)
- Raghavendra Y Nagaraja
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - David M Sherry
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Jennifer L Fessler
- Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Megan A Stiles
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Feng Li
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Karanpreet Multani
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Albert Orock
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Reynolds Center on Aging, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Mohiuddin Ahmad
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Richard S Brush
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Robert E Anderson
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Martin-Paul Agbaga
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.
| | - Ferenc Deák
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Reynolds Center on Aging, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Dept. of Neuroscience & Regenerative Medicine, Medical College of Georgia, 1120 15th Str, CA4010, Augusta, GA, 30912, USA.
| |
Collapse
|
42
|
Pole C, Ameri H. Fundus Autofluorescence and Clinical Applications. J Ophthalmic Vis Res 2021; 16:432-461. [PMID: 34394872 PMCID: PMC8358768 DOI: 10.18502/jovr.v16i3.9439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Fundus autofluorescence (FAF) has allowed in vivo mapping of retinal metabolic derangements and structural changes not possible with conventional color imaging. Incident light is absorbed by molecules in the fundus, which are excited and in turn emit photons of specific wavelengths that are captured and processed by a sensor to create a metabolic map of the fundus. Studies on the growing number of FAF platforms has shown each may be suited to certain clinical scenarios. Scanning laser ophthalmoscopes, fundus cameras, and modifications of these each have benefits and drawbacks that must be considered before and after imaging to properly interpret the images. Emerging clinical evidence has demonstrated the usefulness of FAF in diagnosis and management of an increasing number of chorioretinal conditions, such as age-related macular degeneration, central serous chorioretinopathy, retinal drug toxicities, and inherited retinal degenerations such as retinitis pigmentosa and Stargardt disease. This article reviews commercial imaging platforms, imaging techniques, and clinical applications of FAF.
Collapse
Affiliation(s)
- Cameron Pole
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| | - Hossein Ameri
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Wade A, Rallabandi R, Lucas S, Oberg C, Gorusupudi A, Bernstein PS, Rainier JD. The synthesis of the very long chain polyunsaturated fatty acid (VLC-PUFA) 32:6 n-3. Org Biomol Chem 2021; 19:5563-5566. [PMID: 34080605 DOI: 10.1039/d1ob00491c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article describes the synthesis of VLC-PUFA 32:6 n-3, D2-labeled 32:6 n-3, and the uptake of 32:6 n-3 into mouse retinal tissue.
Collapse
Affiliation(s)
- Alexander Wade
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| | - Rameshu Rallabandi
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| | - Steven Lucas
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| | - Catrina Oberg
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Jon D Rainier
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
44
|
Retinal bioavailability and functional effects of a synthetic very-long-chain polyunsaturated fatty acid in mice. Proc Natl Acad Sci U S A 2021; 118:2017739118. [PMID: 33526677 DOI: 10.1073/pnas.2017739118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rare, nondietary very-long-chain polyunsaturated fatty acids (VLC-PUFAs) are uniquely found in the retina and a few other vertebrate tissues. These special fatty acids play a clinically significant role in retinal degeneration and development, but their physiological and interventional research has been hampered because pure VLC-PUFAs are scarce. We hypothesize that if Stargardt-3 or age-related macular degeneration patients were to consume an adequate amount of VLC-PUFAs that could be directly used in the retina, it may be possible to bypass the steps of lipid elongation mediated by the retina's ELOVL4 enzyme and to delay or prevent degeneration. We report the synthesis of a VLC-PUFA (32:6 n-3) in sufficient quantity to study its bioavailability and functional benefits in the mouse retina. We acutely and chronically gavage fed wild-type mice and Elovl4 rod-cone conditional knockout mice this synthetic VLC-PUFA to understand its bioavailability and its role in visual function. VLC-PUFA-fed wild-type and Elovl4 conditional knockout mice show a significant increase in retinal VLC-PUFA levels in comparison to controls. The VLC-PUFA-fed mice also had improvement in the animals' visual acuity and electroretinography measurements. Further studies with synthetic VLC-PUFAs will continue to expand our understanding of the physiological roles of these unique retinal lipids, particularly with respect to their potential utility for the treatment and prevention of retinal degenerative diseases.
