1
|
Nühn MM, Bosman K, Huisman T, Staring WHA, Gharu L, De Jong D, De Kort TM, Buchholtz NVEJ, Tesselaar K, Pandit A, Arends J, Otto SA, Lucio De Esesarte E, Hoepelman AIM, De Boer RJ, Symons J, Borghans JAM, Wensing AMJ, Nijhuis M. Selective decline of intact HIV reservoirs during the first decade of ART followed by stabilization in memory T cell subsets. AIDS 2025; 39:798-811. [PMID: 39964317 DOI: 10.1097/qad.0000000000004160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVES To investigate the short- and long-term dynamics of intact and defective proviral HIV DNA during ART. DESIGN We evaluated viral reservoir dynamics in a cohort of nine individuals with chronic HIV-1 subtype B who initiated first-line ART and were followed for 20 years while continuing ART. METHODS PBMCs were obtained before ART ( n = 5), during the first year, and after 8.5 and 20 years of treatment. T cell subsets (naive, central-memory, transitional-memory and effector-memory) were sorted at 8.5 and 20 years. DNA was isolated and analyzed using the intact proviral DNA assay (IPDA). Deep-sequencing of the viral env region enabled analysis of viral evolution and cellular mechanisms underlying HIV persistence. RESULTS Initially, defective and intact proviral DNA in PBMCs declined with half-lives of 3.6 and 5.4 weeks, respectively. Over the following 8.5 years, the intact reservoir continued to decrease, with a half-life of 18.8 months in PBMCs, while defective proviral DNA levels stabilized. After 8.5 and 20 years of ART, the intact reservoir showed no further decline, with most intact proviral DNA residing in memory T cell subsets. Phylogenetic analysis revealed no signs of viral evolution over time, both within and between T cell subsets. CONCLUSIONS PBMCs containing intact proviral DNA are selectively lost during the first decade of suppressive ART, followed by a decade of stabilization of this reservoir in the memory T cell subsets. In the absence of clear signs of viral evolution and massive clonal expansion, homeostatic proliferation might be an important driver of HIV persistence during long-term ART.
Collapse
Affiliation(s)
- Marieke M Nühn
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Kobus Bosman
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Terry Huisman
- Theoretical Biology, Utrecht University
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Wouter H A Staring
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Dorien De Jong
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Theun M De Kort
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Ninée V E J Buchholtz
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Aridaman Pandit
- Theoretical Biology, Utrecht University
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Joop Arends
- Faculty of Health, Medicine and Life Sciences, Maastricht UMC (MUMC), Maastricht
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht
| | - Sigrid A Otto
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | | | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht
| | | | - Jori Symons
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - José A M Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Annemarie M J Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
- Translational Virology, Department of Global Public Health & Bioethics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| |
Collapse
|
2
|
Sambaturu N, Fray EJ, Hariharan V, Wu F, Zitzmann C, Simonetti FR, Barouch DH, Siliciano JD, Siliciano RF, Ribeiro RM, Perelson AS, Molina-París C, Leitner T. SIV proviruses seeded later in infection are harbored in short-lived CD4 + T cells. Cell Rep 2025; 44:115663. [PMID: 40327506 DOI: 10.1016/j.celrep.2025.115663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/24/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
The human immunodeficiency virus (HIV) can persist in a latent form as integrated DNA (provirus) in resting CD4+ T cells unaffected by antiretroviral therapy. Despite being a major obstacle for eradication efforts, it remains unclear which infected cells survive, persist, and ultimately enter the long-lived reservoir. Here, we determine the genetic divergence and integration times of simian immunodeficiency virus (SIV) envelope sequences collected from infected macaques. We show that the proviral divergence and the phylogenetically estimated integration times display a biphasic decline over time. Investigating the dynamics of the mutational distributions, we show that SIV genomes in short-lived cells are, on average, more diverged, while long-lived cells contain less diverged virus. The change in the mutational distributions over time explains the observed biphasic decline in the divergence of the proviruses. This suggests that long-lived cells harbor viruses deposited earlier in infection, while short-lived cells predominantly harbor more recent viruses.
Collapse
Affiliation(s)
- Narmada Sambaturu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; School of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vivek Hariharan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carolin Zitzmann
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Carmen Molina-París
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
3
|
Amegashie EA, Sikeola RO, Tagoe EA, Paintsil E, Torpey K, Quaye O. Oxidative Stress in People Living With HIV: Are Diverse Supplement Sources the Solution? Health Sci Rep 2025; 8:e70824. [PMID: 40330761 PMCID: PMC12054717 DOI: 10.1002/hsr2.70824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Background and Aim Antiretroviral therapy (ART) has reduced human immunodeficiency virus (HIV)/AIDS to a manageable chronic condition even though no cure exists. Despite ART control, latent HIV infection results in failed memory CD4 T-cell responses, immune overactivation, inflammation, oxidative stress, genomic instability, deoxyribonucleic acid (DNA) damage, and premature CD4 T-cell ageing. Overproduction of reactive oxygen species during oxidative stress can cause mitochondrial DNA damage, cancer, neurodegenerative and cardiovascular diseases, and premature aging in people living with HIV (PLWH). This review outlines current knowledge in oxidative stress among PLWH. Methods Google Scholar, Scopus, PubMed, and Science Direct were searched for literature conforming with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines from studies published from January 2013 to December 2023. A total of 75 studies from 22 countries were identified, with 52 studies carried out in human participants, 17 studies in cell lines, and 6 studies in animal models to assess oxidative stress levels. Results An increased oxidative stress with no changes in antioxidant levels was reported in HIV-positive smokers, and those on substance abuse. Long-term ART usage showed high levels of oxidative protein products and low levels of antioxidants when compared to short-term ART usage. The use of supplements such as N-acetylcysteine, selenium, and silibinin in animal models and cell lines showed increased cell viability, reduced reactive oxygen species, and increased antioxidant levels, which are promising therapeutic interventions that should be studied in PLWH to further help improve their disease outcomes. Conclusions Identifying extracts from natural and synthetic products with antioxidant effects will improve the general well-being of PLWH.
Collapse
Affiliation(s)
- Esimebia Adjovi Amegashie
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular BiologyUniversity of GhanaAccraGreater Accra RegionGhana
| | - Ruth Oyawole Sikeola
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular BiologyUniversity of GhanaAccraGreater Accra RegionGhana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory SciencesSchool of Biomedical and Allied Health Sciences, University of GhanaAccraGreater Accra RegionGhana
| | - Elijah Paintsil
- Department of PediatricsBoston University Chobanian & Avedisian School of MedicineBostonUSA
| | - Kwasi Torpey
- Department of Population, Family and Reproductive HealthSchool of Public Health, University of GhanaAccraGreater Accra RegionGhana
| | - Osbourne Quaye
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular BiologyUniversity of GhanaAccraGreater Accra RegionGhana
| |
Collapse
|
4
|
Mumby MJ, Prodger JL, Hackman J, Saraf S, Zhu X, Ferreira RC, Tomusange S, Jamiru S, Anok A, Kityamuweesi T, Buule P, Fink C, Edgar CR, Trothen SM, Dekaban GA, Brown EE, Capoferri AA, Baker OR, Klock E, Miller JC, Kirby C, Lynch B, Tobian AAR, Poon AFY, Quinn TC, Galiwango RM, Reynolds SJ, Redd AD, Dikeakos JD. Association between HIV-1 Nef-mediated MHC-I downregulation and the maintenance of the replication-competent latent viral reservoir in individuals with virally suppressed HIV-1 in Uganda: an exploratory cohort study. THE LANCET. MICROBE 2025; 6:101018. [PMID: 40088911 PMCID: PMC12066219 DOI: 10.1016/j.lanmic.2024.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 03/17/2025]
Abstract
BACKGROUND The persistence of a replication-competent latent viral reservoir (RC-LVR) during antiretroviral therapy (ART) is a barrier to the development of a cure for HIV-1, but the role of viral genes in influencing RC-LVR size is unclear. We aimed to assess whether the magnitude by which the HIV-1 accessory protein Nef evades the adaptive immune response by downregulating MHC-I or CD4, or both, from the surface of infected cells is associated with the rate at which the RC-LVR in people with HIV-1 changes during long-term ART (>1 year). METHODS We conducted an exploratory cohort study in which nef genes were sequenced from outgrowth viruses derived from the quantitative viral outgrowth assay (QVOA) for a group of people with ART-suppressed HIV-1 in Uganda between 2015 and 2020. Study participants were selected from the Rakai Health Sciences Program (RHSP) LVR cohort, a cohort of 90 adults (aged ≥18 years) who were HIV-1 positive, receiving ART, and had maintained viral suppression for at least 1 year at the time of study enrolment. For this study, participants were required to have available p24+ QVOA wells that contained a single viral outgrowth isolate, as assessed by next-generation sequencing. In cases where further sequencing identified wells containing multiple viral clones, all sequenced nef variants were included for functional analysis. The unique isolated nef variants were used to generate pseudoviruses, which were employed to measure cell surface CD4 and MHC-I downregulation in infected CD4+ Sup-T1 cells via flow cytometry. The size and rate of change of the RC-LVR in participants was estimated using previous QVOA results and a Bayesian model. We then assessed whether a correlation existed between the extent to which the Nef proteins downregulated cell surface MHC-I and CD4 and the calculated RC-LVR rate of change during the study period. FINDINGS 14 (15%) of 90 participants from the RHSP cohort met the inclusion criteria and were enrolled in this study. 49 nef sequences were isolated from these participants. We observed variability in participant-derived Nef-mediated cell surface MHC-I downregulation (median 114·88% [IQR 104·93-121·51] of the downregulation capacity of NL4-3 Nef) and CD4 downregulation (94·50% [84·05-100·16] of NL4-3 Nef). The estimated rate of change of the RC-LVR was positive for four participants. For one donor, the rate of change was significantly positive (7·4 × 10-4 logit infectious units per million [IUPM] per day [95% credibility interval 3·2 × 10-4 to 1·2 × 10-3]) over the course of the study period (2015-20). The estimated rate of change of the RC-LVR for the remaining ten participants was negative, and significantly negative in four donors (-1·1 × 10-3 logit IUPM per day [95% credibility interval -1·8 × 10-3 to -3·7 × 10-4]; -1·4 × 10-3 [-2·0 × 10-3 to -8·5 × 10-4]; -7·0 × 10-4 [-1·3 × 10-3 to -1·6 × 10-4]; and -2·0 × 10-3 [-2·9 × 10-3 to -1·1 × 10-3]). A significant relationship between Nef-mediated MHC-I downregulation and the RC-LVR rate of change during the 5-year study period (r=0·6088 [95% CI 0·2366 to 0·9810]; p=0·023) was found, in which less efficient MHC-I downregulation correlated with faster RC-LVR decay during long-term ART. By contrast, Nef-mediated CD4 downregulation was not associated with RC-LVR rate of change during the 5-year study period (-0·1604 [-0·7311 to 0·4102]; p=0·58). INTERPRETATION Nef-mediated MHC-I downregulation might contribute to HIV-1 persistence during long-term ART. Strategies to inhibit Nef-mediated MHC-I downregulation could represent a viable therapeutic avenue to reduce the size of the latent reservoir in vivo, improving treatment outcomes in people with HIV-1. FUNDING Canadian Institutes of Health Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, and the REACH Martin Delaney Collaboratory.
Collapse
Affiliation(s)
- Mitchell J Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jada Hackman
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - Sharada Saraf
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MA, USA
| | - Roux-Cil Ferreira
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | | | - Aggrey Anok
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | - Paul Buule
- Rakai Health Sciences Program, Kalisizo, Uganda
| | - Corby Fink
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cassandra R Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Gregory A Dekaban
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Erin E Brown
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - Adam A Capoferri
- Department of Medicine, Johns Hopkins University, Baltimore, MA, USA
| | - Owen R Baker
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - Ethan Klock
- Department of Medicine, Johns Hopkins University, Baltimore, MA, USA
| | - Jernelle C Miller
- Department of Medicine, Johns Hopkins University, Baltimore, MA, USA
| | - Charles Kirby
- Department of Pathology, Johns Hopkins University, Baltimore, MA, USA
| | - Briana Lynch
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University, Baltimore, MA, USA
| | - Art F Y Poon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Thomas C Quinn
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA; Department of Medicine, Johns Hopkins University, Baltimore, MA, USA
| | | | - Steven J Reynolds
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA; Department of Medicine, Johns Hopkins University, Baltimore, MA, USA; Rakai Health Sciences Program, Kalisizo, Uganda
| | - Andrew D Redd
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA; Department of Medicine, Johns Hopkins University, Baltimore, MA, USA; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
5
|
Parsons MS, Bolton DL. The utility of nonhuman primate models for understanding acute HIV-1 infection. Curr Opin HIV AIDS 2025; 20:218-227. [PMID: 40099824 PMCID: PMC11970610 DOI: 10.1097/coh.0000000000000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW Nonhuman primate (NHP) models of HIV-1 infection provide complementary experimental pathways for assessing aspects of acute HIV-1 infection (AHI) that cannot be addressed in humans. This article reviews acute infection studies in SIV-infected or SHIV-infected macaque species over the previous 18 months. RECENT FINDINGS Reviewed studies examined the dynamics of replication-competent viral reservoir establishment during early infection, reservoir maintenance throughout therapy, and factors influencing viral rebound after treatment cessation. Also discussed are acute infection events in the central nervous system and liver and potential links between these events and manifestations of comorbidities during chronic infection. Additional studies addressed how occurrences during acute infection impact the development of natural viral control or posttreatment control. Another report evaluated treatment during acute infection with broadly neutralizing antibodies with enhanced ability to engage innate immune cells, highlighting the ability of this early intervention to shape innate and adaptive antiviral responses. SUMMARY NHP models of HIV-1 infection are a fundamental research tool for investigating AHI events. These models enable detailed pathogenesis characterization and the testing of hypothesis-driven strategies for altering disease courses through interventions during AHI, including targeting viral persistence and comorbidities that persist throughout chronic infection.
