1
|
Ozdemir E. Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review). MEDICINE INTERNATIONAL 2024; 4:20. [PMID: 38476984 PMCID: PMC10928664 DOI: 10.3892/mi.2024.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Epilepsy is a complex and common neurological disorder characterized by spontaneous and recurrent seizures, affecting ~75 million individuals worldwide. Numerous studies have been conducted to develop new pharmacological drugs for the effective treatment of epilepsy. In recent years, numerous experimental and clinical studies have focused on the role of the adrenergic receptor (AR) system in the regulation of epileptogenesis, seizure susceptibility and convulsions. α1-ARs (α1A, α1B and α1D), α2-ARs (α2A, α2B and α2C) and β-ARs (β1, β2 and β3), known to have convulsant or anticonvulsant effects, have been isolated. Norepinephrine (NE), the key endogenous agonist of ARs, is considered to play a crucial role in the pathophysiology of epileptic seizures. However, the effects of NE on different ARs have not been fully elucidated. Although the activation of some AR subtypes produces conflicting results, the activation of α1, α2 and β receptor subtypes, in particular, produces anticonvulsant effects. The present review focuses on NE and ARs involved in epileptic seizure formation and discusses therapeutic approaches.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
2
|
Liu J, Lustberg DJ, Galvez A, Liles LC, McCann KE, Weinshenker D. Genetic disruption of dopamine β-hydroxylase dysregulates innate responses to predator odor in mice. Neurobiol Stress 2024; 29:100612. [PMID: 38371489 PMCID: PMC10873756 DOI: 10.1016/j.ynstr.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
In rodents, exposure to predator odors such as cat urine acts as a severe stressor that engages innate defensive behaviors critical for survival in the wild. The neurotransmitters norepinephrine (NE) and dopamine (DA) modulate anxiety and predator odor responses, and we have shown previously that dopamine β-hydroxylase knockout (Dbh -/-), which reduces NE and increases DA in mouse noradrenergic neurons, disrupts innate behaviors in response to mild stressors such as novelty. We examined the consequences of Dbh knockout on responses to predator odor (bobcat urine) and compared them to Dbh-competent littermate controls. Over the first 10 min of predator odor exposure, controls exhibited robust defensive burying behavior, whereas Dbh -/- mice showed high levels of grooming. Defensive burying was potently suppressed in controls by drugs that reduce NE transmission, while excessive grooming in Dbh -/- mice was blocked by DA receptor antagonism. In response to a cotton square scented with a novel "neutral" odor (lavender), most control mice shredded the material, built a nest, and fell asleep within 90 min. Dbh -/- mice failed to shred the lavender-scented nestlet, but still fell asleep. In contrast, controls sustained high levels of arousal throughout the predator odor test and did not build nests, while Dbh -/- mice were asleep by the 90-min time point, often in shredded bobcat urine-soaked nesting material. Compared with controls exposed to predator odor, Dbh -/- mice demonstrated decreased c-fos induction in the anterior cingulate cortex, lateral septum, periaqueductal gray, and bed nucleus of the stria terminalis, but increased c-fos in the locus coeruleus and medial amygdala. These data indicate that relative ratios of central NE and DA signaling coordinate the type and valence of responses to predator odor.
Collapse
Affiliation(s)
| | | | - Abigail Galvez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - L. Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Katharine E. McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Liu J, Lustberg DJ, Galvez A, Liles LC, McCann KE, Weinshenker D. Genetic disruption of dopamine β-hydroxylase dysregulates innate responses to predator odor in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.21.545975. [PMID: 38234825 PMCID: PMC10793432 DOI: 10.1101/2023.06.21.545975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In rodents, exposure to predator odors such as cat urine acts as a severe stressor that engages innate defensive behaviors critical for survival in the wild. The neurotransmitters norepinephrine (NE) and dopamine (DA) modulate anxiety and predator odor responses, and we have shown previously that dopamine β-hydroxylase knockout (Dbh -/-), which reduces NE and increases DA in mouse noradrenergic neurons, disrupts innate behaviors in response to mild stressors such as novelty. We examined the consequences of Dbh knockout (Dbh -/-) on responses to predator odor (bobcat urine) and compared them to Dbh-competent littermate controls. Over the first 10 min of predator odor exposure, controls exhibited robust defensive burying behavior, whereas Dbh -/- mice showed high levels of grooming. Defensive burying was potently suppressed in controls by drugs that reduce NE transmission, while excessive grooming in Dbh -/- mice was blocked by DA receptor antagonism. In response to a cotton square scented with a novel "neutral" odor (lavender), most control mice shredded the material, built a nest, and fell asleep within 90 min. Dbh -/- mice failed to shred the lavender-scented nestlet, but still fell asleep. In contrast, controls sustained high levels of arousal throughout the predator odor test and did not build nests, while Dbh -/- mice were asleep by the 90-min time point, often in shredded bobcat urine-soaked nesting material. Compared with controls exposed to predator odor, Dbh -/- mice demonstrated decreased c-fos induction in the anterior cingulate cortex, lateral septum, periaqueductal gray, and bed nucleus of the stria terminalis, but increased c-fos in the locus coeruleus and medial amygdala. These data indicate that relative ratios of central NE and DA signaling coordinate the type and valence of responses to predator odor.
Collapse
Affiliation(s)
- Joyce Liu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Daniel J. Lustberg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Abigail Galvez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - L. Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Katharine E. McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| |
Collapse
|
4
|
Kielbinski M, Bernacka J, Zajda K, Wawrzczak-Bargieła A, Maćkowiak M, Przewlocki R, Solecki W. Acute stress modulates noradrenergic signaling in the ventral tegmental area-amygdalar circuit. J Neurochem 2023; 164:598-612. [PMID: 36161462 DOI: 10.1111/jnc.15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Noradrenergic neurotransmission is a critical mediator of stress responses. In turn, exposure to stress induces noradrenergic system adaptations, some of which are implicated in the etiology of stress-related disorders. Adrenergic receptors (ARs) in the ventral tegmental area (VTA) have been demonstrated to regulate phasic dopamine (DA) release in the forebrain, necessary for behavioral responses to conditional cues. However, the impact of stress on noradrenergic modulation of the VTA has not been previously explored. We demonstrate that ARs in the VTA regulate dopaminergic activity in the VTA-BLA (basolateral amygdala) circuit, a key system for processing stress-related stimuli; and that such control is altered by acute stress. We utilized fast-scan cyclic voltammetry to assess the effects of intra-VTA microinfusion of α1 -AR and α2 -AR antagonists (terazosin and RX-821002, respectively), on electrically evoked phasic DA release in the BLA in stress-naïve and stressed (unavoidable electric shocks - UES) anesthetized male Sprague-Dawley rats. In addition, we used western blotting to explore UES-induced alterations in AR protein level in the VTA. Intra-VTA terazosin or RX-821002 dose-dependently attenuated DA release in the BLA. Interestingly, UES decreased the effects of intra-VTA α2 -AR blockade on DA release (24 h but not 7 days after stress), while the effects of terazosin were unchanged. Despite changes in α2 -AR physiological function in the VTA, UES did not alter α2 -AR protein levels in either intracellular or membrane fractions. These findings demonstrate that NA-ergic modulation of the VTA-BLA circuit undergoes significant alterations in response to acute stress, with α2 -AR signaling indicated as a key target.
