1
|
Yan CH, Wei GL, Jin ZA, Lu TC, Li XD, Wu JC, Yu CY, Zou LW, Yang L. Discovery and evaluation of a novel selective fluorescent substrate for CYP3A4 based on sulfoxidation characteristics. Chem Commun (Camb) 2025. [PMID: 40391516 DOI: 10.1039/d5cc01981h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
This study for the first time reports the design and application of a novel type of selective fluorescent substrate NESF for cytochrome P450 3A4 (CYP3A4) based on sulfoxidation reaction. NESF has been successfully applied for imaging endogenous CYP3A4 in living cells and for high-throughput screening of CYP3A4 inhibitors.
Collapse
Affiliation(s)
- Chao-Hua Yan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Gui-Lin Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Zhuo-An Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tian-Chi Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ji-Cong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chun-Yang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
2
|
Kongphan O, Lert-itthiporn W, Cha’on U, Anutrakulchai S, Nahok K, Artkaew N, Sriphan C, Jusakul A. Alleles of CYP3A5 and their association with renal function in chronic kidney disease. PeerJ 2025; 13:e19424. [PMID: 40330700 PMCID: PMC12051937 DOI: 10.7717/peerj.19424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Background The cytochrome P450 family 3 subfamily A polypeptide 5 (CYP3A5) gene plays an important role in renal function through its product's involvement in metabolizing endogenous substances and drugs, including immunosuppressants used following kidney transplantation. A single-nucleotide polymorphism, CYP3A5*3 (rs776746), produces a non-functional variant that may influence progression of chronic kidney disease (CKD) by impairing renal filtration. However, the frequency of the CYP3A5*3 allele in the Thai population and its association with renal parameters remain underexplored. This study aimed to determine the prevalence of CYP3A5 polymorphisms and their association with renal function. Methods We investigated the distribution of CYP3A5 polymorphisms in 329 northeastern Thai participants, including 205 CKD patients and 124 healthy controls. Genotyping was performed using the TaqMan allelic discrimination assay. Renal function parameters were assessed and compared between CYP3A5*1 and CYP3A5*3 allele carriers. Results In the entire cohort, the allele frequency of CYP3A5*3 was 63.2%, with genotype frequencies of CYP3A5*1/*1 (16.7%), CYP3A5*1/*3 (40.1%), and CYP3A5*3/*3 (43.2%). There was no significant difference in the CYP3A5 allele frequencies between CKD and control groups. CYP3A5*3 carriers exhibited significantly lower eGFR, urine creatinine and serum creatinine clearance and higher UACR compared to CYP3A5*1 carriers. After adjusting for confounders, CYP3A5*3 remained significantly associated with reduced urine creatinine. Conclusion This study highlights a high prevalence of CYP3A5 polymorphisms in the northeastern Thai population. The association of the CYP3A5*3 allele with renal function parameters underscores the need for further research into the mechanisms by which CYP3A5 affects kidney function, which could inform personalized CKD management strategies.
Collapse
Affiliation(s)
- Onnapa Kongphan
- Department of Biomedical Science, Faculty of Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Worachart Lert-itthiporn
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET) Project, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha’on
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET) Project, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sirirat Anutrakulchai
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET) Project, Khon Kaen University, Khon Kaen, Thailand
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanokwan Nahok
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET) Project, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nadthanicha Artkaew
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET) Project, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanpen Sriphan
- Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET) Project, Khon Kaen University, Khon Kaen, Thailand
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Attelind S, Eriksson N, Wadelius M, Hallberg P. Genome-wide association study of direct oral anticoagulants and their relation to bleeding. Eur J Clin Pharmacol 2025; 81:771-783. [PMID: 40116934 PMCID: PMC12003525 DOI: 10.1007/s00228-025-03821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE Direct oral anticoagulants (DOACs) are used to prevent and treat thromboembolic events in adults. We aimed to investigate whether pharmacogenomic variation contributes to the risk of bleeding during DOAC treatment. METHODS Cases were recruited from reports of bleeding sent to the Swedish Medical Products Agency (n = 129, 60% men, 93% Swedish, 89% on factor Xa inhibitors) and compared with population controls (n = 4891) and a subset matched for exposure to DOACs (n = 353). We performed a genome-wide association study, with analyses of candidate single nucleotide polymorphisms (SNPs) and candidate gene set analyses. RESULTS Forty-four cases had major, 37 minor, and 48 clinically relevant non-major (CRNM) bleeding. When cases were compared with matched controls, BAIAP2L2 rs142001534 was significantly associated with any bleeding and major/CRNM bleeding (P = 4.66 × 10-8 and P = 3.28 × 10-8, respectively). The candidate SNP CYP3A5 rs776746 was significantly associated with major and major/CRNM bleeding (P = 0.00020 and P = 0.00025, respectively), and ABCG2 rs2231142 was nominally associated with any bleeding (P = 0.01499). Rare coding variants in the candidate gene VWF were significantly associated with any bleeding (P = 0.00296). CONCLUSION BAIAP2L2, CYP3A5, ABCG2, and VWF may be associated with bleeding in DOAC-treated patients. The risk estimates of the candidate variants in CYP3A5 and ABCG2 were in the same direction as in previous studies. The Von Willebrand Factor gene (VWF) is linked to hereditary bleeding disorders, while there is no previous evidence of bleeding associated with BAIAP2L2.
Collapse
Affiliation(s)
- Sofia Attelind
- Department of Medical Sciences, Clinical Pharmacogenomics, Uppsala University, Uppsala, Sweden.
- Department of Drug Safety, Swedish Medical Products Agency, Uppsala, Sweden.
| | - Niclas Eriksson
- Department of Medical Sciences, Clinical Pharmacogenomics, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University Hospital, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics, Uppsala University, Uppsala, Sweden
| | - Pär Hallberg
- Department of Medical Sciences, Clinical Pharmacogenomics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Lindarte EF, De Jesus Vasquez G, Toro Rendón LG, Zuluaga Salazar AF, Buendia JA. Effect of CYP3A5 genotypes on pharmacokinetic of tacrolimus in colombian liver transplant patients. Front Pharmacol 2025; 16:1505490. [PMID: 40135234 PMCID: PMC11933031 DOI: 10.3389/fphar.2025.1505490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Background Previous studies have reported a reduced tacrolimus dose-adjusted exposure in individuals expressing the CYP3A5*1 allele (rs 776746). However, information regarding Colombian liver transplantation patients is scarce. This study aimed to investigate the influence of CYP3A5 polymorphism on tacrolimus (TAC) pharmacokinetics in Colombian liver transplant patients. Methods This was a prospective, single-center, open-label, pharmacogenetic study in stable adult liver transplant recipients followed up between 2020 and 2022. To evaluate the longitudinal relationship between the Co/doses, dose, and Co and CYP3A5 polymorphisms, a generalized estimating equations model was used using a log-gamma distribution. Results We evaluated 16 patients who received TAC during the first 2 years after transplantation. CYP3A5*1 expression was observed 28% of patients. Patients with CYP3A5 expressors displayed lower C0 and C0/dose ratio and higher doses than those no expressors. We observed a lower C0/dose ratio in expresser recipients over 2 years of follow-up. Conclusion The expression of CYP3A5 in stable liver transplant patient appeared to have the greatest influence on tacrolimus pharmacokinetics over the first 2 years posttransplant.
Collapse
Affiliation(s)
- Erica Fernanda Lindarte
- Department of Pharmacology and Toxicology, Research Group in Pharmacology and Toxicology “INFARTO”, University of Antioquia, Medellin, Colombia
- Laboratorio Integrado de Medicina Especializada (LIME), Facultad de Medicina, IPS Universitaria, Universidad de Antioquia, Antioquia, Colombia
| | - Gonzalo De Jesus Vasquez
- Laboratorio Integrado de Medicina Especializada (LIME), Facultad de Medicina, IPS Universitaria, Universidad de Antioquia, Antioquia, Colombia
| | - Luis Guillermo Toro Rendón
- Grupo de Investigation en Genetica Medica, University of Antioquia, Medellin, Colombia
- Unidad de Trasplantes y Enfermedades Digestivas, Hospital San Vicente Fundación, Rionegro, Colombia
| | - Andrés Felipe Zuluaga Salazar
- Department of Pharmacology and Toxicology, Research Group in Pharmacology and Toxicology “INFARTO”, University of Antioquia, Medellin, Colombia
- Laboratorio Integrado de Medicina Especializada (LIME), Facultad de Medicina, IPS Universitaria, Universidad de Antioquia, Antioquia, Colombia
| | - Jefferson Antonio Buendia
- Department of Pharmacology and Toxicology, Research Group in Pharmacology and Toxicology “INFARTO”, University of Antioquia, Medellin, Colombia
- Laboratorio Integrado de Medicina Especializada (LIME), Facultad de Medicina, IPS Universitaria, Universidad de Antioquia, Antioquia, Colombia
| |
Collapse
|
5
|
Latham BD, Montazeri P, Lobo LF, Fallon JK, Jackson KD. Impact of variation in CYP3A and CYP2C8 on tucatinib metabolic clearance in human liver microsomes. Drug Metab Dispos 2025; 53:100061. [PMID: 40233610 DOI: 10.1016/j.dmd.2025.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/03/2025] [Indexed: 04/17/2025] Open
Abstract
Tucatinib is a small molecule tyrosine kinase inhibitor indicated for HER2-positive breast cancer. This recently approved drug is primarily metabolized by cytochrome P450 (P450) 2C8 and CYP3A. Given the interindividual variability in the pharmacokinetics of some kinase inhibitors, the present study explored how variability in CYP2C8 and CYP3A activities and concentrations can influence variability in overall tucatinib metabolic clearance in vitro. Tucatinib depletion, P450 activities, and P450 concentrations were measured in human liver microsomes from 21 donors (males n = 11, females n = 10). CYP2C8 and CYP3A activities were quantitated by liquid chromatography-tandem mass spectrometry analysis using the following marker reactions: amodiaquine N-deethylation and midazolam 1'-hydroxylation, respectively. CYP2C8, CYP3A4, and CYP3A5 protein concentrations were measured using quantitative targeted absolute proteomics. The minimum clearance rate was 2.01 μL/mg/min, and the maximum clearance rate was 28.9 μL/mg/min, indicating a 14.3-fold variation in the apparent tucatinib clearance between donors. Tucatinib clearance was significantly correlated with both CYP2C8 and CYP3A enzyme activities and protein concentrations in this donor cohort (r = 0.781, r = 0.904, r = 0.907, and r = 0.882, respectively). A multiple linear regression model was developed to determine the most significant parameters influencing tucatinib clearance. Overall, we found that CYP2C8 and CYP3A activities were significant predictors of tucatinib apparent clearance in human liver microsomes from individual donors. Proteomics data are available with identifier PXD057282 via ProteomeXchange. SIGNIFICANCE STATEMENT: The results from this study demonstrate a strong relationship between CYP2C8 and CYP3A phenotypes and interindividual variability in tucatinib metabolism. By elucidating how variability in CYP2C8 and CYP3A phenotypes influence tucatinib pharmacokinetics, this study has the potential to provide the framework for future studies that could inform dosing to minimize adverse events and improve therapeutic outcomes. Ultimately, understanding how individual cytochrome P450 phenotypes influence the clearance of cancer therapeutics will aid in the development of tailored regimens for diverse patient populations.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Pegah Montazeri
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Licza F Lobo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
6
|
Lebreton L, Boyer J, Lafay‐Chebassier C, Hennart B, Baklouti S, Cunat S, Vilquin P, Medard Y, Gautier‐Veyret E, Laffitte‐Redondo C, Verstuyft C, Ait Tayeb AEK, Haufroid V, Wils J, Lamoureux F, Evrard A, Davaze‐Schneider J, Ben‐Sassi M, Picard N, Quaranta S, Ayme‐Dietrich E, the French‐Speaking Network of Pharmacogenetics (RNPGx). French-Speaking Network of Pharmacogenetics (RNPGx) Recommendations for Clinical Use of Mavacamten. Clin Pharmacol Ther 2025; 117:387-397. [PMID: 39584620 PMCID: PMC11739748 DOI: 10.1002/cpt.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
Mavacamten, the first drug in the class of β-cardiac myosin modulator, is used for the treatment of patients with hypertrophic cardiomyopathy. This orally administered drug demonstrates wide interpatient variability in pharmacokinetics parameters, due in part to variant CYP2C19 alleles. Individuals who are CYP2C19 poor metabolizers have increased exposure and are at increased risk of reduced cardiac hypercontractility. To ensure the safety of all patients, European Medicines Agency recommends CYP2C19 preemptive genotyping, and consecutively, to adapt maintenance and initial mavacamten doses, and to manage drug-drug interactions, according to CYP2C19 phenotype. In this article, we summarize evidence from the literature supporting the association between CYP2C19 phenotype and pharmacological features of mavacamten and provide, beyond biologic guidelines, therapeutic recommendations for the use of mavacamten based on CYP2C19 and CYP3A4/CYP3A5 genotype.