Collapse
Affiliation(s)
- Matthew S. Parsons
- Walter Reed Army Institute of Research - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Diane L. Bolton
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| |
Collapse
|
6
|
Richard K, Yuan Z, Tang HY, Goldman AR, Kuthu R, Raphane B, Register ET, Sharma P, Ross BN, Morris J, Williams DE, Cheney C, Wu G, Mounzer K, Laird GM, Zuck P, Andersen RJ, Simonambango S, Andrae-Marobela K, Tietjen I, Montaner LJ. Ex vivo and in vivo HIV-1 latency reversal by "Mukungulu," a protein kinase C-activating African medicinal plant extract. mBio 2025:e0381624. [PMID: 40265896 DOI: 10.1128/mbio.03816-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
New HIV latency-reversing agents (LRAs) are needed that can reactivate and/or eliminate HIV reservoirs. "Mukungulu," prepared from the plant Croton megalobotrys Müll Arg., is traditionally used for HIV/AIDS management in northern Botswana despite an abundance of protein kinase C-activating phorbol esters ("namushens"). Here, we show that Mukungulu is tolerated in mice at up to 12.5 mg/kg while robustly reversing latency in antiretroviral therapy (ART)-suppressed HIV-infected humanized mice at 5 mg/kg. In primary cells from ART-suppressed people living with HIV-1, 1 µg/mL Mukungulu reverses latency at levels similar to or superior to anti-CD3/CD28 positive control, based on HIV gag-p24 protein expression, while the magnitude of HIV reactivation in peripheral blood mononuclear cells corresponds to intact proviral burden in CD4+ T-cells. Bioassay-guided fractionation identifies five namushen phorbol esters that can reactivate HIV, but when combined, they do not match Mukungulu's activity, suggesting the presence of additional enhancing factors. Together, these results identify Mukungulu as a robust natural LRA that is already in use by humans and which may warrant inclusion in future HIV cure and ART-free remission efforts.IMPORTANCECurrent HIV therapies do not act on the latent viral reservoir, which is the major obstacle toward achieving a drug-free HIV remission and/or an HIV cure. "Mukungulu," a bark preparation from Croton megalobotrys Müll Arg., has been documented for its traditional use for HIV/AIDS management in northern Botswana. Here, we show that Mukungulu activates viral reservoirs, a key step toward identifying and potentially eliminating these reservoirs, in both cells from people living with HIV as well as in HIV-infected humanized mice. The majority of this activity is due to the abundance of five phorbol esters ("namushens"). This reverse pharmacology-based approach has therefore identified a potent activator of viral reservoirs that is already traditionally used by humans, which in turn can inform and advance western HIV cure and drug-free remission efforts.
Collapse
Affiliation(s)
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Hsin-Yao Tang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Riza Kuthu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | - Brian N Ross
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - David E Williams
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Guoxin Wu
- Merck and Co Inc, Rahway, New Jersey, USA
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | | | - Paul Zuck
- Merck and Co Inc, Rahway, New Jersey, USA
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
7
|
Gurgo C, Fenizia C, McKinnon K, Hsia RC, Franchini G. Expression of HIV from a 1-LTR circular DNA in the absence of integration. Retrovirology 2025; 22:2. [PMID: 40098202 PMCID: PMC11912779 DOI: 10.1186/s12977-025-00658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Like all retroviruses, two kinds of viral DNA are present in the nucleus of HIV-infected cells: integrated DNA and a pool of unintegrated DNA containing linear and circular forms. For the most part, it has been difficult to examine the role of the unintegrated DNA forms in the viral life cycle in the presence of the integrated form, or to distinguish the respective contributions of the two circular DNA forms in the context of the unintegrated DNA. RESULTS In our approach, we constructed a 1-LTR circular form of HIV in order to study its expression in isolation from the other forms; we derived a linear genomic HIV DNA lacking the 5'-LTR (1-LTRHIV) from a molecular clone of HIV. This linear form is transcriptionally incompetent, but via circularization becomes a transcriptionally competent 1-LTR circle. When transfected into cells lacking CD4 where neither the spread of virus nor reinfection can occur, the linear or in vitro circularized form produces a fully infectious HIV. Virus expression is stable throughout cell division as measured on a per cell basis by flow cytometry. A progressive accumulation of copies of the circular form is observed in the presence of the cell growth inhibitor aphidicolin, suggestive of episomal amplification, for which we propose a model. CONCLUSION We demonstrate in this study that production of infectious virus is initiated and completed by the 1-LTR episomal form of HIV DNA in the absence of reinfection and integration. In addition, we show that the 1-LTR episomal form replicates in the absence of an origin of replication, and we propose a model for its amplification. In line with the work of others but following a different approach, we provide support for a potential role of episomal forms in HIV persistence. Our data highlight the biological complexity of HIV replication and the potential of the episomal form to contribute to the persistence of HIV.
Collapse
Affiliation(s)
- Corrado Gurgo
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Claudio Fenizia
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Katherine McKinnon
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ru-Ching Hsia
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Satija N, Patel F, Schmidt G, Doanman DV, Kapoor M, La Porte A, Wang YC, Law KM, Esposito AM, Allette K, Beaumont KG, Sebra RP, Chen BK. Tracking HIV persistence across T cell lineages during early ART-treated HIV-1-infection using a reservoir-marking humanized mouse model. Nat Commun 2025; 16:2233. [PMID: 40044684 PMCID: PMC11883074 DOI: 10.1038/s41467-025-57368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection depletes CD4 T-cells, and long-term persistence of latent virus prevents full clearance of HIV even in the presence of effective antiretroviral therapy (ART), Here we present the HIV-1-induced lineage tracing (HILT) system, a model that irreversibly marks infected cells within a humanized mouse model, which detects rare latently infected cells. Immunodeficient mice transplanted with genetically modified hematopoietic stem cells develop a human immune system, in which CD4 T-cells contain a genetic switch that permanently labels cells infected by HIV-1 expressing cre-recombinase. Through single-cell RNA sequencing of HILT-marked cells during acute infection and post-ART treatment, we identify distinct CD4+ T-cell transcriptional lineages enriched in either active or latent infections. Comparative gene expression analysis highlights common pathways modulated in both states, including EIF2, Sirtuin, and protein ubiquitination. Critical regulators of these pathways, including JUN, BCL2, and MDM2, change to opposite directions in the two states, highlighting gene expression programs that may support HIV persistence across T-cell lineages and states.
Collapse
Affiliation(s)
- Namita Satija
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Foramben Patel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerrit Schmidt
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald V Doanman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manav Kapoor
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annalena La Porte
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth M Law
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lexeo Therapeutics, New York, NY, USA
| | - Anthony M Esposito
- Department of Biology, New Jersey City University, New Jersey City, NJ, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Cai J, Zhang J, Wang K, Dai Z, Hu Z, Dong Y, Peng Z. Evaluating the long-term effects of combination antiretroviral therapy of HIV infection: a modeling study. J Math Biol 2025; 90:36. [PMID: 40025191 PMCID: PMC11872777 DOI: 10.1007/s00285-025-02196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/04/2025] [Accepted: 02/08/2025] [Indexed: 03/04/2025]
Abstract
Current HIV/AIDS treatments effectively reduce viral loads to undetectable levels as measured by conventional clinical assays, but immune recovery remains highly variable among patients. To assess the long-term treatment efficacy, we propose a mathematical model that incorporates latently infected CD4+ T cells and the homeostatic proliferation of CD4+ T cells. We investigate the dynamics of this model both theoretically and numerically, demonstrating that homeostatic proliferation can induce bistability, which implies that steady-state CD4+ T cell count is sensitively affected by initial conditions. The model exhibits rich dynamics, including saddle node bifurcations, Hopf bifurcations, and saddle node bifurcations related to periodic orbits. The interplay between homeostatic proliferation and latent HIV infection significantly influences the model's dynamic behavior. Additionally, we integrate combination antiretroviral therapy (cART) into the model and fit the revised model to clinical data on long-term CD4+ T cell counts before and after treatment. Quantitative analysis estimates the effects of long-term cART, revealing an increasing sensitivity of steady-state CD4+ T cell count to drug efficacy. Correlation analysis indicates that the heightened activation of latently infected cells helps enhance treatment efficacy. These findings underscore the critical roles of CD4+ T cell homeostatic proliferation and latently infected cell production in HIV persistence despite treatment, providing valuable insights for understanding disease progression and developing more effective therapies, potentially towards eradication.
Collapse
Affiliation(s)
- Jing Cai
- School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Jun Zhang
- School of Mathematics and Statistics, and Key Laboratory of Nonlinear Analysis and Applications (Ministry of Education), Central China Normal University, 152 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Kai Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No. 2 East Cherry Garden Street, Beijing, 100029, China
| | - Zhixiang Dai
- School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Zhiliang Hu
- Nanjing Infectious Disease Center, The Second Hospital of Nanjing, Tangshan Street, Nanjing, 211113, Jiangsu, China
| | - Yueping Dong
- School of Mathematics and Statistics, and Key Laboratory of Nonlinear Analysis and Applications (Ministry of Education), Central China Normal University, 152 Luoyu Road, Wuhan, 430079, Hubei, China.
| | - Zhihang Peng
- School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China.
| |
Collapse
|
10
|
Kummet N, Mishra N, Diaz A, Cusick N, Klotz S, Ahmad N. Genetic Characterization of HIV-1 tat Gene from Virologically Controlled Aging Individuals with HIV on Long-Term Antiretroviral Therapy. AIDS Res Hum Retroviruses 2025; 41:143-154. [PMID: 39723946 DOI: 10.1089/aid.2024.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4+ T-cells. We, therefore, characterized the tat gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV+) on long-term ART and improved CD4+ T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV+ were used to amplify tat gene by polymerase chain reaction followed by nucleotide sequencing and analysis. Phylogenetic analysis showed that each HIV+ tat sequences were confined to their own subtrees and well discriminated from other HIV+ sequences. Moreover, there was a low degree of viral heterogeneity and lower estimates of genetic diversity within these individuals' tat sequences, which decreased with increasing CD4 T counts in these HIV+. Most HIV+ Tat deduced amino acid sequences showed intact open reading frames and maintained the important functional domains for Tat functions, including transactivation, TAR binding, and nuclear localization. Furthermore, Tat-deduced amino acid sequences showed variation in previously characterized cytotoxic T lymphocytes (CTL) epitopes, suggesting escape mutants. In conclusion, a low degree of genetic variability and conservation of functional domains and variations in CTL epitopes were the features of tat sequences that may be contributing to viral persistence in these 20 aging individuals with HIV on long-term ART.
Collapse
Affiliation(s)
- Nathan Kummet
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Neha Mishra
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Adela Diaz
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nicholas Cusick
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Stephen Klotz
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Harkess M, Kumari S, Bagarti T, Kumar N. HIV transactivation: Stochastic modeling for studying the effects of BET inhibitors on the modulation of P-TEFb levels. J Theor Biol 2025; 599:112011. [PMID: 39643031 DOI: 10.1016/j.jtbi.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Latency is the major obstacle in eradicating HIV from infected patients. Recent studies have shown that BET protein inhibitors can successfully reverse this latency by inhibiting the binding of BET proteins with positive cellular cofactor P-TEFb. Thus, availability of P-TEFbs plays an important role in HIV transactivation. However, in cells of our immune system which are primarily infected by the virus, number of P-TEFb is very low and is considered as one of the factors in inducing viral latency. At such small numbers of P-TEFb, the internal fluctuations can have a decisive role in the cell fate decision and fluctuations in the P-TEFb levels can switch the HIV to either a state of active replication or to a state of latency. Aimed at quantitative understanding of how BET inhibitors affect the statistics of P-TEFb level, we develop a coarse-grained stochastic model. However, the interaction between P-TEFb and BET proteins makes the problem analytically challenging. To address the nonlinearity arising due to such interactions, we use Langevin equation based approach to study the statistics of steady-state P-TEFb levels and explore the variations of some of the important quantities such as noise and fano factor associated with P-TEFb as well as correlations between BET and P-TEFb levels with model parameters. The analytic results derived exhibit that these quantities, in general, show non-monotonic response with respect to the parameters of the model. The results derived will be helpful in estimating the model parameters as well in identifying the pathways that can be intervened for effective HIV transactivation.
