1
|
Qian J, Wang Q, Xu J, Liang S, Zheng Q, Guo X, Luo W, Huang W, Long X, Min J, Wang Y, Wu G, Liang G. Macrophage OTUD1-CARD9 axis drives isoproterenol-induced inflammatory heart remodelling. Clin Transl Med 2024; 14:e1790. [PMID: 39118286 PMCID: PMC11310286 DOI: 10.1002/ctm2.1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chronic inflammation contributes to the progression of isoproterenol (ISO)-induced heart failure (HF). Caspase-associated recruitment domain (CARD) families are crucial proteins for initiation of inflammation in innate immunity. Nonetheless, the relevance of CARDs in ISO-driven cardiac remodelling is little explored. METHODS This study utilized Card9-/- mice and reconstituted C57BL/6 mice with either Card9-/- or Otud1-/- marrow-derived cells. Mechanistic studies were conducted in primary macrophages, cardiomyocytes, fibroblasts and HEK-293T cells. RESULTS Here, we demonstrated that CARD9 was substantially upregulated in murine hearts infused with ISO. Either whole-body CARD9 knockout or myeloid-specific CARD9 deletion inhibited ISO-driven murine cardiac inflammation, remodelling and dysfunction. CARD9 deficiency in macrophages prevented ISO-induced inflammation and alleviated remodelling changes in cardiomyocytes and fibroblasts. Mechanistically, we found that ISO enhances the activity of CARD9 by upregulating ovarian tumour deubiquitinase 1 (OTUD1) in macrophages. We further demonstrated that OTUD1 directly binds to the CARD9 and then removes the K33-linked ubiquitin from CARD9 to promote the assembly of the CARD9-BCL10-MALT1 (CBM) complex, without affecting CARD9 stability. The ISO-activated CBM complex results in NF-κB activation and macrophage-based inflammatory gene overproduction, which then enhances cardiomyocyte hypertrophy and fibroblast fibrosis, respectively. Myeloid-specific OTUD1 deletion also attenuated ISO-induced murine cardiac inflammation and remodelling. CONCLUSIONS These results suggested that the OTUD1-CARD9 axis is a new pro-inflammatory signal in ISO-challenged macrophages and targeting this axis has a protective effect against ISO-induced HF. KEY POINTS Macrophage CARD9 was elevated in heart tissues of mice under chronic ISO administration. Either whole-body CARD9 knockout or myeloid-specific CARD9 deficiency protected mice from ISO-induced inflammatory heart remodeling. ISO promoted the assembly of CBM complex and then activated NF-κB signaling in macrophages through OTUD1-mediated deubiquitinating modification. OTUD1 deletion in myeloid cells protected hearts from ISO-induced injuries in mice.
Collapse
Affiliation(s)
- Jinfu Qian
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Qinyan Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Jiachen Xu
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shiqi Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Qingsong Zheng
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xiaocheng Guo
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Wu Luo
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Weijian Huang
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaohong Long
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Julian Min
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yi Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Gaojun Wu
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Guang Liang
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
2
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Kiyomoto K, Matsuo I, Suita K, Ohnuki Y, Ishikawa M, Ito A, Mototani Y, Tsunoda M, Morii A, Nariyama M, Hayakawa Y, Amitani Y, Gomi K, Okumura S. Oral angiotensin-converting enzyme inhibitor captopril protects the heart from Porphyromonas gingivalis LPS-induced cardiac dysfunction in mice. PLoS One 2023; 18:e0292624. [PMID: 37983238 PMCID: PMC10659197 DOI: 10.1371/journal.pone.0292624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
Abstract
Although angiotensin converting enzyme (ACE) inhibitors are considered useful for the treatment of human heart failure, some experimental failing-heart models have shown little beneficial effect of ACE inhibitors in animals with poor oral health, particularly periodontitis. In this study, we examined the effects of the ACE inhibitor captopril (Cap; 0.1 mg/mL in drinking water) on cardiac dysfunction in mice treated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS) at a dose (0.8 mg/kg/day) equivalent to the circulating level in patients with periodontal disease. Mice were divided into four groups: 1) Control, 2) PG-LPS, 3) Cap, and 4) PG-LPS + Cap. After1 week, we evaluated cardiac function by echocardiography. The left ventricular ejection fraction was significantly decreased in PG-LPS-treated mice compared to the control (from 66 ± 1.8 to 59 ± 2.5%), while Cap ameliorated the dysfunction (63 ± 1.1%). The area of cardiac fibrosis was significantly increased (approximately 2.9-fold) and the number of apoptotic myocytes was significantly increased (approximately 5.6-fold) in the heart of PG-LPS-treated group versus the control, and these changes were suppressed by Cap. The impairment of cardiac function in PG-LPS-treated mice was associated with protein kinase C δ phosphorylation (Tyr-311), leading to upregulation of NADPH oxidase 4 and xanthine oxidase, and calmodulin kinase II phosphorylation (Thr-286) with increased phospholamban phosphorylation (Thr-17). These changes were also suppressed by Cap. Our results suggest that the renin-angiotensin system might play an important role in the development of cardiac diseases induced by PG-LPS.
