1
|
Sleep promotes the formation of dendritic filopodia and spines near learning-inactive existing spines. Proc Natl Acad Sci U S A 2021; 118:2114856118. [PMID: 34873044 DOI: 10.1073/pnas.2114856118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice. We found that newly formed filopodia and spines were partially clustered with existing spines along individual dendritic segments 24 h after motor training. Notably, posttraining sleep was critical for promoting the formation of dendritic filopodia and spines clustered with existing spines within 8 h. A fraction of these filopodia was converted into new spines and contributed to clustered spine formation 24 h after motor training. This sleep-dependent spine formation via filopodia was different from retraining-induced new spine formation, which emerged from dendritic shafts without prior presence of filopodia. Furthermore, sleep-dependent new filopodia and spines tended to be formed away from existing spines that were active at the time of motor training. Taken together, these findings reveal a role of postlearning sleep in regulating the number and location of new synapses via promoting filopodial formation.
Collapse
|
2
|
Smilovic D, Rietsche M, Drakew A, Vuksic M, Deller T. Constitutive tumor necrosis factor (TNF)-deficiency causes a reduction in spine density in mouse dentate granule cells accompanied by homeostatic adaptations of spine head size. J Comp Neurol 2021; 530:656-669. [PMID: 34498735 DOI: 10.1002/cne.25237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/16/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023]
Abstract
The majority of excitatory synapses terminating on cortical neurons are found on dendritic spines. The geometry of spines, in particular the size of the spine head, tightly correlates with the strength of the excitatory synapse formed with the spine. Under conditions of synaptic plasticity, spine geometry may change, reflecting functional adaptations. Since the cytokine tumor necrosis factor (TNF) has been shown to influence synaptic transmission as well as Hebbian and homeostatic forms of synaptic plasticity, we speculated that TNF-deficiency may cause concomitant structural changes at the level of dendritic spines. To address this question, we analyzed spine density and spine head area of Alexa568-filled granule cells in the dentate gyrus of adult C57BL/6J and TNF-deficient (TNF-KO) mice. Tissue sections were double-stained for the actin-modulating and plasticity-related protein synaptopodin (SP), a molecular marker for strong and stable spines. Dendritic segments of TNF-deficient granule cells exhibited ∼20% fewer spines in the outer molecular layer of the dentate gyrus compared to controls, indicating a reduced afferent innervation. Of note, these segments also had larger spines containing larger SP-clusters. This pattern of changes is strikingly similar to the one seen after denervation-associated spine loss following experimental entorhinal denervation of granule cells: Denervated granule cells increase the SP-content and strength of their remaining spines to homeostatically compensate for those that were lost. Our data suggest a similar compensatory mechanism in TNF-deficient granule cells in response to a reduction in their afferent innervation.
Collapse
Affiliation(s)
- Dinko Smilovic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany.,Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Michael Rietsche
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Alexander Drakew
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Mario Vuksic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany.,Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
3
|
Okabe S. Recent advances in computational methods for measurement of dendritic spines imaged by light microscopy. Microscopy (Oxf) 2021; 69:196-213. [PMID: 32244257 DOI: 10.1093/jmicro/dfaa016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Dendritic spines are small protrusions that receive most of the excitatory inputs to the pyramidal neurons in the neocortex and the hippocampus. Excitatory neural circuits in the neocortex and hippocampus are important for experience-dependent changes in brain functions, including postnatal sensory refinement and memory formation. Several lines of evidence indicate that synaptic efficacy is correlated with spine size and structure. Hence, precise and accurate measurement of spine morphology is important for evaluation of neural circuit function and plasticity. Recent advances in light microscopy and image analysis techniques have opened the way toward a full description of spine nanostructure. In addition, large datasets of spine nanostructure can be effectively analyzed using machine learning techniques and other mathematical approaches, and recent advances in super-resolution imaging allow researchers to analyze spine structure at an unprecedented level of precision. This review summarizes computational methods that can effectively identify, segment and quantitate dendritic spines in either 2D or 3D imaging. Nanoscale analysis of spine structure and dynamics, combined with new mathematical approaches, will facilitate our understanding of spine functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Karreman MA, Hyenne V, Schwab Y, Goetz JG. Intravital Correlative Microscopy: Imaging Life at the Nanoscale. Trends Cell Biol 2016; 26:848-863. [DOI: 10.1016/j.tcb.2016.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 01/04/2023]
|
5
|
Abstract
Compelling new findings have revealed that receptor tyrosine kinases of the Eph family, along with their ephrin ligands, play an essential role in regulating the properties of developing mature excitatory synapses in the central nervous system. The cell surface localization of both the Eph receptors and the ephrins enables these proteins to signal bidirectionally at sites of cell-to-cell contact, such as synapses. Eph receptors and ephrins have indeed been implicated in multiple aspects of synaptic function, including clustering and modulating N-methyl-D-aspartate receptors, modifying the geometry of postsynaptic terminals, and influencing long-term synaptic plasticity and memory. In this review, we discuss how Eph receptors and ephrins are integrated into the molecular machinery that supports synaptic function.
Collapse
Affiliation(s)
- Keith K Murai
- Centre for Research in Neuroscience, McGill University Health Centre, Montreal General Hospital, Montreal, Canada
| | | |
Collapse
|
6
|
Chen LJ, Wang YJ, Chen JR, Tseng GF. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons. Exp Neurol 2015; 266:86-98. [PMID: 25708984 DOI: 10.1016/j.expneurol.2015.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
Compression causes the reduction of dendritic spines of underlying adult cortical pyramidal neurons but the mechanisms remain at large. Using a rat epidural cerebral compression model, dendritic spines on the more superficial-lying layer III pyramidal neurons were found quickly reduced in 12h, while those on the deep-located layer V pyramidal neurons were reduced slightly later, starting 1day following compression. No change in the synaptic vesicle markers synaptophysin and vesicular glutamate transporter 1 suggest no change in afferents. Postsynaptically, N-methyl-d-aspartate (NMDA) receptor trafficking to synaptic membrane was detected in 10min and lasting to 1day after compression. Translocation of calcineurin to synapses and enhancement of its enzymatic activity were detected within 10min as well. These suggest that compression rapidly activated NMDA receptors to increase postsynaptic calcium, which then activated the phosphatase calcineurin. In line with this, dephosphorylation and activation of the actin severing protein cofilin, and the consequent depolymerization of actin were all identified in the compressed cortex within matching time frames. Antagonizing NMDA receptors with MK801 before compression prevented this cascade of events, including NR1 mobilization, calcineurin activation and actin depolymerization, in the affected cortex. Morphologically, MK801 pretreatment prevented the loss of dendritic spines on the compressed cortical pyramidal neurons as well. In short, we demonstrated, for the first time, mechanisms underlying the rapid compression-induced cortical neuronal dendritic spine plasticity. In addition, the mechanical force of compression appears to activate NMDA receptors to initiate a rapid postsynaptic molecular cascade to trim dendritic spines on the compressed cortical pyramidal neurons within half a day.
Collapse
Affiliation(s)
- Li-Jin Chen
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Yueh-Jan Wang
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
7
|
Clarke LE, Barres BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 2013; 14:311-21. [PMID: 23595014 DOI: 10.1038/nrn3484] [Citation(s) in RCA: 675] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Astrocytes are now emerging as key participants in many aspects of brain development, function and disease. In particular, new evidence shows that astrocytes powerfully control the formation, maturation, function and elimination of synapses through various secreted and contact-mediated signals. Astrocytes are also increasingly being implicated in the pathophysiology of many psychiatric and neurological disorders that result from synaptic defects. A better understanding of how astrocytes regulate neural circuit development and function in the healthy and diseased brain might lead to the development of therapeutic agents to treat these diseases.