Collapse
Affiliation(s)
- Michal Kielbinski
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| | - Joanna Bernacka
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland.,Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Zajda
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| | - Agnieszka Wawrzczak-Bargieła
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marzena Maćkowiak
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| |
Collapse
|
5
|
Joanna B, Michal K, Agnieszka WB, Katarzyna Z, Marzena M, Ryszard P, Wojciech S. Alpha-2A but not 2B/C noradrenergic receptors in ventral tegmental area regulate phasic dopamine release in nucleus accumbens core. Neuropharmacology 2022; 220:109258. [PMID: 36116534 DOI: 10.1016/j.neuropharm.2022.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
Abstract
Adrenergic receptors (AR) in the ventral tegmental area (VTA) modulate local neuronal activity and, as a consequence, dopamine (DA) release in the mesolimbic forebrain. Such modulation has functional significance: intra-VTA blockade of α1-AR attenuates behavioral responses to salient environmental stimuli in rat models of drug seeking and conditioned fear as well as phasic DA release in the nucleus accumbens (NAc). In contrast, α2-AR in the VTA has been suggested to act primarily as autoreceptors, limiting local noradrenergic input. The regulation of noradrenaline efflux by α2-AR could be of clinical interest, as α2-AR agonists are proposed as promising pharmacological tools in the treatment of PTSD and substance use disorder. Thus, the aim of our study was to determine the subtype-specificity of α2-ARs in the VTA capable of modulating phasic DA release. We used fast scan cyclic voltammetry (FSCV) in anaesthetized male rats to measure DA release in the NAc after combined electrical stimulation and infusion of selected α2-AR antagonists into the VTA. Intra-VTA microinfusion of idazoxan - a non-subtype-specific α2-AR antagonist, as well as BRL-44408 - a selective α2A-AR antagonist, attenuated electrically-evoked DA in the NAc. In contrast, local administration of JP-1302 or imiloxan (α2B- and α2C-AR antagonists, respectively) had no effect. The effect of BRL-44408 on DA release was attenuated by intra-VTA DA D2 antagonist (raclopride) pre-administration. Finally, we confirmed the presence of α2A-AR protein in the VTA using western blotting. In conclusion, these data specify α2A-, but not α2B- or α2C-AR as the receptor subtype controlling NA release in the VTA.
Collapse
Affiliation(s)
- Bernacka Joanna
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Krakow, Poland
| | - Kielbinski Michal
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland
| | - Wawrzczak-Bargieła Agnieszka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Krakow, Poland
| | - Zajda Katarzyna
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland
| | - Maćkowiak Marzena
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Krakow, Poland
| | - Przewlocki Ryszard
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Molecular Neuropharmacology, Smętna Str. 12, 31-343, Krakow, Poland
| | - Solecki Wojciech
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland.
| |
Collapse
|
6
|
The why and how of sleep-dependent synaptic down-selection. Semin Cell Dev Biol 2021; 125:91-100. [PMID: 33712366 PMCID: PMC8426406 DOI: 10.1016/j.semcdb.2021.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022]
Abstract
Sleep requires that we disconnect from the environment, losing the ability to promptly respond to stimuli. There must be at least one essential function that justifies why we take this risk every day, and that function must depend on the brain being offline. We have proposed that this function is to renormalize synaptic weights after learning has led to a net increase in synaptic strength in many brain circuits. Without this renormalization, synaptic activity would become energetically too expensive and saturation would prevent new learning. There is converging evidence from molecular, electrophysiological, and ultrastructural experiments showing a net increase in synaptic strength after the major wake phase, and a net decline after sleep. The evidence also suggests that sleep-dependent renormalization is a smart process of synaptic down-selection, comprehensive and yet specific, which could explain the many beneficial effects of sleep on cognition. Recently, a key molecular mechanism that allows broad synaptic weakening during sleep was identified. Other mechanisms still being investigated should eventually explain how sleep can weaken most synapses but afford protection to some, including those directly activated by learning. That synaptic down-selection takes place during sleep is by now established; why it should take place during sleep has a plausible explanation; how it happens is still work in progress.
Collapse
|
7
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Otomo K, Perkins J, Kulkarni A, Stojanovic S, Roeper J, Paladini CA. In vivo patch-clamp recordings reveal distinct subthreshold signatures and threshold dynamics of midbrain dopamine neurons. Nat Commun 2020; 11:6286. [PMID: 33293613 PMCID: PMC7722714 DOI: 10.1038/s41467-020-20041-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
The in vivo firing patterns of ventral midbrain dopamine neurons are controlled by afferent and intrinsic activity to generate sensory cue and prediction error signals that are essential for reward-based learning. Given the absence of in vivo intracellular recordings during the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. To address this, we established in vivo whole-cell recordings and obtained over 100 spontaneously active, immunocytochemically-defined midbrain dopamine neurons in isoflurane-anaesthetized adult mice. We identified a repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. Dopamine neuron activity in vivo deviated from single-spike pacemaking by phasic increases in firing rate via two qualitatively distinct biophysical mechanisms: 1) a prolonged hyperpolarization preceding rebound bursts, accompanied by a hyperpolarizing shift in action potential threshold; and 2) a transient depolarization leading to high-frequency plateau bursts, associated with a depolarizing shift in action potential threshold. Our findings define a mechanistic framework for the biophysical implementation of dopamine neuron firing patterns in the intact brain.
Collapse
Affiliation(s)
- Kanako Otomo
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Jessica Perkins
- University of Texas at San Antonio Neurosciences Institute, San Antonio, USA
| | - Anand Kulkarni
- University of Texas at San Antonio Neurosciences Institute, San Antonio, USA
| | - Strahinja Stojanovic
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Jochen Roeper
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany.
| | - Carlos A Paladini
- University of Texas at San Antonio Neurosciences Institute, San Antonio, USA.
| |
Collapse
|
9
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
10
|
Fredriksson R, Sreedharan S, Nordenankar K, Alsiö J, Lindberg FA, Hutchinson A, Eriksson A, Roshanbin S, Ciuculete DM, Klockars A, Todkar A, Hägglund MG, Hellsten SV, Hindlycke V, Västermark Å, Shevchenko G, Olivo G, K C, Kullander K, Moazzami A, Bergquist J, Olszewski PK, Schiöth HB. The polyamine transporter Slc18b1(VPAT) is important for both short and long time memory and for regulation of polyamine content in the brain. PLoS Genet 2019; 15:e1008455. [PMID: 31800589 PMCID: PMC6927659 DOI: 10.1371/journal.pgen.1008455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/23/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023] Open
Abstract
SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and the only known polyamine transporter, with unknown physiological role. We reveal that Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We found that this mouse has impaired short and long term memory in novel object recognition, radial arm maze and self-administration paradigms. We also show that Slc18b1 KO mice have altered expression of genes involved in Long Term Potentiation, plasticity, calcium signalling and synaptic functions and that expression of components of GABA and glutamate signalling are changed. We further observe a partial resistance to diazepam, manifested as significantly lowered reduction in locomotion after diazepam treatment. We suggest that removal of Slc18b1 leads to reduction of polyamine contents in neurons, resulting in reduced GABA signalling due to long-term reduction in glutamatergic signalling. A fundamental function of the nervous system is its ability to modulate and change the connections between nerve cells, and this forms the basis for memory and learning. This is most well studied for synapses that are using the neurotransmitter glutamate, and a central part of this is referred to Long Term Potentiation. This process is dependent on a specific glutamate receptor called the NMDA receptor, and the function of this receptor can be controlled by various mechanisms. Here, we show that polyamines can regulate this receptor and that lack of polyamines result in impaired learning and memory. Polyamines are small peptides made by many different cells in the body, including cells in the brain, and by removing a gene coding for a transporter important for the release of polyamines in nerve cells of mice, we show that polyamines are important for proper function of the glutamate system. We also show the deletion of this gene result in fundamentally rearranged GABA and glutamate systems, resulting in the mice having a much higher tolerance for the sedative drug benzodiazepines. Polyamines and targets for these molecules could be important points of intervention for future drugs aiming at modulating the glutamatergic system.