Collapse
Affiliation(s)
- Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ichiro Matsuo
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshio Hayakawa
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasuharu Amitani
- Department of Mathematics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
4
|
Liu Y, Shao YH, Zhang JM, Wang Y, Zhou M, Li HQ, Zhang CC, Yu PJ, Gao SJ, Wang XR, Jia LX, Piao CM, Du J, Li YL. Macrophage CARD9 mediates cardiac injury following myocardial infarction through regulation of lipocalin 2 expression. Signal Transduct Target Ther 2023; 8:394. [PMID: 37828006 PMCID: PMC10570328 DOI: 10.1038/s41392-023-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
Immune cell infiltration in response to myocyte death regulates extracellular matrix remodeling and scar formation after myocardial infarction (MI). Caspase-recruitment domain family member 9 (CARD9) acts as an adapter that mediates the transduction of pro-inflammatory signaling cascades in innate immunity; however, its role in cardiac injury and repair post-MI remains unclear. We found that Card9 was one of the most upregulated Card genes in the ischemic myocardium of mice. CARD9 expression increased considerably 1 day post-MI and declined by day 7 post-MI. Moreover, CARD9 was mainly expressed in F4/80-positive macrophages. Card9 knockout (KO) led to left ventricular function improvement and infarct scar size reduction in mice 28 days post-MI. Additionally, Card9 KO suppressed cardiomyocyte apoptosis in the border region and attenuated matrix metalloproteinase (MMP) expression. RNA sequencing revealed that Card9 KO significantly suppressed lipocalin 2 (Lcn2) expression post-MI. Both LCN2 and the receptor solute carrier family 22 member 17 (SL22A17) were detected in macrophages. Subsequently, we demonstrated that Card9 overexpression increased LCN2 expression, while Card9 KO inhibited necrotic cell-induced LCN2 upregulation in macrophages, likely through NF-κB. Lcn2 KO showed beneficial effects post-MI, and recombinant LCN2 diminished the protective effects of Card9 KO in vivo. Lcn2 KO reduced MMP9 post-MI, and Lcn2 overexpression increased Mmp9 expression in macrophages. Slc22a17 knockdown in macrophages reduced MMP9 release with recombinant LCN2 treatment. In conclusion, our results demonstrate that macrophage CARD9 mediates the deterioration of cardiac function and adverse remodeling post-MI via LCN2.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yi-Hui Shao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jun-Meng Zhang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ying Wang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Hui-Qin Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Cong-Cong Zhang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Pei-Jie Yu
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Shi-Juan Gao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Xue-Rui Wang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Chun-Mei Piao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yu-Lin Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
5
|
Zhang Y, Vandestienne M, Lavillegrand JR, Joffre J, Santos-Zas I, Lavelle A, Zhong X, Le Goff W, Guérin M, Al-Rifai R, Laurans L, Bruneval P, Guérin C, Diedisheim M, Migaud M, Puel A, Lanternier F, Casanova JL, Cochain C, Zernecke A, Saliba AE, Mokry M, Silvestre JS, Tedgui A, Mallat Z, Taleb S, Lenoir O, Vindis C, Camus SM, Sokol H, Ait-Oufella H. Genetic inhibition of CARD9 accelerates the development of atherosclerosis in mice through CD36 dependent-defective autophagy. Nat Commun 2023; 14:4622. [PMID: 37528097 PMCID: PMC10394049 DOI: 10.1038/s41467-023-40216-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1β production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.
Collapse
Affiliation(s)
- Yujiao Zhang
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Marie Vandestienne
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | | | - Jeremie Joffre
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Sorbonne Université, Paris, France
| | - Icia Santos-Zas
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Aonghus Lavelle
- Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Paris, France
| | - Xiaodan Zhong
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Wilfried Le Goff
- Inserm UMRS1166, ICAN, Institute of CardioMetabolism and Nutrition, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Maryse Guérin
- Inserm UMRS1166, ICAN, Institute of CardioMetabolism and Nutrition, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Rida Al-Rifai
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Ludivine Laurans
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Patrick Bruneval
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Department of Anatomopathology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Coralie Guérin
- Institut Curie, Cytometry Platform, 75006, Paris, France
| | - Marc Diedisheim
- Clinique Saint Gatien Alliance (NCT+), 37540 Saint-Cyr-sur-Loire, France; Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, 75015, Paris, France
| | - Melanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Fanny Lanternier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
| | - Clément Cochain
- Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Wuerzburg, Germany
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | | | - Alain Tedgui
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Ziad Mallat
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Soraya Taleb
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Olivia Lenoir
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | | | - Stéphane M Camus
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Harry Sokol
- Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Paris, France
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Hafid Ait-Oufella
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Sorbonne Université, Paris, France.
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France.
| |
Collapse
|
6
|
Zhu Q, Liu X, Wu H, Yang C, Wang M, Chen F, Cui Y, Hao H, Hill MA, Liu Z. CARD9 deficiency improves the recovery of limb ischemia in mice with ambient fine particulate matter exposure. Front Cardiovasc Med 2023; 10:1125717. [PMID: 36860276 PMCID: PMC9968734 DOI: 10.3389/fcvm.2023.1125717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Background Exposure to fine particulate matter (PM) is a significant risk for cardiovascular diseases largely due to increased reactive oxygen species (ROS) production and inflammation. Caspase recruitment domain (CARD)9 is critically involved in innate immunity and inflammation. The present study was designed to test the hypothesis that CARD9 signaling is critically involved in PM exposure-induced oxidative stress and impaired recovery of limb ischemia. Methods and results Critical limb ischemia (CLI) was created in male wildtype C57BL/6 and age matched CARD9 deficient mice with or without PM (average diameter 2.8 μm) exposure. Mice received intranasal PM exposure for 1 month prior to creation of CLI and continued for the duration of the experiment. Blood flow and mechanical function were evaluated in vivo at baseline and days 3, 7, 14, and 21 post CLI. PM exposure significantly increased ROS production, macrophage infiltration, and CARD9 protein expression in ischemic limbs of C57BL/6 mice in association with decreased recovery of blood flow and mechanical function. CARD9 deficiency effectively prevented PM exposure-induced ROS production and macrophage infiltration and preserved the recovery of ischemic limb with increased capillary density. CARD9 deficiency also significantly attenuated PM exposure-induced increase of circulating CD11b+/F4/80+ macrophages. Conclusion The data indicate that CARD9 signaling plays an important role in PM exposure-induced ROS production and impaired limb recovery following ischemia in mice.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hao Wu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Chunlin Yang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Feng Chen
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States,*Correspondence: Zhenguo Liu ✉
| |
Collapse
|
7
|
Liu X, Jiang B, Hao H, Liu Z. CARD9 Signaling, Inflammation, and Diseases. Front Immunol 2022; 13:880879. [PMID: 35432375 PMCID: PMC9005907 DOI: 10.3389/fimmu.2022.880879] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Caspase-recruitment domain 9 (CARD9) protein is expressed in many cells especially in immune cells, and is critically involved in the function of the innate and adaptive immune systems through extensive interactions between CARD9 and other signaling molecules including NF-κB and MAPK. CARD9-mediated signaling plays a central role in regulating inflammatory responses and oxidative stress through the productions of important cytokines and chemokines. Abnormalities of CARD9 and CARD9 signaling or CARD9 mutations or polymorphism are associated with a variety of pathological conditions including infections, inflammation, and autoimmune disorders. This review focuses on the function of CARD9 and CARD9-mediated signaling pathways, as well as interactions with other important signaling molecules in different cell types and the relations to specific disease conditions including inflammatory diseases, infections, tumorigenesis, and cardiovascular pathologies.