Collapse
Affiliation(s)
- Louis Lebreton
- Département de Biochimie, Hôpital PellegrinCentre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Jean‐Christophe Boyer
- Laboratoire de Biochimie et Biologie MoléculaireCarémeau University HospitalNîmesFrance
| | | | | | - Sarah Baklouti
- Laboratoire de Pharmacocinétique et Toxicologie, Institut Fédératif de BiologieCHU de ToulouseToulouseFrance
- INTHERES, Inrae, ENVT, Université de ToulouseToulouseFrance
| | - Séverine Cunat
- Service d'Hématologie BiologiqueCHU de MontpellierMontpellierFrance
| | - Paul Vilquin
- Department of Tumor Genomics and Pharmacology, Université Paris‐Cité, INSERM UMR‐S 976Saint‐Louis Hospital, AP‐HP ParisParisFrance
| | - Yves Medard
- Department of Tumor Genomics and Pharmacology, Université Paris‐Cité, INSERM UMR‐S 976Saint‐Louis Hospital, AP‐HP ParisParisFrance
| | | | - Clara Laffitte‐Redondo
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Hôpital de BicêtreLe Kremlin BicêtreFrance
- MOODS Team, INSERM UMR 1018, CESP, Faculté de MédecineUniv Paris‐SaclayLe Kremlin BicêtreFrance
| | - Céline Verstuyft
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Hôpital de BicêtreLe Kremlin BicêtreFrance
- MOODS Team, INSERM UMR 1018, CESP, Faculté de MédecineUniv Paris‐SaclayLe Kremlin BicêtreFrance
| | - Abd El Kader Ait Tayeb
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Hôpital de BicêtreLe Kremlin BicêtreFrance
- INSERM UMR‐S U1185, Faculté de MédecineUniv Paris‐SaclayLe Kremlin BicêtreFrance
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP)Institut de Recherche Expérimentale et Clinique, UClouvainBrusselsBelgium
- Clinical Chemistry DepartmentCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Julien Wils
- Department of Pharmacology, UNIROUEN, INSERM U1096, CHU RouenNormandie UniversityRouenFrance
| | - Fabien Lamoureux
- Department of Pharmacology, UNIROUEN, INSERM U1096, CHU RouenNormandie UniversityRouenFrance
| | - Alexandre Evrard
- Institut du Cancer de Montpellier, ICM, Université de Montpellier, IRCM, Inserm U1194MontpellierFrance
- Laboratoire de Biochimie et Biologie MoléculaireCHU Nîmes‐CarémeauNîmesFrance
| | - Julie Davaze‐Schneider
- Département de Biochimie, Hôpital PellegrinCentre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Mouna Ben‐Sassi
- Department of Clinical PharmacologyNational Centre Chalbi Belkahia of PharmacovigilanceTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Nicolas Picard
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, Centre de Biologie et de Recherche en Santé (CBRS)CHU de LimogesLimogesFrance
| | - Sylvie Quaranta
- Laboratoire de Biologie Moléculaire GENOPé, M2GM/Laboratoire de Pharmacocinétique et Toxicologie, PRISMHôpital de la Timone, AP‐HMMarseilleFrance
| | - Estelle Ayme‐Dietrich
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, UR7296Hopitaux Universitaires de Strasbourg, Université de StrasbourgStrasbourgFrance
| | | |
Collapse
|
7
|
Lloberas N, Vidal-Alabró A, Colom H. Customizing Tacrolimus Dosing in Kidney Transplantation: Focus on Pharmacogenetics. Ther Drug Monit 2025; 47:141-151. [PMID: 39774592 DOI: 10.1097/ftd.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025]
Abstract
ABSTRACT Different polymorphisms in genes encoding metabolizing enzymes and drug transporters have been associated with tacrolimus pharmacokinetics. In particular, studies on CYP3A4 and CYP3A5, and their combined cluster have demonstrated their significance in adjusting tacrolimus dosing to minimize under- and overexposure thereby increasing the proportion of patients who achieve tacrolimus therapeutic target. Many factors influence the pharmacokinetics of tacrolimus, contributing to inter-patient variability affecting individual dosing requirements. On the other hand, the growing use of population pharmacokinetic models in solid organ transplantation, including different tacrolimus formulations, has facilitated the integration of pharmacogenetic data and other variables into algorithms to easier implement the personalized dose adjustment in transplant centers. The future of personalized medicine in transplantation lies in implementing these models in clinical practice, with pharmacogenetics as a key factor to account for the high inter-patient variability in tacrolimus exposure. To date, three clinical trials have validated the clinical application of these approaches. The aim of this review is to provide an overview of the current studies regarding the different population pharmacokinetic including pharmacogenetics and those translated to the clinical practice for individualizing tacrolimus dose adjustment in kidney transplantation.
Collapse
Affiliation(s)
- Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); and
| | - Anna Vidal-Alabró
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); and
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
El Cheikh J, Hamed F, Rifi H, Dakroub AH, Eid AH. Genetic polymorphisms influencing antihypertensive drug responses. Br J Pharmacol 2025; 182:929-950. [PMID: 39627167 DOI: 10.1111/bph.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension is a major contributor to cardiovascular disease and its associated morbidity and mortality. The low efficacy observed with some anti-hypertensive therapies has been attributed partly to inter-individual genetic variability. This paper reviews the major findings regarding these genetic variabilities that modulate responses to anti-hypertensive therapies such as angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), diuretics, calcium channel blockers (CCBs) and β-adrenoceptor blockers. The importance of studying these genetic polymorphisms stems from the goal to optimise anti-hypertensive therapy for each individual patient, aiming for the highest efficacy and lowest risk of adverse effects. It is important to recognise that environmental and epigenetic factors can contribute to the observed variations in drug responses. Owing to the multigenic and multifactorial nature of drug responses, further research is crucial for translating these findings into clinical practice and the establishment of reliable recommendations.
Collapse
Affiliation(s)
- Jana El Cheikh
- Faculty of Medicine, University of Balamand, Al Koura, Tripoli, Lebanon
| | - Fouad Hamed
- Faculty of Medicine, University of Balamand, Al Koura, Tripoli, Lebanon
| | - Hana Rifi
- Faculty of Medicine, University of Balamand, Al Koura, Tripoli, Lebanon
| | - Ali H Dakroub
- Blavatnik Family Research Institute, Departments of Cardiology and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Zhao Y, Hao Y, Wang Z, Liu S, Yuan S, Zhou C, Yu J. Effect of CYP3A5*3 genotype on exposure and efficacy of quetiapine: A retrospective, cohort study. J Affect Disord 2025; 370:134-139. [PMID: 39490424 DOI: 10.1016/j.jad.2024.10.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The involvement of cytochrome P450 3A5 (CYP3A5) in the metabolism of quetiapine has been proposed, though conclusive evidence is lacking. This study aimed to quantitatively assess the impact of CYP3A5 genetic variability on quetiapine exposure in a Chinese patient population. METHODS Patient data were retrospectively collected from the database of the Mental Health Centre at the First Hospital of Hebei Medical University, covering the period from September 1, 2019, to July 1, 2023. The study included patients genotyped for CYP3A5 who were treated with quetiapine. Inclusion criteria for the analysis of pharmacokinetic parameters, such as serum concentrations of the drug and its metabolites, included oral administration of quetiapine, availability of information on the prescribed daily dose and concomitant medications, and the determination of steady-state blood levels at the time of sampling (after at least 3 days of continuous administration at the same dose). Exclusion criteria comprised polypharmacy with known CYP3A4 inducers or inhibitors, as well as patients with hepatic or renal insufficiency. The primary endpoint was the exposure to quetiapine and N-dealkylquetiapine, measured using dose-corrected concentrations (C/D). The secondary endpoint was the metabolism of quetiapine to N-dealkylquetiapine, assessed by the ratio of metabolite to parent drug concentrations. The third endpoint is the differences in adverse reactions, QTc intervals, and biochemical parameters among patients with different CYP3A5 genotypes. RESULT Based on the inclusion and exclusion criteria, clinical data from 207 patients were ultimately included in the study. Of these, 20 patients had the CYP3A5*1/*1 genotype, 78 had the CYP3A5*1/*3 genotype, and 109 had the CYP3A5*3/*3 genotype. The CYP3A5*3 variant was found to significantly impact the metabolism of quetiapine. The C/D values for both quetiapine and N-dealkyl quetiapine were notably higher in individuals with the *3/*3 genotype compared to those with the *1/*1 and *1/*3 genotypes (P1 < 0.001 and P2 = 0.002, respectively). A comparison of the variability in metabolic ratios among different genotype groups revealed no significant difference (P = 0.067). However, a post hoc analysis indicated that the metabolic ratio in poor metabolizers was significantly lower than that in intermediate metabolizers (P = 0.021). The analysis of adverse reaction incidence and QTc intervals among different genotypes showed no statistically significant differences (P = 0.652, P = 0.486). However, comparison of biochemical parameters across different genotype groups revealed that alanine aminotransferase, uric acid, hemoglobin, and gamma-glutamyl transferase levels were significantly higher in patients with the CYP3A5*3/*3 genotype compared to those with the CYP3A5*1/*1 and CYP3A5*1/*3 genotypes. CONCLUSION The results indicated that the genetic polymorphism of CYP3A5*3 significantly influences the metabolism of quetiapine. Specifically, carriers of the CYP3A5*3/*3 genotype exhibited higher blood levels of quetiapine, with a greater likelihood of these levels exceeding the therapeutic range. This finding underscores the need for clinicians to pay special attention to the efficacy and occurrence of adverse reactions when prescribing quetiapine to patients carrying the CYP3A5*3/*3 genotype.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yupei Hao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziyi Wang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuai Liu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shizhao Yuan
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhua Zhou
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jing Yu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
10
|
Tremmel R, Hübschmann D, Schaeffeler E, Pirmann S, Fröhling S, Schwab M. Innovation in cancer pharmacotherapy through integrative consideration of germline and tumor genomes. Pharmacol Rev 2025; 77:100014. [PMID: 39952686 DOI: 10.1124/pharmrev.124.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Precision cancer medicine is widely established, and numerous molecularly targeted drugs for various tumor entities are approved or are in development. Personalized pharmacotherapy in oncology has so far been based primarily on tumor characteristics, for example, somatic mutations. However, the response to drug treatment also depends on pharmacological processes summarized under the term ADME (absorption, distribution, metabolism, and excretion). Variations in ADME genes have been the subject of intensive research for >5 decades, considering individual patients' genetic makeup, referred to as pharmacogenomics (PGx). The combined impact of a patient's tumor and germline genome is only partially understood and often not adequately considered in cancer therapy. This may be attributed, in part, to the lack of methods for combined analysis of both data layers. Optimized personalized cancer therapies should, therefore, aim to integrate molecular information, which derives from both the tumor and the germline genome, and taking into account existing PGx guidelines for drug therapy. Moreover, such strategies should provide the opportunity to consider genetic variants of previously unknown functional significance. Bioinformatic analysis methods and corresponding algorithms for data interpretation need to be developed to integrate PGx data in cancer therapy with a special meaning for interdisciplinary molecular tumor boards, in which cancer patients are discussed to provide evidence-based recommendations for clinical management based on individual tumor profiles. SIGNIFICANCE STATEMENT: The era of personalized oncology has seen the emergence of drugs tailored to genetic variants associated with cancer biology. However, the full potential of targeted therapy remains untapped owing to the predominant focus on acquired tumor-specific alterations. Optimized cancer care must integrate tumor and patient genomes, guided by pharmacogenomic principles. An essential prerequisite for realizing truly personalized drug treatment of cancer patients is the development of bioinformatic tools for comprehensive analysis of all data layers generated in modern precision oncology programs.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Innovation and Service Unit for Bioinformatics and Precision Medicine, DKFZ, Heidelberg, Germany; Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Sebastian Pirmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany; Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany; DKTK, DKFZ, Partner Site Tuebingen, Tuebingen, Germany; NCT SouthWest, a partnership between DKFZ and University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
11
|