Collapse
Affiliation(s)
- Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Smitha Sreedharan
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Karin Nordenankar
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Johan Alsiö
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Frida A. Lindberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ashley Hutchinson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Anders Eriksson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Diana M. Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Anica Klockars
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Aniruddha Todkar
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Maria G. Hägglund
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Sofie V. Hellsten
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Viktoria Hindlycke
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Åke Västermark
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | | | - Gaia Olivo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Cheng K
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Klas Kullander
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Ali Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Pawel K. Olszewski
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
11
|
Tovar-Díaz J, Pomrenze MB, Kan R, Pahlavan B, Morikawa H. Cooperative CRF and α1 Adrenergic Signaling in the VTA Promotes NMDA Plasticity and Drives Social Stress Enhancement of Cocaine Conditioning. Cell Rep 2019. [PMID: 29514102 PMCID: PMC5877815 DOI: 10.1016/j.celrep.2018.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stressful events rapidly trigger activity-dependent synaptic plasticity, driving the formation of aversive memories. However, it remains unclear how stressful experience affects plasticity mechanisms to regulate appetitive learning, such as intake of addictive drugs. Using rats, we show that corticotropin-releasing factor (CRF) and α1 adrenergic receptor (α1AR) signaling enhance the plasticity of NMDA-receptor-mediated glutamatergic transmission in ventral tegmental area (VTA) dopamine (DA) neurons through distinct effects on inositol 1,4,5-triphosphate (IP3)-dependent Ca2+ signaling. We find that CRF amplifies IP3-Ca2+ signaling induced by stimulation of α1ARs, revealing a cooperative mechanism that promotes glutamatergic plasticity. In line with this, acute social defeat stress engages similar cooperative CRF and α1AR signaling in the VTA to enhance learning of cocaine-paired cues. These data provide evidence that CRF and α1ARs act in concert to regulate IP3-Ca2+ signaling in the VTA and promote learning of drug-associated cues.
Collapse
Affiliation(s)
- Jorge Tovar-Díaz
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Matthew B Pomrenze
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | - Russell Kan
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Bahram Pahlavan
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Hitoshi Morikawa
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Ferrucci M, Limanaqi F, Ryskalin L, Biagioni F, Busceti CL, Fornai F. The Effects of Amphetamine and Methamphetamine on the Release of Norepinephrine, Dopamine and Acetylcholine From the Brainstem Reticular Formation. Front Neuroanat 2019; 13:48. [PMID: 31133823 PMCID: PMC6524618 DOI: 10.3389/fnana.2019.00048] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Amphetamine (AMPH) and methamphetamine (METH) are widely abused psychostimulants, which produce a variety of psychomotor, autonomic and neurotoxic effects. The behavioral and neurotoxic effects of both compounds (from now on defined as AMPHs) stem from a fair molecular and anatomical specificity for catecholamine-containing neurons, which are placed in the brainstem reticular formation (RF). In fact, the structural cross-affinity joined with the presence of shared molecular targets between AMPHs and catecholamine provides the basis for a quite selective recruitment of brainstem catecholamine neurons following AMPHs administration. A great amount of investigations, commentary manuscripts and books reported a pivotal role of mesencephalic dopamine (DA)-containing neurons in producing behavioral and neurotoxic effects of AMPHs. Instead, the present review article focuses on catecholamine reticular neurons of the low brainstem. In fact, these nuclei add on DA mesencephalic cells to mediate the effects of AMPHs. Among these, we also include two pontine cholinergic nuclei. Finally, we discuss the conundrum of a mixed neuronal population, which extends from the pons to the periaqueductal gray (PAG). In this way, a number of reticular nuclei beyond classic DA mesencephalic cells are considered to extend the scenario underlying the neurobiology of AMPHs abuse. The mechanistic approach followed here to describe the action of AMPHs within the RF is rooted on the fine anatomy of this region of the brainstem. This is exemplified by a few medullary catecholamine neurons, which play a pivotal role compared with the bulk of peripheral sympathetic neurons in sustaining most of the cardiovascular effects induced by AMPHs.
Collapse
Affiliation(s)
- Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
13
|
Kielbinski M, Bernacka J, Solecki WB. Differential regulation of phasic dopamine release in the forebrain by the VTA noradrenergic receptor signaling. J Neurochem 2019; 149:747-759. [PMID: 31001835 DOI: 10.1111/jnc.14706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/07/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Abstract
Phasic dopamine (DA) release from the ventral tegmental area (VTA) into forebrain structures is implicated in associative learning and conditional stimulus (CS)-evoked behavioral responses. Mounting evidence points to noradrenaline signaling in the VTA as an important regulatory input. Accordingly, adrenergic receptor (AR) blockade in the VTA has been shown to modulate CS-dependent behaviors. Here, we hypothesized that α1 - and α2 -AR (but not β-AR) activity preferentially modulates phasic, in contrast to tonic, DA release. In addition, these effects could differ between forebrain targets. We used fast-scan cyclic voltammetric measurements in rats to assess the effects of intra-VTA microinfusion of terazosin, a selective α1 -AR antagonist, on electrically evoked phasic DA release in the nucleus accumbens (NAc) core and medial prefrontal cortex (mPFC). Terazosin dose-dependently attenuated phasic, but not tonic, DA release in the NAc core, but not in the mPFC. Next, we measured the effects of intra-VTA administration of the α2 -AR selective antagonist RX-821002 on evoked DA in the NAc core. Similar to the effects of α1 -AR blockade, intra-VTA α2 -AR blockade with RX-0821002 strongly and dose-dependently attenuated phasic, but not tonic, DA release. In contrast, no regulation by RX-821002 was observed in the mPFC. This effect was sensitive to intra-VTA blockade of D2 receptors with raclopride. Finally, the β-AR antagonist propranolol ineffectively modulated DA release in the NAc core. These findings revealed both α1 - and α2 -ARs in the VTA as selective regulators of phasic DA release. Importantly, we demonstrated that AR blockade modulated mesolimbic, in contrast to mesocortical, DA release in previously unstudied heterogeneity in AR regulation of forebrain phasic DA.
Collapse
Affiliation(s)
- Michał Kielbinski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Joanna Bernacka
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Wojciech B Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Abstract
Parkinson's disease (PD) is predominantly idiopathic in origin, and a large body of evidence indicates that gastrointestinal (GI) dysfunctions are a significant comorbid clinical feature; these dysfunctions include dysphagia, nausea, delayed gastric emptying, and severe constipation, all of which occur commonly before the onset of the well-known motor symptoms of PD. Based on a distinct distribution pattern of Lewy bodies (LB) in the enteric nervous system (ENS) and in the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV), and together with the early onset of GI symptoms, it was suggested that idiopathic PD begins in the ENS and spreads to the central nervous system (CNS), reaching the DMV and the substantia nigra pars compacta (SNpc). These two areas are connected by a recently discovered monosynaptic nigro-vagal pathway, which is dysfunctional in rodent models of PD. An alternative hypothesis downplays the role of LB transport through the vagus nerve and proposes that PD pathology is governed by regional or cell-restricted factors as the leading cause of nigral neuronal degeneration. The purpose of this brief review is to summarize the neuronal electrophysiological findings in the SNpc and DMV in PD.
Collapse
Affiliation(s)
- Cecilia Bove
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
15
|
Navarro G, Medrano M, Aguinaga D, Vega-Quiroga I, Lillo A, Jiménez J, Casanovas M, Canela EI, Mallol J, Gysling K, Franco R. Differential effect of amphetamine over the corticotropin-releasing factor CRF 2 receptor, the orexin OX 1 receptor and the CRF 2-OX 1 heteroreceptor complex. Neuropharmacology 2018; 152:102-111. [PMID: 30465812 DOI: 10.1016/j.neuropharm.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 11/30/2022]
Abstract
Stress is one of the factors underlying drug seeking behavior that often goes in parallel with loss of appetite. We here demonstrate that orexin 1 receptors (OX1R) may form complexes with the corticotropin releasing factor CRF2 receptor. Two specific features of the heteromer were a cross-antagonism and a blockade by CRF2 of OX1R signaling. In cells expressing one of the receptors, agonist-mediated signal transduction mechanisms were potentiated by amphetamine. Sigma 1 (σ1) and 2 (σ2) receptors are targets of drugs of abuse and, despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is not known. We here show that σ1 receptors interact with CRF2 receptors and that σ2 receptors interact with OX1R. Moreover, we show that amphetamine effect on CRF2 receptors was mediated by σ1R whereas the effect on OX1 receptors was mediated by σ2R. Amphetamine did potentiate the negative cross-talk occurring within the CRF2-OX1 receptor heteromer context, likely by a macromolecular complex involving the two sigma receptors and the two GPCRs. Finally, in vivo microdialysis experiments showed that amphetamine potentiated orexin A-induced dopamine and glutamate release in the ventral tegmental area (VTA). Remarkably, the in vivo orexin A effects were blocked by a selective CRF2R antagonist. These results show that amphetamine impacts on the OX1R-, CRF2R- and OX1R/CRF2R-mediated signaling and that cross-antagonism is instrumental for in vivo detection of GPCR heteromers. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Biochemistry and Physiology, Pharmacy and Food Science School, University of Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Medrano
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - David Aguinaga
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Casanovas
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Enric I Canela
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Josefa Mallol
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain.