Collapse
Affiliation(s)
- Laura E Clarke
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
8
|
Sonomura T, Furuta T, Nakatani I, Yamamoto Y, Unzai T, Matsuda W, Iwai H, Yamanaka A, Uemura M, Kaneko T. Correlative analysis of immunoreactivity in confocal laser-scanning microscopy and scanning electron microscopy with focused ion beam milling. Front Neural Circuits 2013; 7:26. [PMID: 23443927 PMCID: PMC3581071 DOI: 10.3389/fncir.2013.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 02/05/2013] [Indexed: 01/28/2023] Open
Abstract
Recently, three-dimensional reconstruction of ultrastructure of the brain has been realized with minimal effort by using scanning electron microscopy (SEM) combined with focused ion beam (FIB) milling (FIB-SEM). Application of immunohistochemical staining in electron microscopy (EM) provides a great advantage in that molecules of interest are specifically localized in ultrastructures. Thus, we applied immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in confocal laser-scanning microcopy (CF-LSM). Dendrites of medium-sized spiny neurons in the rat neostriatum were visualized using a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively. In contrast-inverted FIB-SEM images, silver precipitations and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were as easily recognizable as those in the transmission electron microscopy (TEM) images. Furthermore, in the sites of interest, some appositions displayed synaptic specializations of an asymmetric type. Thus, the present method was useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connections in the central neural circuit.
Collapse
Affiliation(s)
- Takahiro Sonomura
- Department of Anatomy for Oral Sciences, Graduate School of Medical and Dental Sciences, Kagoshima University Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hruska M, Dalva MB. Ephrin regulation of synapse formation, function and plasticity. Mol Cell Neurosci 2012; 50:35-44. [PMID: 22449939 DOI: 10.1016/j.mcn.2012.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022] Open
Abstract
Synapses enable the transmission of information within neural circuits and allow the brain to change in response to experience. During the last decade numerous proteins that can induce synapse formation have been identified. Many of these synaptic inducers rely on trans-synaptic cell-cell interactions to generate functional contacts. Moreover, evidence now suggests that the same proteins that function early in development to regulate synapse formation may help to maintain and/or regulate the function and plasticity of mature synapses. One set of receptors and ligands that appear to impact both the development and the mature function of synapses are Eph receptors (erythropoietin-producing human hepatocellular carcinoma cell line) and their surface associated ligands, ephrins (Eph family receptor interacting proteins). Ephs can initiate new synaptic contacts, recruit and stabilize glutamate receptors at nascent synapses and regulate dendritic spine morphology. Recent evidence demonstrates that ephrin ligands also play major roles at synapses. Activation of ephrins by Eph receptors can induce synapse formation and spine morphogenesis, whereas in the mature nervous system ephrin signaling modulates synaptic function and long-term changes in synaptic strength. In this review we will summarize the recent progress in understanding the role of ephrins in presynaptic and postsynaptic differentiation, and synapse development, function and plasticity.
Collapse
Affiliation(s)
- Martin Hruska
- Department of Neuroscience and the Farber Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
10
|
Kuriu T, Yanagawa Y, Konishi S. Activity-dependent coordinated mobility of hippocampal inhibitory synapses visualized with presynaptic and postsynaptic tagged-molecular markers. Mol Cell Neurosci 2012; 49:184-95. [DOI: 10.1016/j.mcn.2011.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/17/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022] Open
|
11
|
Bourne JN, Harris KM. Nanoscale analysis of structural synaptic plasticity. Curr Opin Neurobiol 2011; 22:372-82. [PMID: 22088391 DOI: 10.1016/j.conb.2011.10.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 01/07/2023]
Abstract
Structural plasticity of dendritic spines and synapses is an essential mechanism to sustain long lasting changes in the brain with learning and experience. The use of electron microscopy over the last several decades has advanced our understanding of the magnitude and extent of structural plasticity at a nanoscale resolution. In particular, serial section electron microscopy (ssEM) provides accurate measurements of plasticity-related changes in synaptic size and density and distribution of key cellular resources such as polyribosomes, smooth endoplasmic reticulum, and synaptic vesicles. Careful attention to experimental and analytical approaches ensures correct interpretation of ultrastructural data and has begun to reveal the degree to which synapses undergo structural remodeling in response to physiological plasticity.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Department of Neurobiology, University of Texas, Austin, TX 78712-0805, USA
| | | |
Collapse
|
12
|
Benson DL, Huntley GW. Synapse adhesion: a dynamic equilibrium conferring stability and flexibility. Curr Opin Neurobiol 2011; 22:397-404. [PMID: 22019151 DOI: 10.1016/j.conb.2011.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
Abstract
Cell adhesion molecules (CAMs) linked to cytoskeleton generate stable cell-cell junctions. Cadherins provide a canonical example, but paradoxically, they participate in a multitude of transient and regulatable interactions. Their extracellular binding generates weak adhesion that is modified by clustering; interactions with F-actin are regulated, can be transient, and can alter F-actin dynamics. Additionally, cadherin recycling from the cell surface can modify the size and location of junctions and strength of adhesion. In epithelial cells, this ongoing dynamic behavior is important for maintaining stable junctions. Recent work supports that cadherins act similarly at synapses where their actions are likely to be shared by integrins and other actin-linked CAMs. Together the collaborative activities of such CAMs provide a stable, but flexible structure that can promote and support changes in synapse shape and size while maintaining stable junctions to permit information flow.
Collapse
Affiliation(s)
- Deanna L Benson
- Department of Neuroscience and the Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, United States.
| | | |
Collapse
|
13
|
Reilly JE, Hanson HH, Fernández-Monreal M, Wearne SL, Hof PR, Phillips GR. Characterization of MSB synapses in dissociated hippocampal culture with simultaneous pre- and postsynaptic live microscopy. PLoS One 2011; 6:e26478. [PMID: 22028887 PMCID: PMC3197663 DOI: 10.1371/journal.pone.0026478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
Abstract
Multisynaptic boutons (MSBs) are presynaptic boutons in contact with multiple postsynaptic partners. Although MSB synapses have been studied with static imaging techniques such as electron microscopy (EM), the dynamics of individual MSB synapses have not been directly evaluated. It is known that the number of MSB synapses increases with synaptogenesis and plasticity but the formation, behavior, and fate of individual MSB synapses remains largely unknown. To address this, we developed a means of live imaging MSB synapses to observe them directly over time. With time lapse confocal microscopy of GFP-filled dendrites in contact with VAMP2-DsRed-labeled boutons, we recorded both MSBs and their contacting spines hourly over 15 or more hours. Our live microscopy showed that, compared to spines contacting single synaptic boutons (SSBs), MSB-contacting spines exhibit elevated dynamic behavior. These results are consistent with the idea that MSBs serve as intermediates in synaptic development and plasticity.