Collapse
Affiliation(s)
- Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bimei Jiang
- Department of Pathophysiology, Central South University, Changsha, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Zhang H, Wang Y, Men H, Zhou W, Zhou S, Liu Q, Cai L. CARD9 Regulation and its Role in Cardiovascular Diseases. Int J Biol Sci 2022; 18:970-982. [PMID: 35173530 PMCID: PMC8771857 DOI: 10.7150/ijbs.65979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 01/11/2023] Open
Abstract
Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor protein expressed on myeloid cells and located downstream of pattern recognition receptors (PRRs), which transduces signals involved in innate immunity. CARD9 deficiency is associated with increased susceptibility to various fungal diseases. Increasing evidence shows that CARD9 mediates the activation of p38 MAPK, NF-κB, and NLRP3 inflammasome in various CVDs and then promotes the production of proinflammatory cytokines and chemokines, which contribute to cardiac remodeling and cardiac dysfunction in certain cardiovascular diseases (CVDs). Moreover, CARD9-mediated anti-apoptosis and autophagy are implicated in the progression of CVDs. Here, we summarize the structure and function of CARD9 in innate immunity and its various roles in inflammation, apoptosis, and autophagy in the pathogenesis of CVDs. Furthermore, we discuss the potential therapies targeting CARD9 to prevent CVDs and raise some issues for further exploring the role of CARD9 in CVDs.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Yeling Wang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Hongbo Men
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Wenqian Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Shanshan Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Quan Liu
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,✉ Corresponding authors: Dr. Quan Liu, Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China; E-mail: ; Dr. Lu Cai, Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA; E-mail:
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.,✉ Corresponding authors: Dr. Quan Liu, Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China; E-mail: ; Dr. Lu Cai, Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA; E-mail:
| |
Collapse
|
9
|
Abstract
Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia - including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure - can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.
Collapse
|
10
|
Liu X, Shi GP, Guo J. Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling. Front Cell Dev Biol 2021; 9:659666. [PMID: 34368120 PMCID: PMC8343105 DOI: 10.3389/fcell.2021.659666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Pressure overload and heart failure are among the leading causes of cardiovascular morbidity and mortality. Accumulating evidence suggests that inflammatory cell activation and release of inflammatory mediators are of vital importance during the pathogenesis of these cardiac diseases. Yet, the roles of innate immune cells and subsequent inflammatory events in these processes remain poorly understood. Here, we outline the possible underlying mechanisms of innate immune cell participation, including mast cells, macrophages, monocytes, neutrophils, dendritic cells, eosinophils, and natural killer T cells in these pathological processes. Although these cells accumulate in the atrium or ventricles at different time points after pressure overload, their cardioprotective or cardiodestructive activities differ from each other. Among them, mast cells, neutrophils, and dendritic cells exert detrimental function in experimental models, whereas eosinophils and natural killer T cells display cardioprotective activities. Depending on their subsets, macrophages and monocytes may exacerbate cardiodysfunction or negatively regulate cardiac hypertrophy and remodeling. Pressure overload stimulates the secretion of cytokines, chemokines, and growth factors from innate immune cells and even resident cardiomyocytes that together assist innate immune cell infiltration into injured heart. These infiltrates are involved in pro-hypertrophic events and cardiac fibroblast activation. Immune regulation of cardiac innate immune cells becomes a promising therapeutic approach in experimental cardiac disease treatment, highlighting the significance of their clinical evaluation in humans.
Collapse
Affiliation(s)
- Xin Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Junli Guo
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Hall C, Gehmlich K, Denning C, Pavlovic D. Complex Relationship Between Cardiac Fibroblasts and Cardiomyocytes in Health and Disease. J Am Heart Assoc 2021; 10:e019338. [PMID: 33586463 PMCID: PMC8174279 DOI: 10.1161/jaha.120.019338] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibroblasts are the primary cell type responsible for deposition of extracellular matrix in the heart, providing support to the contracting myocardium and contributing to a myriad of physiological signaling processes. Despite the importance of fibrosis in processes of wound healing, excessive fibroblast proliferation and activation can lead to pathological remodeling, driving heart failure and the onset of arrhythmias. Our understanding of the mechanisms driving the cardiac fibroblast activation and proliferation is expanding, and evidence for their direct and indirect effects on cardiac myocyte function is accumulating. In this review, we focus on the importance of the fibroblast-to-myofibroblast transition and the cross talk of cardiac fibroblasts with cardiac myocytes. We also consider the current use of models used to explore these questions.
Collapse
Affiliation(s)
- Caitlin Hall
- Institute of Cardiovascular Sciences University of Birmingham United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences University of Birmingham United Kingdom.,Division of Cardiovascular Medicine Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford University of Oxford United Kingdom
| | - Chris Denning
- Biodiscovery Institute University of Nottingham United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences University of Birmingham United Kingdom
| |
Collapse
|
12
|
Xi L. CARD9: key player or bystander in cardiac remodeling under hypertension? Hypertens Res 2020; 43:1454-1456. [DOI: 10.1038/s41440-020-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022]
|
13
|
Zhang H, Cai L. Zinc homeostasis plays an important role in the prevention of obesity-induced cardiac inflammation, remodeling and dysfunction. J Trace Elem Med Biol 2020; 62:126615. [PMID: 32683230 DOI: 10.1016/j.jtemb.2020.126615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 01/21/2023]
Abstract
Obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors, therefore it not only has anti-inflammatory and anti-oxidative stress functions, but also has insulin-like function, however, its role in the development of obesity-associated cardiac pathogenesis and the potentially underlying mechanism(s) remains unclear. This review aims to summarize the available evidence on the role of zinc homeostasis in the prevention of ORCH. It was recently reported that when four-week old mice were fed either high fat diet (HFD) or normal diet containing deficient, adequate or supplemented zinc, HFD induced obesity and ORCH along with increased phosphorylation of p38 MAPK and increased expression of B-cell lymphoma/ leukemia 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These effects were further aggravated by zinc deficiency and significantly alleviated by zinc supplementation. Mechanistically administration of a p38 MAPK specific inhibitor in HFD-fed mice for 3 months did not affect HFD-induced obesity and increased expression of BCL10 and CARD9, but completely abolished HFD/obesity-induced cardiac hypertrophy and inflammation. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. Taken together with other recent studies, we concluded that HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signaling. Zinc supplementation ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation.