| |
Collapse
|
16
|
Dopaminergic basis for signaling belief updates, but not surprise, and the link to paranoia. Proc Natl Acad Sci U S A 2018; 115:E10167-E10176. [PMID: 30297411 DOI: 10.1073/pnas.1809298115] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Distinguishing between meaningful and meaningless sensory information is fundamental to forming accurate representations of the world. Dopamine is thought to play a central role in processing the meaningful information content of observations, which motivates an agent to update their beliefs about the environment. However, direct evidence for dopamine's role in human belief updating is lacking. We addressed this question in healthy volunteers who performed a model-based fMRI task designed to separate the neural processing of meaningful and meaningless sensory information. We modeled participant behavior using a normative Bayesian observer model and used the magnitude of the model-derived belief update following an observation to quantify its meaningful information content. We also acquired PET imaging measures of dopamine function in the same subjects. We show that the magnitude of belief updates about task structure (meaningful information), but not pure sensory surprise (meaningless information), are encoded in midbrain and ventral striatum activity. Using PET we show that the neural encoding of meaningful information is negatively related to dopamine-2/3 receptor availability in the midbrain and dexamphetamine-induced dopamine release capacity in the striatum. Trial-by-trial analysis of task performance indicated that subclinical paranoid ideation is negatively related to behavioral sensitivity to observations carrying meaningful information about the task structure. The findings provide direct evidence implicating dopamine in model-based belief updating in humans and have implications for understating the pathophysiology of psychotic disorders where dopamine function is disrupted.
Collapse
|
17
|
Ghasemi M, Mehranfard N. Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine. Neuropharmacology 2018; 137:297-308. [DOI: 10.1016/j.neuropharm.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
18
|
Kramer PF, Williams JT. Calcium Release from Stores Inhibits GIRK. Cell Rep 2017; 17:3246-3255. [PMID: 28009293 DOI: 10.1016/j.celrep.2016.11.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/02/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
Synaptic transmission is mediated by ionotropic and metabotropic receptors that together regulate the rate and pattern of action potential firing. Metabotropic receptors can activate ion channels and modulate other receptors and channels. The present paper examines the interaction between group 1 mGluR-mediated calcium release from stores and GABAB/D2-mediated GIRK currents in rat dopamine neurons of the Substantia Nigra. Transient activation of mGluRs decreased the GIRK current evoked by GABAB and D2 receptors, although less efficaciously for D2. The mGluR-induced inhibition of GIRK current peaked in 1 s and recovered to baseline after 5 s. The inhibition was dependent on release of calcium from stores, was larger for transient than for tonic currents, and was unaffected by inhibitors of PLC, PKC, PLA2, or calmodulin. This inhibition of GABAB IPSCs through release of calcium from stores is a postsynaptic mechanism that may broadly reduce GIRK-dependent inhibition of many central neurons.
Collapse
Affiliation(s)
- Paul F Kramer
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
19
|
Park JW, Bhimani RV, Park J. Noradrenergic Modulation of Dopamine Transmission Evoked by Electrical Stimulation of the Locus Coeruleus in the Rat Brain. ACS Chem Neurosci 2017; 8:1913-1924. [PMID: 28594540 DOI: 10.1021/acschemneuro.7b00078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Central norepinephrine (NE) and dopamine (DA) are involved in a variety of physiological functions and behaviors. Accumulating evidence suggests that NE neurons originating from the locus coeruleus (LC) innervate DA neurons of the ventral tegmental area (VTA) and influence VTA-DA neural activity. However, the underlying mechanisms of how LC-NE regulates DA transmission via VTA-DA neurons remain largely unexplored. Herein, we investigated how electrical stimulation of the LC modulates VTA-DA neurotransmission in the nucleus accumbens (NAc). For this study, catecholamine release in the NAc and VTA evoked by electrical stimulation of the LC in urethane-anesthetized rats was simultaneously monitored with carbon-fiber microelectrodes using in vivo multichannel fast-scan cyclic voltammetry for comparison of its extracellular regulation. Pharmacological, anatomical, and electrochemical evidence suggest that electrical stimulation of the LC evokes NE release in the VTA and activates VTA-DA neurons, resulting in DA release in the NAc. The electrically evoked DA in the NAc was regulated by D2 receptors and DA transporters (DAT) as well as α1-adrenergic receptors in the VTA, whereas NE release in the VTA was regulated by α2-adrenergic receptors and NE transporters (NET) not by D2 receptors or DAT. These results suggest that electrical stimulation of LC modulates VTA-DA neurons and DA transmission in the NAc via NE receptors.
Collapse
Affiliation(s)
- Jin W. Park
- Department
of Biotechnical and Clinical Laboratory Sciences and ‡Neuroscience
Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, United States
| | - Rohan V. Bhimani
- Department
of Biotechnical and Clinical Laboratory Sciences and ‡Neuroscience
Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, United States
| | - Jinwoo Park
- Department
of Biotechnical and Clinical Laboratory Sciences and ‡Neuroscience
Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, United States
| |
Collapse
|
20
|
Schmidt KT, Schroeder JP, Foster SL, Squires K, Smith BM, Pitts EG, Epstein MP, Weinshenker D. Norepinephrine regulates cocaine-primed reinstatement via α1-adrenergic receptors in the medial prefrontal cortex. Neuropharmacology 2017; 119:134-140. [PMID: 28392265 PMCID: PMC5495469 DOI: 10.1016/j.neuropharm.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/02/2023]
Abstract
Drug-primed reinstatement of cocaine seeking in rats is thought to reflect relapse-like behavior and is mediated by the integration of signals from mesocorticolimbic dopaminergic projections and corticostriatal glutamatergic innervation. Cocaine-primed reinstatement can also be attenuated by systemic administration of dopamine β-hydroxylase (DBH) inhibitors, which prevent norepinephrine (NE) synthesis, or by α1-adrenergic receptor (α1AR) antagonists, indicating functional modulation by the noradrenergic system. In the present study, we sought to further discern the role of NE in cocaine-seeking behavior by determining whether α1AR activation can induce reinstatement on its own or is sufficient to permit cocaine-primed reinstatement in the absence of all other AR signaling, and identifying the neuroanatomical substrate within the mesocorticolimbic reward system harboring the critical α1ARs. We found that while intracerebroventricular infusion of the α1AR agonist phenylephrine did not induce reinstatement on its own, it did overcome the blockade of cocaine-primed reinstatement by the DBH inhibitor nepicastat. Furthermore, administration of the α1AR antagonist terazosin in the medial prefrontal cortex (mPFC), but not the ventral tegmental area (VTA) or nucleus accumbens (NAc) shell, attenuated cocaine-primed reinstatement. Combined, these data indicate that α1AR activation in the mPFC is required for cocaine-primed reinstatement, and suggest that α1AR antagonists merit further investigation as pharmacotherapies for cocaine dependence.
Collapse
Affiliation(s)
- Karl T Schmidt
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Jason P Schroeder
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | | | - Katherine Squires
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Brilee M Smith
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth G Pitts
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
21
|
Masilamoni GJ, Groover O, Smith Y. Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Neurobiol Dis 2016; 100:9-18. [PMID: 28042095 DOI: 10.1016/j.nbd.2016.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DβH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DβH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD.