Collapse
Affiliation(s)
- James E. Reilly
- Department of Neuroscience, Mount Sinai School of Medicine, New York City, New York, United States of America
| | - Hugo H. Hanson
- Department of Neuroscience, Mount Sinai School of Medicine, New York City, New York, United States of America
| | - Mónica Fernández-Monreal
- Department of Neuroscience, Mount Sinai School of Medicine, New York City, New York, United States of America
| | - Susan L. Wearne
- Department of Neuroscience, Mount Sinai School of Medicine, New York City, New York, United States of America
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York City, New York, United States of America
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of Medicine, New York City, New York, United States of America
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York City, New York, United States of America
| | - Greg R. Phillips
- Department of Neuroscience, Mount Sinai School of Medicine, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lu Y, Zha XM, Kim EY, Schachtele S, Dailey ME, Hall DD, Strack S, Green SH, Hoffman DA, Hell JW. A kinase anchor protein 150 (AKAP150)-associated protein kinase A limits dendritic spine density. J Biol Chem 2011; 286:26496-506. [PMID: 21652711 DOI: 10.1074/jbc.m111.254912] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The A kinase anchor protein AKAP150 recruits the cAMP-dependent protein kinase (PKA) to dendritic spines. Here we show that in AKAP150 (AKAP5) knock-out (KO) mice frequency of miniature excitatory post-synaptic currents (mEPSC) and inhibitory post-synaptic currents (mIPSC) are elevated at 2 weeks and, more modestly, 4 weeks of age in the hippocampal CA1 area versus litter mate WT mice. Linear spine density and ratio of AMPAR to NMDAR EPSC amplitudes were also increased. Amplitude and decay time of mEPSCs, decay time of mIPSCs, and spine size were unaltered. Mice in which the PKA anchoring C-terminal 36 residues of AKAP150 are deleted (D36) showed similar changes. Furthermore, whereas acute stimulation of PKA (2-4 h) increases spine density, prolonged PKA stimulation (48 h) reduces spine density in apical dendrites of CA1 pyramidal neurons in organotypic slice cultures. The data from the AKAP150 mutant mice show that AKAP150-anchored PKA chronically limits the number of spines with functional AMPARs at 2-4 weeks of age. However, synaptic transmission and spine density was normal at 8 weeks in KO and D36 mice. Thus AKAP150-independent mechanisms correct the aberrantly high number of active spines in juvenile AKAP150 KO and D36 mice during development.
Collapse
Affiliation(s)
- Yuan Lu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bergmann glial ensheathment of dendritic spines regulates synapse number without affecting spine motility. ACTA ACUST UNITED AC 2010; 6:193-200. [PMID: 21044397 DOI: 10.1017/s1740925x10000165] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the cerebellum, lamellar Bergmann glial (BG) appendages wrap tightly around almost every Purkinje cell dendritic spine. The function of this glial ensheathment of spines is not entirely understood. The development of ensheathment begins near the onset of synaptogenesis, when motility of both BG processes and dendritic spines are high. By the end of the synaptogenic period, ensheathment is complete and motility of the BG processes decreases, correlating with the decreased motility of dendritic spines. We therefore have hypothesized that ensheathment is intimately involved in capping synaptogenesis, possibly by stabilizing synapses. To test this hypothesis, we misexpressed GluR2 in an adenoviral vector in BG towards the end of the synaptogenic period, rendering the BG α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) Ca2+-impermeable and causing glial sheath retraction. We then measured the resulting spine motility, spine density and synapse number. Although we found that decreasing ensheathment at this time does not alter spine motility, we did find a significant increase in both synaptic pucta and dendritic spine density. These results indicate that consistent spine coverage by BG in the cerebellum is not necessary for stabilization of spine dynamics, but is very important in the regulation of synapse number.
Collapse
|
16
|
Abstract
Glia are an indispensable structural and functional component of the synapse. They modulate synaptic transmission and also play important roles in synapse formation and maintenance. The vertebrate neuromuscular junction (NMJ) is a classic model synapse. Due to its large size, simplicity and accessibility, the NMJ has contributed greatly to our understanding of synapse development and organization. In the past decade, the NMJ has also emerged as an effective model for studying glia-synapse interactions, in part due to the development of various labeling techniques that permit NMJs and associated Schwann cells (the glia at NMJs) to be visualized in vitro and in vivo. These approaches have demonstrated that Schwann cells are actively involved in synapse remodeling both during early development and in post-injury reinnervation. In vivo imaging has also recently been combined with serial section transmission electron microscopic (ssTEM) reconstruction to directly examine the ultrastructural organization of remodeling NMJs. In this review, we focus on the anatomical studies of Schwann cell dynamics and their roles in formation, maturation and remodeling of vertebrate NMJs using the highest temporal and spatial resolution methods currently available.
Collapse
|
17
|
Abstract
Dendritic spines are the postsynaptic components of most excitatory synapses in the mammalian brain. Spines accumulate rapidly during early postnatal development and undergo a substantial loss as animals mature into adulthood. In past decades, studies have revealed that the number and size of dendritic spines are regulated by a variety of gene products and environmental factors, underscoring the dynamic nature of spines and their importance to brain plasticity. Recently, in vivo time-lapse imaging of dendritic spines in the cerebral cortex suggests that, although spines are highly plastic during development, they are remarkably stable in adulthood, and most of them last throughout life. Therefore, dendritic spines may provide a structural basis for lifelong information storage, in addition to their well-established role in brain plasticity. Because dendritic spines are the key elements for information acquisition and retention, understanding how spines are formed and maintained, particularly in the intact brain, will likely provide fundamental insights into how the brain possesses the extraordinary capacity to learn and to remember.
Collapse
Affiliation(s)
- D Harshad Bhatt
- Molecular Neurobiology Program, The Helen and Martin Kimmel Center for Biology and Medicine at Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
18
|
Zha XM, Dailey ME, Green SH. Role of Ca2+/calmodulin-dependent protein kinase II in dendritic spine remodeling during epileptiform activity in vitro. J Neurosci Res 2009; 87:1969-79. [PMID: 19235894 DOI: 10.1002/jnr.22033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epileptiform activity (EA) in vivo and in vitro induces a loss of dendritic spines and synapses. Because CaMKII has been implicated in synaptogenesis and synaptic plasticity, we investigated the role of CaMKII in the effects of EA on spines, using rat hippocampal slice cultures. To visualize dendrites and postsynaptic densities (PSDs) in pyramidal neurons in the slices, we used biolistic transfection to express either free GFP or a PSD95-YFP construct that specifically labels PSDs. This allowed us to distinguish two classes of dendritic protrusions: spines that contain PSDs, and filopodia that lack PSDs and that are, on average, longer than spines. By these criteria, 48 hr of EA caused a decrease specifically in the number of spines. Immunoblots showed that EA increased CaMKII activity in the slices. Inhibition of CaMKII by expression of AIP, a specific peptide inhibitor of CaMKII, reduced spine number under basal conditions and failed to prevent EA-induced spine loss. However, under EA conditions, AIP increased the number of filopodia and the number of PSDs on the dendritic shaft. These data show at least two roles for CaMKII activity in maintenance and remodeling of dendritic spines under basal or EA conditions. First, CaMKII activity promotes the maintenance of spines and spine PSDs. Second, CaMKII activity suppresses EA-induced formation of filopodia and suppresses an increase in shaft PSDs, apparently by promoting translocation of PSDs from dendritic shafts to spines and/or selectively stabilizing spine rather than shaft PSDs.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324, USA
| | | | | |
Collapse
|
19
|
Lippman JJ, Lordkipanidze T, Buell ME, Yoon SO, Dunaevsky A. Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia 2009; 56:1463-77. [PMID: 18615636 DOI: 10.1002/glia.20712] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes have an important role in synaptic formation and function but how astrocytic processes become associated with synaptic structures during development is not well understood. Here we analyzed the pattern of growth of the processes extending off the main Bergmann glial (BG) shafts during synaptogenesis in the cerebellum. We found that during this period, BG process outgrowth was correlated with increased ensheathment of dendritic spines. In addition, two-photon time-lapse imaging revealed that BG processes were highly dynamic, and processes became more stable as the period of spine ensheathment progressed. While process motility was dependent on actin polymerization, activity of cytoskeletal regulators Rac1 and RhoG did not play a role in glial process dynamics or density, but was critical for maintaining process length. We extended this finding to probe the relationship between process morphology and ensheathment, finding that shortened processes result in decreased coverage of the spine. Furthermore, we found that areas in which BG expressed dn-Rac1, and therefore had a lower level of synaptic ensheathment, showed an overall increase in synapse number. These analyses reveal how BG processes grow to surround synaptic structures, elucidate the importance of BG process structure for proper development of synaptic ensheathment, and reveal a role for ensheathment in synapse formation.