Collapse
Affiliation(s)
- Miranda Harkess
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
| | | | | | - Niraj Kumar
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
12
|
Reddy K, Lee GQ, Reddy N, Chikowore TJB, Baisley K, Dong KL, Walker BD, Yu XG, Lichterfeld M, Ndung'u T. Differences in HIV-1 reservoir size, landscape characteristics, and decay dynamics in acute and chronic treated HIV-1 Clade C infection. eLife 2025; 13:RP96617. [PMID: 39976231 PMCID: PMC11841988 DOI: 10.7554/elife.96617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are a barrier to cure efforts. Early antiretroviral therapy (ART) enables post-treatment viral control in some cases, but mechanisms remain unclear. We hypothesised that ART initiated before peak viremia impacts HIV-1 subtype C reservoirs. We studied 35 women at high risk of infection from Durban, South Africa, identified with hyperacute HIV by twice-weekly HIV-RNA testing. Participants included 11 starting ART at a median of 456 (297-1203) days post-onset of viremia (DPOV) and 24 at 1 (1-3) DPOV. Peripheral blood mononuclear cells (PBMCs) were used to measured total HIV-1 DNA by droplet digital PCR (ddPCR) and sequence viral reservoir genomes by full-length proviral sequencing (FLIP-seq). ART during hyperacute infection blunted peak viremia (p<0.0001), but contemporaneous total HIV-1 DNA did not differ (p=0.104). Over 1 year, a decline of total HIV-1 DNA was observed in early treated persons (p=0.0004), but not late treated. Among 697 viral genome sequences, the proviral genetic landscape differed between untreated, late treated, and early treated groups. Intact genomes after 1 year were higher in untreated (31%) versus late treated (14%) and early treated (0%). Treatment in both late and early infection caused more rapid decay of intact (13% and 51% per month) versus defective (2% and 35%) viral genomes. However, intact genomes persisted 1 year post chronic treatment but were undetectable with early ART. Early ART also reduced phylogenetic diversity of intact genomes and limited cytotoxic T lymphocyte immune escape variants in the reservoir. Overall, ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding but was associated with rapid intact viral genome decay, reduced genetic complexity, and limited immune escape, which may accelerate reservoir clearance in combination with other interventional strategies.
Collapse
Affiliation(s)
| | | | - Nicole Reddy
- Africa Health Research InstituteDurbanSouth Africa
- University of KwaZulu-NatalDurbanSouth Africa
| | - Tatenda JB Chikowore
- Africa Health Research InstituteDurbanSouth Africa
- University College LondonLondonUnited Kingdom
| | - Kathy Baisley
- Africa Health Research InstituteDurbanSouth Africa
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Krista L Dong
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-NatalDurbanSouth Africa
- Harvard Medical SchoolBostonUnited States
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-NatalDurbanSouth Africa
- Harvard Medical SchoolBostonUnited States
| | - Xu G Yu
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
- Brigham and Women's HospitalBostonUnited States
| | - Thumbi Ndung'u
- Africa Health Research InstituteDurbanSouth Africa
- University of KwaZulu-NatalDurbanSouth Africa
- University College LondonLondonUnited Kingdom
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-NatalDurbanSouth Africa
| |
Collapse
|
13
|
Sánchez-Gaona N, Perea D, Curran A, Burgos J, Navarro J, Suanzes P, Falcó V, Martín-Gayo E, Genescà M, Carrillo J, Buzón MJ. NK cell depletion in bispecific antibody therapy is associated with lack of HIV control after ART interruption. Commun Biol 2025; 8:236. [PMID: 39953264 PMCID: PMC11829058 DOI: 10.1038/s42003-025-07651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
HIV infection remains incurable as the virus persists within a latent reservoir of CD4+T cells. Novel approaches to enhance immune responses against HIV are essential for effective control and potential cure of the infection. In this study, we designed a novel tetravalent bispecific antibody (Bi-Ab32/16) to simultaneously target the gp120 viral protein on infected cells, and the CD16a receptor on NK cells. In vitro, Bi-Ab32/16 triggered a potent, specific, and polyfunctional NK-dependent response against HIV-infected cells. Moreover, addition of the Bi-Ab32/16 significantly reduced the latent HIV reservoir after viral reactivation and mediated the clearance of cells harboring intact proviruses in samples from people with HIV (PWH). However, the in vivo preclinical evaluation of Bi-Ab32/16 in humanized mice expressing IL-15 (NSG-Hu-IL-15) revealed a significant decline of NK cells associated with poor virological control after ART interruption. Our study underscores the need to carefully evaluating strategies for sustained NK cell stimulation during ART withdrawal.
Collapse
Affiliation(s)
- N Sánchez-Gaona
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D Perea
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Curran
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Burgos
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Navarro
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - P Suanzes
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - V Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E Martín-Gayo
- Universidad Autónoma de Madrid, Immunology Unit, Hospital Universitario de la Princesa, Madrid, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
| | - M Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Carrillo
- CIBERINFEC. ISCIII, Madrid, Spain
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - M J Buzón
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Tyers L, Moeser M, Ntuli J, Council O, Zhou S, Spielvogel E, Sondgeroth A, Adams C, Thebus R, Yssel A, Karim SA, Garrett N, Pond SK, Williamson C, Swanstrom R, Abrahams MR, Joseph SB. HIV-1 Rebound Virus Consists of a Small Number of Lineages That Entered the Reservoir Close to ART Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635391. [PMID: 39975202 PMCID: PMC11838395 DOI: 10.1101/2025.01.29.635391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
HIV-1 persists as a latent reservoir during suppressive antiretroviral therapy (ART). Viral rebound occurs upon ART interruption, posing a challenge to cure efforts. Characterizing viral populations fuelling rebound is imperative to curing HIV-1. We used longitudinal samples collected pretherapy from women in the CAPRISA 002 cohort to create an evolutionary timeline to determine the pretherapy timepoint when the rebound virus originally entered the long-lived reservoir. Participants (N=10) were untreated for an average of 5 years then on ART for an average of 2 years before viral rebound (defined as >1000 RNA copies/ml). env sequences were used to characterize the longitudinal pre-ART evolving viral RNA population, the proviral DNA reservoir during ART, and viral RNA in the plasma during rebound. For each participant, between 1 and 3 major viral lineages were identified in the plasma during rebound. A total of 20 rebound virus lineages were examined for the 10 participants, and 19 were found to have entered the reservoir around the time of therapy initiation. The one lineage estimated to enter the reservoir more than a year before therapy was observed in a participant who was untreated for more than 8 years, yet retained moderate CD4 T cell counts. Analysis of the viral DNA reservoir, from which the rebound viruses emanated, revealed that while 95% of rebounding lineages dated to the year before ART initiation, only 61% of unique proviruses dated to that time period. Strikingly, for three participants with DNA reservoirs dominated by viruses from earlier in untreated infection, only 33% of unique proviruses dated to the year before ART initiation, yet 83% of rebounding lineages dated to that time. Our results show that rebound virus almost exclusively comes from the portion of the latent reservoir that formed around the time of therapy initiation, even when the reservoir is composed of diverse sequences from across the pre-ART time period.
Collapse
Affiliation(s)
- Lynn Tyers
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jean Ntuli
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Olivia Council
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig Adams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Ruwayhida Thebus
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Anna Yssel
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu- Natal, Durban 4041, South Africa
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa
- National Health Laboratory Services of South Africa, Johannesburg 2000, South Africa
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Sarah B Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Odidika S, Pirkl M, Lengauer T, Schommers P. Current methods for detecting and assessing HIV-1 antibody resistance. Front Immunol 2025; 15:1443377. [PMID: 39835119 PMCID: PMC11743526 DOI: 10.3389/fimmu.2024.1443377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Antiretroviral therapy is the standard treatment for HIV, but it requires daily use and can cause side effects. Despite being available for decades, there are still 1.5 million new infections and 700,000 deaths each year, highlighting the need for better therapies. Broadly neutralizing antibodies (bNAbs), which are highly active against HIV-1, represent a promising new approach and clinical trials have demonstrated the potential of bNAbs in the treatment and prevention of HIV-1 infection. However, HIV-1 antibody resistance (HIVAR) due to variants in the HIV-1 envelope glycoproteins (HIV-1 Env) is not well understood yet and poses a critical problem for the clinical use of bNAbs in treatment. HIVAR also plays an important role in the future development of an HIV-1 vaccine, which will require elicitation of bNAbs to which the circulating strains are sensitive. In recent years, a variety of methods have been developed to detect, characterize and predict HIVAR. Structural analysis of antibody-HIV-1 Env complexes has provided insight into viral residues critical for neutralization, while testing of viruses for antibody susceptibility has verified the impact of some of these residues. In addition, in vitro viral neutralization and adaption assays have shaped our understanding of bNAb susceptibility based on the envelope sequence. Furthermore, in vivo studies in animal models have revealed the rapid emergence of escape variants to mono- or combined bNAb treatments. Finally, similar variants were found in the first clinical trials testing bNAbs for the treatment of HIV-1-infected patients. These structural, in vitro, in vivo and clinical studies have led to the identification and validation of HIVAR for almost all available bNAbs. However, defined assays for the detection of HIVAR in patients are still lacking and for some novel, highly potent and broad-spectrum bNAbs, HIVAR have not been clearly defined. Here, we review currently available approaches for the detection, characterization and prediction of HIVAR.
Collapse
Affiliation(s)
- Stanley Odidika
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
| | - Martin Pirkl
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Lengauer
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Informatics and Saarland Informatics Campus, Saarbrücken, Germany
| | - Philipp Schommers
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
| |
Collapse
|
16
|
Hetrick B, Siddiqui S, Spear M, Guo J, Liang H, Fu Y, Yang Z, Doyle-Meyers L, Pahar B, Veazey RS, Dufour J, Andalibi A, Ling B, Wu Y. Suppression of viral rebound by a Rev-dependent lentiviral particle in SIV-infected rhesus macaques. Gene Ther 2025; 32:16-24. [PMID: 39025983 PMCID: PMC11785524 DOI: 10.1038/s41434-024-00467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Persistence of human immunodeficiency virus (HIV) reservoirs prevents viral eradication, and consequently HIV-infected patients require lifetime treatment with antiretroviral therapy (ART) [1-5]. Currently, there are no effective therapeutics to prevent HIV rebound upon ART cessation. Here we describe an HIV/SIV Rev-dependent lentiviral particle that can be administered to inhibit viral rebound [6-9]. Using simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, we demonstrate that the administration of pre-assembled SIV Rev-dependent lentiviral particles into SIVmac239-infected Indian rhesus macaques can lead to reduction of viral rebound upon ART termination. One of the injected animals, KC50, controlled plasma and CNS viremia to an undetectable level most of the time for over two years after ART termination. Surprisingly, detailed molecular and immunological characterization revealed that viremia control was concomitant with the induction of neutralizing antibodies (nAbs) following the administration of the Rev-dependent vectors. This study emphasizes the importance of neutralizing antibodies (nAbs) for viremia control [10-15], and also provides proof of concept that the Rev-dependent vector can be used to target viral reservoirs, including the CNS reservoirs, in vivo. However, future large-scale in vivo studies are needed to understand the potential mechanisms of viremia control induced by the Rev-dependent vector.
Collapse
Affiliation(s)
- Brian Hetrick
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Mark Spear
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Jia Guo
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Huizhi Liang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Yajing Fu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Zhijun Yang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Jason Dufour
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Ali Andalibi
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX, 78227, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
17
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Gomez-Rivera F, Terry VH, Chen C, Painter MM, Virgilio MC, Yaple-Maresh ME, Collins KL. Variation in HIV-1 Tat activity is a key determinant in the establishment of latent infection. JCI Insight 2024; 10:e184711. [PMID: 39636695 PMCID: PMC11790021 DOI: 10.1172/jci.insight.184711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
Despite effective treatment, human immunodeficiency virus (HIV) persists in optimally treated people as a transcriptionally silent provirus. Latently infected cells evade the immune system and the harmful effects of the virus, thereby creating a long-lasting reservoir of HIV. To gain a deeper insight into the molecular mechanisms of HIV latency establishment, we constructed a series of HIV-1 fluorescent reporter viruses that distinguish active versus latent infection. We unexpectedly observed that the proportion of active to latent infection depended on a limiting viral factor, which created a bottleneck that could be overcome by superinfection of the cell, T cell activation, or overexpression of HIV-1 transactivator of transcription (Tat). In addition, we found that tat and regulator of expression of virion proteins (Rev) expression levels varied among HIV molecular clones and that tat levels were an important variable in latency establishment. Lower rev levels limited viral protein expression whereas lower Tat levels or mutation of the Tat binding element promoted latent infection that was resistant to reactivation even in fully activated primary T cells. Nevertheless, we found that combinations of latency reversal agents targeting both cellular activation and histone acetylation pathways overcame deficiencies in the Tat/TAR axis of transcription regulation. These results provide additional insight into the mechanisms of latency establishment and inform Tat-centered approaches to cure HIV.