Collins JM, Wang D. Isoform-level expression of the constitutive androstane receptor (CAR or NR1I3) transcription factor better predicts the mRNA expression of the cytochrome P450s in human liver samples. Drug Metab Dispos 2025; 53:100011. [PMID: 39884819 DOI: 10.1124/dmd.124.001923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Many factors cause interperson variability in the activity and expression of the cytochrome P450 (CYP) drug-metabolizing enzymes in the liver, leading to variable drug exposure and treatment outcomes. Several liver-enriched transcription factors are associated with CYP expression, with estrogen receptor α (ESR1) and constitutive androstane receptor (CAR or NR1I3) being the 2 top factors. ESR1 and NR1I3 undergo extensive alternative splicing that results in numerous splice isoforms, but how these splice isoforms associate with CYP expression is unknown. Here, we quantified 18 NR1I3 splice isoforms and the 3 most abundant ESR1 isoforms in 260 liver samples derived from African Americans (n = 125) and European Americans (n = 135). Our results showed variable splice isoform populations in the liver for both NR1I3 and ESR1. Multiple linear regression analyses revealed that compared with gene-level NR1I3, isoform-level NR1I3 expression better predicted the mRNA expression of most CYPs and 3 UDP-glucuronosyltransferases (UGTs), whereas ESR1 isoforms improved predictive models for the UGTs and CYP2D6 but not for most CYPs. Also, different NR1I3 isoforms were associated with different CYPs, and the associations varied depending on sample ancestry. Surprisingly, noncanonical NR1I3 isoforms having retained introns (introns 2 or 6) were abundantly expressed and associated with the expression of most CYPs and UGTs, whereas the reference isoform (NR1I3-205) was only associated with CYP2D6. Moreover, NR1I3 isoform diversity increased during the differentiation of induced pluripotent stem cells to hepatocytes, paralleling increasing CYP expression. These results suggest that isoform-level transcription factor expression may help to explain variation in CYP or UGT expression between individuals. SIGNIFICANCE STATEMENT: We quantified 18 NR1I3 splice isoforms and the 3 most abundant ESR1 splice isoforms in 260 liver samples derived from African American and European American donors and found variable NR1I3 and ESR1 splice isoform expression in the liver. Multiple linear regression analysis showed that, compared with gene-level expression, isoform-level expression of NR1I3 and ESR1 better predicted the mRNA expression of some cytochrome P450s and UDP-glucuronosyltransferases, highlighting the importance of isoform-level analyses to enhance our understanding of gene transcriptional regulatory networks controlling the expression of drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
12
|
Sato T, Kawabata T, Kumondai M, Hayashi N, Komatsu H, Kikuchi Y, Onoguchi G, Sato Y, Nanatani K, Hiratsuka M, Maekawa M, Yamaguchi H, Abe T, Tomita H, Mano N. Effect of Organic Anion Transporting Polypeptide 1B1 on Plasma Concentration Dynamics of Clozapine in Patients with Treatment-Resistant Schizophrenia. Int J Mol Sci 2024; 25:13228. [PMID: 39684938 DOI: 10.3390/ijms252313228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
The involvement of drug-metabolizing enzymes and transporters in plasma clozapine (CLZ) dynamics has not been well examined in Japanese patients with treatment-resistant schizophrenia (TRS). Therefore, this clinical study investigated the relationship between single nucleotide polymorphisms (SNPs) of various pharmacokinetic factors (drug-metabolizing enzymes and transporters) and dynamic changes in CLZ. Additionally, we aimed to determine whether CLZ acts as a substrate for pharmacokinetic factors using in vitro assays and molecular docking calculations. We found that 6 out of 10 patients with TRS and with multiple organic anion transporting polypeptide (OATP) variants (OATP1B1: *1b, *15; OATP1B3: 334T>G, 699G>A; and OATP2B1: *3, 935G>A, 601G>A, 76_84del) seemed to be highly exposed to CLZ and/or N-desmethyl CLZ. A CLZ uptake study using OATP-expressing HEK293 cells showed that CLZ was a substrate of OATP1B1 with Km and Vmax values of 38.9 µM and 2752 pmol/mg protein/10 min, respectively. The results of molecular docking calculations supported the differences in CLZ uptake among OATP molecules and the weak inhibitory effect of cyclosporine A, which is a strong inhibitor of OATPs, on CLZ uptake via OATP1B1. This is the first study to show that CLZ is an OATP1B1 substrate and that the presence of SNPs in OATPs potentially alters CLZ pharmacokinetic parameters.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Takeshi Kawabata
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Nagomi Hayashi
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Yuki Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Go Onoguchi
- Department of Psychiatry, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Kei Nanatani
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Masahiro Hiratsuka
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Hospital, Yamagata 990-9585, Japan
- Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
13
|
Montanucci L, Iori S, Lahtela-Kakkonen M, Pauletto M, Giantin M, Dacasto M. Impact of Missense Mutations on AFB1 Metabolism in Bovine Cytochrome P4503A Isoforms: A Computational Mutagenesis and Molecular Docking Analysis. Int J Mol Sci 2024; 25:12529. [PMID: 39684241 DOI: 10.3390/ijms252312529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Cytochrome P450 3A (CYP3A) enzymes catalyze the metabolism of a wide range of endogenous and exogenous compounds. Genetic variations in the 3 CYP3A isoforms (CYP3A28, CYP3A74, and CYP3A76) may influence their expression and activity, leading to inter-individual differences in xenobiotic metabolism. In domestic cattle, understanding how genetic variations modulate CYP3A activity is crucial for both its therapeutic implications (clinical efficacy and adverse drug effects) and food safety (residues in foodstuff). Here, we updated the variant calling of CYP3As in 300 previously sequenced Piedmontese beef cattle, using the most recent reference genome, which contains an updated, longer sequence for CYP3A28. All but one previously identified missense variants were confirmed and a new variant, R105W in CYP3A28, was discovered. Through computational mutagenesis and molecular docking, we computationally predicted the impact of all identified CYP3A variant enzymes on protein stability and their affinity for aflatoxin B1 (AFB1), a potent carcinogen and food contaminant. For CYP3A28, we also computationally predicted its affinity for the probe substrate nifedipine (NIF). We found that CYP3A28 with R105W variant cannot accommodate NIF nor AFB1 in the binding pocket, thus affecting their metabolism. Our work provides computational foundation and prioritized ranking of CYP3A variants for future experimental validations.
Collapse
Affiliation(s)
- Ludovica Montanucci
- Department of Neurology, McGovern Medical School, UTHealth-University of Texas Health Science Centre at Houston, Houston, TX 77030, USA
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | | | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| |
Collapse
|
14
|
Collins JM, Wang D. DNA Methylation in the CYP3A Distal Regulatory Region (DRR) Is Associated with the Expression of CYP3A5 and CYP3A7 in Human Liver Samples. Molecules 2024; 29:5407. [PMID: 39598796 PMCID: PMC11596782 DOI: 10.3390/molecules29225407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
CYP3As are important drug-metabolizing enzymes in the liver. The causes for large inter-person variability in CYP3A expression/activity remain poorly understood. DNA methylation broadly regulates gene expression and the developmental transition from fetal CYP3A7 to adult CYP3A4, and CpG methylation upstream of the CYP3A4 promoter is associated with its expression. However, because non-promoter CYP3A regulatory regions remain largely uncharacterized, how DNA methylation influences CYP3A expression has yet to be fully explored. We recently identified a distal regulatory region (DRR) that controls the expression of CYP3A4, CYP3A5, and CYP3A7. Here, we investigated the relationship between CYP3A expression and the methylation status of 16 CpG sites within the DRR in 70 liver samples. We found significant associations between DRR methylation and the expression of CYP3A5 and CYP3A7 but not CYP3A4, indicating differential CYP3A regulation by the DRR. Also, we observed a dynamic reduction in DRR DNA methylation during the differentiation of induced pluripotent stem cells to hepatocytes, which correlated with increased CYP3A expression. We then evaluated the relative contribution of genetic variants, TFs, and DRR DNA methylation on CYP3A expression in liver samples. Our results reinforce the DRR as a CYP3A regulator and suggest that DNA methylation may impact CYP3A-mediated drug metabolism.
Collapse
Affiliation(s)
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
15
|
Saqr A, Al-Kofahi M, Mohamed M, Dorr C, Remmel RP, Onyeaghala G, Oetting WS, Guan W, Mannon RB, Matas AJ, Israni A, Jacobson PA. Steroid-tacrolimus drug-drug interaction and the effect of CYP3A genotypes. Br J Clin Pharmacol 2024; 90:2837-2848. [PMID: 38994750 DOI: 10.1111/bcp.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
AIMS Tacrolimus, metabolized by CYP3A4 and CYP3A5 enzymes, is susceptible to drug-drug interactions (DDI). Steroids induce CYP3A genes to increase tacrolimus clearance, but the effect is variable. We hypothesized that the extent of the steroid-tacrolimus DDI differs by CYP3A4/5 genotypes. METHODS Kidney transplant recipients (n = 2462) were classified by the number of loss of function alleles (LOF) (CYP3A5*3, *6 and *7 and CYP3A4*22) and steroid use at each tacrolimus trough in the first 6 months post-transplant. A population pharmacokinetic analysis was performed by nonlinear mixed-effect modelling (NONMEM) and stepwise covariate modelling to define significant covariates affecting tacrolimus clearance. A stochastic simulation was performed and translated into a Shiny application with the mrgsolve and Shiny packages in R. RESULTS Steroids were associated with modestly higher (3%-11.8%) tacrolimus clearance. Patients with 0-LOF alleles receiving steroids showed the greatest increase (11.8%) in clearance compared to no steroids, whereas those with 2-LOFs had a negligible increase (2.6%) in the presence of steroids. Steroid use increased tacrolimus clearance by 5% and 10.3% in patients with 1-LOF and 3/4-LOFs, respectively. CONCLUSIONS Steroids increase the clearance of tacrolimus but vary slightly by CYP3A genotype. This is important in individuals of African ancestry who are more likely to carry no LOF alleles, may more commonly receive steroid treatment, and will need higher tacrolimus doses.
Collapse
Affiliation(s)
- Abdelrahman Saqr
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| | - Mahmoud Al-Kofahi
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
- Gilead Sciences, Inc., Foster City, California, USA
| | - Moataz Mohamed
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| | - Casey Dorr
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - William S Oetting
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Roslyn B Mannon
- Division of Nephrology, Department of Internal Medicine, University of Nebraska, Omaha, Nebraska, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ajay Israni
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Pamala A Jacobson
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Peña-Martín MC, Marcos-Vadillo E, García-Berrocal B, Heredero-Jung DH, García-Salgado MJ, Lorenzo-Hernández SM, Larrue R, Lenski M, Drevin G, Sanz C, Isidoro-García M. A Comparison of Molecular Techniques for Improving the Methodology in the Laboratory of Pharmacogenetics. Int J Mol Sci 2024; 25:11505. [PMID: 39519058 PMCID: PMC11546559 DOI: 10.3390/ijms252111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
One of the most critical goals in healthcare is safe and effective drug therapy, which is directly related to an individual's response to treatment. Precision medicine can improve drug safety in many scenarios, including polypharmacy, and it requires the development of new genetic characterization methods. In this report, we use real-time PCR, microarray techniques, and mass spectrometry (MALDI-TOF), which allows us to compare them and identify the potential benefits of technological improvements, leading to better quality medical care. These comparative studies, as part of our pharmacogenetic Five-Step Precision Medicine (5SPM) approach, reveal the superiority of mass spectrometry over the other methods analyzed and highlight the importance of updating the laboratory's pharmacogenetic methodology to identify new variants with clinical impact.
Collapse
Affiliation(s)
- María Celsa Peña-Martín
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Belén García-Berrocal
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - David Hansoe Heredero-Jung
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - María Jesús García-Salgado
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Sandra Milagros Lorenzo-Hernández
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Romain Larrue
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France;
| | - Marie Lenski
- CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS-IMPact of the Chemical Environment on Health, University of Lille, F-59000 Lille, France;
| | - Guillaume Drevin
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| | - María Isidoro-García
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
17
|
Yang Q, Wang Y, Wang X, Wang P, Tan B, Li Y, Sun H, Huang W, Liu H. Drug-drug interaction between diltiazem and tacrolimus in relation to CYP3A5 genotype status in Chinese pediatric patients with nephrotic range proteinuria: a retrospective study. Front Pharmacol 2024; 15:1463595. [PMID: 39290868 PMCID: PMC11405193 DOI: 10.3389/fphar.2024.1463595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Tacrolimus is widely used to treat pediatric nephrotic range proteinuria (NRP). Diltiazem, a CYP3A4/5 inhibitor, is often administered with tacrolimus, affecting its pharmacokinetic profile. The impact of this combination on tacrolimus exposure, particularly in CYP3A5*3 genetic polymorphism, remains unclear in pediatric NRP patients. This study aimed to evaluate the effects of diltiazem on tacrolimus pharmacokinetics, focusing on the CYP3A5*3 polymorphism. Methods We conducted a retrospective clinical study involving pediatric NRP patients, divided into two groups: those receiving tacrolimus with diltiazem and those receiving tacrolimus alone. Propensity score matching (PSM) was used to balance the baseline characteristics between the groups. We compared daily dose-adjusted trough concentrations (C0/D) of tacrolimus in both the original and PSM cohorts. The influence of diltiazem on tacrolimus C0/D, stratified by CYP3A5*3 genetic polymorphism, was assessed in a self-controlled case series study. Results Before PSM, the tacrolimus C0/D in patients taking diltiazem was significantly higher compared to those with tacrolimus alone (75.84 vs. 56.86 ng/mL per mg/kg, P = 0.034). This finding persisted after PSM (75.84 vs. 46.93 ng/mL per mg/kg, P= 0.028). In the self-controlled case study, tacrolimus C0/D elevated about twofold (75.84 vs. 34.76 ng/mL per mg/kg, P < 0.001) after diltiazem administration. CYP3A5 expressers (CYP3A5*1/*1 and *1/*3) and CYP3A5 non-expressers (CYP3A5*3/*3) experienced a 1.8-fold and 1.3-fold increase in tacrolimus C0/D when combined with diltiazem, respectively. Conclusion Diltiazem significantly increased tacrolimus C0/D, with CYP3A5*3 expressers showing higher elevations than non-expressers among pediatric NRP patients. These findings highlight the importance of personalized tacrolimus therapy based on CYP3A5*3 genotypes in pediatric patients taking diltiazem.