Collapse
Affiliation(s)
- Haina Zhang
- Pediatric Research Institute, Departments of Pediatric, University of Louisville School of Medicine, Louisville, KY, USA; Center of Cardiovascular Disorders, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatric, University of Louisville School of Medicine, Louisville, KY, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
14
|
Wang Y, Zhao M, Liu S, Guo J, Lu Y, Cheng J, Liu J. Macrophage-derived extracellular vesicles: diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis 2020; 11:924. [PMID: 33116121 PMCID: PMC7595091 DOI: 10.1038/s41419-020-03127-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Macrophages (Mφ) are primary innate immune cells that exhibit diverse functions in response to different pathogens or stimuli, and they are extensively involved in the pathology of various diseases. Extracellular vesicles (EVs) are small vesicles released by live cells. As vital messengers, macrophage-derived EVs (Mφ-EVs) can transfer multiple types of bioactive molecules from macrophages to recipient cells, modulating the biological function of recipient cells. In recent years, Mφ-EVs have emerged as vital mediators not only in the pathology of multiple diseases such as inflammatory diseases, fibrosis and cancers, but also as mediators of beneficial effects in immunoregulation, cancer therapy, infectious defense, and tissue repair. Although many investigations have been performed to explore the diverse functions of Mφ-EVs in disease pathology and intervention, few studies have comprehensively summarized their detailed biological roles as currently understood. In this review, we briefly introduced an overview of macrophage and EV biology, and primarily focusing on current findings and future perspectives with respect to the pathological and therapeutic effects of Mφ-EVs in various diseases.
Collapse
Affiliation(s)
- Yizhuo Wang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Guo
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Chen Q, Zhang D, Bi Y, Zhang W, Zhang Y, Meng Q, Li Y, Bian H. The protective effects of liguzinediol on congestive heart failure induced by myocardial infarction and its relative mechanism. Chin Med 2020; 15:63. [PMID: 32549908 PMCID: PMC7296683 DOI: 10.1186/s13020-020-00345-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Heart failure (HF) is one of the most common causes of cardiovascular diseases in the world. Currently, the drugs used to treat HF in the clinic may cause serious side effects. Liguzinediol, 2, 5-dimethyl-3, 6-dimethyl-pyrazine, is a compound synthesized after the structural modification of ligustrazine (one active ingredient of Szechwan Lovage Rhizome). We aimed to observe the effects of liguzinediol on preventing HF and explore the related mechanisms. Methods The ligation of left anterior descending coronary artery was operated to established the myocardial infarction (MI) model in Sprague–Dawley rats. Cardiac functions were recorded by echocardiography and hemodynamics. The changes in the Renin–Angiotensin–Aldosterone System (RAAS), inflammation, and oxidative stress were detected by radioimmunoassay and Elisa kits. Western blot and real-time PCR were applied to determine the expressions of the TGF-β1/Smads pathway. Results Firstly, liguzinediol enhanced the systolic and diastolic functions of the heart in MI rats. Liguzinediol improved ventricular remodeling by reducing myocardial cell necrosis, as well as reducing collagen deposition and myocardial fibrosis. Then, liguzinediol suppressed the activation of RAAS, inhibited the synthesis of pro-inflammation factors, and reduced oxidative stress. In the end, liguzinediol also down-regulated the expressions of the TGF-β1/Smads pathway. Conclusions Liguzinediol could alleviate HF caused by MI in rats, and the protective effect was associated with the regulation of the TGF-β1/Smads pathway.![]()
Collapse
Affiliation(s)
- Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Dini Zhang
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042 China
| | - Yunhui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Weiwei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Yu Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
16
|
The Role of CARD9 in Metabolic Diseases. Curr Med Sci 2020; 40:199-205. [DOI: 10.1007/s11596-020-2166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/16/2020] [Indexed: 01/19/2023]
Abstract
SummaryCaspase recruitment domain containing protein 9 (CARD9) is an adaptor protein that plays a critical role in pattern recognition receptors (PRRs)-mediated activation of NF-?B and mitogen-activated protein kinase (MAPK). This elicits initiation of the pro-inflammatory cytokines and leads to inflammatory responses, which has been recognized as a critical contributor to chronic inflammation. Current researches demonstrate that CARD9 is strongly associated with metabolic diseases, such as obesity, insulin resistance, atherosclerosis and so on. In this review, we summarize CARD9 signaling pathway and the role of CARD9 in metabolic diseases.