Collapse
Affiliation(s)
| | | | | | | | - Maria C. Virgilio
- Department of Computational Medicine and Bioinformatics
- Cellular and Molecular Biology Program, and
| | | | - Kathleen L. Collins
- Graduate Program in Immunology
- Department of Internal Medicine
- Cellular and Molecular Biology Program, and
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Vela LC, Carrere L, Naasz C, Kalavacherla S, Tan TS, de Armas L, Gao C, Yu XG, Pahwa SG, Luzuriaga K, Lichterfeld M. Profound reduction of HIV-1 reservoir cells over 3 decades of antiretroviral therapy started in early infancy. JCI Insight 2024; 10:e186550. [PMID: 39541163 PMCID: PMC11721289 DOI: 10.1172/jci.insight.186550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
HIV-1 reservoir cells persist indefinitely during suppressive antiretroviral therapy (ART) in individuals who acquire infection in adulthood, but little is known about the longitudinal evolution of viral reservoir cells during long-term ART started during early infancy. We studied 2 fraternal twins who acquired HIV-1 perinatally, started ART at week 10 after birth and remained on ART for 28 years. We observed that the frequency of genome-intact proviruses, determined by single-genome near-full-length proviral sequencing, declined by approximately 4,000- to 13,000-fold during this period, indicating enhanced decay rates of intact proviruses even after adjusting for dilution effects from somatic growth. Despite analyzing more than one billion PBMC after 28 years of ART in each participant, no intact proviruses were detected in 1 participant, and 1 intact provirus was isolated in the other. The longitudinal decline of defective proviruses in the 2 participants was more similar to proviral decay kinetics reported in individuals who started ART during adulthood; moreover, clonal sequence clusters were readily detectable for defective proviruses but not for intact proviruses after 28 years of ART in the 2 twins. Together, these data suggest decreased long-term stability and increased immunological vulnerability of intact proviruses during long-term ART started in early infancy.
Collapse
Affiliation(s)
- Liliana C. Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Chloe Naasz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sruthi Kalavacherla
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Toong Seng Tan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lesley de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Savita G. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Shahid A, Jones BR, Duncan MC, MacLennan S, Dapp MJ, Kuniholm MH, Aouizerat B, Archin NM, Gange S, Ofotokun I, Fischl MA, Kassaye S, Goldstein H, Anastos K, Joy JB, Brumme ZL. A simple phylogenetic approach to analyze hypermutated HIV proviruses reveals insights into their dynamics and persistence during antiretroviral therapy. Virus Evol 2024; 11:veae094. [PMID: 39802824 PMCID: PMC11724191 DOI: 10.1093/ve/veae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/04/2024] [Accepted: 11/10/2024] [Indexed: 01/16/2025] Open
Abstract
Hypermutated proviruses, which arise in a single Human Immunodeficiency Virus (HIV) replication cycle when host antiviral APOBEC3 proteins introduce extensive guanine to adenine mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). However, hypermutated sequences are routinely excluded from phylogenetic trees because their extensive mutations complicate phylogenetic inference, and as a result, we know relatively little about their within-host evolutionary origins and dynamics. Using >1400 longitudinal single-genome-amplified HIV env-gp120 sequences isolated from six women over a median of 18 years of follow-up-including plasma HIV RNA sequences collected over a median of 9 years between seroconversion and ART initiation, and >500 proviruses isolated over a median of 9 years on ART-we evaluated three approaches for masking hypermutation in nucleotide alignments. Our goals were to (i) reconstruct phylogenies that can be used for molecular dating and (ii) phylogenetically infer the integration dates of hypermutated proviruses persisting during ART. Two of the approaches (stripping all positions containing putative APOBEC3 mutations from the alignment or replacing individual putative APOBEC3 mutations in hypermutated sequences with the ambiguous base R) consistently normalized tree topologies, eliminated erroneous clustering of hypermutated proviruses, and brought env-intact and hypermutated proviruses into comparable ranges with respect to multiple tree-based metrics. Importantly, these corrected trees produced integration date estimates for env-intact proviruses that were highly concordant with those from benchmark trees that excluded hypermutated sequences, supporting the use of these corrected trees for molecular dating. Subsequent molecular dating of hypermutated proviruses revealed that these sequences spanned a wide within-host age range, with the oldest ones dating to shortly after infection. This indicates that hypermutated proviruses, like other provirus types, begin to be seeded into the proviral pool immediately following infection and can persist for decades. In two of the six participants, hypermutated proviruses differed from env-intact ones in terms of their age distributions, suggesting that different provirus types decay at heterogeneous rates in some hosts. These simple approaches to reconstruct hypermutated provirus' evolutionary histories reveal insights into their in vivo origins and longevity toward a more comprehensive understanding of HIV persistence during ART.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- British Columbia Centre for Excellence in HIV/AIDS, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Bradley R Jones
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- British Columbia Centre for Excellence in HIV/AIDS, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Michael J Dapp
- Department of Microbiology, University of Washington, School of Medicine, 1705 NE Pacific St., Seattle, WA 98195, United States
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, 1 University Place, Rensselaer, NY 12144, United States
| | - Bradley Aouizerat
- College of Dentistry, New York University, 345 E. 24th St., New York, NY 10010, United States
| | - Nancie M Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, 130 Mason Farm Rd., Chapel Hill, NC 27599, United States
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, United States
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Margaret A Fischl
- Division of Infectious Diseases, Department of Medicine, University of Miami School of Medicine, 1951 NW 7th Ave., Miami, FL 33136, United States
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20007, United States
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, United States
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, United States
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
- Bioinformatics Program, University of British Columbia, 100-570 West 7th Ave., Vancouver, BC V5Z 4S6, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- British Columbia Centre for Excellence in HIV/AIDS, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
21
|
Ismail SD, Sebaa S, Abrahams B, Nason MC, Mumby MJ, Dikeakos JD, Joseph SB, Moeser M, Swanstrom R, Garrett N, Williamson C, Quinn TC, Abrahams MR, Redd AD. The role of Nef in the long-term persistence of the replication-competent HIV reservoir in South African women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621615. [PMID: 39554110 PMCID: PMC11565997 DOI: 10.1101/2024.11.01.621615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
HIV-1 Nef mediates immune evasion and viral pathogenesis in part through downregulation of cell surface cluster of differentiation 4 (CD4) and major histocompatibility complex class I (MHC-I) on infected cells. While Nef function of circulating viral populations found early in infection has been associated with reservoir size in early-treated cohorts, there is limited research on how its activity impacts reservoir size in people initiating treatment during chronic infection. In addition, there is little research on its role in persistence of viral variants during long-term antiretroviral therapy (ART). Phylogenetically distinct nef genes (n=82) with varying estimated times of reservoir entry were selected from viral outgrowth variants stimulated from the reservoir of South African women living with HIV who initiated ART during chronic infection (n=16). These nef genes were synthesized and used in a pseudovirus infection assay that measures CD4 and MHC-I downregulation via flow cytometry. Downregulation measures were compared to the size of the replication-competent viral reservoir (RC-VR), estimated by quantitative viral outgrowth assay (QVOA) at 5 years after treatment initiation, as well as proviral survival time. Maximum Nef-mediated MHC-I downregulation was significantly associated with RC-VR size (p=0.034), but this association was not observed for CD4 downregulation. Conversely, we did not find a consistent association between intraparticipant MHC-I or CD4 downregulation and the variant timing of entry into the reservoir. These data support a role for Nef-mediated MHC-I downregulation in determining RC-VR size, but more work is needed to determine Nef's role in the survival of individual viral variants over time.
Collapse
Affiliation(s)
- Sherazaan D. Ismail
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shorok Sebaa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bianca Abrahams
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Mitchell J. Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sarah B. Joseph
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of Kwazulu-Natal, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of Kwazulu-Natal, Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
| | - Thomas C. Quinn
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrew D. Redd
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| |
Collapse
|
22
|
Pincus SH, Cole FM, Ober K, Tokmina-Lukaszewska M, Marcotte T, Kovacs EW, Zhu T, Khasanov A, Copié V, Peters T. Conjugation of anti-HIV gp41 monoclonal antibody to a drug capable of targeting resting lymphocytes produces an effective cytotoxic anti-HIV immunoconjugate. J Virol 2024; 98:e0064724. [PMID: 39283123 PMCID: PMC11494876 DOI: 10.1128/jvi.00647-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/11/2024] [Indexed: 10/23/2024] Open
Abstract
HIV-infected cells persisting in the face of suppressive antiretroviral therapy are the barrier to curing infection. Cytotoxic immunoconjugates targeted to HIV antigens on the cell surface may clear these cells. We showed efficacy in mouse and macaque models using immunotoxins, but immunogenicity blunted the effect. As an alternative, we propose antibody drug conjugates (ADCs), as used in cancer immunotherapy. In cancer, the target is a dividing cell, whereas it may not be in HIV. We screened cytotoxic drugs on human primary cells and cell lines. An anthracycline derivative, PNU-159682 (PNU), was highly cytotoxic to both proliferating and resting cells. Human anti-gp41 mAb 7B2 was conjugated to ricin A chain or PNU. The conjugates were tested in vitro for cytotoxic efficacy and anti-viral effect, and in vivo for tolerability. The specificity of killing for both conjugates was demonstrated on Env+ and Env- cells. The toxin conjugate was more potent and killed more rapidly, but 7B2-PNU was effective at levels achievable in patients. The ricin conjugate was well tolerated in mice; 7B2-PNU was toxic when administered intraperitoneally but was tolerated intravenously. We have produced an ADC with potential to target the persistent HIV reservoir in both dividing and non-dividing cells while avoiding immunogenicity. Cytotoxic anti-HIV immunoconjugates may have greatest utility as part of an "activate and purge" regimen, involving viral activation in the reservoir. This is a unique comparison of an immunotoxin and ADC targeted by the same antibody and tested in the same systems.IMPORTANCEHIV infection can be controlled with anti-retroviral therapy, but it cannot be cured. Despite years of therapy that suppresses HIV, patients again become viremic shortly after discontinuing treatment. A long-lived population of memory T cells retain the genes encoding HIV, and these cells secrete infectious HIV when no longer suppressed by therapy. This is the persistent reservoir of HIV infection. The therapies described here use anti-HIV antibodies conjugated to poisons to kill the cells in this reservoir. These poisons may be of several types, including protein toxins (immunotoxins) or anti-cancer drugs (antibody drug conjugates, ADCs). We have previously shown that an anti-HIV immunotoxin had therapeutic effects in animal models, but it elicited an anti-drug immune response. Here, we have prepared an anti-HIV ADC, which would be less likely to provoke an immune response, and show its potential for use in eliminating the persistent reservoir of HIV infection.
Collapse
Affiliation(s)
- Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Frances M. Cole
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Kelli Ober
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Tamera Marcotte
- Animal Resource Center, Montana State University, Bozeman, Montana, USA
| | | | - Tong Zhu
- Levena Biopharma, San Diego, California, USA
| | | | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
23
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
24
|
Reddy K, Lee GQ, Reddy N, Chikowore TJ, Baisley K, Dong KL, Walker BD, Yu XG, Lichterfeld M, Ndung’u T. Differences in HIV-1 reservoir size, landscape characteristics and decay dynamics in acute and chronic treated HIV-1 Clade C infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302713. [PMID: 38947072 PMCID: PMC11213047 DOI: 10.1101/2024.02.16.24302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are the main barrier to cure efforts. Antiretroviral therapy (ART) intensification by early initiation has been shown to enable post-treatment viral control in some cases but the underlying mechanisms are not fully understood. We hypothesized that ART initiated during the hyperacute phase of infection before peak will affect the size, decay dynamics and landscape characteristics of HIV-1 subtype C viral reservoirs. Methods We studied 35 women at high risk of infection from Durban, South Africa identified with hyperacute HIV infection by twice weekly testing for plasma HIV-1 RNA. Study participants included 11 who started ART at a median of 456 (297-1203) days post onset of viremia (DPOV), and 24 who started ART at a median of 1 (1-3) DPOV. We used peripheral blood mononuclear cells (PBMC) to measure total HIV-1 DNA by ddPCR and to sequence reservoir viral genomes by full length individual proviral sequencing (FLIP-seq) from onset of detection of HIV up to 1 year post treatment initiation. Results Whereas ART in hyperacute infection blunted peak viremia compared to untreated individuals (p<0.0001), there was no difference in total HIV-1 DNA measured contemporaneously (p=0.104). There was a steady decline of total HIV DNA in early treated persons over 1 year of ART (p=0.0004), with no significant change observed in the late treated group. Total HIV-1 DNA after one year of treatment was lower in the early treated compared to the late treated group (p=0.02). Generation of 697 single viral genome sequences revealed a difference in the longitudinal proviral genetic landscape over one year between untreated, late treated, and early treated infection: the relative contribution of intact genomes to the total pool of HIV-1 DNA after 1 year was higher in untreated infection (31%) compared to late treated (14%) and early treated infection (0%). Treatment initiated in both late and early infection resulted in a more rapid decay of intact (13% and 51% per month) versus defective (2% and 35% per month) viral genomes. However, intact genomes were still observed one year post chronic treatment initiation in contrast to early treatment where intact genomes were no longer detectable. Moreover, early ART reduced phylogenetic diversity of intact genomes and limited the seeding and persistence of cytotoxic T lymphocyte immune escape variants in the reservoir. Conclusions Overall, our results show that whereas ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding, it was nevertheless associated with more rapid decay of intact viral genomes, decreased genetic complexity and immune escape in reservoirs, which could accelerate reservoir clearance when combined with other interventional strategies.