Collapse
Affiliation(s)
- Qiaoling Yang
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pharmacy, Clinical Medical College, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Xuebin Wang
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Boyu Tan
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Li
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huajun Sun
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxia Liu
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Li X, Sabbatini D, Pegoraro E, Bello L, Clemens P, Guglieri M, van den Anker J, Damsker J, McCall J, Dang UJ, Hoffman EP, Jusko WJ. Assessing Pharmacogenomic loci Associated with the Pharmacokinetics of Vamorolone in Boys with Duchenne Muscular Dystrophy. J Clin Pharmacol 2024; 64:1130-1140. [PMID: 38682893 PMCID: PMC11357888 DOI: 10.1002/jcph.2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
Human genetic variation (polymorphisms) in genes coding proteins involved in the absorption, distribution, metabolism, and elimination (ADME) of drugs can have a strong effect on drug exposure and downstream efficacy and safety outcomes. Vamorolone, a dissociative steroidal anti-inflammatory drug for treating Duchenne muscular dystrophy (DMD), primarily undergoes oxidation by CYP3A4 and CYP3A5 and glucuronidation by UDP-glucuronosyltransferases. This work assesses the pharmacokinetics (PKs) of vamorolone and sources of interindividual variability (IIV) in 81 steroid-naïve boys with DMD aged 4 to <7 years old considering the genetic polymorphisms of CYPS3A4 (CYP3A4*22, CYP3A4*1B), CYP3A5 (CYP3A5*3), and UGT1A1 (UGT1A1*60) utilizing population PK modeling. A one-compartment model with zero-order absorption (Tk0, duration of absorption), linear clearance (CL/F), and volume (V/F) describes the plasma PK data for boys with DMD receiving a wide range of vamorolone doses (0.25-6 mg/kg/day). The typical CL/F and V/F values of vamorolone were 35.8 L/h and 119 L, with modest IIV. The population Tk0 was 3.14 h yielding an average zero-order absorption rate (k0) of 1.16 mg/kg/h with similar absorption kinetics across subjects at the same vamorolone dose (i.e., no IIV on Tk0). The covariate analysis showed that none of the genetic covariates had any significant impact on the PKs of vamorolone in boys with DMD. Thus, the PKs of vamorolone is very consistent in these young boys with DMD.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Paula Clemens
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michela Guglieri
- John Walton Centre for Neuromuscular Disease, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - John van den Anker
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC, USA
- ReveraGen BioPharma, Rockville, MD, USA
| | | | | | - Utkarsh J. Dang
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Eric P. Hoffman
- ReveraGen BioPharma, Rockville, MD, USA
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
19
|
Mishima M, Yabe T, Kondo T, Fujimoto K, Takata R, Yokoyama H, Niida Y, Tanaka T, Miyazawa K, Furuichi K. Individualized tacrolimus therapy: Insights from CYP3A5 polymorphisms and intestinal metabolism. Clin Case Rep 2024; 12:e9416. [PMID: 39247561 PMCID: PMC11377175 DOI: 10.1002/ccr3.9416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
CYP3A4 and CYP3A5 are the most abundant and important enzymes of the CYP3A subfamily, distributed in the liver, intestinal mucosa and kidney, and involved in tacrolimus metabolism. Here, we report a case of tacrolimus dosage refractoriness due to a genetic polymorphism of CYP3A5.
Collapse
Affiliation(s)
- Mizuki Mishima
- Department of Nephrology Kanazawa Medical University Kahoku Japan
| | - Tomohisa Yabe
- Department of Nephrology Kanazawa Medical University Kahoku Japan
| | - Takaya Kondo
- Department of Nephrology Kanazawa Medical University Kahoku Japan
| | - Keiji Fujimoto
- Department of Nephrology Kanazawa Medical University Kahoku Japan
| | - Ryoji Takata
- Department of Pharmacy Kanazawa Medical University Hospital Kahoku Japan
| | - Hitoshi Yokoyama
- Department of Nephrology Kanazawa Medical University Kahoku Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute Kanazawa Medical University Kahoku Japan
- Center for Clinical Genomics Kanazawa Medical University Hospital Kahoku Japan
| | - Tatsuro Tanaka
- Department of Urology Kanazawa Medical University Kahoku Japan
| | | | - Kengo Furuichi
- Department of Nephrology Kanazawa Medical University Kahoku Japan
| |
Collapse
|
20
|
Uittenboogaard A, van de Velde M, van de Heijden L, Mukuhi L, de Vries N, Langat S, Olbara G, Huitema ADR, Vik T, Kaspers G, Njuguna F. Vincristine exposure in Kenyan children with cancer: CHAPATI feasibility study. Pediatr Blood Cancer 2024; 71:e31160. [PMID: 38956809 DOI: 10.1002/pbc.31160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
The low incidence of vincristine-induced peripheral neuropathy (VIPN) in Kenyan children may result from low vincristine exposure. We studied vincristine exposure in Kenyan children and dose-escalated in case of low vincristine exposure (NCT05844670). Average vincristine exposure was high. Individual vincristine exposure was assessed with a previously developed nomogram. A 20% dose increase was recommended for participants with low exposure and no VIPN, hyperbilirubinemia, or malnutrition. None of the 15 participants developed VIPN. Low vincristine exposure was seen in one participant: a dose increase was implemented without side effects. In conclusion, the participants did not develop VIPN despite having high vincristine exposure.
Collapse
Affiliation(s)
- Aniek Uittenboogaard
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mirjam van de Velde
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisa van de Heijden
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, OLVG, Amsterdam, The Netherlands
| | - Leah Mukuhi
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Niels de Vries
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sandra Langat
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Gilbert Olbara
- Department of Child Health and Paediatrics, Moi University/Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Alwin D R Huitema
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Terry Vik
- Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gertjan Kaspers
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Festus Njuguna
- Department of Child Health and Paediatrics, Moi University/Moi Teaching and Referral Hospital, Eldoret, Kenya
| |
Collapse
|
21
|
Johnson TN, Batchelor HK, Goelen J, Horniblow RD, Dinh J. Combining data on the bioavailability of midazolam and physiologically-based pharmacokinetic modeling to investigate intestinal CYP3A4 ontogeny. CPT Pharmacometrics Syst Pharmacol 2024; 13:1570-1581. [PMID: 38923249 PMCID: PMC11533100 DOI: 10.1002/psp4.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pediatric physiologically-based modeling in drug development has grown in the past decade and optimizing the underlying systems parameters is important in relation to overall performance. In this study, variation of clinical oral bioavailability of midazolam as a function of age is used to assess the underlying ontogeny models for intestinal CYP3A4. Data on midazolam bioavailability in adults and children and different ontogeny patterns for intestinal CYP3A4 were first collected from the literature. A pediatric PBPK model was then used to assess six different ontogeny models in predicting bioavailability from preterm neonates to adults. The average fold error ranged from 0.7 to 1.38, with the rank order of least to most biased model being No Ontogeny < Upreti = Johnson < Goelen < Chen < Kiss. The absolute average fold error ranged from 1.17 to 1.64 with the rank order of most to least precise being Johnson > Upreti > No Ontogeny > Goelen > Kiss > Chen. The optimal ontogeny model is difficult to discern when considering the possible influence of CYP3A5 and other population variability; however, this study suggests that from term neonates and older a faster onset Johnson model with a lower fraction at birth may be close to this. For inclusion in other PBPK models, independent verification will be needed to confirm these results. Further research is needed in this area both in terms of age-related changes in midazolam and similar drug bioavailability and intestinal CYP3A4 ontogeny.
Collapse
Affiliation(s)
| | - Hannah K. Batchelor
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Jan Goelen
- Centre for Neonatal and Paediatric Infection, Antimicrobial Resistance Research Group, St George'sUniversity of LondonLondonUK
| | - Richard D. Horniblow
- School of Biomedical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
22
|
Hussaini SA, Waziri B, Dickens C, Duarte R. Pharmacogenetics of Calcineurin inhibitors in kidney transplant recipients: the African gap. A narrative review. Pharmacogenomics 2024; 25:329-341. [PMID: 39109483 PMCID: PMC11404701 DOI: 10.1080/14622416.2024.2370761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Calcineurin inhibitors (CNIs) are the mainstay of immunosuppression in kidney transplantation. Interpatient variability in the disposition of calcineurin inhibitors is a well-researched phenomenon and has a well-established genetic contribution. There is great diversity in the makeup of African genomes, but very little is known about the pharmacogenetics of CNIs and transplant outcomes. This review focuses on genetic variants of calcineurin inhibitors' metabolizing enzymes (CYP3A4, CYP3A5), related molecules (POR, PPARA) and membrane transporters involved in the metabolism of calcineurin inhibitors. Given the genetic diversity across the African continent, it is imperative to generate pharmacogenetic data, especially in the era of personalized medicine and emphasizes the need for studies specific to African populations. The study of allelic variants in populations where they have greater frequencies will help answer questions regarding their impact. We aim to fill the knowledge gaps by reviewing existing research and highlighting areas where African research can contribute.
Collapse
Affiliation(s)
- Sadiq Aliyu Hussaini
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
- Department of Pharmacology, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Bala Waziri
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Uehara S, Hirai K, Shirai T, Itoh K. Association of a CYP3A5 gene polymorphism with exacerbation in adult patients with asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2180-2182.e1. [PMID: 38685478 DOI: 10.1016/j.jaip.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Sekiko Uehara
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Keita Hirai
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Matsumoto, Japan; Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan.
| | - Toshihiro Shirai
- Department of Respiratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Laboratory of Clinical Pharmacogenomics, Shizuoka General Hospital, Shizuoka, Japan.
| |
Collapse
|
24
|
Kaehler M, von Bubnoff N, Cascorbi I, Gorantla SP. Molecular biomarkers of leukemia: convergence-based drug resistance mechanisms in chronic myeloid leukemia and myeloproliferative neoplasms. Front Pharmacol 2024; 15:1422565. [PMID: 39104388 PMCID: PMC11298451 DOI: 10.3389/fphar.2024.1422565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Leukemia represents a diverse group of hematopoietic neoplasms that can be classified into different subtypes based on the molecular aberration in the affected cell population. Identification of these molecular classification is required to identify specific targeted therapeutic approaches for each leukemic subtype. In general, targeted therapy approaches achieve good responses in some leukemia subgroups, however, resistance against these targeted therapies is common. In this review, we summarize molecular drug resistance biomarkers in targeted therapies in BCR::ABL1-driven chronic myeloid leukemia (CML) and JAK2-driven myeloproliferative neoplasms (MPNs). While acquisition of secondary mutations in the BCR::ABL1 kinase domain is the a common mechanism associated with TKI resistance in CML, in JAK2-driven MPNs secondary mutations in JAK2 are rare. Due to high prevalence and lack of specific therapy approaches in MPNs compared to CML, identification of crucial pathways leading to inhibitor persistence in MPN model is utterly important. In this review, we focus on different alternative signaling pathways activated in both, BCR::ABL1-mediated CML and JAK2-mediated MPNs, by combining data from in vitro and in vivo-studies that could be used as potential biomarkers of drug resistance. In a nutshell, some common similarities, especially activation of PDGFR, Ras, PI3K/Akt signaling pathways, have been demonstrated in both leukemias. In addition, induction of the nucleoprotein YBX1 was shown to be involved in TKI-resistant JAK2-mediated MPN, as well as TKI-resistant CML highlighting deubiquitinating enzymes as potential biomarkers of TKI resistance. Taken together, whole exome sequencing of cell-based or patients-derived samples are highly beneficial to define specific resistance markers. Additionally, this might be helpful for the development of novel diagnostic tools, e.g., liquid biopsy, and novel therapeutic agents, which could be used to overcome TKI resistance in molecularly distinct leukemia subtypes.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sivahari Prasad Gorantla
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
25
|
Xu X, Li Y, Han T, Zhao Y, Wang X, Fu X, Mao H. The hidden dangers of short-term glucocorticoid use in children: A genomic analysis. Int Immunopharmacol 2024; 135:112323. [PMID: 38788448 DOI: 10.1016/j.intimp.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Glucocorticoid (GC) administration has been associated with adverse drug reactions (ADRs) affecting multiple organ systems. While long-term use is widely recognized as a significant independent predictor of ADRs, it is important to note that even short-term use can lead to serious ADRs. The considerable inter-individual variability in ADRs occurrence may be influenced by genetic factors. This study, we present a case of a child who experienced significant weight gain and osteoporosis, following a brief administration of GC. METHODS To comprehensively investigate the underlying mechanisms, we conducted a genomic analysis utilizing the whole exome sequencing (WES) technique. This analysis encompassed the examination of phase I and phase II metabolism, influx transport, efflux transport, and drug targeting. Additionally, a comprehensive analysis was conducted on a cohort of 52,119 children to determine their ABCB1 rs1045642 genotype, and an additional 37,884 children were tested for their CYP3A5 rs776746 genotype. RESULTS The pharmacogenetic analysis unveiled the presence of a high-risk variant in ABCB1 rs1045642 and a slow metabolism variant in CYP3A5 rs776746, both of which have the potential to substantially contribute to ADRs. The findings of this study indicate that the prevalence of ABCB1 rs1045642 CT type among patients was 47.58%, with TT type accounting for 15.69 % and CC type accounting for 36.73 %. Furthermore, the distribution of CYP3A5 rs776746 CC genotype was observed in 50.54 % of individuals, while CT and TT genotypes were present in 41.15 % and 8.31 % of the population respectively. The distribution of ABCB1 and CYP3A5 genotypes among the pediatric population in China displays notable features. Specifically, for the ABCB1 rs1045642 genotype, less than 50 % of children exhibit intermediate metabotypes. Conversely, among children with the CYP3A5 rs776746 genotype, the predominant cause for enzyme activity is the slow metabolic type, accounting for up to 90 % of cases. CONCLUSIONS Consequently, it is imperative to thoroughly evaluate the impact of allele mutation on the effectiveness and safety of glucocorticoid drugs or other medications metabolized by the ABCB1 and CYP3A5, particularly in the context of Chinese pediatric patients.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Immunity, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China; Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Yan Li
- Department of Immunity, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Tongxin Han
- Department of Immunity, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Yiming Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Xiaoling Wang
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | | | - Huawei Mao
- Department of Immunity, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China; Ministry of Education Key Laboratory of Major Diseases in Children, Beijing 100045, China.