Collapse
Affiliation(s)
- Gunasingh Jeyaraj Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| | - Olivia Groover
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| |
Collapse
|
22
|
Stelly CE, Pomrenze MB, Cook JB, Morikawa H. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning. eLife 2016; 5. [PMID: 27374604 PMCID: PMC4931908 DOI: 10.7554/elife.15448] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca2+ signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences. DOI:http://dx.doi.org/10.7554/eLife.15448.001 Daily stress increases the likelihood that people who take drugs will become addicted. A very early step in the development of addiction is learning that certain people, places, or paraphernalia are associated with obtaining drugs. These ‘cues’ – drug dealers, bars, cigarette advertisements, etc. – become powerful motivators to seek out drugs and can trigger relapse in recovering addicts. It is thought that learning happens when synapses (the connections between neurons in the brain) that relay information about particular cues become stronger. However, it is not clear how stress promotes the learning of cue-drug associations. Stelly et al. investigated whether repeated episodes of stress make it easier to strengthen synapses on dopamine neurons, which are involved in processing rewards and addiction. For the experiments, rats were repeatedly exposed to a stressful situation – an encounter with an unfamiliar aggressive rat – every day for five days. Stelly et al. found that these stressed rats formed stronger associations between the drug cocaine and the place where they were given the drug (the cue). Furthermore, a mechanism that strengthens synapses was more sensitive in the stressed rats than in unstressed rats. These changes persisted for 10-30 days after the stressful situation, suggesting that stress might begin a period of time during which the individual is more vulnerable to addiction. The experiments also show that a hormone called corticosterone – which is released during stressful experiences – is necessary for stress to trigger the changes in the synapses and behavior of the rats. However, corticosterone must work with other factors because giving this hormone to unstressed rats was not sufficient to trigger the changes seen in the stressed rats. Future experiments will investigate what these other stress factors are and how they work together with corticosterone. DOI:http://dx.doi.org/10.7554/eLife.15448.002
Collapse
Affiliation(s)
- Claire E Stelly
- Department of Neuroscience, University of Texas, Austin, United States.,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States
| | - Matthew B Pomrenze
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States.,Division of Pharmacology and Toxicology, University of Texas, Austin, United States
| | - Jason B Cook
- Department of Neuroscience, University of Texas, Austin, United States.,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States
| | - Hitoshi Morikawa
- Department of Neuroscience, University of Texas, Austin, United States.,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States
| |
Collapse
|
23
|
Mejias-Aponte CA. Specificity and impact of adrenergic projections to the midbrain dopamine system. Brain Res 2016; 1641:258-73. [PMID: 26820641 DOI: 10.1016/j.brainres.2016.01.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson's disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- Carlos A Mejias-Aponte
- National Institute on Drug Abuse Histology Core, Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Biomedical Research Center, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
24
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
25
|
Karkhanis AN, Locke JL, McCool BA, Weiner JL, Jones SR. Social isolation rearing increases nucleus accumbens dopamine and norepinephrine responses to acute ethanol in adulthood. Alcohol Clin Exp Res 2015; 38:2770-9. [PMID: 25421514 DOI: 10.1111/acer.12555] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Early-life stress is associated with increased vulnerability to alcohol addiction. However, the neural substrates linking chronic childhood/adolescent stress and increased risk of alcohol addiction are not well understood. In the nucleus accumbens (NAc), dopamine (DA) and norepinephrine (NE) signaling can be profoundly influenced by stress, anxiety, and drugs of abuse, including ethanol (EtOH). Here, we employed a rodent model of early-life stress that results in enduring increases in behavioral risk factors of alcoholism to gain a better understanding of how chronic adolescent stress may impact the EtOH sensitivity of DA and NE release in the NAc. METHODS Male Long-Evans rats were either group housed (GH; 4 rats/cage) or socially isolated (SI; 1 rat/cage) for 6 weeks beginning on postnatal day 28. SI and GH rats were tested in adulthood for anxiety-like behaviors (elevated plus maze), and the effects of EtOH (1 and 2 g/kg; intraperitoneally.) on NAc DA and NE were assessed by microdialysis. RESULTS SI animals showed increased anxiety-like behavior compared to GH animals. Although SI had no effect on baseline levels of DA or NE, baseline DA levels were positively correlated with anxiety measures. In addition, while no significant differences were observed with 1 g/kg EtOH, the 2 g/kg dose induced significantly greater DA release in SI animals. Moreover, EtOH (2 g/kg) only elevated NAc NE levels in SI rats. CONCLUSIONS These results suggest that chronic early-life stress sensitizes accumbal DA and NE release in response to an acute EtOH challenge. A greater EtOH sensitivity of DA and NE release dynamics in the NAc may contribute to increases in behavioral risk factors of alcoholism, like greater EtOH self-administration, that are observed in SI rats.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
26
|
Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling. Neuropsychopharmacology 2015; 40:1151-62. [PMID: 25374094 PMCID: PMC4367457 DOI: 10.1038/npp.2014.296] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/07/2014] [Accepted: 10/25/2014] [Indexed: 11/09/2022]
Abstract
Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine.
Collapse
|
27
|
Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism. Neuropharmacology 2014; 89:113-21. [PMID: 25229719 DOI: 10.1016/j.neuropharm.2014.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/25/2014] [Accepted: 09/01/2014] [Indexed: 11/21/2022]
Abstract
Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq-mediated signaling pathways.
Collapse
|
28
|
Marinelli M, McCutcheon JE. Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 2014; 282:176-97. [PMID: 25084048 DOI: 10.1016/j.neuroscience.2014.07.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/29/2022]
Abstract
Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called 'bursts'. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in 'basal' conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression.
Collapse
Affiliation(s)
- M Marinelli
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, C0875, BME 6.114A, Austin, TX 78756, USA.
| | - J E McCutcheon
- Department of Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, P.O. Box 138, Leicester LE1 9HN, UK.
| |
Collapse
|
29
|
Covey DP, Roitman MF, Garris PA. Illicit dopamine transients: reconciling actions of abused drugs. Trends Neurosci 2014; 37:200-10. [PMID: 24656971 DOI: 10.1016/j.tins.2014.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 01/03/2023]
Abstract
Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome.
Collapse
Affiliation(s)
- Dan P Covey
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607-7137, USA
| | - Paul A Garris
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA.
| |
Collapse
|
30
|
Ferrucci M, Giorgi FS, Bartalucci A, Busceti CL, Fornai F. The effects of locus coeruleus and norepinephrine in methamphetamine toxicity. Curr Neuropharmacol 2013; 11:80-94. [PMID: 23814540 PMCID: PMC3580794 DOI: 10.2174/157015913804999522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/25/2012] [Accepted: 08/08/2012] [Indexed: 12/03/2022] Open
Abstract
The activity of locus coeruleus (LC) neurons has been extensively investigated in a variety of behavioural states. In fact this norepinephrine (NE)-containing nucleus modulates many physiological and pathological conditions including the sleep-waking cycle, movement disorders, mood alterations, convulsive seizures, and the effects of drugs such as psychostimulants and opioids. This review focuses on the modulation exerted by central NE pathways on the behavioural and neurotoxic effects produced by the psychostimulant methamphetamine, essentially the modulation of the activity of mesencephalic dopamine (DA) neurons. In fact, although NE in itself mediates some behavioural effects induced by methamphetamine, NE modulation of DA release is pivotal for methamphetamine-induced behavioural states and neurotoxicity. These interactions are discussed on the basis of the state of the art of the functional neuroanatomy of central NE- and DA systems. Emphasis is given to those brain sites possessing a remarkable overlapping of both neurotransmitters.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
31
|
Covey DP, Juliano SA, Garris PA. Amphetamine elicits opposing actions on readily releasable and reserve pools for dopamine. PLoS One 2013; 8:e60763. [PMID: 23671560 PMCID: PMC3643976 DOI: 10.1371/journal.pone.0060763] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/02/2013] [Indexed: 11/18/2022] Open
Abstract
Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties.