Collapse
Affiliation(s)
- Jocelyn J Lippman
- Department of Neuroscience, Brown University, Box G-LN, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
20
|
May OL, Erisir A, Hill DL. Modifications of gustatory nerve synapses onto nucleus of the solitary tract neurons induced by dietary sodium-restriction during development. J Comp Neurol 2008; 508:529-41. [PMID: 18366062 DOI: 10.1002/cne.21708] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field expansion, the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were labeled in rats fed a sodium-restricted diet during pre- and postnatal development. The morphology of these nerve terminals within the NTS region where the terminal fields of all three nerves overlap was evaluated by transmission electron microscopy. Compared to data from control rats, CT axons were the most profoundly affected. The density of CT arbors and synapses quadrupled as a result of the near life-long dietary manipulation. In contrast, axon and synapse densities of GSP and IX nerves were not modified in sodium-restricted rats. Furthermore, compared to controls, CT terminals displayed more instances of contacts with postsynaptic dendritic protrusions and IX terminals synapsed more frequently with dendritic shafts. Thus, dietary sodium restriction throughout pre- and postnatal development had differential effects on the synaptic organization of the three nerves in the NTS. These anatomical changes may underlie the impact of sensory restriction during development on the functional processing of taste information and taste-related behaviors.
Collapse
Affiliation(s)
- Olivia L May
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078, USA
| | | | | |
Collapse
|
21
|
Ovtscharoff W, Segal M, Goldin M, Helmeke C, Kreher U, Greenberger V, Herzog A, Michaelis B, Braun K. Electron microscopic 3D-reconstruction of dendritic spines in cultured hippocampal neurons undergoing synaptic plasticity. Dev Neurobiol 2008; 68:870-6. [PMID: 18327766 DOI: 10.1002/dneu.20627] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dendritic spines are assumed to constitute the locus of neuronal plasticity, and considerable effort has been focused on attempts to demonstrate that new memories are associated with the formation of new spines. However, few studies that have documented the appearance of spines after exposure to plasticity-producing paradigms could demonstrate that a new spine is touched by a bona fida presynaptic terminal. Thus, the functional significance of plastic dendritic spine changes is not clearly understood. We have used quantitative time lapse confocal imaging of cultured hippocampal neurons before and after their exposure to a conditioning medium which activates synaptic NMDA receptors. Following the experiment the cultures were prepared for 3D electron microscopic reconstruction of visually identified dendritic spines. We found that a majority of new, 1- to 2-h-old spines was touched by presynaptic terminals. Furthermore, when spines disappeared, the parent dendrites were sometime touched by a presynaptic bouton at the site where the previously identified spine had been located. We conclude that new spines are most likely to be functional and that pruned spines can be transformed into shaft synapses and thus maintain their functionality within the neuronal network.
Collapse
Affiliation(s)
- Wladimir Ovtscharoff
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Heterologous high-level E. coli expression, purification and biophysical characterization of the spine-associated RapGAP (SPAR) PDZ domain. Protein Expr Purif 2008; 62:9-14. [PMID: 18678258 DOI: 10.1016/j.pep.2008.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 11/22/2022]
Abstract
Spine-associated RapGAP (SPAR) is a 1783 residue, multidomain scaffolding protein which is a component of the NMDA receptor/PSD-95 complex in the post-synaptic density (PSD) of dendritic spines. Using a parallel expression screening approach, we identified a strategy to solubly express the SPAR PDZ domain in Escherichia coli. We show that maltose binding protein is required for the production of solubly expressed protein. We also show that small changes in construct length (2-5 residues) result in differential susceptibilities of the expressed proteins to proteolytic digestion, required for the expression tag removal. This has allowed us to identify a large-scale E. coli expression and purification protocol that results in the production of mg quantities of the SPAR PDZ domain. This is the first time that any of the multiple SPAR functional domains have been expressed in E. coli in quantities suitable for biophysical and biochemical studies, allowing us to investigate the role of the PDZ domain in SPAR function within the PSD.
Collapse
|
23
|
Pan F, Gan WB. Two-photon imaging of dendritic spine development in the mouse cortex. Dev Neurobiol 2008; 68:771-8. [PMID: 18383548 DOI: 10.1002/dneu.20630] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic spines are the postsynaptic sites of most excitatory synapses in the mammalian brain. With the advent of two-photon microscopy and transgenic mice expressing fluorescent proteins, dendritic spines can now be imaged in the living cerebral cortex over time scales ranging from seconds to years. Recent studies with this in vivo imaging approach have begun to provide important insights into the development and plasticity of dendritic spines in the intact brain. Here, we review these studies and discuss technical requirements for image acquisition. We envision that intravital two-photon imaging at the level of individual synapses will greatly expand our current understandings of how neuronal networks are assembled and modified throughout life.
Collapse
Affiliation(s)
- Feng Pan
- Skirball Institute, Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
24
|
Mysore SP, Tai CY, Schuman EM. Effects of N-cadherin disruption on spine morphological dynamics. Front Cell Neurosci 2007; 1:1. [PMID: 18946519 PMCID: PMC2525931 DOI: 10.3389/neuro.03.001.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 12/12/2007] [Indexed: 01/01/2023] Open
Abstract
Structural changes at synapses are thought to be a key mechanism for the encoding of memories in the brain. Recent studies have shown that changes in the dynamic behavior of dendritic spines accompany bidirectional changes in synaptic plasticity, and that the disruption of structural constraints at synapses may play a mechanistic role in spine plasticity. While the prolonged disruption of N-cadherin, a key synaptic adhesion molecule, has been shown to alter spine morphology, little is known about the short-term regulation of spine morphological dynamics by N-cadherin. With time-lapse, confocal imaging in cultured hippocampal neurons, we examined the progression of structural changes in spines following an acute treatment with AHAVD, a peptide known to interfere with the function of N-cadherin. We characterized fast and slow timescale spine dynamics (minutes and hours, respectively) in the same population of spines. We show that N-cadherin disruption leads to enhanced spine motility and reduced length, followed by spine loss. The structural effects are accompanied by a loss of functional connectivity. Further, we demonstrate that early structural changes induced by AHAVD treatment, namely enhanced motility and reduced length, are indicators for later spine fate, i.e., spines with the former changes are more likely to be subsequently lost. Our results thus reveal the short-term regulation of synaptic structure by N-cadherin and suggest that some forms of morphological dynamics may be potential readouts for subsequent, stimulus-induced rewiring in neuronal networks.