| |
Collapse
|
26
|
Nkoy FL, Stone BL, Deering-Rice CE, Zhu A, Lamb JG, Rower JE, Reilly CA. Impact of CYP3A5 Polymorphisms on Pediatric Asthma Outcomes. Int J Mol Sci 2024; 25:6548. [PMID: 38928254 PMCID: PMC11203737 DOI: 10.3390/ijms25126548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Genetic variation among inhaled corticosteroid (ICS)-metabolizing enzymes may affect asthma control, but evidence is limited. This study tested the hypothesis that single-nucleotide polymorphisms (SNPs) in Cytochrome P450 3A5 (CYP3A5) would affect asthma outcomes. Patients aged 2-18 years with persistent asthma were recruited to use the electronic AsthmaTracker (e-AT), a self-monitoring tool that records weekly asthma control, medication use, and asthma outcomes. A subset of patients provided saliva samples for SNP analysis and participated in a pharmacokinetic study. Multivariable regression analysis adjusted for age, sex, race, and ethnicity was used to evaluate the impact of CYP3A5 SNPs on asthma outcomes, including asthma control (measured using the asthma symptom tracker, a modified version of the asthma control test or ACT), exacerbations, and hospital admissions. Plasma corticosteroid and cortisol concentrations post-ICS dosing were also assayed using liquid chromatography-tandem mass spectrometry. Of the 751 patients using the e-AT, 166 (22.1%) provided saliva samples and 16 completed the PK study. The e-AT cohort was 65.1% male, and 89.6% White, 6.0% Native Hawaiian, 1.2% Black, 1.2% Native American, 1.8% of unknown race, and 15.7% Hispanic/Latino; the median age was 8.35 (IQR: 5.51-11.3) years. CYP3A5*3/*3 frequency was 75.8% in White subjects, 50% in Native Hawaiians and 76.9% in Hispanic/Latino subjects. Compared with CYP3A5*3/*3, the CYP3A5*1/*x genotype was associated with reduced weekly asthma control (OR: 0.98; 95% CI: 0.97-0.98; p < 0.001), increased exacerbations (OR: 6.43; 95% CI: 4.56-9.07; p < 0.001), and increased asthma hospitalizations (OR: 1.66; 95% CI: 1.43-1.93; p < 0.001); analysis of 3/*3, *1/*1 and *1/*3 separately showed an allelic copy effect. Finally, PK analysis post-ICS dosing suggested muted changes in cortisol concentrations for patients with the CYP3A5*3/*3 genotype, as opposed to an effect on ICS PK. Detection of CYP3A5*3/3, CYPA35*1/*3, and CYP3A5*1/*1 could impact inhaled steroid treatment strategies for asthma in the future.
Collapse
Affiliation(s)
- Flory L. Nkoy
- Department of Pediatrics, University of Utah School of Medicine, 100 N. Mario Capecchi Drive, Salt Lake City, UT 84113, USA; (F.L.N.); (B.L.S.); (A.Z.)
| | - Bryan L. Stone
- Department of Pediatrics, University of Utah School of Medicine, 100 N. Mario Capecchi Drive, Salt Lake City, UT 84113, USA; (F.L.N.); (B.L.S.); (A.Z.)
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S 2000 E, Room 201 Skaggs Hall, Salt Lake City, UT 84112, USA; (C.E.D.-R.); (J.G.L.); (J.E.R.)
| | - Angela Zhu
- Department of Pediatrics, University of Utah School of Medicine, 100 N. Mario Capecchi Drive, Salt Lake City, UT 84113, USA; (F.L.N.); (B.L.S.); (A.Z.)
| | - John G. Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S 2000 E, Room 201 Skaggs Hall, Salt Lake City, UT 84112, USA; (C.E.D.-R.); (J.G.L.); (J.E.R.)
| | - Joseph E. Rower
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S 2000 E, Room 201 Skaggs Hall, Salt Lake City, UT 84112, USA; (C.E.D.-R.); (J.G.L.); (J.E.R.)
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S 2000 E, Room 201 Skaggs Hall, Salt Lake City, UT 84112, USA; (C.E.D.-R.); (J.G.L.); (J.E.R.)
| |
Collapse
|
27
|
Chen Z, Taubert M, Chen C, Boland J, Dong Q, Bilal M, Dokos C, Wachall B, Wargenau M, Scheidel B, Wiesen MHJ, Schaeffeler E, Tremmel R, Schwab M, Fuhr U. A Semi-Mechanistic Population Pharmacokinetic Model of Noscapine in Healthy Subjects Considering Hepatic First-Pass Extraction and CYP2C9 Genotypes. Drugs R D 2024; 24:187-199. [PMID: 38809387 PMCID: PMC11315837 DOI: 10.1007/s40268-024-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION Noscapine is a commonly used cough suppressant, with ongoing research on its anti-inflammatory and anti-tumor properties. The drug has a pronounced pharmacokinetic variability. OBJECTIVE This evaluation aims to describe the pharmacokinetics of noscapine using a semi-mechanistic population pharmacokinetic model and to identify covariates that could explain inter-individual pharmacokinetic variability. METHODS Forty-eight healthy volunteers (30 men and 18 women, mean age 33 years) were enrolled in a randomized, two-period, two-stage, crossover bioequivalence study of noscapine in two different liquid formulations. Noscapine plasma concentrations following oral administration of noscapine 50 mg were evaluated by a non-compartmental analysis and by a population pharmacokinetic model separately. RESULTS Compared to the reference formulation, the test formulation exhibited ratios (with 94.12% confidence intervals) of 0.784 (0.662-0.929) and 0.827 (0.762-0.925) for peak plasma concentrations and area under the plasma concentration-time curve, respectively. Significant differences in p values (< 0.01) were both observed when comparing peak plasma concentrations and area under the plasma concentration-time curve between CYP2C9 genotype-predicted phenotypes. A three-compartmental model with zero-order absorption and first-order elimination process best described the plasma data. The introduction of a liver compartment was able to describe the profound first-pass effect of noscapine. Total body weight and the CYP2C9 genotype-predicted phenotype were both identified as significant covariates on apparent clearance, which was estimated as 958 ± 548 L/h for extensive metabolizers (CYP2C9*1/*1 and *1/*9), 531 ± 304 L/h for intermediate metabolizers with an activity score of 1.5 (CYP2C9*1/*2), and 343 ± 197 L/h for poor metabolizers and intermediate metabolizers with an activity score of 1.0 (CYP2C9*1/*3, *2/*3, and*3/*3). CONCLUSION The current work is expected to facilitate the future pharmacokinetic/pharmacodynamic development of noscapine. This study was registered prior to starting at "Deutsches Register Klinischer Studien" under registration no. DRKS00017760.
Collapse
Affiliation(s)
- Zhendong Chen
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany.
| | - Max Taubert
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Chunli Chen
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Jana Boland
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Qian Dong
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Muhammad Bilal
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Charalambos Dokos
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Bertil Wachall
- InfectoPharm Arzneimittel und Consilium GmbH, Heppenheim, Germany
| | | | | | - Martin H J Wiesen
- Pharmacology at the Laboratory Diagnostics Centre, Therapeutic Drug Monitoring, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Baden-Württemberg, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Baden-Württemberg, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Baden-Württemberg, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Baden-Württemberg, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Uwe Fuhr
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| |
Collapse
|
28
|
Cheng F, Cui Z, Li Q, Chen S, Li W, Zhang Y. Influence of genetic polymorphisms on imatinib concentration and therapeutic response in patients with chronic-phase chronic myeloid leukemia. Int Immunopharmacol 2024; 133:112090. [PMID: 38640718 DOI: 10.1016/j.intimp.2024.112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Diminished bioavailability of imatinib in leukemic cells contributes to poor clinical response. We examined the impact of genetic polymorphisms of imatinib on the pharmacokinetics and clinical response in 190 patients with chronic myeloid leukaemia (CML). METHODS Single nucleotide polymorphisms were genotyped using pyrophosphate sequencing. Plasma trough levels of imatinib were measured using liquid chromatography-tandem mass spectrometry. RESULTS Patients carrying the TT genotype for ABCB1 (rs1045642, rs2032582, and rs1128503), GG genotype for CYP3A5-rs776746 and AA genotype for ABCG2-rs2231142 polymorphisms showed higher concentration of imatinib. Patients with T allele for ABCB1 (rs1045642, rs2032582, and rs1128503), A allele for ABCG2-rs2231142, and G allele for CYP3A5-rs776746 polymorphisms showed better cytogenetic response and molecular response. In multivariate analysis, carriers of the CYP3A5-rs776746 G allele exhibited higher rates of complete cytogenetic response (CCyR) and major molecular response (MMR). Similarly, patients with the T allele of ABCB1-rs1045642 and rs1128503 demonstrated significantly increased CCyR rates. Patients with the A allele of ABCG2-rs2231142 were associated with higher MMR rates. The AA genotype for CYP3A5-rs776746, and the CC genotype for ABCB1-rs104562, and rs1128503 polymorphisms were associated with a higher risk of imatinib failure. Patients with the G allele for CYP3A5-rs776746 exhibited a higher incidence of anemia, and T allele for ABCB1-rs2032582 demonstrated an increased incidence of diarrhea. CONCLUSIONS Genotyping of ABCB1, ABCG2, and CYP3A5 genes may be considered in the management of patients with CML to tailor therapy and optimize clinical outcomes.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Shi Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| |
Collapse
|
29
|
Yin X, Cicali B, Rodriguez-Vera L, Lukacova V, Cristofoletti R, Schmidt S. Applying Physiologically Based Pharmacokinetic Modeling to Interpret Carbamazepine's Nonlinear Pharmacokinetics and Its Induction Potential on Cytochrome P450 3A4 and Cytochrome P450 2C9 Enzymes. Pharmaceutics 2024; 16:737. [PMID: 38931859 PMCID: PMC11206836 DOI: 10.3390/pharmaceutics16060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Carbamazepine (CBZ) is commonly prescribed for epilepsy and frequently used in polypharmacy. However, concerns arise regarding its ability to induce the metabolism of other drugs, including itself, potentially leading to the undertreatment of co-administered drugs. Additionally, CBZ exhibits nonlinear pharmacokinetics (PK), but the root causes have not been fully studied. This study aims to investigate the mechanisms behind CBZ's nonlinear PK and its induction potential on CYP3A4 and CYP2C9 enzymes. To achieve this, we developed and validated a physiologically based pharmacokinetic (PBPK) parent-metabolite model of CBZ and its active metabolite Carbamazepine-10,11-epoxide in GastroPlus®. The model was utilized for Drug-Drug Interaction (DDI) prediction with CYP3A4 and CYP2C9 victim drugs and to further explore the underlying mechanisms behind CBZ's nonlinear PK. The model accurately recapitulated CBZ plasma PK. Good DDI performance was demonstrated by the prediction of CBZ DDIs with quinidine, dolutegravir, phenytoin, and tolbutamide; however, with midazolam, the predicted/observed DDI AUClast ratio was 0.49 (slightly outside of the two-fold range). CBZ's nonlinear PK can be attributed to its nonlinear metabolism caused by autoinduction, as well as nonlinear absorption due to poor solubility. In further applications, the model can help understand DDI potential when CBZ serves as a CYP3A4 and CYP2C9 inducer.
Collapse
Affiliation(s)
- Xuefen Yin
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | - Brian Cicali
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | - Leyanis Rodriguez-Vera
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | | | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| |
Collapse
|
30
|
Latham BD, Geffert RM, Jackson KD. Kinase Inhibitors FDA Approved 2018-2023: Drug Targets, Metabolic Pathways, and Drug-Induced Toxicities. Drug Metab Dispos 2024; 52:479-492. [PMID: 38286637 PMCID: PMC11114602 DOI: 10.1124/dmd.123.001430] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Small molecule kinase inhibitors are one of the fastest growing classes of drugs, which are approved by the US Food and Drug Administration (FDA) for cancer and noncancer indications. As of September 2023, there were over 70 FDA-approved small molecule kinase inhibitors on the market, 42 of which were approved in the past five years (2018-2023). This minireview discusses recent advances in our understanding of the pharmacology, metabolism, and toxicity profiles of recently approved kinase inhibitors with a central focus on tyrosine kinase inhibitors (TKIs). In this minireview we discuss the most common therapeutic indications and molecular target(s) of kinase inhibitors FDA approved 2018-2023. We also describe unique aspects of the metabolism, bioactivation, and drug-drug interaction (DDI) potential of kinase inhibitors; discuss drug toxicity concerns related to kinase inhibitors, such as drug-induced liver injury; and highlight clinical outcomes and challenges relevant to TKI therapy. Case examples are provided for common TKI targets, metabolism pathways, DDI potential, and risks for serious adverse drug reactions. The minireview concludes with a discussion of perspectives on future research to optimize TKI therapy to maximize efficacy and minimize drug toxicity. SIGNIFICANCE STATEMENT: This minireview highlights important aspects of the clinical pharmacology and toxicology of small molecule kinase inhibitors FDA approved 2018-2023. We describe key advances in the therapeutic indications and molecular targets of TKIs. The major metabolism pathways and toxicity profiles of recently approved TKIs are discussed. Clinically relevant case examples are provided that demonstrate the risk for hepatotoxic drug interactions involving TKIs and coadministered drugs.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Harrison SP, Baumgarten SF, Chollet ME, Stavik B, Bhattacharya A, Almaas R, Sullivan GJ. Parenteral nutrition emulsion inhibits CYP3A4 in an iPSC derived liver organoids testing platform. J Pediatr Gastroenterol Nutr 2024; 78:1047-1058. [PMID: 38529852 DOI: 10.1002/jpn3.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.