Collapse
Affiliation(s)
- Dan P. Covey
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Steven A. Juliano
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Paul A. Garris
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| |
Collapse
|
32
|
Guatteo E, Yee A, McKearney J, Cucchiaroni ML, Armogida M, Berretta N, Mercuri NB, Lipski J. Dual effects of L-DOPA on nigral dopaminergic neurons. Exp Neurol 2013; 247:582-94. [PMID: 23481547 DOI: 10.1016/j.expneurol.2013.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/05/2013] [Indexed: 11/29/2022]
Abstract
L-DOPA (Levodopa) remains the gold standard for the treatment of motor symptoms of Parkinson's disease (PD), despite indications that the drug may have detrimental effects in cell culture. Classically, l-DOPA increases the production of dopamine (DA) in nigral dopaminergic neurons, while paradoxically inhibiting the firing of these neurons due to activation of D2 autoreceptors by extracellularly released DA. Using a combination of electrophysiology and calcium microfluorometry in brain slices, we have identified a novel effect of L-DOPA on dopaminergic neurons when D2 receptors were blocked. Under these conditions, L-DOPA (0.03-3 mM) evoked an excitatory effect consisting of two components. The 'early' component observed during and immediately after application of the drug, was associated with increased firing, membrane depolarization and inward current. This excitatory response was strongly attenuated by CNQX (10 μM), pointing to the involvement of TOPA quinone, an auto-oxidation product of L-DOPA and a potent activator of AMPA/kainate receptors. The 'late' phase of excitation persisted >30 min after brief L-DOPA application and was not mediated by ionotropic glutamate receptors, nor by D1, α1-adrenergic, mGluR1 or GABAB receptors. It was eliminated by carbidopa, demonstrating its dependence on conversion of L-DOPA to DA. Exogenous DA (50 μM) also evoked a glutamate-receptor independent increase in firing and an inward current when D2 receptors were blocked. In voltage-clamped neurons, both L-DOPA and DA produced a long-lasting increase in [Ca(2+)]i which was unaffected by block of ionotropic glutamate receptors. These results demonstrate that L-DOPA has dual, inhibitory and excitatory, effects on nigral dopaminergic neurons, and suggest that the excitation and calcium rise may have long-lasting consequences for the activity and survival of these neurons when the expression or function of D2 receptors is impaired.
Collapse
|
33
|
Daberkow DP, Brown HD, Bunner KD, Kraniotis SA, Doellman MA, Ragozzino ME, Garris PA, Roitman MF. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J Neurosci 2013; 33:452-63. [PMID: 23303926 PMCID: PMC3711765 DOI: 10.1523/jneurosci.2136-12.2013] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/29/2012] [Accepted: 11/08/2012] [Indexed: 11/21/2022] Open
Abstract
Drugs of abuse hijack brain-reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting nonexocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties, which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to 2 h. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration, and frequency of spontaneous dopamine transients, the naturally occurring, nonelectrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sugar reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sugar-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify upregulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling.
Collapse
Affiliation(s)
- D P Daberkow
- School of Biological Sciences, Cell Biology, Physiology and Development Section, Illinois State University, Normal, Illinois 61790, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
α-1 Adrenergic receptors are localized on presynaptic elements in the nucleus accumbens and regulate mesolimbic dopamine transmission. Neuropsychopharmacology 2012; 37:2161-72. [PMID: 22588352 PMCID: PMC3398716 DOI: 10.1038/npp.2012.68] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brainstem noradrenergic neurons innervate the mesocorticolimbic reward pathway both directly and indirectly, with norepinephrine facilitating dopamine (DA) neurotransmission via α1-adrenergic receptors (α1ARs). Although α1AR signaling in the prefrontal cortex (PFC) promotes mesolimbic transmission and drug-induced behaviors, the potential contribution of α1ARs in other parts of the pathway, such as the ventral tegmental area (VTA) and nucleus accumbens (NAc), has not been investigated before. We found that local blockade of α1ARs in the medial NAc shell, but not the VTA, attenuates cocaine- and morphine-induced locomotion. To determine the neuronal substrates that could mediate these effects, we analyzed the cellular, subcellular, and subsynaptic localization of α1ARs and characterized the chemical phenotypes of α1AR-containing elements within the mesocorticolimbic system using single and double immunocytochemical methods at the electron microscopic (EM) level. We found that α1ARs are found mainly extra-synaptically in axons and axon terminals in the NAc and are enriched in glutamatergic and dopaminergic elements. α1ARs are also abundant in glutamatergic terminals in the PFC, and in GABA-positive terminals in the VTA. In line with these observations, microdialysis experiments revealed that local blockade of α1ARs attenuated the increase in extracellular DA in the medial NAc shell following administration of cocaine. These data indicate that local α1ARs control DA transmission in the medial NAc shell and behavioral responses to drugs of abuse.
Collapse
|
35
|
Velásquez-Martinez MC, Vázquez-Torres R, Jiménez-Rivera CA. Activation of alpha1-adrenoceptors enhances glutamate release onto ventral tegmental area dopamine cells. Neuroscience 2012; 216:18-30. [PMID: 22542873 DOI: 10.1016/j.neuroscience.2012.03.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 03/09/2012] [Accepted: 03/16/2012] [Indexed: 01/23/2023]
Abstract
The ventral tegmental area (VTA) plays an important role in reward and motivational processes that facilitate the development of drug addiction. Glutamatergic inputs into the VTA contribute to dopamine (DA) neuronal activation related to reward and response-initiating effects in drug abuse. Previous investigations indicate that alpha1-adrenoreceptors (α1-ARs) are primarily localized at presynaptic elements in the ventral midbrain. Studies from several brain regions have shown that presynaptic α1-AR activation enhances glutamate release. Therefore, we hypothesized that glutamate released onto VTA-DA neurons is modulated by pre-synaptic α1-AR. Recordings were obtained from putative VTA-DA cells of male Sprague-Dawley rats (28-50 days postnatal) using voltage clamp techniques. Phenylephrine (10 μM) and methoxamine (80μM), both α1-AR agonists, increased AMPA receptor-mediated excitatory postsynaptic currents' (EPSCs) amplitude evoked by electrical stimulation of afferent fibers (p<0.05). This effect was blocked by the α1-AR antagonist prazosin (1 μM). Phenylephrine decreased the paired-pulse ratio (PPR) and increased spontaneous EPSCs' frequencies but not their amplitudes suggesting a presynaptic locus of action. No changes in miniature EPSCs (0.5μM, tetrodotoxin [TTX]) were observed after phenylephrine's application which suggests that α1-AR effect was action potential dependent. Normal extra- and intracellular Ca(2+) concentration seems necessary for the α1-AR effect since phenylephrine in low Ca(2+) artificial cerebrospinal fluid (ACSF) and depletion of intracellular Ca(2+) stores with thapsigargin (10 μM) failed to increase the AMPA EPSCs' amplitude. Chelerythrine (1μM, protein kinase C (PKC) inhibitor) but not Rp-cAMPS (11 μM, PKA inhibitor) blocked the α1-AR activation effect on AMPA EPSCs, indicating that a PKC intracellular pathway is required. These results demonstrated that presynaptic α1-AR activation modulates glutamatergic inputs that affect VTA-DA neuronal excitability. α1-AR action might be heterosynaptically localized at glutamatergic fibers terminating onto VTA-DA neurons. It is suggested that drug-induced changes in α1-AR could be part of the neuroadaptations occurring in the mesocorticolimbic circuitry during the addiction process.
Collapse
Affiliation(s)
- M C Velásquez-Martinez
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | | | | |
Collapse
|
36
|
Abstract
BACKGROUND Conceptual models and recent evidence indicate that neural response to reward is altered in depression. Taking a developmental approach to investigating reward function in adolescent depression can elucidate the etiology, pathophysiology and course of depression, a disorder that typically begins during adolescence and has high rates of recurrence. METHODS This conceptual review describes the what, when and how of altered reward function in adolescent depression. With the goal of generating new, testable hypotheses within a developmental affective neuroscience framework, we critically review findings and suggest future directions. Peer-reviewed empirical papers for inclusion in this critical review were obtained by searching PubMed, PsycInfo and ScienceDirect for the years 1990-2010. RESULTS A pattern of low striatal response and high medial prefrontal response to reward is evident in adolescents and adults with depression. Given the salience of social stimuli for positive affect and depression, reward function might be especially disrupted in response to social rewards. Because of changes in the dopamine system and reward function with aging, altered reward function in depression might be more evident during adolescence than later in life; however, low reward function may also be a stable characteristic of people who experience depression. Mechanisms of altered reward function in depression could include disrupted balance of corticostriatal circuit function, with disruption occurring as aberrant adolescent brain development. CONCLUSIONS Future studies should examine responses to social rewards; employ longitudinal and prospective designs; and investigate patterns of functional connectivity in reward circuits. Understanding altered reward function in depression has potential implications for treatment development. A more rigorous approach to investigating anhedonia, threat-reward interactions and comorbid anxiety will be valuable to future progress in describing the role of reward function in the pathophysiology of depression.