Collapse
Affiliation(s)
- Shreesh P Mysore
- Control and Dynamical Systems Program, California Institute of Technology Pasadena, CA 91125, USA
| | | | | |
Collapse
|
25
|
Harms KJ, Dunaevsky A. Dendritic spine plasticity: Looking beyond development. Brain Res 2007; 1184:65-71. [PMID: 16600191 DOI: 10.1016/j.brainres.2006.02.094] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 02/24/2006] [Indexed: 11/24/2022]
Abstract
Most excitatory synapses in the CNS form on dendritic spines, tiny protrusions from the dendrites of excitatory neurons. As such, spines are likely loci of synaptic plasticity. Spines are dynamic structures, but the functional consequences of dynamic changes in these structures in the mature brain are unclear. Changes in spine density, morphology, and motility have been shown to occur with paradigms that induce synaptic plasticity, as well as altered sensory experience and neuronal activity. These changes potentially lead to an alteration in synaptic connectivity and strength between neuronal partners, affecting the efficacy of synaptic communication. Here, we review the formation and modification of excitatory synapses on dendritic spines as it relates to plasticity in the central nervous system after the initial phase of synaptogenesis. We will also discuss some of the molecular links that have been implicated in both synaptic plasticity and the regulation of spine morphology.
Collapse
Affiliation(s)
- Kimberly J Harms
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | |
Collapse
|
26
|
Segura I, Essmann CL, Weinges S, Acker-Palmer A. Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nat Neurosci 2007; 10:301-10. [PMID: 17310244 DOI: 10.1038/nn1858] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/25/2007] [Indexed: 02/08/2023]
Abstract
Dendritic spines are small protrusions emerging from dendrites that receive excitatory input. The process of spine morphogenesis occurs both in the developing brain and during synaptic plasticity. Molecules regulating the cytoskeleton are involved in spine formation and maintenance. Here we show that reverse signaling by the transmembrane ligands for Eph receptors, ephrinBs, is required for correct spine morphogenesis. The molecular mechanism underlying this function of ephrinBs involves the SH2 and SH3 domain-containing adaptor protein Grb4 and the G protein-coupled receptor kinase-interacting protein (GIT) 1. Grb4 binds by its SH2 domain to Tyr392 in the synaptic localization domain of GIT1. Phosphorylation of Tyr392 and the recruitment of GIT1 to synapses are regulated by ephrinB activation. Disruption of this pathway in cultured rat hippocampal neurons impairs spine morphogenesis and synapse formation. We thus show an important role for ephrinB reverse signaling in spine formation and have mapped the downstream pathway involved in this process.
Collapse
Affiliation(s)
- Inmaculada Segura
- Max-Planck Institute of Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
27
|
Haber M, Zhou L, Murai KK. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 2006; 26:8881-91. [PMID: 16943543 PMCID: PMC6675342 DOI: 10.1523/jneurosci.1302-06.2006] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence is redefining the importance of neuron-glial interactions at synapses in the CNS. Astrocytes form "tripartite" complexes with presynaptic and postsynaptic structures and regulate synaptic transmission and plasticity. Despite our understanding of the importance of neuron-glial relationships in physiological contexts, little is known about the structural interplay between astrocytes and synapses. In the past, this has been difficult to explore because studies have been hampered by the lack of a system that preserves complex neuron-glial relationships observed in the brain. Here we present a system that can be used to characterize the intricate relationship between astrocytic processes and synaptic structures in situ using organotypic hippocampal slices, a preparation that retains the three-dimensional architecture of astrocyte-synapse interactions. Using time-lapse confocal imaging, we demonstrate that astrocytes can rapidly extend and retract fine processes to engage and disengage from motile postsynaptic dendritic spines. Surprisingly, astrocytic motility is, on average, higher than its dendritic spine counterparts and likely relies on actin-based cytoskeletal reorganization. Changes in astrocytic processes are typically coordinated with changes in spines, and astrocyte-spine interactions are stabilized at larger spines. Our results suggest that dynamic structural changes in astrocytes help control the degree of neuron-glial communication at hippocampal synapses.
Collapse
Affiliation(s)
- Michael Haber
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada
| | - Lei Zhou
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada
| | - Keith K. Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
28
|
Sdrulla AD, Linden DJ. Dynamic imaging of cerebellar Purkinje cells reveals a population of filopodia which cross-link dendrites during early postnatal development. THE CEREBELLUM 2006; 5:105-15. [PMID: 16818385 DOI: 10.1080/14734220600620908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two-photon microscopy was used to image dye-loaded filopodia of Purkinje cells in acute rat cerebellar slices. In the process of examining filopodia in Purkinje cells from a period of rapid dendritic growth (P10-21), we observed a small subset of filopodia which appeared to form connections between two dendrites of the same cell, usually between the tips of two adjacent dendrites or the tip of a dendrite and the shaft of another. There were fewer of these 'filopodial bridges' present at P18-21 than at an earlier stage in development (P10-12) and they were absent in mature Purkinje cells. Filopodial bridges do not appear to be an artifact of living brain slice preparation as they may also be seen by dye-loading Purkinje cells in slices prepared from perfusion-fixed brain. They have varied morphologies which are mostly similar to conventional, unattached filopodia. However, when measured over tens of minutes, filopodial bridges were observed to be less motile than conventional filopodia as indicated by a reduced index of expansion. While the functions of these novel structures are unknown it is attractive to speculate that they play an instructive role in Purkinje cell dendritic development.
Collapse
Affiliation(s)
- Andrei D Sdrulla
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
29
|
Shrestha BR, Vitolo OV, Joshi P, Lordkipanidze T, Shelanski M, Dunaevsky A. Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol Cell Neurosci 2006; 33:274-82. [PMID: 16962789 DOI: 10.1016/j.mcn.2006.07.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 01/06/2023] Open
Abstract
Elevated levels of amyloid-beta peptide (Abeta) are found in Down's syndrome patients and alter synaptic function during the early stages of Alzheimer's disease. Dendritic spines, sites of most excitatory synaptic contacts, are considered to be an important locus for encoding synaptic plasticity. We used time-lapse two-photon imaging of hippocampal pyramidal neurons in organotypic slices to study the effects of Abeta on the development of dendritic spines. We report that exposure of hippocampal neurons to sub-lethal levels of Abeta decreased spine density, increased spine length and subdued spine motility. The effect of Abeta on spine density was reversible. Moreover, Abeta's effect on dendritic spine density was blocked by rolipram, a phosphodiesterase type IV inhibitor, suggesting the involvement of a cAMP dependent pathway. These findings raise the possibility that Abeta-induced spine alterations could underlie the cognitive defects in Alzheimer's disease and Down syndrome.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neuroscience, Brown University, Box 1953, 190 Thayer Street, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
30
|
Shi Y, Ethell IM. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci 2006; 26:1813-22. [PMID: 16467530 PMCID: PMC6793632 DOI: 10.1523/jneurosci.4091-05.2006] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The formation of dendritic spines during development and their structural plasticity in the adult brain are critical aspects of synaptogenesis and synaptic plasticity. Many different factors and proteins have been shown to control dendritic spine development and remodeling (Ethell and Pasquale, 2005). The extracellular matrix (ECM) components and their cell surface receptors, integrins, have been found in the vicinity of synapses and shown to regulate synaptic efficacy and play an important role in long-term potentiation (Bahr et al., 1997; Chavis and Westbrook, 2001; Chan et al., 2003; Lin et al., 2003; Bernard-Trifilo et al., 2005). Although molecular mechanisms by which integrins affect synaptic efficacy have begun to emerge, their role in structural plasticity is poorly understood. Here, we show that integrins are involved in spine remodeling in cultured hippocampal neurons. The treatment of 14 d in vitro hippocampal neurons with arginine-glycine-aspartate (RGD)-containing peptide, an established integrin ligand, induced elongation of existing dendritic spines and promoted formation of new filopodia. These effects were also accompanied by integrin-dependent actin reorganization and synapse remodeling, which were partially inhibited by function-blocking antibodies against beta1 and beta3 integrins. This actin reorganization was blocked with the NMDA receptor (NMDAR) antagonist MK801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide) also suppressed RGD-induced actin reorganization and synapse remodeling. Our findings show that integrins control ECM-mediated spine remodeling in hippocampal neurons through NMDAR/CaMKII-dependent actin reorganization.