Collapse
Affiliation(s)
- Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira F Baumgarten
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria E Chollet
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Benedicte Stavik
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Anindita Bhattacharya
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Wiss FM, Allemann SS, Meyer zu Schwabedissen HE, Stäuble CK, Mikoteit T, Lampert ML. Recurrent high creatine kinase levels under clozapine treatment - a case report assessing a suspected adverse drug reaction. Front Psychiatry 2024; 15:1397876. [PMID: 38742124 PMCID: PMC11089194 DOI: 10.3389/fpsyt.2024.1397876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Suspected adverse drug reactions (ADRs) during treatment with clozapine often prompt therapeutic drug monitoring (TDM) in clinical practice. Currently, there is no official recommendation for pharmacogenetic (PGx) testing in the context of clozapine therapy. In this case report, we demonstrate and discuss the challenges of interpreting PGx and TDM results highlighting the possibilities and limitations of both analytical methods. A 36-year-old male patient with catatonic schizophrenia was treated with clozapine. He experienced multiple hospitalizations due to elevated creatine kinase (CK) levels (up to 9000 U/L, reference range: 30-200 U/L). With no other medical explanation found, physicians suspected clozapine-induced ADRs. However, plasma levels of clozapine were consistently low or subtherapeutic upon admission, prompting us to conduct a PGx analysis and retrospectively review the patient's TDM data, progress notes, and discharge reports. We investigated two possible hypotheses to explain the symptoms despite low clozapine plasma levels: Hypothesis i. suggested the formation and accumulation of a reactive intermediate metabolite due to increased activity in cytochrome P450 3A5 and reduced activity in glutathione S-transferases 1, leading to myotoxicity. Hypothesis ii. proposed under-treatment with clozapine, resulting in ineffective clozapine levels, leading to a rebound effect with increased catatonic symptoms and CK levels. After considering both data sources (PGx and TDM), hypothesis ii. appeared more plausible. By comprehensively assessing all available TDM measurements and examining them in temporal correlation with the drug dose and clinical symptoms, we observed that CK levels normalized when clozapine plasma levels were raised to the therapeutic range. This was achieved through hospitalization and closely monitored clozapine intake. Therefore, we concluded that the symptoms were not an ADR due to altered clozapine metabolism but rather the result of under-treatment. Interpreting TDM and PGx results requires caution. Relying solely on isolated PGx or single TDM values can result in misinterpretation of drug reactions. We recommend considering the comprehensive patient history, including treatment, dosages, laboratory values, clinic visits, and medication adherence.
Collapse
Affiliation(s)
- Florine M. Wiss
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler, Olten, Switzerland
| | - Samuel S. Allemann
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Céline K. Stäuble
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler, Olten, Switzerland
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Thorsten Mikoteit
- Psychiatric Services Solothurn, Solothurner Spitäler and Department of Medicine, University of Basel, Solothurn, Switzerland
| | - Markus L. Lampert
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler, Olten, Switzerland
| |
Collapse
|
33
|
Marco DN, Molina M, Guio AM, Julian J, Fortuna V, Fabregat-Zaragoza VL, Salas MQ, Monge-Escartín I, Riu-Viladoms G, Carcelero E, Roma JR, Llobet N, Arcarons J, Suárez-Lledó M, Rosiñol L, Fernández-Avilés F, Rovira M, Brunet M, Martínez C. Effects of CYP3A5 Genotype on Tacrolimus Pharmacokinetics and Graft-versus-Host Disease Incidence in Allogeneic Hematopoietic Stem Cell Transplantation. Pharmaceuticals (Basel) 2024; 17:553. [PMID: 38794124 PMCID: PMC11124388 DOI: 10.3390/ph17050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Tacrolimus (Tac) is pivotal in preventing acute graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (alloHSCT). It has been reported that genetic factors, including CYP3A5*3 and CYP3A4*22 polymorphisms, have an impact on Tac metabolism, dose requirement, and response to Tac. There is limited information regarding this topic in alloHSCT. The CYP3A5 genotype and a low Tac trough concentration/dose ratio (Tac C0/D ratio) can be used to identify fast metabolizers and predict the required Tac dose to achieve target concentrations earlier. We examined 62 Caucasian alloHSCT recipients with a fast metabolizer phenotype (C0/dose ratio ≤ 1.5 ng/mL/mg), assessing CYP3A5 genotypes and acute GVHD incidence. Forty-nine patients (79%) were poor metabolizers (2 copies of the variant *3 allele) and 13 (21%) were CYP3A5 expressers (CYP3A5*1/*1 or CYP3A5*1/*3 genotypes). CYP3A5 expressers had lower C0 at 48 h (3.7 vs. 6.2 ng/mL, p = 0.03) and at 7 days (8.6 vs. 11.4 ng/mL, p = 0.04) after Tac initiation, tended to take longer to reach Tac therapeutic range (11.8 vs. 8.9 days, p = 0.16), and had higher incidence of both global (92.3% vs. 38.8%, p < 0.001) and grade II-IV acute GVHD (61.5% vs. 24.5%, p = 0.008). These results support the adoption of preemptive pharmacogenetic testing to better predict individual Tac initial dose, helping to achieve the therapeutic range and reducing the risk of acute GVHD earlier.
Collapse
Affiliation(s)
- Daniel N. Marco
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Mònica Molina
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Ana-María Guio
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Judit Julian
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, IDIBAPS, CIBERehd, Hospital Clínic, 08036 Barcelona, Spain; (J.J.); (V.F.); (M.B.)
| | - Virginia Fortuna
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, IDIBAPS, CIBERehd, Hospital Clínic, 08036 Barcelona, Spain; (J.J.); (V.F.); (M.B.)
| | | | - María-Queralt Salas
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Inés Monge-Escartín
- Department of Pharmacy, Pharmacy Service, Hospital Clínic, 08036 Barcelona, Spain; (I.M.-E.); (G.R.-V.); (E.C.); (J.R.R.)
| | - Gisela Riu-Viladoms
- Department of Pharmacy, Pharmacy Service, Hospital Clínic, 08036 Barcelona, Spain; (I.M.-E.); (G.R.-V.); (E.C.); (J.R.R.)
| | - Esther Carcelero
- Department of Pharmacy, Pharmacy Service, Hospital Clínic, 08036 Barcelona, Spain; (I.M.-E.); (G.R.-V.); (E.C.); (J.R.R.)
| | - Joan Ramón Roma
- Department of Pharmacy, Pharmacy Service, Hospital Clínic, 08036 Barcelona, Spain; (I.M.-E.); (G.R.-V.); (E.C.); (J.R.R.)
| | - Noemí Llobet
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Jordi Arcarons
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - María Suárez-Lledó
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Laura Rosiñol
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Francesc Fernández-Avilés
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Montserrat Rovira
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, IDIBAPS, CIBERehd, Hospital Clínic, 08036 Barcelona, Spain; (J.J.); (V.F.); (M.B.)
| | - Carmen Martínez
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Hematological Diseases, Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (D.N.M.); (M.M.); (A.-M.G.); (M.-Q.S.); (N.L.); (J.A.); (M.S.-L.); (L.R.); (F.F.-A.); (M.R.)
| |
Collapse
|
34
|
Zhang Y, Shen B, Li Y, Zong H, Zhang X, Cao X, Liu F, Li Y. Drug-drug interaction between tacrolimus and caspofungin in Chinese kidney transplant patients with different CYP3A5 genotypes. Ther Adv Drug Saf 2024; 15:20420986241243165. [PMID: 38646424 PMCID: PMC11027596 DOI: 10.1177/20420986241243165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
Background The effect of drug-drug interaction between tacrolimus and caspofungin on the pharmacokinetics of tacrolimus in different CYP3A5 genotypes has not been reported in previous studies. Objectives To investigate the effect of caspofungin on the blood concentration and dose of tacrolimus under different CYP3A5 genotypes. Design We conducted a retrospective cohort study in The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital from January 2015 to December 2022. All kidney transplant patients were divided into the combination or non-combination group based on whether tacrolimus was combined with caspofungin or not. Patients were subdivided into CYP3A5 expressers (CYP3A5*1/*1 or CYP3A5*1/*3) and CYP3A5 non-expressers (CYP3A5*3/*3). Methods Data from the combination and the non-combination groups were matched with propensity scores to reduce confounding by SPSS 22.0. A total of 200 kidney transplant patients receiving tacrolimus combined with caspofungin or not were enrolled in this study. Statistical analysis was conducted on the dose-corrected trough concentrations (C0/D) and dose requirements (D) of tacrolimus using independent sample two-sided t-test and nonparametric tests to investigate the impact on patients with different. Results In this study, the C0/D values of tacrolimus were not significantly different between the combination and non-combination groups (p = 0.054). For CYP3A5 expressers, there was no significant difference in tacrolimus C0/D or D values between the combination and non-combination groups (p = 0.359; p = 0.851). In CYP3A5 nonexpressers, the C0/D values of tacrolimus were significantly lower in the combination than in the non-combination groups (p = 0.039), and the required daily dose of tacrolimus was increased by 11.11% in the combination group. Conclusion Co-administration of caspofungin reduced tacrolimus blood levels and elevated the required daily dose of tacrolimus. In CYP3A5 non-expressers, co-administration of caspofungin had a significant effect on tacrolimus C0/D values. An approximate 10% increase in the weight-adjusted daily dose of tacrolimus in CYP3A5 non-expressers is recommended to ensure the safety of tacrolimus administration.
Collapse
Affiliation(s)
- Yundi Zhang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Yue Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Huiying Zong
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiaoming Zhang
- Urinary Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohong Cao
- Urinary Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fengxi Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jingshi Road, Jinan City, Shandong Province 250014, China
| |
Collapse
|
35
|
Zhang D, Bai J. Severe Vincristine-Induced Peripheral Neuropathic Weakness in Both Lower Limbs in an Asian Adolescent with CYP3A4 rs2740574 TT Genotype. Pharmgenomics Pers Med 2024; 17:125-131. [PMID: 38645702 PMCID: PMC11032159 DOI: 10.2147/pgpm.s460878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Background Vincristine (VCR)-induced peripheral neuropathy (VIPN) is a common adverse reaction during cancer treatment, typically characterized by numbness and paresthesias. This study aimed to report a rare case of VIPN with an atypical genotype, manifesting as grade 3 weakness of the lower limbs. Case Presentation A 19-year-old man, diagnosed with alveolar rhabdomyosarcoma for 8 months, was transferred to our hospital for further treatment after the failure of first-line treatment. He developed severe long-standing weakness in both lower limbs and could not walk after four sessions of second-line chemotherapy. The diagnosis of VIPN was confirmed based on the patient's physical examination, imaging studies, electromyogram results, and treatment history. Furthermore, the pharmacogenetic analysis indicated that the patient harbored CYP3A4 rs2740574 TT genotypes. Conclusion We have reported for the first time a VIPN patient whose main clinical manifestation is severe weakness in both lower limbs, accompanied by the CYP3A4 rs2740574 TT phenotype. This case may provide new information on the phenotypic features of VIPN, and may help to better understand the disease pathogenesis and contributing factors.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, 441000, People’s Republic of China
| | - Jie Bai
- Department of Neurology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, People’s Republic of China
| |
Collapse
|
36
|
Rodríguez-Alcolado L, Navarro P, Arias-González L, Grueso-Navarro E, Lucendo AJ, Laserna-Mendieta EJ. Proton-Pump Inhibitors in Eosinophilic Esophagitis: A Review Focused on the Role of Pharmacogenetics. Pharmaceutics 2024; 16:487. [PMID: 38675148 PMCID: PMC11054109 DOI: 10.3390/pharmaceutics16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Proton-pump inhibitors (PPIs) are the most administered first-line treatment for eosinophilic esophagitis (EoE). However, only around half of EoE patients respond histologically to a double dosage of PPI. In addition, 70% of responders maintain EoE in remission after tapering the PPI dose. In order to avoid endoscopy with biopsies-the only accurate method of assessing PPI response-efforts have been made to identify PPI responder patients. The clinical or endoscopic features and biomarkers evaluated so far, however, have not proven to be sufficient in predicting PPI response. Although new approaches based on omics technologies have uncovered promising biomarkers, the specialized and complex procedures required are difficult to implement in clinical settings. Alternatively, PPI pharmacogenetics based on identifying variations in CYP2C19 and STAT6 genes have shown promising results in EoE, and could easily be performed in most laboratories. Other genetic variations have also been associated with PPI response and may explain those cases not related to CYP2C19 or STAT6. Here, we provide an overview of PPI treatment in EoE and evidence of how genetic variations in CYP2C19 and other genes could affect PPI effectiveness, and also discuss studies evaluating the role of pharmacogenetics in predicting PPI response in patients with EoE.