Collapse
Affiliation(s)
- Erika E Forbes
- Western Psychiatric Institute and Clinic and Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
37
|
Iravani MM, Jenner P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm (Vienna) 2011; 118:1661-90. [DOI: 10.1007/s00702-011-0698-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
|
38
|
Ramsson ES, Howard CD, Covey DP, Garris PA. High doses of amphetamine augment, rather than disrupt, exocytotic dopamine release in the dorsal and ventral striatum of the anesthetized rat. J Neurochem 2011; 119:1162-72. [PMID: 21806614 DOI: 10.1111/j.1471-4159.2011.07407.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action.
Collapse
Affiliation(s)
- Eric S Ramsson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | | | | | | |
Collapse
|
39
|
Morikawa H, Paladini CA. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 2011; 198:95-111. [PMID: 21872647 DOI: 10.1016/j.neuroscience.2011.08.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 12/23/2022]
Abstract
Although the roles of dopaminergic signaling in learning and behavior are well established, it is not fully understood how the activity of dopaminergic neurons is dynamically regulated under different conditions in a constantly changing environment. Dopamine neurons must integrate sensory, motor, and cognitive information online to inform the organism to pursue outcomes with the highest reward probability. In this article, we provide an overview of recent advances on the intrinsic, extrinsic (i.e., synaptic), and plasticity mechanisms controlling dopamine neuron activity, mostly focusing on mechanistic studies conducted using ex vivo brain slice preparations. We also hope to highlight some unresolved questions regarding information processing that takes place at dopamine neurons, thereby stimulating further investigations at different levels of analysis.
Collapse
Affiliation(s)
- H Morikawa
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology, 2400 Speedway, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
40
|
Cucchiaroni ML, Freestone PS, Berretta N, Viscomi MT, Bisicchia E, Okano H, Molinari M, Bernardi G, Lipski J, Mercuri NB, Guatteo E. Properties of dopaminergic neurons in organotypic mesencephalic-striatal co-cultures - evidence for a facilitatory effect of dopamine on the glutamatergic input mediated by α-1 adrenergic receptors. Eur J Neurosci 2011; 33:1622-36. [DOI: 10.1111/j.1460-9568.2011.07659.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Moorman DE, Aston-Jones G. Orexin/hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: diurnal influences. J Neurosci 2010; 30:15585-99. [PMID: 21084614 PMCID: PMC3004096 DOI: 10.1523/jneurosci.2871-10.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/02/2010] [Accepted: 09/21/2010] [Indexed: 11/21/2022] Open
Abstract
Recent studies show that glutamate and orexin (ORX, also known as hypocretin) inputs to the ventral tegmental area (VTA) dopamine (DA) cell region are essential for conditioned behavioral responses to reward-associated stimuli. In vitro experiments showed that ORX inputs to VTA potentiate responses of DA neurons to glutamate inputs, but it has remained unclear which glutamate inputs are modulated by ORX. The medial prefrontal cortex (mPFC) is a good candidate, given its role in processing complex stimulus-response information and its reciprocal connections with VTA DA neurons. Here we used in vivo recordings in anesthetized rats to investigate the responses of VTA DA neurons to mPFC stimulation, and how these responses are modulated by ORX. We demonstrate that mPFC stimulation evokes short- and long-latency excitation and inhibition in DA neurons. Maximal short-latency excitatory responses originated from stimulation sites in ventral prelimbic/infralimbic cortex, and were significantly more frequent during the active than during the rest period of the diurnal cycle. Application of ORX onto VTA DA neurons increased baseline activity and augmented or revealed excitatory responses to mPFC stimulation independent of changes in baseline activity, and without consistently affecting inhibitory responses. Moreover, orexin-1 receptor antagonism decreased tonic DA cell activity in active- but not rest-period animals, confirming a diurnal influence of ORX. These results indicate that ORX potently influences DA neuron activity, in part by modulating responses to mPFC inputs. By regulating prefrontal control of DA release, ORX projections to VTA may shape motivated behaviors in response to conditioned stimuli.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
42
|
Functional reduction of SK3-mediated currents precedes AMPA-receptor-mediated excitotoxicity in dopaminergic neurons. Neuropharmacology 2010; 60:1176-86. [PMID: 21044638 DOI: 10.1016/j.neuropharm.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/28/2010] [Accepted: 10/26/2010] [Indexed: 11/21/2022]
Abstract
In primary cultures of mesencephalon small-conductance calcium-activated potassium channels (SK) are expressed in dopaminergic neurons. We characterized SK-mediated currents (I(SK)) in this system and evaluated their role on homeostasis against excitotoxicity. I(SK) amplitude was reduced by the glutamatergic agonist AMPA through a reduction in SK channel number in the membrane. Blockade of I(SK) for 12 h with apamin or NS8593 reduced the number of dopaminergic neurons in a concentration-dependent manner. The effect of apamin was not additive to AMPA toxicity. On the other hand, two I(SK) agonists, 1-EBIO and CyPPA, caused a significant reduction of spontaneous loss of dopaminergic neurons. 1-EBIO reversed the effects of both AMPA and apamin as well. Thus, I(SK) influences survival and differentiation of dopaminergic neurons in vitro, and is part of protective homeostatic responses, participating in a rapidly acting negative feedback loop coupling calcium levels, neuron excitability and cellular defenses. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
43
|
Inyushin MU, Arencibia-Albite F, Vázquez-Torres R, Vélez-Hernández ME, Jiménez-Rivera CA. Alpha-2 noradrenergic receptor activation inhibits the hyperpolarization-activated cation current (Ih) in neurons of the ventral tegmental area. Neuroscience 2010; 167:287-97. [PMID: 20122999 PMCID: PMC2854519 DOI: 10.1016/j.neuroscience.2010.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/28/2009] [Accepted: 01/25/2010] [Indexed: 01/13/2023]
Abstract
The ventral tegmental area (VTA) is the source of dopaminergic projections innervating cortical structures and ventral forebrain. Dysfunction of this mesocorticolimbic system is critically involved in psychiatric disorders such as addiction and schizophrenia. Changes in VTA dopamine (DA) neuronal activity can alter neurotransmitter release at target regions which modify information processing in the reward circuit. Here we studied the effect of alpha-2 noradrenergic receptor activation on the hyperpolarization-activated cation current (I(h)) in DA neurons of the rat VTA. Brain slice preparations using whole-cell current and voltage-clamp techniques were employed. Clonidine and UK14304 (alpha-2 receptor selective agonists) were found to decrease I(h) amplitude and to slow its rate of activation indicating a negative shift in the current's voltage dependence. Two non-subtype-selective alpha-2 receptor antagonists, yohimbine and RS79948, prevented the effects of alpha-2 receptor activation. RX821002, a noradrenergic antagonist specific for alpha-2A and alpha-2D did not prevent I(h) inhibition. This result suggests that clonidine might be acting via an alpha-2C subtype since this receptor is the most abundant variant in the VTA. Analysis of a second messenger system associated with the alpha-2 receptor revealed that I(h) inhibition is independent of cyclic AMP (cAMP) and resulted from the activation of protein kinase C. It is suggested that the alpha-2 mediated hyperpolarizing shift in I(h) voltage dependence can facilitate the transition from pacemaker firing to afferent-driven burst activity. This transition may play a key role on the changes in synaptic plasticity that occurs in the mesocorticolimbic system under pathological conditions.