Collapse
|
31
|
Calabrese B, Wilson MS, Halpain S. Development and regulation of dendritic spine synapses. Physiology (Bethesda) 2006; 21:38-47. [PMID: 16443821 DOI: 10.1152/physiol.00042.2005] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are small protrusions from neuronal dendrites that form the postsynaptic component of most excitatory synapses in the brain. They play critical roles in synaptic transmission and plasticity. Recent advances in imaging and molecular technologies reveal that spines are complex, dynamic structures that contain a dense array of cytoskeletal, transmembrane, and scaffolding molecules. Several neurological and psychiatric disorders exhibit dendritic spine abnormalities.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
32
|
Abstract
Plasticity of synaptic transmission is believed to be the cellular basis for learning and memory, and depends upon different pre- and post-synaptic neuronal mechanisms. Recently, however, an increasing number of studies have implicated a third element in plasticity; the perisynaptic glial cell. Originally glial cells were thought to be important for metabolic maintenance and support of the nervous system. However, work in the past decade has clearly demonstrated active involvement of glia in stability and overall nervous system function as well as synaptic plasticity. Through specific modulation of glial cell function, a wide variety of roles for glia in synaptic plasticity have been uncovered. Furthermore, interesting circumstantial evidence suggests a glial involvement in multiple other types of plasticity. We will discuss recent advances in neuron-glial interactions that take place during synaptic plasticity and explore different plasticity phenomena in which glial cells may be involved.
Collapse
Affiliation(s)
- Keith J Todd
- Centre de Recherche en Sciences Neurologiques, Département de physiologie, Faculté de médecine, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, Que., Canada H3C 3J7
| | | | | | | |
Collapse
|
33
|
Oertner TG, Matus A. Calcium regulation of actin dynamics in dendritic spines. Cell Calcium 2005; 37:477-82. [PMID: 15820396 DOI: 10.1016/j.ceca.2005.01.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 11/25/2022]
Abstract
Most excitatory synapses in the brain are made on spines, small protrusions from dendrites that exist in many different shapes and sizes. Spines are highly motile, a process that reflects rapid rearrangements of the actin cytoskeleton inside the spine, and can also change shape and size over longer timescales. These different forms of morphological plasticity are regulated in an activity-dependent way, involving calcium influx through glutamate receptors and voltage-gated calcium channels. Many proteins regulating the turnover of filamentous actin (F-actin) are calcium-dependent and might transduce intracellular calcium levels into spine shape changes. On the other hand, the morphology of a spine might affect the function of the synapse residing on it. In particular, the induction of synaptic plasticity is known to require large elevations in the postsynaptic calcium concentration, which depend on the ability of the spine to compartmentalize calcium. Since the actin cytoskeleton is also known to anchor postsynaptic glutamate receptors, changes in the actin polymerization state have the potential to influence synaptic function in a number of ways. Here we review the most prominent types of changes in spine morphology in hippocampal pyramidal cells with regard to their calcium-dependence and discuss their potential impact on synaptic function.
Collapse
|
34
|
Abstract
Synapses are highly specialized intercellular junctions that mediate the transmission of information between axons and target cells. A fundamental property of synapses is their ability to modify the efficacy of synaptic communication through various forms of synaptic plasticity. Recent developments in imaging techniques have revealed that synapses exhibit a high degree of morphological plasticity under basal conditions and also in response to neuronal activity that induces alterations in synaptic strength. The underlying molecular basis for this morphological plasticity has attracted much attention, yet its functional significance to the mechanisms of synaptic transmission and synaptic plasticity remains elusive. These morphological changes ultimately require the dynamic actin cytoskeleton, which is the major structural component of synapses. Delineating the physiological roles of the actin cytoskeleton in supporting synaptic transmission and synaptic plasticity, therefore, paves the way for gaining molecular insights into when and how synaptic machineries couple synapse form and function.
Collapse
Affiliation(s)
- Christian Dillon
- MRC Cell Biology Unit and Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
35
|
Abstract
A synapse is the connection between neurons that joins an axon of one neuron to the dendrite of another. One class of synapses is formed at the contact point between an axon and a small protrusion from a dendrite, called a dendritic spine. These spines are motile and deformable, which indicates that synaptic functions are controlled, at least in part, by their morphological changes. Recent studies show that the cadherin cell-adhesion molecules and their cytoplasmic partners, catenins, can modulate axon-spine contacts in a manner that responds to neural activity. These observations indicate that cadherins, which are essential for general cell-cell adhesion, also play a role in the control of synaptic dynamics.
Collapse
Affiliation(s)
- Masatoshi Takeichi
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
36
|
Umeda T, Ebihara T, Okabe S. Simultaneous observation of stably associated presynaptic varicosities and postsynaptic spines: morphological alterations of CA3-CA1 synapses in hippocampal slice cultures. Mol Cell Neurosci 2005; 28:264-74. [PMID: 15691708 DOI: 10.1016/j.mcn.2004.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 09/17/2004] [Accepted: 09/17/2004] [Indexed: 11/22/2022] Open
Abstract
Dendritic spines are highly motile structures, but the extent and mode of coordination in motility between spines and presynaptic varicosities with synaptic contacts is not clear. To analyze movements of dendritic spines and axonal varicosities simultaneously, we labeled CA1 pyramidal cells with green fluorescent protein and CA3 pyramidal cells with rhodamine-dextran in hippocampal slice cultures. Varicosities and spines were visualized using two-photon microscopy to detect close association of two components. Time-lapse imaging revealed that they performed rapid morphological changes without losing their contacts. The extent of overall structural changes between varicosities and spines was correlated, while the direction of short-term volume changes was regulated independently. Furthermore, alterations of dendritic morphology induced by strong electrical stimulation had little effects on their association. These results indicate the presence of local regulatory mechanisms to coordinate presynaptic and postsynaptic motility.
Collapse
Affiliation(s)
- Tatsuya Umeda
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
37
|
Abstract
A recent flurry of time-lapse imaging studies of live neurons have tried to address the century-old question: what morphological changes in dendritic spines can be related to long-term memory? Changes that have been proposed to relate to memory include the formation of new spines, the enlargement of spine heads and the pruning of spines. These observations also relate to a more general question of how stable dendritic spines are. The objective of this review is to critically assess the new data and to propose much needed criteria that relate spines to memory, thereby allowing progress in understanding the morphological basis of memory.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, 76100 Israel.
| |
Collapse
|
38
|
Abstract
Mechanisms of synaptic plasticity in CNS circuits are commonly investigated using in vitro preparations such as brain slices or slice culture. During their preparation, slices are exposed to low temperatures, and electrophysiological measurements are sometimes made below physiological temperature. Because dendritic spines, which occur at the majority of excitatory synapses, are morphologically plastic, we investigated the influence of reduced temperature on their morphology and plasticity using live cell imaging of hippocampal slices from transgenic mice expressing a green fluorescent protein-based neuronal surface marker and electron microscopy of adult brain slices. Our data show that dendritic spines are highly sensitive to reduced temperature with rapid loss of actin-based motility followed at longer times by reversible loss of the entire spine structure. Thus, reduced temperature significantly affects synaptic morphology, which is in turn known to influence several key aspects of synaptic transmission. Evidence that hypothermia potentiates anesthesia and is associated with spine loss in hibernating animals further suggests that spine morphology may have a widespread influence on brain function.