Collapse
Affiliation(s)
- Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | | | - Nicole Reddy
- Africa Health Research Institute, Durban, South Africa
- University of KwaZulu-Natal, Durban, South Africa
| | - Tatenda J.B. Chikowore
- Africa Health Research Institute, Durban, South Africa
- University College of London, London, UK
| | - Kathy Baisley
- Africa Health Research Institute, Durban, South Africa
- London School of Hygiene and Tropical Medicine, London, UK
| | - Krista L. Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Harvard Medical School, Boston, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Thumbi Ndung’u
- Africa Health Research Institute, Durban, South Africa
- University of KwaZulu-Natal, Durban, South Africa
- University College of London, London, UK
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
25
|
Manzanares M, Ramos-Martín F, Rodríguez-Mora S, Casado-Fernández G, Sánchez-Menéndez C, Simón-Rueda A, Mateos E, Cervero M, Spivak AM, Planelles V, Torres M, García-Gutiérrez V, Coiras M. Sustained antiviral response against in vitro HIV-1 infection in peripheral blood mononuclear cells from people with chronic myeloid leukemia treated with ponatinib. Front Pharmacol 2024; 15:1426974. [PMID: 39380908 PMCID: PMC11460598 DOI: 10.3389/fphar.2024.1426974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
HIV-1 infection cannot be cured due to long-lived viral reservoirs formed by latently infected CD4+ T cells. "Shock and Kill" strategy has been considered to eliminate the viral reservoir and achieve a functional cure but the stimulation of cytotoxic immunity is necessary. Ponatinib is a tyrosine kinase inhibitor (TKI) clinically used against chronic myeloid leukemia (CML) that has demonstrated to be effective against HIV-1 infection in vitro. Several TKIs may induce a potent cytotoxic response against cancer cells that makes possible to discontinue treatment in people with CML who present long-term deep molecular response. In this longitudinal study, we analyzed the capacity of ponatinib to induce an antiviral response against HIV-1 infection in peripheral blood mononuclear cells (PBMCs) obtained from people with CML previously treated with imatinib for a median of 10 years who changed to ponatinib for 12 months to boost the anticancer response before discontinuing any TKI as part of the clinical trial NCT04043676. Participants were followed-up for an additional 12 months in the absence of treatment. PBMCs were obtained at different time points and then infected in vitro with HIV-1. The rate of infection was determined by quantifying the intracellular levels of p24-gag in CD4+ T cells. The levels of p24-gag+ CD4+ T-cells were lower when these cells were obtained during and after treatment with ponatinib in comparison with those obtained during treatment with imatinib. Cytotoxicity of PBMCs against HIV-infected target cells was significantly higher during treatment with ponatinib than during treatment with imatinib, and it was maintained at least 12 months after discontinuation. There was a significant negative correlation between the lower levels of p24-gag+ CD4+ T-cells and the higher cytotoxicity induced by PBMCs when cells were obtained during and after treatment with ponatinib. This cytotoxic immunity was mostly based on higher levels of Natural Killer and Tγδ cells seemingly boosted by ponatinib. In conclusion, transient treatment with immunomodulators like ponatinib along with ART could be explored to boost the antiviral activity of cytotoxic cells and contribute to the elimination of HIV-1 reservoir.
Collapse
Affiliation(s)
- Mario Manzanares
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guiomar Casado-Fernández
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, Madrid, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alicia Simón-Rueda
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Adam M. Spivak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt LakeCity, UT, United States
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt LakeCity, UT, United States
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Salgado M, Migueles SA, Yu XG, Martinez-Picado J. Exceptional, naturally occurring HIV-1 control: Insight into a functional cure. MED 2024; 5:1071-1082. [PMID: 39013460 PMCID: PMC11411266 DOI: 10.1016/j.medj.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
Exceptional elite controllers represent an extremely rare group of people with HIV-1 (PWH) who exhibit spontaneous, high-level control of viral replication below the limits of detection in sensitive clinical monitoring assays and without disease progression in the absence of antiretroviral therapy for prolonged periods, frequently exceeding 25 years. Here, we discuss the different cases that have been reported in the scientific literature, their unique genetic, virological, and immunological characteristics, and their relevance as the best model for the functional cure of HIV-1.
Collapse
Affiliation(s)
- María Salgado
- IrsiCaixa Immunopathology Research Institute, 08916 Badalona, Spain; CIBERINFEC, 28029 Madrid, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Stephen A Migueles
- Laboratory of Immunoregulation, Division of Intramural Research, and Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Javier Martinez-Picado
- IrsiCaixa Immunopathology Research Institute, 08916 Badalona, Spain; CIBERINFEC, 28029 Madrid, Spain; University of Vic - Central University of Catalonia (UVic-UCC), 08500 Vic, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
27
|
Ahmed S, Herschhorn A. mRNA-based HIV-1 vaccines. Clin Microbiol Rev 2024; 37:e0004124. [PMID: 39016564 PMCID: PMC11391700 DOI: 10.1128/cmr.00041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
SUMMARYThe success of the Severe Acute Respiratory Syndrome Coronavirus 2 mRNA vaccines to lessen/prevent severe COVID-19 opened new opportunities to develop RNA vaccines to fight other infectious agents. HIV-1 is a lentivirus that integrates into the host cell genome and persists for the lifetime of infected cells. Multiple mechanisms of immune evasion have posed significant obstacles to the development of an effective HIV-1 vaccine over the last four decades since the identification of HIV-1. Recently, attempts to address some of these challenges have led to multiple studies that manufactured, optimized, and tested, in different animal models, mRNA-based HIV-1 vaccines. Several clinical trials have also been initiated or are planned to start soon. Here, we review the current strategies applied to HIV-1 mRNA vaccines, discuss different targeting approaches, summarize the latest findings, and offer insights into the challenges and future of HIV-1 mRNA vaccines.
Collapse
Affiliation(s)
- Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. J Exp Med 2024; 221:e20240391. [PMID: 39141127 PMCID: PMC11323366 DOI: 10.1084/jem.20240391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
HIV-1 antiretroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses, leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here, we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 100-10,000× less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir, thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Chica and Heinz Schaller (CHS) Research Group, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
29
|
Mainou E, Berendam SJ, Obregon-Perko V, Uffman EA, Phan CT, Shaw GM, Bar KJ, Kumar MR, Fray EJ, Siliciano JM, Siliciano RF, Silvestri G, Permar SR, Fouda GG, McCarthy J, Chahroudi A, Conway JM, Chan C. Assessing the impact of autologous virus neutralizing antibodies on viral rebound time in postnatally SHIV-infected ART-treated infant rhesus macaques. Epidemics 2024; 48:100780. [PMID: 38964130 PMCID: PMC11518701 DOI: 10.1016/j.epidem.2024.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early initiation is not always possible in postnatal pediatric HIV infections. The timing of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear and has never been modeled in infants. To investigate this question we used an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT and either given ART at 4-7 days post-infection (early ART condition), at 2 weeks post-infection (intermediate ART condition), or at 8 weeks post-infection (late ART condition). These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. To gain insight into early after analytic treatment interruption (ATI), we constructed mathematical models to investigate the effect of time of ART initiation in delaying viral rebound when treatment is interrupted, focusing on the relative contributions of latent reservoir size and autologous virus neutralizing antibody responses. We developed a stochastic mathematical model to investigate the joint effect of latent reservoir size, the autologous neutralizing antibody potency, and CD4+ T cell levels on the time to viral rebound for RMs rebounding up to 60 days post-ATI. We find that the latent reservoir size is an important determinant in explaining time to viral rebound in infant macaques by affecting the growth rate of the virus. The presence of neutralizing antibodies can also delay rebound, but we find this effect for high potency antibody responses only. Finally, we discuss the therapeutic implications of our findings.
Collapse
Affiliation(s)
- Ellie Mainou
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | | | | | - Emilie A Uffman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Caroline T Phan
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mithra R Kumar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily J Fray
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Janice McCarthy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessica M Conway
- Department of Mathematics, Pennsylvania State University, University Park, PA, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
30
|
Zhou M, Yang T, Yuan M, Li X, Deng J, Wu S, Zhong Z, Lin Y, Zhang W, Xia B, Wu Y, Wang L, Chen T, Liu R, Pan T, Ma X, Li L, Liu B, Zhang H. ORC1 enhances repressive epigenetic modifications on HIV-1 LTR to promote HIV-1 latency. J Virol 2024; 98:e0003524. [PMID: 39082875 PMCID: PMC11334468 DOI: 10.1128/jvi.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/21/2024] [Indexed: 08/21/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) reservoir consists of latently infected cells which present a major obstacle to achieving a functional cure for HIV-1. The formation and maintenance of HIV-1 latency have been extensively studied, and latency-reversing agents (LRAs) that can reactivate latent HIV-1 by targeting the involved host factors are developed; however, their clinical efficacies remain unsatisfactory. Therefore, it is imperative to identify novel targets for more potential candidates or better combinations for LRAs. In this study, we utilized CRISPR affinity purification in situ of regulatory elements system to screen for host factors associated with the HIV-1 long terminal repeat region that could potentially be involved in HIV-1 latency. We successfully identified that origin recognition complex 1 (ORC1), the largest subunit of the origin recognition complex, contributes to HIV-1 latency in addition to its function in DNA replication initiation. Notably, ORC1 is enriched on the HIV-1 promoter and recruits a series of repressive epigenetic elements, including DNMT1 and HDAC1/2, and histone modifiers, such as H3K9me3 and H3K27me3, thereby facilitating the establishment and maintenance of HIV-1 latency. Moreover, the reactivation of latent HIV-1 through ORC1 depletion has been confirmed across various latency cell models and primary CD4+ T cells from people living with HIV-1. Additionally, we comprehensively validated the properties of liquid-liquid phase separation (LLPS) of ORC1 from multiple perspectives and identified the key regions that promote the formation of LLPS. This property is important for the recruitment of ORC1 to the HIV-1 promoter. Collectively, these findings highlight ORC1 as a potential novel target implicated in HIV-1 latency and position it as a promising candidate for the development of novel LRAs. IMPORTANCE Identifying host factors involved in maintaining human immunodeficiency virus type 1 (HIV-1) latency and understanding their mechanisms prepares the groundwork to discover novel targets for HIV-1 latent infection and provides further options for the selection of latency-reversing agents in the "shock" strategy. In this study, we identified a novel role of the DNA replication factor origin recognition complex 1 (ORC1) in maintaining repressive chromatin structures surrounding the HIV-1 promoter region, thereby contributing to HIV-1 latency. This discovery expands our understanding of the non-replicative functions of the ORC complex and provides a potential therapeutic strategy for HIV-1 cure.
Collapse
Affiliation(s)
- Mo Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyu Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jieyi Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shiyu Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihan Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanying Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baijin Xia
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Yating Wu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Lilin Wang
- Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Tao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Ruxin Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ting Pan
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Linghua Li
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
De Nicolò A, Palermiti A, Dispinseri S, Marchetti G, Trunfio M, De Vivo E, D'Avolio A, Muscatello A, Gori A, Rusconi S, Bruzzesi E, Gabrieli A, Bernasconi DP, Bandera A, Nozza S, Calcagno A. Plasma, intracellular and lymph node antiretroviral concentrations and HIV DNA change during primary HIV infection: Results from the INACTION P25 study. Int J Antimicrob Agents 2024; 64:107200. [PMID: 38768738 DOI: 10.1016/j.ijantimicag.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Despite its effectiveness, combination antiretroviral treatment (cART) has a limited effect on HIV DNA reservoir, which establishes early during primary HIV infection (PHI) and is maintained by latency, homeostatic T-cells proliferation, and residual replication. This limited effect can be associated with low drug exposure in lymphoid tissues and/or suboptimal adherence to antiretroviral drugs (ARVs). The aim of this study was to assess ARV concentrations in plasma, peripheral blood mononuclear cells (PBMCs) and lymph nodes (LNs), and their association to HIV RNA and HIV DNA decay during PHI. Participants were randomised to receive standard doses of darunavir/cobicistat (Arm I), dolutegravir (Arm II) or both (Arm III), with a backbone of tenofovir alafenamide and emtricitabine. Total HIV DNA was measured using digital-droplet PCR in PBMCs at baseline, 12 and 48 weeks. Drug concentrations in plasma and PBMCs were determined at 2, 12 and 48 weeks (LNs at 12 weeks) by UHPLC-MS/MS. Seventy-two participants were enrolled, mostly male (n=68), with a median age of 34 years and variable Fiebig stages (V-VI 57.7%, I-II 23.9%, and III-IV 18.3%). Twenty-six patients were assigned to Arm I, 27 to Arm II and 19 to Arm III. After 48 weeks, most patients had undetectable viremia, with minor differences in HIV RNA decay between arms. Patients with Fiebig I-II showed faster HIV RNA and HIV DNA decay. Intracellular tissue penetration was high for nucleoside analogues and low-moderate for darunavir and dolutegravir. Only tenofovir diphosphate concentrations in PBMCs showed correlation with HIV DNA decay. Overall, these results indicate that the timing of treatment initiation and intracellular tenofovir penetration are primary and secondary factors, respectively, affecting HIV reservoir.