Collapse
Affiliation(s)
- M U Inyushin
- Department of Physiology, Universidad Central del Caribe, Medical School, PO Box 60-327, Bayamón, Puerto Rico
| | | | | | | | | |
Collapse
|
44
|
McElligott ZA, Klug JR, Nobis WP, Patel S, Grueter BA, Kash TL, Winder DG. Distinct forms of Gq-receptor-dependent plasticity of excitatory transmission in the BNST are differentially affected by stress. Proc Natl Acad Sci U S A 2010; 107:2271-6. [PMID: 20133871 PMCID: PMC2836642 DOI: 10.1073/pnas.0905568107] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term depression (LTD) is an important synaptic mechanism for limiting excitatory influence over circuits subserving cognitive and emotional behavior. A major means of LTD induction is through the recruitment of signaling via G(q)-linked receptors activated by norepinephrine (NE), acetylcholine, and glutamate. Receptors from these transmitter families have been proposed to converge on a common postsynaptic LTD maintenance mechanism, such that hetero- and homosynaptic induction produce similar alterations in glutamate synapse efficacy. We report that in the dorsolateral and ventrolateral bed nucleus of the stria terminalis (BNST), recruitment of G(q)-linked receptors by glutamate or NE initiates mechanistically distinct forms of postsynaptically maintained LTD and these LTDs are differentially regulated by stress exposure. In particular, we show that although both mGluR5- and alpha(1)-adrenergic receptor (AR)-dependent LTDs involve postsynaptic endocytosis, the alpha(1)-AR-initiated LTD exclusively involves modulation of signaling through calcium-permeable AMPA receptors. Further, alpha(1)-AR- but not mGluR5- dependent LTD is disrupted by restraint stress. alpha(1)-AR LTD is also impaired in mice chronically exposed to ethanol. These data thus suggest that in the BNST, NE- and glutamate-activated G(q)-linked signaling pathways differentially tune glutamate synapse efficacy in response to stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas L. Kash
- Department of Pharmacology and Bowles Alcohol Center, University of North Carolina at Chapel Hill, NC
| | - Danny G. Winder
- Vanderbilt Brain Institute
- Department of Molecular Physiology and Biophysics, and
- Center for Molecular Neuroscience, and Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, TN; and
| |
Collapse
|
45
|
Abstract
Dopaminergic neurons of the ventral midbrain fire high-frequency bursts when animals are presented with unexpected rewards, or stimuli that predict reward. To identify the afferents that can initiate bursting and establish therapeutic strategies for diseases affected by altered bursting, a mechanistic understanding of bursting is essential. Our results show that bursting is initiated by a specific interaction between the voltage sensitivity of NMDA receptors and voltage-gated ion channels that results in the activation of an intrinsic, action potential-independent, high-frequency membrane potential oscillation. We further show that the NMDA receptor is uniquely suited for this because of the rapid kinetics and voltage dependence imparted to it by Mg(2+) ion block and unblock. This mechanism explains the discrete nature of bursting in dopaminergic cells and demonstrates how synaptic signals may be reshaped by local intrinsic properties of a neuron before influencing action potential generation.
Collapse
|
46
|
Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:235-88. [PMID: 20813245 DOI: 10.1016/s0074-7742(10)91008-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience.
Collapse
|
47
|
Lupica CR, Riegel AC. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology 2009; 48:1105-16. [PMID: 15878779 DOI: 10.1016/j.neuropharm.2005.03.016] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 02/18/2005] [Accepted: 03/09/2005] [Indexed: 11/30/2022]
Abstract
Substantial evidence suggests that all commonly abused drugs act upon the brain reward circuitry to ultimately increase extracellular concentrations of the neurotransmitter dopamine in the nucleus accumbens and other forebrain areas. Many drugs of abuse appear to increase dopamine levels by dramatically increase the firing and bursting rates of dopamine neurons located in the ventral mesencephalon. Recent clinical evidence in humans and behavioral evidence in animals indicate that cannabinoid receptor antagonists such as SR141716A (Rimonabant) can reduce the self-administration of, and craving for, several commonly addictive drugs. However, the mechanism of this potentially beneficial effect has not yet been identified. We propose, on the basis of recent studies in our laboratory and others, that these antagonists may act by blocking the effects of endogenously released cannabinoid molecules (endocannabinoids) that are released in an activity- and calcium-dependent manner from mesencephalic dopamine neurons. It is hypothesized that, through the antagonism of cannabinoid CB1 receptors located on inhibitory and excitatory axon terminals targeting the midbrain dopamine neurons, the effects of the endocannabinoids are occluded. The data from these studies therefore suggest that the endocannabinoid system and the CB1 receptors located in the ventral mesencephalon may play an important role in regulating drug reward processes, and that this substrate is recruited whenever dopamine neuron activity is increased.
Collapse
Affiliation(s)
- Carl R Lupica
- Cellular Neurobiology Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, U.S. Department of Health and Human Services, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
48
|
Mejías-Aponte CA, Drouin C, Aston-Jones G. Adrenergic and noradrenergic innervation of the midbrain ventral tegmental area and retrorubral field: prominent inputs from medullary homeostatic centers. J Neurosci 2009; 29:3613-26. [PMID: 19295165 PMCID: PMC2731794 DOI: 10.1523/jneurosci.4632-08.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/03/2008] [Accepted: 02/17/2009] [Indexed: 02/07/2023] Open
Abstract
Adrenergic agents modulate the activity of midbrain ventral tegmental area (VTA) neurons. However, the sources of noradrenergic and adrenergic inputs are not well characterized. Immunostaining for dopamine beta-hydroxylase revealed fibers within dopamine (DA) neuron areas, with the highest density in the retrorubral field (A8 cell group), followed by the VTA (A10 cell group), and very few fibers within substantia nigra compacta. A less dense, but a similar pattern of fibers was also found for the epinephrine marker, phenylethanolamine N-methyl transferase. Injection of the retrograde tracer wheat germ agglutinin-apo (inactivated) horseradish peroxidase conjugated to colloidal gold, or cholera toxin subunit b, revealed that the noradrenergic innervation of the A10 and A8 regions arise primarily from A1, A2, A5, and locus ceruleus neurons. Selective lesions of the ventral noradrenergic bundle confirmed a prominent innervation from A1 and A2 areas. Retrogradely labeled epinephrine neurons were found mainly in the C1 area. The identification of medullary noradrenergic and adrenergic afferents to DA neuron areas indicates new pathways for visceral-related inputs to reward-related areas in the midbrain.
Collapse
Affiliation(s)
- Carlos A. Mejías-Aponte
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Candice Drouin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, and
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
49
|
Pizzanelli C, Lazzeri G, Fulceri F, Giorgi FS, Pasquali L, Cifelli G, Murri L, Fornai F. Lack of α1b-adrenergic receptor protects against epileptic seizures. Epilepsia 2009; 50 Suppl 1:59-64. [DOI: 10.1111/j.1528-1167.2008.01972.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Rommelfanger KS, Mitrano DA, Smith Y, Weinshenker D. Light and electron microscopic localization of alpha-1 adrenergic receptor immunoreactivity in the rat striatum and ventral midbrain. Neuroscience 2008; 158:1530-40. [PMID: 19068224 DOI: 10.1016/j.neuroscience.2008.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
Abstract
Electrophysiological and pharmacological studies have demonstrated that alpha-1 adrenergic receptor (alpha1AR) activation facilitates dopamine (DA) transmission in the striatum and ventral midbrain. However, because little is known about the localization of alpha1ARs in dopaminergic regions, the substrate(s) and mechanism(s) underlying this facilitation of DA signaling are poorly understood. To address this issue, we used light and electron microscopy immunoperoxidase labeling to examine the cellular and ultrastructural distribution of alpha1ARs in the caudate putamen, nucleus accumbens, ventral tegmental area, and substantia nigra in the rat. Analysis at the light microscopic level revealed alpha1AR immunoreactivity mainly in neuropil, with occasional staining in cell bodies. At the electron microscopic level, alpha1AR immunoreactivity was found primarily in presynaptic elements, with scarce postsynaptic labeling. Unmyelinated axons and about 30-50% terminals forming asymmetric synapses contained the majority of presynaptic labeling in the striatum and midbrain, while in the midbrain a subset of terminals forming symmetric synapses also displayed immunoreactivity. Postsynaptic labeling was scarce in both striatal and ventral midbrain regions. On the other hand, only 3-6% of spines displayed alpha1AR immunoreactivity in the caudate putamen and nucleus accumbens. These data suggest that the facilitation of dopaminergic transmission by alpha1ARs in the mesostriatal system is probably achieved primarily by pre-synaptic regulation of glutamate and GABA release.
Collapse
Affiliation(s)
- K S Rommelfanger
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|