Collapse
|
17
|
She G, Ren YJ, Wang Y, Hou MC, Wang HF, Gou W, Lai BC, Lei T, Du XJ, Deng XL. K Ca3.1 Channels Promote Cardiac Fibrosis Through Mediating Inflammation and Differentiation of Monocytes Into Myofibroblasts in Angiotensin II -Treated Rats. J Am Heart Assoc 2020; 8:e010418. [PMID: 30563389 PMCID: PMC6405723 DOI: 10.1161/jaha.118.010418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac fibrosis is a core pathological process associated with heart failure. The recruitment and differentiation of primitive fibroblast precursor cells of bone marrow origin play a critical role in pathological interstitial cardiac fibrosis. The KC a3.1 channels are expressed in both ventricular fibroblasts and circulating mononuclear cells in rats and are upregulated by angiotensin II . We hypothesized that KC a3.1 channels mediate the inflammatory microenvironment in the heart, promoting the infiltrated bone marrow-derived circulating mononuclear cells to differentiate into myofibroblasts, leading to myocardial fibrosis. Methods and Results We established a cardiac fibrosis model in rats by infusing angiotensin II to evaluate the impact of the specific KC a3.1 channel blocker TRAM -34 on cardiac fibrosis. At the same time, mouse CD 4+ T cells and rat circulating mononuclear cells were separated to investigate the underlying mechanism of the TRAM -34 anti-cardiac fibrosis effect. TRAM -34 significantly attenuated cardiac fibrosis and the inflammatory reaction and reduced the number of fibroblast precursor cells and myofibroblasts. Inhibition of KC a3.1 channels suppressed angiotensin II -stimulated expression and secretion of interleukin-4 and interleukin-13 in CD 4+ T cells and interleukin-4- or interleukin-13-induced differentiation of monocytes into fibrocytes. Conclusions KC a3.1 channels facilitate myocardial inflammation and the differentiation of bone marrow-derived monocytes into myofibroblasts in cardiac fibrosis caused by angiotensin II infusion.
Collapse
Affiliation(s)
- Gang She
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Yu-Jie Ren
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China.,5 Department of Pathology Xi'an Guangren Hospital Affiliated to Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Yan Wang
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Meng-Chen Hou
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Hui-Fang Wang
- 5 Department of Pathology Xi'an Guangren Hospital Affiliated to Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Wei Gou
- 3 Basic Experiment Teaching Center School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Bao-Chang Lai
- 4 Cardiovascular Research Centre School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Ting Lei
- 2 Department of Pathology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Xiao-Jun Du
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China.,6 Baker Heart and Diabetes Institute Melbourne Victoria Australia
| | - Xiu-Ling Deng
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China.,4 Cardiovascular Research Centre School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| |
Collapse
|
18
|
Li Y, Liang P, Jiang B, Tang Y, Lv Q, Hao H, Liu Z, Xiao X. CARD9 inhibits mitochondria-dependent apoptosis of cardiomyocytes under oxidative stress via interacting with Apaf-1. Free Radic Biol Med 2019; 141:172-181. [PMID: 31212066 DOI: 10.1016/j.freeradbiomed.2019.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/25/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Cardiomyocyte apoptosis is known to contribute to myocardial ischemia/reperfusion (I/R) injury. Caspase recruitment domain-containing protein 9 (CARD9) play a role in cardiac fibrosis and dysfunction. However, the role of CARD9 in apoptosis of cardiomyocytes in myocardial I/R injury and its underlying mechanisms are still unclear. In this study, CARD9 expression was found to increase in H9c2 cells in response to hydrogen peroxide. Loss of CARD9 significantly increased caspase-3 activation and cardiomyocyte death following oxidative stress in vitro. Conversely, CARD9 overexpression decreased apoptosis as evidenced by a reduction in caspase-3 activation and the apoptotic rate. The caspase recruitment domain (CARD) of CARD9 was necessary for the protective effect of CARD9 against oxidative stress in cardiomyocytes. CARD9 suppressed the activation of caspase-9 by interacting with Apaf-1 via its CARD domain in H9c2 cells exposed to H2O2. Ablation of caspase-9 activity by z-lehd-fmk effectively prevented the detrimental effect of CARD9 deficiency on cardiomyocytes. Wild-type (WT) and CARD9-/- mice were subjected to 30 min of left ascending coronary (LAD) ischemia and 12 h of reperfusion. TdT-mediated dUTP nick end labeling (TUNEL) staining analysis showed that CARD9-/- mice exhibited a significantly higher number of apoptotic-positive cells after myocardial I/R injury than the WT mice. These results suggest that CARD9 protects cardiomyocytes from apoptosis by interacting with Apaf-1 and interfering with apoptosome formation following myocardial I/R injury in vivo and in vitro.
Collapse
Affiliation(s)
- Yuanbin Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China.
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Qinglan Lv
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Hong Hao
- Division of Cardiovascular Medicine, Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Xianzhong Xiao
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| |
Collapse
|
19
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
20
|
Zhong X, Chen B, Yang L, Yang Z. Molecular and physiological roles of the adaptor protein CARD9 in immunity. Cell Death Dis 2018; 9:52. [PMID: 29352133 PMCID: PMC5833731 DOI: 10.1038/s41419-017-0084-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
CARD9 is a caspase recruitment domain-containing signaling protein that plays a critical role in innate and adaptive immunity. It has been widely demonstrated that CARD9 adaptor allows pattern recognition receptors to induce NF-κB and MAPK activation, which initiates a “downstream” inflammation cytokine cascade and provides effective protection against microbial invasion, especially fungal infection. Here our aim is to update existing paradigms and summarize the most recent findings on the CARD9 signaling pathway, revealing significant mechanistic insights into the pathogenesis of CARD9 deficiency. We also discuss the effect of CARD9 genetic mutations on the in vivo immune response, and highlight clinical advances in non-infection inflammation.
Collapse
Affiliation(s)
| | - Bin Chen
- Surgery Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Liang Yang
- Fuzhou Medical College of Nanchang University, Jiangxi, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Gan W, Ren J, Li T, Lv S, Li C, Liu Z, Yang M. The SGK1 inhibitor EMD638683, prevents Angiotensin II–induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1-10. [DOI: 10.1016/j.bbadis.2017.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/08/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
|
22
|
Kanno E, Kawakami K, Tanno H, Suzuki A, Sato N, Masaki A, Imamura A, Takagi N, Miura T, Yamamoto H, Ishii K, Hara H, Imai Y, Maruyama R, Tachi M. Contribution of CARD9-mediated signalling to wound healing in skin. Exp Dermatol 2017. [PMID: 28620967 DOI: 10.1111/exd.13389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inflammatory response after skin injury involves the secretion of a variety of cytokines and growth factors that are necessary for tissue repair. Caspase recruitment domain-containing protein 9 (CARD9) is an essential signalling adaptor molecule for NF-κB activation upon triggering through C-type lectin receptors (CLRs), which are expressed in macrophages and dendritic cells. However, the role of CARD9 in inflammatory responses at the wound site has not been elucidated. In this study, we analysed the role of CARD9 in the healing process of skin wounds. Wounds were created on the backs of wild-type (WT) C57BL/6 mice and CARD9 gene-disrupted (knockout [KO]) mice. We analysed per cent wound closure, and the wound tissues were harvested for analysis of leucocyte accumulation and cytokine and chemokine expressions. CARD9KO mice exhibited significant attenuation of wound closure compared with WT mice on days 5, 7 and 10 postwounding, which was associated with decreased macrophage accumulation and reduced TNF-α, IL-1β, CCL3 and CCL4 expressions. These results suggest that CARD9 may be involved in the wound-healing process through the regulation of macrophage-mediated inflammatory responses.