Collapse
Affiliation(s)
- Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin.
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin
| | | | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin
| | - Elisa De Vivo
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - Stefano Rusconi
- UOC Malattie Infettive, Ospedale Civile di Legnano, ASST Ovest Milanese, Legnano; University of Milan, Milan
| | | | - Arianna Gabrieli
- Dipartimento di Scienze Biomediche e Cliniche, Ospedale L Sacco, Milan
| | - Davide Paolo Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4 School of Medicine and Surgery, University of Milano-Bicocca, Monza
| | | | - Silvia Nozza
- Department of Infectious Diseases, IRCCS Ospedale san Raffaele, Milan, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin
| |
Collapse
|
32
|
Sun L, Chen B, Liu X, Zhu Y, Zhang G, Liang X, Xing L, Xu W, Jiang S, Wang X. Alpaca-derived nanobody targeting the hydrophobic pocket of the HIV-1 gp41 NHR broadly neutralizes HIV-1 by blocking six-helix bundle formation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100263. [PMID: 39176008 PMCID: PMC11339056 DOI: 10.1016/j.crmicr.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The highly conserved hydrophobic pocket region of HIV-1 gp41 NHR triple-stranded coiled coil is crucial for the binding of CHR to NHR to form a six-helix bundle (6-HB). This pocket is only exposed instantaneously during fusion, making it an ideal target for antibody drug design. However, IgG molecule is too big to enter the pocket during the fusion process. Therefore, to overcome the steric hindrance and kinetic obstacles caused by the formation of gp41 pre-hairpin fusion intermediate, we obtained nanobodies (Nbs) targeting NHR by immunizing alpaca with an NHR-trimer mimic. Specifically, we identified a Nb, Nb-172, that exhibited potent and broadly neutralizing activity against HIV-1 pseudoviruses, HIV-1 primary isolates, and T20-resistant HIV-1 strains. In addition, the combinatorial use of mD1.22 and Nb-172 exhibited synergism in inhibiting HIV-1 infection inactivating cell-free virions. Nb-172 can competitively bind to the hydrophobic pocket of gp41 NHR to inhibit 6-HB formation. These findings suggest that Nb-172 merits further investigation as a potential therapeutic for HIV-1 infection.
Collapse
Affiliation(s)
- Lujia Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Bo Chen
- Chengdu NBbiolab. CO., LTD, SME Incubation Park, 319 Qingpi Avenue, Chengdu, China
| | - Xianbo Liu
- Chengdu NBbiolab. CO., LTD, SME Incubation Park, 319 Qingpi Avenue, Chengdu, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangxu Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Xiaoxing Liang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Lixiao Xing
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Wei Xu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Shibo Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Xinling Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Chou TC, Maggirwar NS, Marsden MD. HIV Persistence, Latency, and Cure Approaches: Where Are We Now? Viruses 2024; 16:1163. [PMID: 39066325 PMCID: PMC11281696 DOI: 10.3390/v16071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The latent reservoir remains a major roadblock to curing human immunodeficiency virus (HIV) infection. Currently available antiretroviral therapy (ART) can suppress active HIV replication, reduce viral loads to undetectable levels, and halt disease progression. However, antiretroviral drugs are unable to target cells that are latently infected with HIV, which can seed viral rebound if ART is stopped. Consequently, a major focus of the field is to study the latent viral reservoir and develop safe and effective methods to eliminate it. Here, we provide an overview of the major mechanisms governing the establishment and maintenance of HIV latency, the key challenges posed by latent reservoirs, small animal models utilized to study HIV latency, and contemporary cure approaches. We also discuss ongoing efforts to apply these approaches in combination, with the goal of achieving a safe, effective, and scalable cure for HIV that can be extended to the tens of millions of people with HIV worldwide.
Collapse
Affiliation(s)
- Tessa C. Chou
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Nishad S. Maggirwar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
- Department of Medicine, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
34
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
35
|
Phan T, Conway JM, Pagane N, Kreig J, Sambaturu N, Iyaniwura S, Li JZ, Ribeiro RM, Ke R, Perelson AS. Understanding early HIV-1 rebound dynamics following antiretroviral therapy interruption: The importance of effector cell expansion. PLoS Pathog 2024; 20:e1012236. [PMID: 39074163 PMCID: PMC11309407 DOI: 10.1371/journal.ppat.1012236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/08/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is interrupted; however, a small fraction remain in viral remission for an extended duration. Understanding the factors that determine whether viral rebound is likely after treatment interruption can enable the development of optimal treatment regimens and therapeutic interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical framework proposed by Conway and Perelson to construct dynamic models of virus-immune interactions to study factors that influence viral rebound dynamics. We evaluated these models using viral load data from 24 individuals following antiretroviral therapy interruption. The best-performing model accurately captures the heterogeneity of viral dynamics and highlights the importance of the effector cell expansion rate. Our results show that post-treatment controllers and non-controllers can be distinguished based on the effector cell expansion rate in our models. Furthermore, these results demonstrate the potential of using dynamic models incorporating an effector cell response to understand early viral rebound dynamics post-antiretroviral therapy interruption.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jessica M. Conway
- Department of Mathematics, Pennsylvania State University, College Township, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, College Township, Pennsylvania, United States of America
| | - Nicole Pagane
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, Massachusetts, United States of America
| | - Jasmine Kreig
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Narmada Sambaturu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Sarafa Iyaniwura
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
36
|
Lee J, Whitney JB. Immune checkpoint inhibition as a therapeutic strategy for HIV eradication: current insights and future directions. Curr Opin HIV AIDS 2024; 19:179-186. [PMID: 38747727 DOI: 10.1097/coh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW HIV-1 infection contributes substantially to global morbidity and mortality, with no immediate promise of an effective prophylactic vaccine. Combination antiretroviral therapy (ART) suppresses HIV replication, but latent viral reservoirs allow the virus to persist and reignite active replication if ART is discontinued. Moreover, inflammation and immune disfunction persist despite ART-mediated suppression of HIV. Immune checkpoint molecules facilitate immune dysregulation and viral persistence. However, their therapeutic modulation may offer an avenue to enhance viral immune control for patients living with HIV-1 (PLWH). RECENT FINDINGS The success of immune checkpoint inhibitor (ICI) therapy in oncology suggests that targeting these same immune pathways might be an effective therapeutic approach for treating PLWH. Several ICIs have been evaluated for their ability to reinvigorate exhausted T cells, and possibly reverse HIV latency, in both preclinical and clinical HIV-1 studies. SUMMARY Although there are very encouraging findings showing enhanced CD8 + T-cell function with ICI therapy in HIV infection, it remains uncertain whether ICIs alone could demonstrably impact the HIV reservoir. Moreover, safety concerns and significant clinical adverse events present a hurdle to the development of ICI approaches. This review provides an update on the current knowledge regarding the development of ICIs for the remission of HIV-1 in PWH. We detail recent findings from simian immunodeficiency virus (SIV)-infected rhesus macaque models, clinical trials in PLWH, and the role of soluble immune checkpoint molecules in HIV pathogenesis.
Collapse
Affiliation(s)
- Jina Lee
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | | |
Collapse
|
37
|
Wang C, Zhang W, Xu L, Tu J, Su S, Li Q, Zhang T, Zheng L, Wang H, Zhuang X, Tang X, Yuan Y, Meng G, Lu L, Xiao J, Wang Q, Jiang S. Discovery of a Double-Stapled Short Peptide as a Long-Acting HIV-1 Inactivator with Potential for Oral Bioavailability. J Med Chem 2024; 67:9991-10004. [PMID: 38888038 DOI: 10.1021/acs.jmedchem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Different from most antiretroviral drugs that act as passive defenders to inhibit HIV-1 replication inside the host cell, virus inactivators can attack and inactivate HIV-1 virions without relying on their replication cycle. Herein, we describe the discovery of a hydrocarbon double-stapled helix peptide, termed D26. D26 is based on the HIV-1 gp41 protein lentiviral lytic peptide-3 motif (LLP3) sequence, which can efficiently inhibit HIV-1 infection and inactivate cell-free HIV-1 virions. It was noted that D26 was highly resistant to proteolytic degradation and exhibited a remarkably extended in vivo elimination half-life. Additionally, relative to its linear, nonstapled version, D26 exhibited much higher exposure in sanctuary sites for HIV-1. Amazingly, this lead compound also demonstrated detectable oral absorption. Thus, it can be concluded that D26 is a promising candidate for further development as a long-acting, orally applicable HIV-1 inactivator for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Jiahuang Tu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Tao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Longbo Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
- Key Laboratory of Structure-based Drug Design & Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xuan Tang
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Yu Yuan
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Guangpeng Meng
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Junhai Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| |
Collapse
|
38
|
Nemphos SM, Green HC, Prusak JE, Fell SL, Goff K, Varnado M, Didier K, Guy N, Moström MJ, Tatum C, Massey C, Barnes MB, Rowe LA, Allers C, Blair RV, Embers ME, Maness NJ, Marx PA, Grasperge B, Kaur A, De Paris K, Shaffer JG, Hensley-McBain T, Londono-Renteria B, Manuzak JA. Elevated Inflammation Associated with Markers of Neutrophil Function and Gastrointestinal Disruption in Pilot Study of Plasmodium fragile Co-Infection of ART-Treated SIVmac239+ Rhesus Macaques. Viruses 2024; 16:1036. [PMID: 39066199 PMCID: PMC11281461 DOI: 10.3390/v16071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) and malaria, caused by infection with Plasmodium spp., are endemic in similar geographical locations. As a result, there is high potential for HIV/Plasmodium co-infection, which increases the pathology of both diseases. However, the immunological mechanisms underlying the exacerbated disease pathology observed in co-infected individuals are poorly understood. Moreover, there is limited data available on the impact of Plasmodium co-infection on antiretroviral (ART)-treated HIV infection. Here, we used the rhesus macaque (RM) model to conduct a pilot study to establish a model of Plasmodium fragile co-infection during ART-treated simian immunodeficiency virus (SIV) infection, and to begin to characterize the immunopathogenic effect of co-infection in the context of ART. We observed that P. fragile co-infection resulted in parasitemia and anemia, as well as persistently detectable viral loads (VLs) and decreased absolute CD4+ T-cell counts despite daily ART treatment. Notably, P. fragile co-infection was associated with increased levels of inflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1). P. fragile co-infection was also associated with increased levels of neutrophil elastase, a plasma marker of neutrophil extracellular trap (NET) formation, but significant decreases in markers of neutrophil degranulation, potentially indicating a shift in the neutrophil functionality during co-infection. Finally, we characterized the levels of plasma markers of gastrointestinal (GI) barrier permeability and microbial translocation and observed significant correlations between indicators of GI dysfunction, clinical markers of SIV and Plasmodium infection, and neutrophil frequency and function. Taken together, these pilot data verify the utility of using the RM model to examine ART-treated SIV/P. fragile co-infection, and indicate that neutrophil-driven inflammation and GI dysfunction may underlie heightened SIV/P. fragile co-infection pathogenesis.
Collapse
Affiliation(s)
- Sydney M. Nemphos
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Hannah C. Green
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - James E. Prusak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Sallie L. Fell
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Megan Varnado
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kaitlin Didier
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Natalie Guy
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Matilda J. Moström
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Coty Tatum
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chad Massey
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mary B. Barnes
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Lori A. Rowe
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Robert V. Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Brooke Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27559, USA
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | | | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Jennifer A. Manuzak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
39
|
Zhou Z, Zhang X, Wang M, Jiang F, Tong J, Nie J, Zhao C, Zheng H, Zhang Z, Shi P, Fan W, Wang Y, Huang W. HIV-1 env gene mutations outside the targeting probe affects IPDA efficiency. iScience 2024; 27:109941. [PMID: 38812543 PMCID: PMC11133923 DOI: 10.1016/j.isci.2024.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/29/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
The intact proviral DNA assay (IPDA) based on droplet digital PCR was developed to identify intact proviral DNA and quantify HIV-1 latency reservoirs in patients infected with HIV-1. However, the genetic characteristics of different HIV-1 subtypes are non-consistent due to their high mutation and recombination rates. Here, we identified that the IPDA based on the sequences features of an HIV-1 subtype could not effectively detect different HIV-1 subtypes due to the high diversity of HIV-1. Furthermore, we demonstrated that mutations in env gene outside the probe binding site affect the detection efficiency of IPDA. Since mutations in env gene outside the probe binding site may also lead to the formation of stop codons, thereby preventing the formation of viruses and ultimately overestimating the number of HIV-1 latency reservoirs, it is important to address the effect of mutations on the IPDA.