Collapse
|
45
|
Nie L, Pascoa TC, Pike ACW, Bushell SR, Quigley A, Ruda GF, Chu A, Cole V, Speedman D, Moreira T, Shrestha L, Mukhopadhyay SM, Burgess-Brown NA, Love JD, Brennan PE, Carpenter EP. The structural basis of fatty acid elongation by the ELOVL elongases. Nat Struct Mol Biol 2021; 28:512-520. [PMID: 34117479 PMCID: PMC7611377 DOI: 10.1038/s41594-021-00605-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Very long chain fatty acids (VLCFAs) are essential building blocks for the synthesis of ceramides and sphingolipids. The first step in the fatty acid elongation cycle is catalyzed by the 3-keto acyl-coenzyme A (CoA) synthases (in mammals, ELOVL elongases). Although ELOVLs are implicated in common diseases, including insulin resistance, hepatic steatosis and Parkinson's, their underlying molecular mechanisms are unknown. Here we report the structure of the human ELOVL7 elongase, which comprises an inverted transmembrane barrel surrounding a 35-Å long tunnel containing a covalently attached product analogue. The structure reveals the substrate-binding sites in the narrow tunnel and an active site deep in the membrane. We demonstrate that chain elongation proceeds via an acyl-enzyme intermediate involving the second histidine in the canonical HxxHH motif. The unusual substrate-binding arrangement and chemistry suggest mechanisms for selective ELOVL inhibition, relevant for diseases where VLCFAs accumulate, such as X-linked adrenoleukodystrophy.
Collapse
Affiliation(s)
- Laiyin Nie
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Tomas C. Pascoa
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Ashley C. W. Pike
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Simon R. Bushell
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK,Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Gian Filippo Ruda
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Amy Chu
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Victoria Cole
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - David Speedman
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Tiago Moreira
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Leela Shrestha
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Nicola A. Burgess-Brown
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - James D. Love
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461-1602, USA
| | - Paul E. Brennan
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK,Alzheimer’s Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Elisabeth P. Carpenter
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK,Correspondence and requests for materials should be addressed to E.P.C. ()
| |
Collapse
|
46
|
Absence of Genotype/Phenotype Correlations Requires Molecular Diagnostic to Ascertain Stargardt and Stargardt-Like Swiss Patients. Genes (Basel) 2021; 12:genes12060812. [PMID: 34073554 PMCID: PMC8229718 DOI: 10.3390/genes12060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
We genetically characterized 22 Swiss patients who had been diagnosed with Stargardt disease after clinical examination. We identified in 11 patients (50%) pathogenic bi-allelic ABCA4 variants, c.1760+2T>C and c.4496T>C being novel. The dominantly inherited pathogenic ELOVL4 c.810C>G p.(Tyr270*) and PRPH2-c.422A>G p.(Tyr141Cys) variants were identified in eight (36%) and three patients (14%), respectively. All patients harboring the ELOVL4 c.810C>G p.(Tyr270*) variant originated from the same small Swiss area, identifying a founder mutation. In the ABCA4 and ELOVL4 cohorts, the clinical phenotypes of “flecks”, “atrophy”, and “bull’s eye like” were observed by fundus examination. In the small number of patients harboring the pathogenic PRPH2 variant, we could observe both “flecks” and “atrophy” clinical phenotypes. The onset of disease, progression of visual acuity and clinical symptoms, inheritance patterns, fundus autofluorescence, and optical coherence tomography did not allow discrimination between the genetically heterogeneous Stargardt patients. The genetic heterogeneity observed in the relatively small Swiss population should prompt systematic genetic testing of clinically diagnosed Stargardt patients. The resulting molecular diagnostic is required to prevent potentially harmful vitamin A supplementation, to provide genetic counseling with respect to inheritance, and to schedule appropriate follow-up visits in the presence of increased risk of choroidal neovascularization.