Collapse
Affiliation(s)
- Leticia Rodríguez-Alcolado
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Department of Surgery, Medical and Social Sciences, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Pilar Navarro
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Laura Arias-González
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Elena Grueso-Navarro
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Alfredo J. Lucendo
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Emilio J. Laserna-Mendieta
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
37
|
Oda A, Suzuki Y, Sato H, Koyama T, Nakatochi M, Momozawa Y, Tanaka R, Ono H, Tatsuta R, Ando T, Shin T, Wakai K, Matsuo K, Itoh H, Ohno K. Evaluation of the usefulness of plasma 4β-hydroxycholesterol concentration normalized by 4α-hydroxycholesterol for accurate CYP3A phenotyping. Clin Transl Sci 2024; 17:e13768. [PMID: 38465776 PMCID: PMC10926057 DOI: 10.1111/cts.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Plasma 4β-hydroxycholesterol (OHC) has drawn attention as an endogenous substrate indicating CYP3A activity. Plasma 4β-OHC is produced by hydroxylation by CYP3A4 and CYP3A5 and by cholesterol autoxidation. Plasma 4α-OHC is produced by cholesterol autoxidation and not affected by CYP3A activity. This study aimed to evaluate the usefulness of plasma 4β-OHC concentration minus plasma 4α-OHC concentration (4β-OHC-4α-OHC) compared with plasma 4β-OHC concentration and 4β-OHC/total cholesterol (TC) ratio in cross-sectional evaluation of CYP3A activity. Four hundred sixteen general adults were divided into 191 CYP3A5*1 carriers and 225 non-carriers. Twenty-six patients with chronic kidney disease (CKD) with CYP3A5*1 allele were divided into 14 with CKD stage 3 and 12 with stage 4-5D. Area under the receiver operating characteristic curve (AUC) for the three indices were evaluated for predicting presence or absence of CYP3A5*1 allele in general adults, and for predicting CKD stage 3 or stage 4-5D in patients with CKD. There was no significant difference between AUC of 4β-OHC-4α-OHC and AUC of plasma 4β-OHC concentration in general adults and in patients with CKD. AUC of 4β-OHC-4α-OHC was significantly smaller than that of 4β-OHC/TC ratio in general adults (p = 0.025), but the two indices did not differ in patients with CKD. In conclusion, in the present cross-sectional evaluation of CYP3A activity in general adults and in patients with CKD with CYP3A5*1 allele, the usefulness of 4β-OHC-4α-OHC was not different from plasma 4β-OHC concentration or 4β-OHC/TC ratio. However, because of the limitations in study design and subject selection of this research, these findings require verification in further studies.
Collapse
Affiliation(s)
- Ayako Oda
- Department of Medication Use Analysis and Clinical ResearchMeiji Pharmaceutical UniversityKiyose, TokyoJapan
| | - Yosuke Suzuki
- Department of Medication Use Analysis and Clinical ResearchMeiji Pharmaceutical UniversityKiyose, TokyoJapan
| | - Haruki Sato
- Department of Medication Use Analysis and Clinical ResearchMeiji Pharmaceutical UniversityKiyose, TokyoJapan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical SciencesYokohamaKanagawaJapan
| | - Ryota Tanaka
- Department of Clinical PharmacyOita University HospitalYufu‐shiOitaJapan
| | - Hiroyuki Ono
- Department of Clinical PharmacyOita University HospitalYufu‐shiOitaJapan
| | - Ryosuke Tatsuta
- Department of Clinical PharmacyOita University HospitalYufu‐shiOitaJapan
| | - Tadasuke Ando
- Department of Urology, Faculty of MedicineOita UniversityYufu‐shiOitaJapan
| | - Toshitaka Shin
- Department of Urology, Faculty of MedicineOita UniversityYufu‐shiOitaJapan
| | - Kenji Wakai
- Department of Preventive MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and PreventionAichi Cancer CenterNagoyaJapan
- Department of Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroki Itoh
- Department of Clinical PharmacyOita University HospitalYufu‐shiOitaJapan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical ResearchMeiji Pharmaceutical UniversityKiyose, TokyoJapan
| |
Collapse
|
38
|
Suarez-Kurtz G, Struchiner CJ. Pharmacogenomic implications of the differential distribution of CYP3A5 metabolic phenotypes among Latin American populations. Pharmacogenomics 2024; 25:187-195. [PMID: 38506326 DOI: 10.2217/pgs-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
This study shows that the distribution of CYP3A5 alleles (*1, *3, *6 and *7) and genotype-predicted CYP3A5 phenotypes vary significantly across Latin American cohorts (Brazilians and the One Thousand Genomes Admixed American superpopulation), as well as among subcohorts comprising individuals with the highest proportions of Native, European or sub-Saharan African ancestry. Differences in biogeographical ancestry across the study groups are the likely explanation for these results. The differential distribution of CYP3A5 phenotypes has major pharmacogenomic implications, affecting the proportion of individuals carrying high risk CYP3A5 phenotypes for the immunosuppressant tacrolimus and the number of patients that would need to be genotyped to prevent acute rejection in kidney transplant recipients under tacrolimus treatment.
Collapse
Affiliation(s)
- Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | |
Collapse
|
39
|
Cheng F, Wang H, Li W, Zhang Y. Clinical pharmacokinetics and drug-drug interactions of tyrosine-kinase inhibitors in chronic myeloid leukemia: A clinical perspective. Crit Rev Oncol Hematol 2024; 195:104258. [PMID: 38307392 DOI: 10.1016/j.critrevonc.2024.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
In the past decade, numerous tyrosine kinase inhibitors (TKIs) have been introduced in the treatment of chronic myeloid leukemia. Given the significant interpatient variability in TKIs pharmacokinetics, potential drug-drug interactions (DDIs) can greatly impact patient therapy. This review aims to discuss the pharmacokinetic characteristics of TKIs, specifically focusing on their absorption, distribution, metabolism, and excretion profiles. Additionally, it provides a comprehensive overview of the utilization of TKIs in special populations such as the elderly, children, and patients with liver or kidney dysfunction. We also highlight known or suspected DDIs between TKIs and other drugs, highlighting various clinically relevant interactions. Moreover, specific recommendations are provided to guide haemato-oncologists, oncologists, and clinical pharmacists in managing DDIs during TKI treatment in daily clinical practice.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, the Central Hospital of Wuhan, 430014, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| |
Collapse
|
40
|
Amdani S, Gossett JG, Chepp V, Urschel S, Asante-Korang A, Dalton JE. Review on clinician bias and its impact on racial and socioeconomic disparities in pediatric heart transplantation. Pediatr Transplant 2024; 28:e14704. [PMID: 38419391 DOI: 10.1111/petr.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
This expert review seeks to highlight implicit bias in health care, transplant medicine, and pediatric heart transplantation to focus attention on the role these biases may play in the racial/ethnic and socioeconomic disparities noted in pediatric heart transplantation. This review breaks down the transplant decision making process to highlight points at which implicit bias may affect outcomes and discuss how the science of human decision making may help understand these complex processes.
Collapse
Affiliation(s)
- Shahnawaz Amdani
- Children's Institute Department of Heart, Vascular & Thoracic, Division of Cardiology & Cardiovascular Medicine, Cleveland, Ohio, USA
| | - Jeffrey G Gossett
- Northwell, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Valerie Chepp
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Simon Urschel
- Division of Pediatric Cardiology at the University of Alberta, Edmonton, Alberta, Canada
| | - Alfred Asante-Korang
- Division of Pediatric Cardiology, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - Jarrod E Dalton
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
41
|
Teng H, Hu X, Liu N. HDL-C and creatinine levels at 1 month are associated with patient 12-month survival rate after kidney transplantation. Pharmacogenet Genomics 2024; 34:33-42. [PMID: 37906625 DOI: 10.1097/fpc.0000000000000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
BACKGROUND Many factors affect the survival rate after kidney transplantation, including laboratory tests, medicine therapy and pharmacogenomics. Tacrolimus, mycophenolate mofetil and methylprednisolone were used as an immunosuppressive regimen after kidney transplantation. The primary goal of this study was to investigate the factors affecting the tacrolimus concentrations and mycophenolate mofetil area under the curve of mycophenolic acid AUC-MPA. Secondary goals were to study the association between perioperative period laboratory tests, medicine therapy, CYP3A5 genetic polymorphisms, and survival rate in kidney renal transplant patients. METHODS A total of 303 patients aged above 18 years were enrolled in this study. Their clinical characteristics, laboratory tests, and medicine therapy regimens were collected. We followed the patients for survival for 1 year after kidney transplantation. RESULTS Multivariable logistic analyses reveal that age greater than 50 years, and the CY3A5 *3*3 genotype were independently, positively, and significantly related to tacrolimus C/D ratio at 7 days. At 1 month of follow-up, only CYP3A5 *3*3 was associated with tacrolimus C/D ratio. Basiliximab, Imipenem and cilastatin sodium, sex were associated with mycophenolate mofetil AUC-MPA at 7 days. In the COX regression analysis, a high-density lipoprotein cholesterol level≥1 mmol/L was identified as a positive independent risk factors for the survival rate, while a creatinine level ≥200 μmol/L was a negatively independent risk factors for survival rate. CONCLUSION These results suggest that age, genes, and drug-drug interaction can affect the concentration of tacrolimus.
Collapse
Affiliation(s)
- Haolin Teng
- Department of Urology, The First Hospital of Jilin University
| | - Xinyuan Hu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Nian Liu
- Department of Urology, The First Hospital of Jilin University
| |
Collapse
|
42
|
Ebid AHI, Ismail DA, Lotfy NM, Mahmoud MA, El-Sharkawy M. Effect of CYP3A4*22, CYP3A5*3 and POR*28 genetic polymorphisms on calcineurin inhibitors dose requirements in early phase renal transplant patients. Pharmacogenet Genomics 2024; 34:43-52. [PMID: 38050720 DOI: 10.1097/fpc.0000000000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
OBJECTIVE This study aimed to investigate the combined effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on tacrolimus and cyclosporine dose requirements. METHODS One hundred thirty renal transplant patients placed on either tacrolimus or cyclosporine were recruited, where the effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on their dose requirements were studied at days 14, 30, and 90 post-transplantations. RESULTS The POR*28 allele frequency in the studied population was 29.61%. The tacrolimus dose-adjusted trough concentration ratio (C0/D) was significantly lower in the fast metabolizers group ( CYP3A5*1/POR*28(CT/TT ) carriers) than in the poor metabolizers group ( CYP3A5*3/*3/CYP3A4*22 carriers) throughout the study (14, 30, and 90 days) ( P = 0.001, <0.001, and 0.003, respectively). Meanwhile, there was no significant effect of this gene combination on cyclosporine C0/D. CONCLUSION Combining the CYP3A5*3, POR*28 , and CYP3A4*22 genotypes can have a significant effect on early tacrolimus dose requirements determination and adjustments. However, it does not have such influence on cyclosporine dose requirements.
Collapse
Affiliation(s)
| | - Dina A Ismail
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University
| | - Neama M Lotfy
- Department of Technology of Medical Laboratory, Faculty of Applied Health Sciences Technology, Badr University
| | - Mohamed A Mahmoud
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University
| | - Magdy El-Sharkawy
- Department of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
43
|
Padmapriyadarsini C, Szumowski JD, Akbar N, Shanmugasundaram P, Jain A, Bathragiri M, Pattnaik M, Turuk J, Karunaianantham R, Balakrishnan S, Pati S, Kumar AH, Rathore MK, Raja J, Naidu KR, Horn J, Whitworth L, Sewell R, Ramakrishnan L, Swaminathan S, Edelstein PH. A Dose-Finding Study to Guide Use of Verapamil as an Adjunctive Therapy in Tuberculosis. Clin Pharmacol Ther 2024; 115:324-332. [PMID: 37983978 PMCID: PMC7615557 DOI: 10.1002/cpt.3108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Induction of mycobacterial efflux pumps is a cause of Mycobacterium tuberculosis (Mtb) drug tolerance, a barrier to shortening antitubercular treatment. Verapamil inhibits Mtb efflux pumps that mediate tolerance to rifampin, a cornerstone of tuberculosis (TB) treatment. Verapamil's mycobacterial efflux pump inhibition also limits Mtb growth in macrophages in the absence of antibiotic treatment. These findings suggest that verapamil could be used as an adjunctive therapy for TB treatment shortening. However, verapamil is rapidly and substantially metabolized when co-administered with rifampin. We determined in a dose-escalation clinical trial of persons with pulmonary TB that rifampin-induced clearance of verapamil can be countered without toxicity by the administration of larger than usual doses of verapamil. An oral dosage of 360 mg sustained-release (SR) verapamil given every 12 hours concomitantly with rifampin achieved median verapamil exposures of 903.1 ng.h/mL (area under the curve (AUC)0-12 h ) in the 18 participants receiving this highest studied verapamil dose; these AUC findings are similar to those in persons receiving daily doses of 240 mg verapamil SR but not rifampin. Moreover, norverapamil:verapamil, R:S verapamil, and R:S norverapamil AUC ratios were all significantly greater than those of historical controls receiving SR verapamil in the absence of rifampin. Thus, rifampin administration favors the less-cardioactive verapamil metabolites and enantiomers that retain similar Mtb efflux inhibitory activity to verapamil, increasing overall benefit. Finally, rifampin exposures were 50% greater after verapamil administration, which may also be advantageous. Our findings suggest that a higher dosage of verapamil can be safely used as adjunctive treatment in rifampin-containing treatment regimens.