Collapse
|
39
|
Konur S, Yuste R. Imaging the motility of dendritic protrusions and axon terminals: roles in axon sampling and synaptic competition. Mol Cell Neurosci 2005; 27:427-40. [PMID: 15555921 DOI: 10.1016/j.mcn.2004.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/19/2004] [Accepted: 07/24/2004] [Indexed: 10/26/2022] Open
Abstract
Dendritic spines and filopodia display actin-based morphological plasticity. The function of this rapid motility is unknown. Its ubiquitous expression during development has led to the hypothesis that motility plays a role in synaptogenesis. We investigated this by simultaneously imaging presynaptic boutons and dendritic protrusions in acute hippocampal slices from GFP-M transgenic mice loaded with FM 1-43 followed by immunostaining. Postsynaptic motility was inversely correlated with the presence of stable synaptic contacts. Filopodia were highly motile and made transient interactions, whereas spines were less motile and had stable contacts, although they could still move together with a synaptic terminal. "Head morphing" of spines was associated with interactions with more than one presynaptic terminal. Our data indicate that filopodia motility could serve to transiently sample the surrounding neuropil, while the motility of established spines could mediate interactions with two axonal terminals. Spine "morphing" could therefore be the morphological signature for synaptic input competition in central synapses.
Collapse
Affiliation(s)
- Sila Konur
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
40
|
Brünig I, Kaech S, Brinkhaus H, Oertner TG, Matus A. Influx of extracellular calcium regulates actin-dependent morphological plasticity in dendritic spines. Neuropharmacology 2005; 47:669-76. [PMID: 15458838 DOI: 10.1016/j.neuropharm.2004.07.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Dendritic spines contain a specialized cytoskeleton composed of dynamic actin filaments capable of producing rapid changes in their motility and morphology. Transient changes in Ca2+ levels in the spine cytoplasm have been associated with the modulation of these effects in a variety of ways. To characterize the contribution of Ca2+ fluxes originating through different pathways to these phenomena, we used time-lapse imaging of cultured hippocampal neurons expressing GFP-actin to follow the influence of postsynaptic neurotransmitter receptors, voltage-activated Ca2+ channels and release from internal Ca2+ stores on spine actin dynamics. Stimulation of AMPA receptors produced a rapid blockade of actin-dependent spine motility that was immediately reversible when AMPA was removed. Stimulation of NMDA receptors also blocked spine motility but in this case suppression of actin dynamics was delayed by up to 30 min depending on NMDA concentration and motility was never seen to recover when NMDA was removed. These effects could be mimicked by depolarizing neurons under appropriate circumstances demonstrating the involvement of voltage-activated Ca2+ channels in AMPA receptor-mediated effects and the receptor associated Ca2+ channel in the effects of NMDA. Caffeine, an agent that releases Ca2+ from internal stores, had no immediate effect on spine actin, a result compatible with the lack of caffeine-releasable Ca2+ in cultured hippocampal neurons under resting conditions. Blocking internal store function by thapsigargin led to a delayed suppression of spine actin dynamics that was dependent on extracellular Ca2+. Together these results indicate the common involvement of changes in Ca2+ levels in modulating actin-dependent effects on dendritic spine motility and morphology through several modes of electrophysiological activation.
Collapse
Affiliation(s)
- Ina Brünig
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Deng J, Dunaevsky A. Dynamics of dendritic spines and their afferent terminals: spines are more motile than presynaptic boutons. Dev Biol 2005; 277:366-77. [PMID: 15617680 DOI: 10.1016/j.ydbio.2004.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/16/2004] [Accepted: 09/17/2004] [Indexed: 11/30/2022]
Abstract
Previous work has established that dendritic spines, sites of excitatory input in CNS neurons, can be highly dynamic, in later development as well as in mature brain. Although spine motility has been proposed to facilitate the formation of new synaptic contacts, we have reported that spines continue to be dynamic even if they bear synaptic contacts. An outstanding question related to this finding is whether the presynaptic terminals that contact dendritic spines are as dynamic as their postsynaptic targets. Using multiphoton time-lapse microscopy of GFP-labeled Purkinje cells and DiI-labeled granule cell parallel fiber afferents in cerebellar slices, we monitored the dynamic behavior of both presynaptic terminals and postsynaptic dendritic spines in the same preparation. We report that while spines are dynamic, the presynaptic terminals they contact are quite stable. We confirmed the relatively low levels of presynaptic terminal motility by imaging parallel fibers in vivo. Finally, spine motility can occur when a functional presynaptic terminal is apposed to it. These analyses further call into question the function of spine motility, and to what extent the synapse breaks or maintains its contact during the movement of the spine.
Collapse
Affiliation(s)
- Jinbo Deng
- Department of Neuroscience, Brown University, Providence, IR 02912, USA
| | | |
Collapse
|
42
|
Abstract
Dendritic spines are small protrusions off the dendrite that receive excitatory synaptic input. Spines vary in size, likely correlating with the strength of the synapses they form. In the developing brain, spines show highly dynamic behavior thought to facilitate the formation of new synaptic contacts. Recent studies have illuminated the numerous molecules regulating spine development, many of which converge on the regulation of actin filaments. In addition, interactions with glial cells are emerging as important regulators of spine morphology. In many cases, spine morphogenesis, plasticity, and maintenance also depend on synaptic activity, as shown by recent studies demonstrating changes in spine dynamics and maintenance with altered sensory experience.
Collapse
Affiliation(s)
- Jocelyn Lippman
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
43
|
Halpain S, Spencer K, Graber S. Dynamics and pathology of dendritic spines. PROGRESS IN BRAIN RESEARCH 2005; 147:29-37. [PMID: 15581695 DOI: 10.1016/s0079-6123(04)47003-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dendritic spines are key players in information processing in the brain. Changes in spine shape and wholesale spine turnover provide mechanisms for modifying existing synaptic connections and altering neuronal connectivity. Although neuronal cell death in acute and chronic neurodegenerative diseases is clearly an important factor in decline of cognitive or motor function, loss of dendritic spines, in the absence of cell death, may also contribute to impaired brain function in these diseases, as well as in psychiatric disorders and aging. Because spines can function in neuroprotection in vitro, advances toward a molecular understanding of spine maintenance might one day aid in the design of therapies to minimize neurological damage following excitotoxic injury. In addition, progress in defining the biochemical basis of spine development and stabilization may yield insights into mental retardation and psychiatric disorders.
Collapse
Affiliation(s)
- Shelley Halpain
- The Scripps Research Institute, Department of Cell Biology and Institute for Childhood and Neglected Diseases, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
44
|
Abstract
Protrusive behavior of dendritic spines on developing neurons has been previously suggested to mediate the formation of new axodendritic synaptic contacts. A study by Zito et al. in this issue of Neuron links actin polymerization in dendritic spines with the motility that the spines exhibit and the synapses that they form.