Collapse
Affiliation(s)
- Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Aiko Suzuki
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Noriko Sato
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Airi Masaki
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Ayano Imamura
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Naoyuki Takagi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Takayuki Miura
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Hideki Yamamoto
- Center for Transdisciplinary Research, Niigata University, Nishi-ku, Niigata, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Ryoko Maruyama
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| |
Collapse
|
23
|
Qiao G, Xia D, Cheng Z, Zhang G. miR-132 in atrial fibrillation directly targets connective tissue growth factor. Mol Med Rep 2017; 16:4143-4150. [DOI: 10.3892/mmr.2017.7045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/16/2017] [Indexed: 11/05/2022] Open
|
24
|
Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice. Int J Mol Sci 2017; 18:ijms18030580. [PMID: 28272348 PMCID: PMC5372596 DOI: 10.3390/ijms18030580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 01/04/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is highly prevalent in type 2 diabetes (T2DM) patients. Zinc is an important essential trace metal, whose deficiency is associated with various chronic ailments, including vascular diseases. We assessed T2DM B6.BKS(D)-Leprdb/J (db/db) mice fed for six months on a normal diet containing three zinc levels (deficient, adequate, and supplemented), to explore the role of zinc in DCM development and progression. Cardiac function, reflected by ejection fraction, was significantly decreased, along with increased left ventricle mass and heart weight to tibial length ratio, in db/db mice. As a molecular cardiac hypertrophy marker, atrial natriuretic peptide levels were also significantly increased. Cardiac dysfunction and hypertrophy were accompanied by significantly increased fibrotic (elevated collagen accumulation as well as transforming growth factor β and connective tissue growth factor levels) and inflammatory (enhanced expression of tumor necrosis factor alpha, interleukin-1β, caspase recruitment domain family member 9, and B-cell lymphoma/leukemia 10, and activated p38 mitogen-activated protein kinase) responses in the heart. All these diabetic effects were exacerbated by zinc deficiency, and not affected by zinc supplementation, respectively. Mechanistically, oxidative stress and damage, mirrored by the accumulation of 3-nitrotyrosine and 4-hydroxy-2-nonenal, was significantly increased along with significantly decreased expression of Nrf2 and its downstream antioxidants (NQO-1 and catalase). This was also exacerbated by zinc deficiency in the db/db mouse heart. These results suggested that zinc deficiency promotes the development and progression of DCM in T2DM db/db mice. The exacerbated effects by zinc deficiency on the heart of db/db mice may be related to further suppression of Nrf2 expression and function.
Collapse
|
25
|
Wang S, Gu J, Xu Z, Zhang Z, Bai T, Xu J, Cai J, Barnes G, Liu QJ, Freedman JH, Wang Y, Liu Q, Zheng Y, Cai L. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway. J Cell Mol Med 2017; 21:1182-1192. [PMID: 28158919 PMCID: PMC5431126 DOI: 10.1111/jcmm.13050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation.
Collapse
Affiliation(s)
- Shudong Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Junlian Gu
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Zheng Xu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Zhiguo Zhang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tao Bai
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianxiang Xu
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory Barnes
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA.,Autism Center, University of Louisville, Louisville, KY, USA
| | - Qiu-Ju Liu
- Department of Hematology Disorders, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Yonggang Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Quan Liu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Wendy Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
26
|
Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, Sakurai E, Miura K, Iwao H. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 2016; 40:353-360. [PMID: 27881852 DOI: 10.1038/hr.2016.163] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/29/2022]
Abstract
Hypertension is one of the most important cardiovascular risk factors and results in macrophage infiltration of blood vessels. However, how macrophages coordinate inflammatory responses with endothelial cells (ECs) remains unclear. In this study, we investigated whether exosomes upregulate the expression of inflammatory factors in ECs under hypertensive conditions. Hypertension was induced in rats by continuous infusion of angiotensin II (Ang II). Exosomes were purified from rat serum by density gradient and ultracentrifugation and used to stimulate human coronary artery ECs (HCAECs). Moreover, the interactions between HCAECs and exosomes from human THP-1-derived macrophages were analyzed. Administration of Ang II enhanced the expression of CD68, a macrophage marker, in rat hearts, suggesting enhanced infiltration of macrophages. In addition, the expression of intracellular adhesion molecule-1 (ICAM1) and plasminogen activator inhibitor-1 (PAI-1), a proinflammatory factor, was increased in hypertensive rat hearts compared with control rats. CD68 protein expression and an increase in the expression of some exosome markers were detected in exosomes from hypertensive rat serum. Moreover, the exosomes upregulated the expression levels of ICAM1 and PAI-1 in HCAECs. The level of miR-17, a negative regulator of ICAM1 expression, was markedly decreased in exosomes from hypertensive rat serum compared with exosomes from control rats. Interestingly, Ang II-stimulated THP-1-derived exosomes also enhanced the expression of ICAM1 and PAI-1 and contained reduced levels of miR-17 compared with exosomes from unstimulated cells. These results suggest that inflammation of ECs under hypertensive conditions is caused, at least in part, by macrophage-derived exosomes.