Collapse
|
47
|
Balbo I, Montarolo F, Boda E, Tempia F, Hoxha E. Elovl5 Expression in the Central Nervous System of the Adult Mouse. Front Neuroanat 2021; 15:669073. [PMID: 33994961 PMCID: PMC8116736 DOI: 10.3389/fnana.2021.669073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 12/03/2022] Open
Abstract
ELOVL5 (Elongase of Very-Long Fatty Acid 5) gene encodes for an enzyme that elongates long chain fatty acids, with a marked preference for polyunsaturated molecules. In particular, it plays an essential role in the elongation of omega-3 and omega-6 fatty acids, precursors for long-chain polyunsaturated fatty acids (PUFAs). Mutations of ELOVL5 cause the spino-cerebellar ataxia type 38 (SCA38), a rare autosomal neurological disease characterized by gait abnormality, dysarthria, dysphagia, hyposmia and peripheral neuropathy, conditions well represented by a mouse model with a targeted deletion of this gene (Elovl5–/– mice). However, the expression pattern of this enzyme in neuronal and glial cells of the central nervous system (CNS) is still uninvestigated. This work is aimed at filling this gap of knowledge by taking advantage of an Elovl5-reporter mouse line and immunofluorescence analyses on adult mouse CNS sections and glial cell primary cultures. Notably, Elovl5 appears expressed in a region- and cell type-specific manner. Abundant Elovl5-positive cells were found in the cerebellum, brainstem, and primary and accessory olfactory regions, where mitral cells show the most prominent expression. Hippocampal pyramidal cells of CA2/CA3 where also moderately labeled, while in the rest of the telencephalon Elovl5 expression was high in regions related to motor control. Analysis of primary glial cell cultures revealed Elovl5 expression in oligodendroglial cells at various maturation steps and in microglia, while astrocytes showed a heterogeneous in vivo expression of Elovl5. The elucidation of Elovl5 CNS distribution provides relevant information to understand the physiological functions of this enzyme and its PUFA products, whose unbalance is known to be involved in many pathological conditions.
Collapse
Affiliation(s)
- Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Enrica Boda
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy.,National Neuroscience Institute (Italy), Turin, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| |
Collapse
|
48
|
Diociaiuti A, Martinelli D, Nicita F, Cesario C, Pisaneschi E, Macchiaiolo M, Rossi S, Condorelli AG, Zambruno G, El Hachem M. Two Italian Patients with ELOVL4-Related Neuro-Ichthyosis: Expanding the Genotypic and Phenotypic Spectrum and Ultrastructural Characterization. Genes (Basel) 2021; 12:genes12030343. [PMID: 33652762 PMCID: PMC7996761 DOI: 10.3390/genes12030343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Elongation of Very Long Chain Fatty Acid-4 (ELOVL4) is a fatty acid elongase responsible for very long-chain fatty acid biosynthesis in the brain, retina, and skin. Heterozygous mutations in ELOVL4 gene cause Stargardt-like macular dystrophy and spinocerebellar ataxia type-34, while different homozygous mutations have been associated with ichthyosis, spastic quadriplegia, and mental retardation syndrome in three kindred. We report the first two Italian children affected with neuro-ichthyosis due to the previously undescribed ELOVL4 homozygous frameshift variant c.435dupT (p.Ile146TyrfsTer29), and compound heterozygous variants c.208C>T (p.Arg70Ter) and c.487T>C (p.Cys163Arg), respectively. Both patients were born with collodion membrane followed by development of diffuse mild hyperkeratosis and scaling, localized erythema, and palmoplantar keratoderma. One infant displayed mild facial dysmorphism. They suffered from failure to thrive, and severe gastro-esophageal reflux with pulmonary aspiration. The patients presented axial hypotonia, hypertonia of limbs, and absent head control with poor eye contact from infancy. Visual evoked potentials showed markedly increased latency and poor morphological definition, indicative of alteration of the retro-retinal visual pathways in both patients. Ultrastructural skin examination revealed abnormalities of lamellar bodies with altered release in the epidermal granular and horny layer intracellular spaces. Our findings contribute to expanding the phenotypic and genotypic features of ELOVL4-related neuro-ichthyosis.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
- Correspondence: ; Tel.: +39-066-859-2509; Fax: +39-066-859-2300
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy;
| | - Claudia Cesario
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy; (C.C.); (E.P.)