Collapse
Affiliation(s)
- Zehua Zhou
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
- Beijing Minhai Biotechnology Co., Ltd., Beijing, China
| | - Xinyu Zhang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Meiyu Wang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Jiang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Jincheng Tong
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Jianhui Nie
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Chenyan Zhao
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Haifa Zheng
- Beijing Minhai Biotechnology Co., Ltd., Beijing, China
| | - Zhen Zhang
- Infection Division, the People’s Hospital of Baoding, 608 Dongfeng East Road, Lianchi District, Baoding, Hebei 071000, China
| | - Penghui Shi
- Department of Clinical Laboratory Medicine, the People’s Hospital of Baoding, 608 Dongfeng East Road, Lianchi District, Baoding, Hebei 071000, China
| | - Weiguang Fan
- Department of Clinical Laboratory Medicine, the People’s Hospital of Baoding, 608 Dongfeng East Road, Lianchi District, Baoding, Hebei 071000, China
| | - Youchun Wang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Weijin Huang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| |
Collapse
|
40
|
Immonen TT, Fennessey CM, Lipkey L, Newman L, Macairan A, Bosche M, Waltz N, Del Prete GQ, Lifson JD, Keele BF. No evidence for ongoing replication on ART in SIV-infected macaques. Nat Commun 2024; 15:5093. [PMID: 38877003 PMCID: PMC11178840 DOI: 10.1038/s41467-024-49369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The capacity of HIV-1 to replicate during optimal antiretroviral therapy (ART) is challenging to assess directly. To gain greater sensitivity to detect evolution on ART, we used a nonhuman primate (NHP) model providing precise control over the level of pre-ART evolution and more comprehensive analyses than are possible with clinical samples. We infected 21 rhesus macaques (RMs) with the barcoded virus SIVmac239M and initiated ART early to minimize baseline genetic diversity. RMs were treated for 285-1200 days. We used several tests of molecular evolution to compare 1352 near-full-length (nFL) SIV DNA single genome sequences from PBMCs, lymph nodes, and spleen obtained near the time of ART initiation and those present after long-term ART, none of which showed significant changes to the SIV DNA population during ART in any animal. To investigate the possibility of ongoing replication in unsampled putative tissue sanctuaries during ART, we discontinued treatment in four animals and confirmed that none of the 336 nFL SIV RNA sequences obtained from rebound plasma viremia showed evidence of evolution. The rigorous nature of our analyses reinforced the emerging consensus of a lack of appreciable ongoing replication on effective ART and validates the relevance of this NHP model for cure studies.
Collapse
Affiliation(s)
- Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Agatha Macairan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Marjorie Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nora Waltz
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
41
|
Shahid A, Jones BR, Duncan MC, MacLennan S, Dapp MJ, Kuniholm MH, Aouizerat B, Archin NM, Gange S, Ofotokun I, Fischl MA, Kassaye S, Goldstein H, Anastos K, Joy JB, Brumme ZL. A simple phylogenetic approach to analyze hypermutated HIV proviruses reveals insights into their dynamics and persistence during antiretroviral therapy. RESEARCH SQUARE 2024:rs.3.rs-4549934. [PMID: 38947061 PMCID: PMC11213167 DOI: 10.21203/rs.3.rs-4549934/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hypermutated proviruses, which arise in a single HIV replication cycle when host antiviral APOBEC3 proteins introduce extensive G-to-A mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). But, the within-host evolutionary origins of hypermutated sequences are incompletely understood because phylogenetic inference algorithms, which assume that mutations gradually accumulate over generations, incorrectly reconstruct their ancestor-descendant relationships. Using > 1400 longitudinal single-genome-amplified HIV env-gp120 sequences isolated from six women over a median 18 years of follow-up - including plasma HIV RNA sequences collected over a median 9 years between seroconversion and ART initiation, and > 500 proviruses isolated over a median 9 years on ART - we evaluated three approaches for removing hypermutation from nucleotide alignments. Our goals were to 1) reconstruct accurate phylogenies that can be used for molecular dating and 2) phylogenetically infer the integration dates of hypermutated proviruses persisting during ART. Two of the tested approaches (stripping all positions containing putative APOBEC3 mutations from the alignment, or replacing individual putative APOBEC3 mutations in hypermutated sequences with the ambiguous base R) consistently normalized tree topologies, eliminated erroneous clustering of hypermutated proviruses, and brought env-intact and hypermutated proviruses into comparable ranges with respect to multiple tree-based metrics. Importantly, these corrected trees produced integration date estimates for env-intact proviruses that were highly concordant with those from benchmark trees that excluded hypermutated sequences, indicating that the corrected trees can be used for molecular dating. Use of these trees to infer the integration dates of hypermutated proviruses persisting during ART revealed that these spanned a wide age range, with the oldest ones dating to shortly after infection. This indicates that hypermutated proviruses, like other provirus types, begin to be seeded into the proviral pool immediately following infection, and can persist for decades. In two of the six participants, hypermutated proviruses differed from env-intact ones in terms of their age distributions, suggesting that different provirus types decay at heterogeneous rates in some hosts. These simple approaches to reconstruct hypermutated provirus' evolutionary histories, allow insights into their in vivo origins and longevity, towards a more comprehensive understanding of HIV persistence during ART.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bradley R Jones
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael J Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, USA
| | | | - Nancie M Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Margaret A Fischl
- Division of Infectious Diseases, Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jeffrey B Joy
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
42
|
Lilie T, Bouzy J, Asundi A, Taylor J, Roche S, Olson A, Coxen K, Corry H, Jordan H, Clayton K, Lin N, Tsibris A. HIV-1 latency reversal agent boosting is not limited by opioid use. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.26.23290576. [PMID: 37398278 PMCID: PMC10312897 DOI: 10.1101/2023.05.26.23290576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The opioid epidemic may impact the HIV-1 reservoir and its reversal from latency in virally suppressed people with HIV (PWH). We studied forty-seven PWH and observed that lowering the concentration of HIV-1 latency reversal agents (LRA), used in combination with small molecules that do not reverse latency, synergistically increases the magnitude of HIV-1 re-activation ex vivo, regardless of opioid use. This LRA boosting, which combines a Smac mimetic or low-dose protein kinase C agonist with histone deacetylase inhibitors, can generate significantly more unspliced HIV-1 transcription than phorbol 12-myristate 13-acetate (PMA) with ionomycin (PMAi), the maximal known HIV-1 reactivator. LRA boosting associated with greater histone acetylation in CD4+ T cells and modulated T cell activation-induced markers and intracellular cytokine production; Smac mimetic-based boosting was less likely to induce immune activation. We found that HIV-1 reservoirs in PWH contain unspliced and polyadenylated (polyA) virus mRNA, the ratios of which are greater in resting than total CD4+ T cells and can correct to 1:1 with PMAi exposure. Latency reversal results in greater fold-change increases to HIV-1 poly(A) mRNA than unspliced message. Multiply spliced HIV-1 transcripts and virion production did not consistently increase with LRA boosting, suggesting the presence of a persistent post-transcriptional block. LRA boosting can be leveraged to probe the mechanisms of an effective cellular HIV-1 latency reversal program.
Collapse
Affiliation(s)
- Tyler Lilie
- Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Archana Asundi
- Department of Medicine, Boston University School of Medicine & Boston Medical Center, Boston, MA USA
| | - Jessica Taylor
- Department of Medicine, Boston University School of Medicine & Boston Medical Center, Boston, MA USA
- Grayken Center for Addiction, Boston Medical Center, Boston, MA USA
| | - Samantha Roche
- Department of Medicine, Boston University School of Medicine & Boston Medical Center, Boston, MA USA
| | - Alex Olson
- Department of Medicine, Boston University School of Medicine & Boston Medical Center, Boston, MA USA
| | | | | | | | - Kiera Clayton
- Department of Pathology, University of Massachusetts T.H. Chan School of Medicine, Worcester, MA, USA
| | - Nina Lin
- Department of Medicine, Boston University School of Medicine & Boston Medical Center, Boston, MA USA
| | - Athe Tsibris
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Salgado M, Gálvez C, Nijhuis M, Kwon M, Cardozo-Ojeda EF, Badiola J, Gorman MJ, Huyveneers LEP, Urrea V, Bandera A, Jensen BEO, Vandekerckhove L, Jurado M, Raj K, Schulze Zur Wiesch J, Bailén R, Eberhard JM, Nabergoj M, Hütter G, Saldaña-Moreno R, Oldford S, Barrett L, Ramirez MLM, Garba S, Gupta RK, Revollo B, Ferra-Coll C, Kuball J, Alter G, Sáez-Cirión A, Diez-Martin JL, Duke ER, Schiffer JT, Wensing A, Martinez-Picado J. Dynamics of virological and immunological markers of HIV persistence after allogeneic haematopoietic stem-cell transplantation in the IciStem cohort: a prospective observational cohort study. Lancet HIV 2024; 11:e389-e405. [PMID: 38816141 PMCID: PMC11417461 DOI: 10.1016/s2352-3018(24)00090-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Allogeneic haematopoietic stem-cell transplantation (allo-HSCT) markedly reduces HIV reservoirs, but the mechanisms by which this occurs are only partly understood. In this study, we aimed to describe the dynamics of virological and immunological markers of HIV persistence after allo-HSCT. METHODS In this prospective observational cohort study, we analysed the viral reservoir and serological dynamics in IciStem cohort participants with HIV who had undergone allo-HSCT and were receiving antiretroviral therapy, ten of whom had received cells from donors with the CCR5Δ32 mutation. Participants from Belgium, Canada, Germany, Italy, the Netherlands, Spain, Switzerland, and the UK were included in the cohort both prospectively and retrospectively between June 1, 2014 and April 30, 2019. In the first 6 months after allo-HSCT, participants had monthly assessments, with annual assessments thereafter, with the protocol tailored to accommodate for the individual health status of each participant. HIV reservoirs were measured in blood and tissues and HIV-specific antibodies were measured in plasma. We used the Wilcoxon signed-rank test to compare data collected before and after allo-HSCT in participants for whom longitudinal data were available. When the paired test was not possible, we used the Mann-Whitney U test. We developed a mathematical model to study the factors influencing HIV reservoir reduction in people with HIV after allo-HSCT. FINDINGS We included 30 people with HIV with haematological malignancies who received a transplant between Sept 1, 2009 and April 30, 2019 and were enrolled within the IciStem cohort and included in this analysis. HIV reservoirs in peripheral blood were reduced immediately after full donor chimerism was achieved, generally accompanied by undetectable HIV-DNA in bone marrow, ileum, lymph nodes, and cerebrospinal fluid, regardless of donor CCR5 genotype. HIV-specific antibody levels and functionality values declined more slowly than direct HIV reservoir values, decaying significantly only months after full donor chimerism. Mathematical modelling suggests that allogeneic immunity mediated by donor cells is the main viral reservoir depletion mechanism after massive reservoir reduction during conditioning chemotherapy before allo-HSCT (half-life of latently infected replication-competent cells decreased from 44 months to 1·5 months). INTERPRETATION Our work provides, for the first time, data on the effects of allo-HSCT in the context of HIV infection. Additionally, we raise the question of which marker can serve as the last reporter of the residual viraemia, postulating that the absence of T-cell immune responses might be a more reliable marker than antibody decline after allo-HSCT. FUNDING amfAR (American Foundation for AIDS Research; ARCHE Program), National Institutes of Health, National Institute of Allergy and Infectious Diseases, and Dutch Aidsfonds.