Collapse
Affiliation(s)
- Mayuko Osada-Oka
- Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.,Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| | - Masayuki Shiota
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| | - Yasukatsu Izumi
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| | - Masaki Nishiyama
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| | - Masako Tanaka
- Applied Pharmacology and Therapeutics, Osaka City University Medical School, Osaka, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Emi Sakurai
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan.,Applied Pharmacology and Therapeutics, Osaka City University Medical School, Osaka, Japan
| | - Katsuyuki Miura
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan.,Applied Pharmacology and Therapeutics, Osaka City University Medical School, Osaka, Japan
| | - Hiroshi Iwao
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan.,Department of Education, Shitennoji University, Habikino, Japan
| |
Collapse
|
27
|
Peterson MR, Haller SE, Ren J, Nair S, He G. CARD9 as a potential target in cardiovascular disease. Drug Des Devel Ther 2016; 10:3799-3804. [PMID: 27920495 PMCID: PMC5125811 DOI: 10.2147/dddt.s122508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammation and localized macrophage infiltration have been implicated in cardiovascular pathologies, including coronary artery disease, carotid atherosclerosis, heart failure, obesity-associated heart dysfunction, and cardiac fibrosis. Inflammation induces macrophage infiltration and activation and release of cytokines and chemokines, causing tissue dysfunction by instigating a positive feedback loop that further propagates inflammation. Cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) is a protein expressed primarily by dendritic cells, neutrophils, and macrophages, in which it mediates cytokine secretion. The purpose of this review is to highlight the role of CARD9 as a potential target in inflammation-related cardiovascular pathologies.
Collapse
Affiliation(s)
- Matthew R Peterson
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Samantha E Haller
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Jun Ren
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Sreejayan Nair
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Guanglong He
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| |
Collapse
|
28
|
Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction. Nat Commun 2016; 7:13306. [PMID: 27786170 PMCID: PMC5095349 DOI: 10.1038/ncomms13306] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
It is difficult to achieve minimally invasive injectable cell delivery while maintaining high cell retention and animal survival for in vivo stem cell therapy of myocardial infarction. Here we show that pluripotent stem cell aggregates pre-differentiated into the early cardiac lineage and encapsulated in a biocompatible and biodegradable micromatrix, are suitable for injectable delivery. This method significantly improves the survival of the injected cells by more than six-fold compared with the conventional practice of injecting single cells, and effectively prevents teratoma formation. Moreover, this method significantly enhances cardiac function and survival of animals after myocardial infarction, as a result of a localized immunosuppression effect of the micromatrix and the in situ cardiac regeneration by the injected cells. Stem cell therapy of myocardial infarction is hampered by poor survival of injected cells. Here the authors develop injectable aggregates of stem cells differentiated to an early cardiac stage and encapsulated in a biodegradable micromatrix, and show their enhanced therapeutic efficacy in a heart infarction mouse model.
Collapse
|
29
|
Li G, Wang G, Ma L, Guo J, Song J, Ma L, Zhao X. miR-22 regulates starvation-induced autophagy and apoptosis in cardiomyocytes by targeting p38α. Biochem Biophys Res Commun 2016; 478:1165-72. [PMID: 27544030 DOI: 10.1016/j.bbrc.2016.08.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022]
Abstract
microRNAs (miRNAs) are short noncoding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression. They play critical regulatory roles in many cardiovascular diseases, including ischemia-induced cardiac injury. Here, we report microRNA-22, highly expressed in the heart, can protect cardiomyocytes from starvation-induced injury through promoting autophagy and inhibiting apoptosis. Quantitative real-time PCR (qPCR) demonstrated that the expression of miR-22 in starvation-treated neonatal rat cardiomyocytes (NRCMs) was markedly down-regulated. Over-expression of miR-22 significantly promoted starvation-induced autophagy and inhibited starvation-induced apoptosis in NRCMs. In contrast, reduction of miR-22 suppressed autophagy and accelerated apoptosis in starving NRCMs. Immunohistochemistry and TUNEL staining results also provided further evidence that miR-22 promoted autophagy and inhibited apoptosis in myocardial cells. Furthermore, both luciferase reporter assay and western blot analysis were performed to identify p38α as a direct target of miR-22. Taken together, miR-22 plays an important role in regulating autophagy and apoptosis in ischemic myocardium through targeting p38α. miR-22 may represent a potential therapeutic target for the treatment of ischemic heart diseases.
Collapse
Affiliation(s)
- Guoran Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guokun Wang
- Institution of Thoracic Cardiac Surgery, Department of Cardiothoracic Surgery, Changhai Hospital, Shanghai 200433, China
| | - Liangliang Ma
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jun Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liping Ma
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
30
|
Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol 2016; 93:149-55. [PMID: 26593722 PMCID: PMC4846552 DOI: 10.1016/j.yjmcc.2015.11.015] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 01/10/2023]
Abstract
The mammalian heart contains a population of resident macrophages that expands in response to myocardial infarction and hemodynamic stress. This expansion occurs likely through both local macrophage proliferation and monocyte recruitment. Given the role of macrophages in tissue remodeling, their contribution to adaptive processes in the heart is conceivable but currently poorly understood. In this review, we discuss monocyte and macrophage heterogeneity associated with cardiac stress, the cell's potential contribution to the pathogenesis of cardiac fibrosis, and describe different tools to study and characterize these innate immune cells. Finally, we highlight their potential role as therapeutic targets.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
31
|
Cao L, Qin X, Peterson MR, Haller SE, Wilson KA, Hu N, Lin X, Nair S, Ren J, He G. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol 2016; 92:185-95. [PMID: 26900039 PMCID: PMC4904726 DOI: 10.1016/j.yjmcc.2016.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/26/2016] [Accepted: 02/16/2016] [Indexed: 01/07/2023]
Abstract
Obesity is associated with chronic inflammation which plays a critical role in the development of cardiovascular dysfunction. Because the adaptor protein caspase recruitment domain-containing protein 9 (CARD9) in macrophages regulates innate immune responses via activation of pro-inflammatory cytokines, we hypothesize that CARD9 mediates the pro-inflammatory signaling associated with obesity en route to myocardial dysfunction. C57BL/6 wild-type (WT) and CARD9(-/-) mice were fed normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5months. At the end of 5-month HFD feeding, cardiac function was evaluated using echocardiography. Cardiomyocytes were isolated and contractile properties were measured. Immunofluorescence was performed to detect macrophage infiltration in the heart. Heart tissue homogenates, plasma, and supernatants from isolated macrophages were collected to measure the concentrations of pro-inflammatory cytokines using ELISA kits. Western immunoblotting analyses were performed on heart tissue homogenates and isolated macrophages to explore the underlying signaling mechanism(s). CARD9 knockout alleviated HFD-induced insulin resistance and glucose intolerance, prevented myocardial dysfunction with preserved cardiac fractional shortening and cardiomyocyte contractile properties. CARD9 knockout also significantly decreased the number of infiltrated macrophages in the heart with reduced myocardium-, plasma-, and macrophage-derived cytokines including IL-6, IL-1β and TNFα. Finally, CARD9 knockout abrogated the increase of p38 MAPK phosphorylation, the decrease of LC3BII/LC3BI ratio and the up-regulation of p62 expression in the heart induced by HFD feeding and restored cardiac autophagy signaling. In conclusion, CARD9 knockout ameliorates myocardial dysfunction associated with HFD-induced obesity, potentially through reduction of macrophage infiltration, suppression of p38 MAPK phosphorylation, and preservation of autophagy in the heart.