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy; (C.C.); (E.P.)
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy;
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy;
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - May El Hachem
- Dermatology Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| |
Collapse
|
49
|
Pan WW, Wubben TJ, Besirli CG. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun Biol 2021; 4:245. [PMID: 33627778 PMCID: PMC7904922 DOI: 10.1038/s42003-021-01765-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acquired and inherited retinal disorders are responsible for vision loss in an increasing proportion of individuals worldwide. Photoreceptor (PR) death is central to the vision loss individuals experience in these various retinal diseases. Unfortunately, there is a lack of treatment options to prevent PR loss, so an urgent unmet need exists for therapies that improve PR survival and ultimately, vision. The retina is one of the most energy demanding tissues in the body, and this is driven in large part by the metabolic needs of PRs. Recent studies suggest that disruption of nutrient availability and regulation of cell metabolism may be a unifying mechanism in PR death. Understanding retinal cell metabolism and how it is altered in disease has been identified as a priority area of research. The focus of this review is on the recent advances in the understanding of PR metabolism and how it is critical to reduction-oxidation (redox) balance, the outer retinal metabolic ecosystem, and retinal disease. The importance of these metabolic processes is just beginning to be realized and unraveling the metabolic and redox pathways integral to PR health may identify novel targets for neuroprotective strategies that prevent blindness in the heterogenous group of retinal disorders.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Yeboah GK, Lobanova ES, Brush RS, Agbaga MP. Very long chain fatty acid-containing lipids: a decade of novel insights from the study of ELOVL4. J Lipid Res 2021; 62:100030. [PMID: 33556440 PMCID: PMC8042400 DOI: 10.1016/j.jlr.2021.100030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Lipids play essential roles in maintaining cell structure and function by modulating membrane fluidity and cell signaling. The fatty acid elongase-4 (ELOVL4) protein, expressed in retina, brain, Meibomian glands, skin, testes and sperm, is an essential enzyme that mediates tissue-specific biosynthesis of both VLC-PUFA and VLC-saturated fatty acids (VLC-SFA). These fatty acids play critical roles in maintaining retina and brain function, neuroprotection, skin permeability barrier maintenance, and sperm function, among other important cellular processes. Mutations in ELOVL4 that affect biosynthesis of these fatty acids cause several distinct tissue-specific human disorders that include blindness, age-related cerebellar atrophy and ataxia, skin disorders, early-childhood seizures, mental retardation, and mortality, which underscores the essential roles of ELOVL4 products for life. However, the mechanisms by which one tissue makes VLC-PUFA and another makes VLC-SFA, and how these fatty acids exert their important functional roles in each tissue, remain unknown. This review summarizes research over that last decade that has contributed to our current understanding of the role of ELOVL4 and its products in cellular function. In the retina, VLC-PUFA and their bioactive "Elovanoids" are essential for retinal function. In the brain, VLC-SFA are enriched in synaptic vesicles and mediate neuronal signaling by determining the rate of neurotransmitter release essential for normal neuronal function. These findings point to ELOVL4 and its products as being essential for life. Therefore, mutations and/or age-related epigenetic modifications of fatty acid biosynthetic gene activity that affect VLC-SFA and VLC-PUFA biosynthesis contribute to age-related dysfunction of ELOVL4-expressing tissues.
Collapse
Affiliation(s)
- Gyening Kofi Yeboah
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ekaterina S Lobanova
- Department of Ophthalmology Research, University of Florida, Gainesville, FL, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dean A. McGee Eye Institute, Oklahoma City, OK, USA.
| |
Collapse
|