Collapse
Affiliation(s)
- Maria Salgado
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | | | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands; HIV Pathogenesis Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Mi Kwon
- Department of Hematology, Hospital Universitario Gregorio Marañón, Institute of Health Research Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - E Fabian Cardozo-Ojeda
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Xencor, Pasadena, CA, USA
| | - Jon Badiola
- University Hospital Virgen de las Nieves, Granada, Spain
| | - Matthew J Gorman
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Moderna Therapeutics, Cambridge, MA, USA
| | - Laura E P Huyveneers
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Björn-Erik Ole Jensen
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Manuel Jurado
- University Hospital Virgen de las Nieves, Granada, Spain
| | | | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Rebeca Bailén
- Department of Hematology, Hospital Universitario Gregorio Marañón, Institute of Health Research Gregorio Marañón, Madrid, Spain
| | - Johanna M Eberhard
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany; Helmholtz Institute for One Health, Greifswald, Germany
| | - Mitja Nabergoj
- Division of Hematology, Hôpitaux Universitaires de Genève, Geneva, Switzerland; Hematology Service, Institut Central des Hôpitaux, Sion, Switzerland
| | | | | | - Sharon Oldford
- Nova Scotia Health, Dalhousie University, Halifax, NS, Canada
| | - Lisa Barrett
- Nova Scotia Health, Dalhousie University, Halifax, NS, Canada
| | - Maria Luisa Montes Ramirez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; University Hospital La Paz, IdiPAZ, Madrid, Spain
| | - Salisu Garba
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Merck, Rahway, NJ, USA
| | | | - Boris Revollo
- Department of Infectious Diseases, University Hospital Germans Trias i Pujol, Institut Català d'Oncologia, Badalona, Spain
| | - Christelle Ferra-Coll
- Department of Hematology, University Hospital Germans Trias i Pujol, Institut Català d'Oncologia, Badalona, Spain; University of Vic-Central University of Catalonia, Vic, Spain
| | - Jurgen Kuball
- Department of Hematology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Moderna Therapeutics, Cambridge, MA, USA
| | - Asier Sáez-Cirión
- Viral Reservoirs and Immune Control Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jose Luis Diez-Martin
- Department of Hematology, Hospital Universitario Gregorio Marañón, Institute of Health Research Gregorio Marañón, Madrid, Spain
| | - Elizabeth R Duke
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, Allergy and Infectious Diseases Division, University of Washington, WA, Seattle, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, Allergy and Infectious Diseases Division, University of Washington, WA, Seattle, USA
| | - Annemarie Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands; Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Javier Martinez-Picado
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; University of Vic-Central University of Catalonia, Vic, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
44
|
Miller JS, Rhein J, Davis ZB, Cooley S, McKenna D, Anderson J, Escandón K, Wieking G, Reichel J, Thorkelson A, Jorstad S, Safrit JT, Soon-Shiong P, Beilman GJ, Chipman JG, Schacker TW. Safety and Virologic Impact of Haploidentical NK Cells Plus Interleukin 2 or N-803 in HIV Infection. J Infect Dis 2024; 229:1256-1265. [PMID: 38207119 PMCID: PMC11095546 DOI: 10.1093/infdis/jiad578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/03/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are dysfunctional in chronic human immunodeficiency virus (HIV) infection as they are not able to clear virus. We hypothesized that an infusion of NK cells, supported by interleukin 2 (IL-2) or IL-15, could decrease virus-producing cells in the lymphatic tissues. METHODS We conducted a phase 1 pilot study in 6 persons with HIV (PWH), where a single infusion of haploidentical related donor NK cells was given plus either IL-2 or N-803 (an IL-15 superagonist). RESULTS The approach was well tolerated with no unexpected adverse events. We did not pretreat recipients with cyclophosphamide or fludarabine to "make immunologic space," reasoning that PWH on stable antiretroviral treatment remain T-cell depleted in lymphatic tissues. We found donor cells remained detectable in blood for up to 8 days (similar to what is seen in cancer pretreatment with lymphodepleting chemotherapy) and in the lymph nodes and rectum up to 28 days. There was a moderate decrease in the frequency of viral RNA-positive cells in lymph nodes. CONCLUSIONS There was a moderate decrease in HIV-producing cells in lymph nodes. Further studies are warranted to determine the impact of healthy NK cells on HIV reservoirs and if restoring NK-cell function could be part of an HIV cure strategy. Clinical Trials Registration. NCT03346499 and NCT03899480.
Collapse
Affiliation(s)
- Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua Rhein
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zachary B Davis
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Cooley
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - David McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jodi Anderson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kevin Escandón
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Garritt Wieking
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jarrett Reichel
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ann Thorkelson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Siri Jorstad
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Gregory J Beilman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey G Chipman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy W Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
45
|
Banga R, Perreau M. The multifaceted nature of HIV tissue reservoirs. Curr Opin HIV AIDS 2024; 19:116-123. [PMID: 38547340 PMCID: PMC10990014 DOI: 10.1097/coh.0000000000000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW To underline the complexity and the heterogeneity of the HIV reservoir. RECENT FINDINGS While lymphoid tissues (spleen, lymph nodes, gut-associated lymphoid tissue) harbor specific subsets of specialized CD4 + T cells enriched in HIV-infected cells, non-CD4 + T cell reservoirs such as tissue-resident macrophages and dendritic cells have also been implicated to contribute to viral persistence. Moreover, studies have applied highly sensitive tools to detect transcriptional activity within HIV-infected cells during prolonged ART and revealed a broader spectrum of transcriptional activity for proviruses than previously thought. Finally, while a combination of factors might be involved in the regulation of HIV persistence within different tissues and remains to be fully elucidated, recent results from autopsy samples of HIV-infected ART suppressed individuals indicate extensive clonality of HIV reservoirs in multiple tissues and suggest that the recirculation of HIV-infected cells and their local expansions in tissues may also contribute to the complexity of the HIV reservoirs in humans. SUMMARY HIV persistence in blood and multiple tissues despite long-standing and potent therapy is one of the major barriers to a cure. Given that the HIV reservoir is established early and is highly complex based on its composition, viral diversity, tissue distribution, transcriptional activity, replication competence, migration dynamics and proliferative potential across the human body and possible compartmentalization in specific tissues, combinatorial therapeutic approaches are needed that may synergize to target multiple viral reservoirs to achieve a cure for HIV infection.
Collapse
Affiliation(s)
- Riddhima Banga
- Divisions of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
46
|
Lee SK, Sondgeroth A, Xu Y, Warren J, Zhou S, Gilleece M, Hauser BM, Gay CL, Kuruc JD, Archin NM, Eron JJ, Margolis DM, Goonetilleke N, Swanstrom R. Sequence Analysis of Inducible, Replication-Competent Virus Reveals No Evidence of HIV-1 Evolution During Suppressive Antiviral Therapy, Indicating a Lack of Ongoing Viral Replication. Open Forum Infect Dis 2024; 11:ofae212. [PMID: 38756763 PMCID: PMC11097118 DOI: 10.1093/ofid/ofae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Background Persistence of HIV-1 in reservoirs necessitates life-long antiretroviral therapy (ART). There are conflicting data using genetic analysis on whether persistence includes an actively replicating reservoir with strong evidence arguing against replication. Methods We investigated the possibility of ongoing viral evolution during suppressive therapy by comparing near full-length viral genomic sequences using phylogenetic analysis of viral RNA in plasma before therapy initiation early after infection and from virus induced to grow from the latent reservoir after a period of suppressive ART. We also focused our analysis on evidence of selective pressure by drugs in the treatment regimen and at sites of selective pressure by the adaptive immune response. Results Viral genomes induced to grow from the latent reservoir from 10 participants with up to 9 years on suppressive ART were highly similar to the nearly homogeneous sequences in plasma taken early after infection at ART initiation. This finding was consistent across the entire genome and when the analysis focused on sites targeted by the drug regimen and by host selective pressure of antibody and cytotoxic T cells. The lack of viral evolution away from pretherapy sequences in spite of demonstrated selective pressure is most consistent with a lack of viral replication during reservoir persistence. Conclusions These results do not support ongoing viral replication as a mechanism of HIV-1 persistence during suppressive ART.
Collapse
Affiliation(s)
- Sook-Kyung Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinyan Xu
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joanna Warren
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maria Gilleece
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blake M Hauser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - JoAnn D Kuruc
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie M Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
47
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591331. [PMID: 38746186 PMCID: PMC11092494 DOI: 10.1101/2024.04.26.591331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
HIV-1 anti-retroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 10010,000X less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
- Chica and Heinz Schaller (CHS) Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
48
|
Dimapasoc M, Moran JA, Cole SW, Ranjan A, Hourani R, Kim JT, Wender PA, Marsden MD, Zack JA. Defining the Effects of PKC Modulator HIV Latency-Reversing Agents on Natural Killer Cells. Pathog Immun 2024; 9:108-137. [PMID: 38765786 PMCID: PMC11101012 DOI: 10.20411/pai.v9i1.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Background Latency reversing agents (LRAs) such as protein kinase C (PKC) modulators can reduce rebound-competent HIV reservoirs in small animal models. Furthermore, administration of natural killer (NK) cells following LRA treatment improves this reservoir reduction. It is currently unknown why the combination of a PKC modulator and NK cells is so potent and whether exposure to PKC modulators may augment NK cell function in some way. Methods Primary human NK cells were treated with PKC modulators (bryostatin-1, prostratin, or the designed, synthetic bryostatin-1 analog SUW133), and evaluated by examining expression of activation markers by flow cytometry, analyzing transcriptomic profiles by RNA sequencing, measuring cytotoxicity by co-culturing with K562 cells, assessing cytokine production by Luminex assay, and examining the ability of cytokines and secreted factors to independently reverse HIV latency by co-culturing with Jurkat-Latency (J-Lat) cells. Results PKC modulators increased expression of proteins involved in NK cell activation. Transcriptomic profiles from PKC-treated NK cells displayed signatures of cellular activation and enrichment of genes associated with the NFκB pathway. NK cell cytotoxicity was unaffected by prostratin but significantly decreased by bryostatin-1 and SUW133. Cytokines from PKC-stimulated NK cells did not induce latency reversal in J-Lat cell lines. Conclusions Although PKC modulators have some significant effects on NK cells, their contribution in "kick and kill" strategies is likely due to upregulating HIV expression in CD4+ T cells, not directly enhancing the effector functions of NK cells. This suggests that PKC modulators are primarily augmenting the "kick" rather than the "kill" arm of this HIV cure approach.
Collapse
Affiliation(s)
- Melanie Dimapasoc
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California
| | - Jose A. Moran
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California
| | - Steve W. Cole
- UCLA Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alok Ranjan
- Department of Chemistry, Stanford University, Stanford, California
| | - Rami Hourani
- Department of Chemistry, Stanford University, Stanford, California
| | - Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California
- Department of Chemical and Systems Biology, Stanford University, Stanford, California
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, California
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
49
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
50
|
Keele BF, Okoye AA, Fennessey CM, Varco-Merth B, Immonen TT, Kose E, Conchas A, Pinkevych M, Lipkey L, Newman L, Macairan A, Bosche M, Bosche WJ, Berkemeier B, Fast R, Hull M, Oswald K, Shoemaker R, Silipino L, Gorelick RJ, Duell D, Marenco A, Brantley W, Smedley J, Axthelm M, Davenport MP, Lifson JD, Picker LJ. Early antiretroviral therapy in SIV-infected rhesus macaques reveals a multiphasic, saturable dynamic accumulation of the rebound competent viral reservoir. PLoS Pathog 2024; 20:e1012135. [PMID: 38593120 PMCID: PMC11003637 DOI: 10.1371/journal.ppat.1012135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
The rebound competent viral reservoir (RCVR)-virus that persists during antiretroviral treatment (ART) and can reignite systemic infection when treatment is stopped-is the primary barrier to eradicating HIV. We used time to initiation of ART during primary infection of rhesus macaques (RMs) after intravenous challenge with barcoded SIVmac239 as a means to elucidate the dynamics of RCVR establishment in groups of RMs by creating a multi-log range of pre-ART viral loads and then assessed viral time-to-rebound and reactivation rates resulting from the discontinuation of ART after one year. RMs started on ART on days 3, 4, 5, 6, 7, 9 or 12 post-infection showed a nearly 10-fold difference in pre-ART viral measurements for successive ART-initiation timepoints. Only 1 of 8 RMs initiating ART on days 3 and 4 rebounded after ART interruption despite measurable pre-ART plasma viremia. Rebounding plasma from the 1 rebounding RM contained only a single barcode lineage detected at day 50 post-ART. All RMs starting ART on days 5 and 6 rebounded between 14- and 50-days post-ART with 1-2 rebounding variants each. RMs starting ART on days 7, 9, and 12 had similar time-to-measurable plasma rebound kinetics despite multiple log differences in pre-ART plasma viral load (pVL), with all RMs rebounding between 7- and 16-days post-ART with 3-28 rebounding lineages. Calculated reactivation rates per pre-ART pVL were highest for RMs starting ART on days 5, 6, and 7 after which the rate of accumulation of the RCVR markedly decreased for RMs treated on days 9 and 12, consistent with multiphasic establishment and near saturation of the RCVR within 2 weeks post infection. Taken together, these data highlight the heterogeneity of the RCVR between RMs, the stochastic establishment of the very early RCVR, and the saturability of the RCVR prior to peak viral infection.
Collapse
Affiliation(s)
- Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Taina T. Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Emek Kose
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Andrew Conchas
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mykola Pinkevych
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Laura Newman
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Agatha Macairan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Marjorie Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - William J. Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Randy Fast
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mike Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lorna Silipino
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Derick Duell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Alejandra Marenco
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - William Brantley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Michael Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|