Collapse
Affiliation(s)
| | - John D. Szumowski
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, USA
| | - Nabila Akbar
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Anilkumar Jain
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | - John Horn
- Department of Pharmacy, University of Washington, Seattle, USA
| | - Laura Whitworth
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Paul H. Edelstein
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
44
|
Hoste E, Haufroid V, Deldicque L, Balligand JL, Elens L. Atorvastatin-associated myotoxicity: A toxicokinetic review of pharmacogenetic associations to evaluate the feasibility of precision pharmacotherapy. Clin Biochem 2024; 124:110707. [PMID: 38182100 DOI: 10.1016/j.clinbiochem.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Atorvastatin (ATV) and other statins are highly effective in reducing cholesterol levels. However, in some patients, the development of drug-associated muscle side effects remains an issue as it compromises the adherence to treatment. Since the toxicity is dose-dependent, exploring factors modulating pharmacokinetics (PK) appears fundamental. The purpose of this review aims at reporting the current state of knowledge about the singular genetic susceptibilities influencing the risk of developing ATV muscle adverse events through PK modulations. Multiple single nucleotide polymorphisms (SNP) in efflux (ABCB1, ABCC1, ABCC2, ABCC4 and ABCG2) and influx (SLCO1B1, SLCO1B3 and SLCO2B1) transporters have been explored for their association with ATV PK modulation or with statin-related myotoxicities (SRM) development. The most convincing pharmacogenetic association with ATV remains the influence of the rs4149056 (c.521 T > C) in SLCO1B1 on ATV PK and pharmacodynamics. This SNP has been robustly associated with increased ATV systemic exposure and consequently, an increased risk of SRM. Additionally, the SNP rs2231142 (c.421C > A) in ABCG2 has also been associated with increased drug exposure and higher risk of SRM occurrence. SLCO1B1 and ABCG2 pharmacogenetic associations highlight that modulation of ATV systemic exposure is important to explain the risk of developing SRM. However, some novel observations credit the hypothesis that additional genes (e.g. SLCO2B1 or ABCC1) might be important for explaining local PK modulations within the muscle tissue, indicating that studying the local PK directly at the skeletal muscle level might pave the way for additional understanding.
Collapse
Affiliation(s)
- Emilia Hoste
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laure Elens
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
45
|
Zhai Q, Moes DJAR, van Gelder T, van der Lee M, Sanders J, Bemelman FJ, de Fijter JW, Klein K, Schwab M, Swen JJ. The effect of genetic variants in the transcription factor TSPYL family on the CYP3A4 mediated cyclosporine metabolism in kidney transplant patients. Clin Transl Sci 2024; 17:e13729. [PMID: 38380703 PMCID: PMC10880038 DOI: 10.1111/cts.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
CYP3A4 activity shows considerable interindividual variability. Although studies indicate 60%-80% is heritable, common single nucleotide variants (SNVs) in CYP3A4 together only explain ~10%. Transcriptional factors, such as the testis-specific Y-encoded-like proteins (TSPYLs) family, have been reported to regulate the expression of CYP enzymes including CYP3A4 in vitro. Here, we investigated the effect of genetic variants in TSPYL on CYP3A4 activity using data from a clinical study and a human liver bank. Five SNVs (rs3828743, rs10223646, rs6909133, rs1204807, and rs1204811) in TSPYL were selected because of a reported effect on CYP3A4 expression in vitro or suggested clinical effect. For the clinical study, whole blood concentrations, clinical data, and DNA were available from 295 kidney transplant recipients participating in the prospective MECANO study. A multivariate pharmacokinetic model adjusted for body weight, steroid treatment, and CYP3A4 genotype was used to assess the effect of the genetic variants on cyclosporine clearance. In multivariate analysis, homozygous carriers of rs3828743 had a 18% lower cyclosporin clearance compared to the wild-type and heterozygous patients (28.72 vs. 35.03 L/h, p = 0.018) indicating a lower CYP3A4 activity and an opposite direction of effect compared to the previously reported increased CYP3A4 expression. To validate, we tested associations between rs3828743 and CYP3A4 mRNA and protein expression as well as enzyme activity with data from a liver bank (n = 150). No association with any of these end points was observed. In conclusion, the totality of evidence is not in support of a significant role for TSPYL SNV rs3828743 in explaining variability in CYP3A4 activity.
Collapse
Affiliation(s)
- Qinglian Zhai
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike van der Lee
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jan‐Stephan Sanders
- Department of NephrologyUniversity Medical Center GroningenGroningenThe Netherlands
| | | | | | - Kathrin Klein
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Departments of Clinical Pharmacology, and Pharmacy and BiochemistryUniversity of TübingenTübingenGermany
| | - Matthias Schwab
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Departments of Clinical Pharmacology, and Pharmacy and BiochemistryUniversity of TübingenTübingenGermany
| | - Jesse J. Swen
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
46
|
Abderahmene A, Khalij Y, Moussa A, Ammar M, Ellouz A, Amor D, Abbes H, Ganouni MR, Sahtout W, Chouchene S, Omezzine A, Zellama D, Bouslama A. The pharmacogenetics of tacrolimus in renal transplant patients: association with tremors, new-onset diabetes and other clinical events. THE PHARMACOGENOMICS JOURNAL 2024; 24:3. [PMID: 38253626 DOI: 10.1038/s41397-024-00323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Our study is the first study to investigate the effect of SNPs in CYP3A5, CYP3A4, ABCB1 and POR genes on the incidence of tremors, nephrotoxicity, and diabetes mellitus. A total of 223 renal transplant patients receiving tacrolimus and mycophenolate mofetil (MMF) were recruited. Both adults and children patients participated in the study. Genotyping was performed using PROFLEX-PCR followed by RFLP. MPA and tacrolimus plasma concentrations were measured by immunoassay. The AUC0-12h of MMF was estimated by a Bayesian method. We found a statistically significant association between the CYP3A5*3 and CYP3A4*1B genotypes and the tacrolimus exposure. We found a lower occurrence of nephrotoxicity (p = 0.03), tremor (p = 0.01), and new-onset diabetes (p = 0.002) associated with CYP3A5*1 allele. The CYP3A4*1B allele was significantly associated with a lower occurrence of new-onset diabetes (p = 0.026). The CYP3A5*1 allele was significantly associated with an increased risk of acute and chronic rejection (p = 0.03 and p < 0.001, respectively). Our results support the usefulness of tacrolimus pharmacokinetics in pre-kidney transplant assessments.
Collapse
Affiliation(s)
- Amani Abderahmene
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia.
| | - Yassine Khalij
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Amira Moussa
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Meriam Ammar
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Amel Ellouz
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Dorra Amor
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Houwaida Abbes
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Mohamed Rayen Ganouni
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Wissal Sahtout
- Nephrology Department, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
| | - Saoussen Chouchene
- Hematology Department, Fattouma Bourguiba University Hospital, 5000, Monastir, Tunisia
| | - Asma Omezzine
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Dorsaf Zellama
- Nephrology Department, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| |
Collapse
|
47
|
Li Y, Kazuki Y, Drabison T, Kobayashi K, Fujita KI, Xu Y, Jin Y, Ahmed E, Li J, Eisenmann ED, Baker SD, Cavaletti G, Sparreboom A, Hu S. Vincristine Disposition and Neurotoxicity Are Unchanged in Humanized CYP3A5 Mice. Drug Metab Dispos 2024; 52:80-85. [PMID: 38071551 PMCID: PMC10801630 DOI: 10.1124/dmd.123.001466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Previous studies have suggested that the incidence of vincristine-induced peripheral neuropathy (VIPN) is potentially linked with cytochrome P450 (CYP)3A5, a polymorphic enzyme that metabolizes vincristine in vitro, and with concurrent use of azole antifungals such as ketoconazole. The assumed mechanism for these interactions is through modulation of CYP3A-mediated metabolism, leading to decreased vincristine clearance and increased susceptibility to VIPN. Given the controversy surrounding the contribution of these mechanisms, we directly tested these hypotheses in genetically engineered mouse models with a deficiency of the entire murine Cyp3a locus [Cyp3a(-/-) mice] and in humanized transgenic animals with hepatic expression of functional and nonfunctional human CYP3A5 variants. Compared with wild-type mice, the systemic exposure to vincristine was increased by only 1.15-fold (95% confidence interval, 0.84-1.58) in Cyp3a(-/-) mice, suggesting that the clearance of vincristine in mice is largely independent of hepatic Cyp3a function. In line with these observations, we found that Cyp3a deficiency or pretreatment with the CYP3A inhibitors ketoconazole or nilotinib did not influence the severity and time course of VIPN and that exposure to vincristine was not substantially altered in humanized CYP3A5*3 mice or humanized CYP3A5*1 mice compared with Cyp3a(-/-) mice. Our study suggests that the contribution of CYP3A5-mediated metabolism to vincristine elimination and the associated drug-drug interaction potential is limited and that plasma levels of vincristine are unlikely to be strongly predictive of VIPN. SIGNIFICANCE STATEMENT: The current study suggests that CYP3A5 genotype status does not substantially influence vincristine disposition and neurotoxicity in translationally relevant murine models. These findings raise concerns about the causality of previously reported relationships between variant CYP3A5 genotypes or concomitant azole use with the incidence of vincristine neurotoxicity.
Collapse
Affiliation(s)
- Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Yasuhiro Kazuki
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Kaoru Kobayashi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Ken-Ichi Fujita
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Eman Ahmed
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Eric D Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Guido Cavaletti
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| |
Collapse
|
48
|
Seligson ND, Zhang X, Zemanek MC, Johnson JA, VanGundy Z, Wang D, Phelps MA, Roddy J, Hofmeister CC, Li J, Poi MJ. CYP3A5 influences oral tacrolimus pharmacokinetics and timing of acute kidney injury following allogeneic hematopoietic stem cell transplantation. Front Pharmacol 2024; 14:1334440. [PMID: 38259277 PMCID: PMC10800424 DOI: 10.3389/fphar.2023.1334440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Polymorphisms in genes responsible for the metabolism and transport of tacrolimus have been demonstrated to influence clinical outcomes for patients following allogeneic hematologic stem cell transplant (allo-HSCT). However, the clinical impact of germline polymorphisms specifically for oral formulations of tacrolimus is not fully described. Methods: To investigate the clinical impact of genetic polymorphisms in CYP3A4, CYP3A5, and ABCB1 on oral tacrolimus pharmacokinetics and clinical outcomes, we prospectively enrolled 103 adult patients receiving oral tacrolimus for the prevention of graft-versus-host disease (GVHD) following allo-HSCT. Patients were followed in the inpatient and outpatient phase of care for the first 100 days of tacrolimus therapy. Patients were genotyped for CYP3A5 *3 (rs776746), CYP3A4 *1B (rs2740574), ABCB1 exon 12 (rs1128503), ABCB1 exon 21 (rs2032582), ABCB1 exon 26 (rs1045642). Results: Expression of CYP3A5 *1 was highly correlated with tacrolimus pharmacokinetics in the inpatient phase of care (p < 0.001) and throughout the entirety of the study period (p < 0.001). Additionally, Expression of CYP3A5 *1 was associated with decreased risk of developing AKI as an inpatient (p = 0.06). Variants in ABCB1 were not associated with tacrolimus pharmacokinetics in this study. We were unable to discern an independent effect of CYP3A4 *1B or *22 in this population. Conclusion: Expression of CYP3A5 *1 is highly influential on the pharmacokinetics and clinical outcomes for patients receiving oral tacrolimus as GVHD prophylaxis following allo-HSCT.
Collapse
Affiliation(s)
- Nathan D. Seligson
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Xunjie Zhang
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Mark C. Zemanek
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Jasmine A. Johnson
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Zachary VanGundy
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Mitch A. Phelps
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Julianna Roddy
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Craig C. Hofmeister
- Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Junan Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Ming J. Poi
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
49
|
Richard-St-Hilaire A, Gamache I, Pelletier J, Grenier JC, Poujol R, Hussin JG. Signatures of Co-evolution and Co-regulation in the CYP3A and CYP4F Genes in Humans. Genome Biol Evol 2024; 16:evad236. [PMID: 38207129 PMCID: PMC10805436 DOI: 10.1093/gbe/evad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Cytochromes P450 (CYP450) are hemoproteins generally involved in the detoxification of the body of xenobiotic molecules. They participate in the metabolism of many drugs and genetic polymorphisms in humans have been found to impact drug responses and metabolic functions. In this study, we investigate the genetic diversity of CYP450 genes. We found that two clusters, CYP3A and CYP4F, are notably differentiated across human populations with evidence for selective pressures acting on both clusters: we found signals of recent positive selection in CYP3A and CYP4F genes and signals of balancing selection in CYP4F genes. Furthermore, an extensive amount of unusual linkage disequilibrium is detected in this latter cluster, indicating co-evolution signatures among CYP4F genes. Several of the selective signals uncovered co-localize with expression quantitative trait loci (eQTL), which could suggest epistasis acting on co-regulation in these gene families. In particular, we detected a potential co-regulation event between CYP3A5 and CYP3A43, a gene whose function remains poorly characterized. We further identified a causal relationship between CYP3A5 expression and reticulocyte count through Mendelian randomization analyses, potentially involving a regulatory region displaying a selective signal specific to African populations. Our findings linking natural selection and gene expression in CYP3A and CYP4F subfamilies are of importance in understanding population differences in metabolism of nutrients and drugs.
Collapse
Affiliation(s)
- Alex Richard-St-Hilaire
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine Hospital, Research Center, Montreal, QC, Canada
| | - Isabel Gamache
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Justin Pelletier
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, Canada
- McGill CERC in Genomic Medicine, McGill University, Montreal, Canada
| | | | - Raphaël Poujol
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Julie G Hussin
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Département de médecine, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI institute, Montreal, QC, Canada
| |
Collapse
|
50
|
Walker LE, Stewart A, Pirmohamed SM, Meschia JF, Kinne FB. Stroke Pharmacogenetics. STROKE GENETICS 2024:423-508. [DOI: 10.1007/978-3-031-41777-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|