Collapse
Affiliation(s)
- Anna Dunaevsky
- Department of Neuroscience, Brown University, 190 Thayer Street, Providence, RI 02912, USA
| |
Collapse
|
45
|
Lang C, Barco A, Zablow L, Kandel ER, Siegelbaum SA, Zakharenko SS. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc Natl Acad Sci U S A 2004; 101:16665-70. [PMID: 15542587 PMCID: PMC534531 DOI: 10.1073/pnas.0407581101] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic spines are small protrusions from dendritic shafts that contain the postsynaptic sites of glutamatergic synapses in the brain. Spines undergo dramatic activity-dependent structural changes that are particularly prominent during neuronal development. Although changes in spine shape or number have been proposed to contribute to forms of synaptic plasticity that underlie learning and memory, the extent to which spines remain plastic in the adult brain is unclear. We find that induction of long-term potentiation (LTP) of synaptic transmission in acute hippocampal slices of adult mice evokes a reliable, transient expansion in spines that are synaptically activated, as determined with calcium imaging. Similar to LTP, transient spine expansion requires N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ influx and actin polymerization. Moreover, like the early phase of LTP induced by the stimulation protocol, spine expansion does not require Ca2+ influx through L-type voltage-gated Ca2+ channels nor does it require protein synthesis. Thus, transient spine expansion is a characteristic feature of the initial phases of plasticity at mature synapses and so may contribute to synapse remodeling important for LTP.
Collapse
Affiliation(s)
- Cynthia Lang
- Center for Neurobiology and Behavior, Department of Pharmacology, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
46
|
Tashiro A, Yuste R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 2004; 26:429-40. [PMID: 15234347 DOI: 10.1016/j.mcn.2004.04.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 03/19/2004] [Accepted: 04/06/2004] [Indexed: 11/17/2022] Open
Abstract
Dendritic spines are major sites of excitatory synapses in the brain and display rapid motility, which is believed to be important for synapse formation and plasticity. Spine morphology was previously shown to be regulated by the Rho GTPases Rac1 and RhoA. Here, we analyzed the roles of Rac1 and a downstream effector of RhoA, Rho kinase, in controlling spine morphogenesis and their effects on spine motility and stability. Blockade of Rac1 induced long, thin spines and inhibited spine head growth, morphing, and stability. Spine head growth was more severely affected in mature spines. On the other hand, inhibition of Rho kinase induced new, long spines and protrusive motility. These data demonstrate that Rac1 and RhoA/Rho kinase pathways regulate different aspects of spine morphology, motility, and stability and presumably also different aspects of synaptic functions. Moreover, our data show that there are two different types of spine motility: protrusive motility and head morphing, which are differentially regulated by Rac1 and Rho kinase. We propose that these two different types of spine motility serve different functions in synaptogenesis and synapse maturation.
Collapse
Affiliation(s)
- Ayumu Tashiro
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
47
|
Munton RP, Vizi S, Mansuy IM. The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS Lett 2004; 567:121-8. [PMID: 15165904 DOI: 10.1016/j.febslet.2004.03.121] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 03/24/2004] [Indexed: 12/14/2022]
Abstract
Synaptic plasticity is a phenomenon contributing to changes in the efficacy of neuronal transmission. These changes are widely believed to be a major cellular basis for learning and memory. Protein phosphorylation is a key biochemical process involved in synaptic plasticity that operates through a tight balance between the action of protein kinases and protein phosphatases (PPs). Although the majority of research in this field has concentrated primarily on protein kinases, the significant role of PPs is becoming increasingly apparent. This review examines one such phosphatase, PP1, and highlights recent advances in the understanding of its intervention in synaptic and structural plasticity and the mechanisms of learning and memory.
Collapse
Affiliation(s)
- Richard P Munton
- Department of Biology, HPM D24, ETH Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
48
|
Abstract
The Eph receptors are a large family of receptor tyrosine kinases with important roles in the establishment of neuronal and vascular networks during embryonic development. The functions of Eph receptors in the adult brain have only recently been investigated, and the results are forcing us to amend the conventional view that these molecules function predominantly in a developmental context. This review summarizes this rapidly expanding new area of research, which has shown that the Eph receptors regulate the structure and physiological function of excitatory synapses through multiple mechanisms, and might thus play a significant role in higher brain functions.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Developmental Neurobiology Program, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
49
|
Lin H, Huganir R, Liao D. Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines. Biochem Biophys Res Commun 2004; 316:501-11. [PMID: 15020245 DOI: 10.1016/j.bbrc.2004.02.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Indexed: 01/23/2023]
Abstract
Recent studies have shown that the activation of NMDA receptors can induce rapid changes in dendritic morphology and synaptic recruitment of AMPA receptors in dendritic spines. Here, we analyze the time course of NMDA receptor-induced changes in dendrite morphology and recruitment of AMPA receptors to synapses in cultured neurons. Activation of NMDA receptors causes a rapid transient increase in the size of preexisting spines and then the gradual formation of new dendritic protrusions and spines. NMDA receptor activation also induced GFP-tagged AMPA receptors to cluster in dendrites and to be inserted into the surface of dendritic spines. These results indicate that NMDA receptor activation induces several phases of dendritic plasticity, initial expansion of dendritic spines, followed by the de novo formation of spines and AMPA receptor dendritic clustering and surface expression on spines. Each of these forms of plasticity may have significant effects on the efficacy of synaptic transmission.
Collapse
Affiliation(s)
- Hang Lin
- The Department of Neuroscience, University of Minnesota, Rm 6-145 Jackson Hall, 321 Church St. S, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
50
|
Matsutani S, Yamamoto N. Brain-derived neurotrophic factor induces rapid morphological changes in dendritic spines of olfactory bulb granule cells in cultured slices through the modulation of glutamatergic signaling. Neuroscience 2004; 123:695-702. [PMID: 14706781 DOI: 10.1016/j.neuroscience.2003.10.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While the acute physiological effects of brain-derived neurotrophic factor (BDNF) have been well demonstrated, little is known regarding possible morphological effects that occur within a short period of time. The acute effects of BDNF on dendritic spine morphology were examined in granule cells in cultured main olfactory bulb slices. Organotypic slices prepared from 7-day-old rats were cultured for 1 day, and BDNF was applied at varying time points prior to fixation. Granule cell dendrites were labeled with a membrane dye and observed with a confocal laser scanning microscope. The addition of BDNF into the culture medium 6 h before fixation decreased the mean diameter of the dendritic processes (filopodia/spines), but the length and density of the processes were not affected. Both filopodia/spines in the external plexiform layer and those in the granule cell layer exhibited similar changes. Considering the slow penetration into the slices, BDNF was then applied to the top of each slice. When applied 1 h before fixation, 5 ng and 0.5 ng of BDNF induced the same changes in the external plexiform layer and the granule cell layer, respectively. The changes became detectable as early as 30 min when 50 ng of BDNF was applied. The pretreatment with tetanus toxin or an N-methyl-D-aspartate receptor antagonist abolished the acute effects of BDNF on spine morphology. These results indicate that BDNF can alter spine morphology within a shorter period of time than previously observed and that the effects are mediated by enhanced glutamatergic signaling.
Collapse
Affiliation(s)
- S Matsutani
- Department of Functional Morphology, Kitasato University School of Nursing, 2-1-1 Kitasato, Sagamihara, 228-0829, Kanagawa, Japan.
| | | |
Collapse
|