Collapse
Affiliation(s)
- Li Cao
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA; College of Pharmaceutical Sciences, Soochow University, Soochow, Jiangsu 215123, PR China
| | - Xing Qin
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Matthew R Peterson
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA
| | - Samantha E Haller
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA
| | - Kayla A Wilson
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA
| | - Nan Hu
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA
| | - Xin Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sreejayan Nair
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA
| | - Guanglong He
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
32
|
Wang W, Ma X, Han J, Zhou M, Ren H, Pan Q, Zheng C, Zheng Q. Neuroprotective Effect of Scutellarin on Ischemic Cerebral Injury by Down-Regulating the Expression of Angiotensin-Converting Enzyme and AT1 Receptor. PLoS One 2016; 11:e0146197. [PMID: 26730961 PMCID: PMC4711585 DOI: 10.1371/journal.pone.0146197] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Previous studies have demonstrated that angiotensin-converting enzyme (ACE) is involved in brain ischemic injury. In the present study, we investigated whether Scutellarin (Scu) exerts neuroprotective effects by down-regulating the Expression of Angiotensin-Converting Enzyme and AT1 receptor in a rat model of permanent focal cerebral ischemia. Methods Adult Sprague–Dawley rats were administrated with different dosages of Scu by oral gavage for 7 days and underwent permanent middle cerebral artery occlusion (pMCAO). Blood pressure was measured 7 days after Scu administration and 24 h after pMCAO surgery by using a noninvasive tail cuff method. Cerebral blood flow (CBF) was determined by Laser Doppler perfusion monitor and the neuronal dysfunction was evaluated by analysis of neurological deficits before being sacrificed at 24 h after pMCAO. Histopathological change, cell apoptosis and infarct area were respectively determined by hematoxylin–eosin staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis and 2,3,5-triphenyltetrazolium chloride staining. Tissue angiotensin II (Ang II) and ACE activity were detected by enzyme-linked immunosorbent assays. The expression levels of ACE, Ang II type 1 receptor (AT1R), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured by Western blot and real-time PCR. ACE inhibitory activity of Scu in vitro was detected by the photometric determination. Results Scu treatment dose-dependently decreased neurological deficit score, infarct area, cell apoptosis and morphological changes induced by pMCAO, which were associated with reductions of ACE and AT1R expression and the levels of Ang II, TNF-α, IL-6, and IL-1β in ischemic brains. Scu has a potent ACE inhibiting activity. Conclusion Scu protects brain from acute ischemic injury probably through its inhibitory effect on the ACE/Ang II/AT1 axis, CBF preservation and proinflammation inhibition.
Collapse
Affiliation(s)
- Wenjuan Wang
- Pharmacy School, Shihezi University, Shihezi, China
- Department of Pharmacy, the First Division Hospital of Xinjiang Production and Construction Corps, Aksu, Xinjiang, China
| | - Xiaotang Ma
- Institute of Neurological Disease, Zhanjiang Medical College, Zhanjiang, Guangdong, China
| | - Jichun Han
- Pharmacy School, Shihezi University, Shihezi, China
| | | | - Huanhuan Ren
- Pharmacy School, Shihezi University, Shihezi, China
| | - Qunwen Pan
- Institute of Neurological Disease, Zhanjiang Medical College, Zhanjiang, Guangdong, China
| | - Chunli Zheng
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi, China
| | - Qiusheng Zheng
- Pharmacy School, Shihezi University, Shihezi, China
- Binzhou Medical University, Yantai, China
- * E-mail:
| |
Collapse
|
33
|
Sárközy M, Szűcs G, Pipicz M, Zvara Á, Éder K, Fekete V, Szűcs C, Bárkányi J, Csonka C, Puskás LG, Kónya C, Ferdinandy P, Csont T. The effect of a preparation of minerals, vitamins and trace elements on the cardiac gene expression pattern in male diabetic rats. Cardiovasc Diabetol 2015; 14:85. [PMID: 26126619 PMCID: PMC4499218 DOI: 10.1186/s12933-015-0248-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023] Open
Abstract
Background Diabetic patients have an increased risk of developing cardiovascular diseases, which are the leading cause of death in developed countries. Although multivitamin products are widely used as dietary supplements, the effects of these products have not been investigated in the diabetic heart yet. Therefore, here we investigated if a preparation of different minerals, vitamins, and trace elements (MVT) affects the cardiac gene expression pattern in experimental diabetes. Methods Two-day old male Wistar rats were injected with streptozotocin (i.p. 100 mg/kg) or citrate buffer to induce diabetes. From weeks 4 to 12, rats were fed with a vehicle or a MVT preparation. Fasting blood glucose measurement and oral glucose tolerance test were performed at week 12, and then total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41012 oligonucleotides. Results Significantly elevated fasting blood glucose concentration and impaired glucose tolerance were markedly improved by MVT-treatment in diabetic rats at week 12. Genes with significantly altered expression due to diabetes include functional clusters related to cardiac hypertrophy (e.g. caspase recruitment domain family, member 9; cytochrome P450, family 26, subfamily B, polypeptide; FXYD domain containing ion transport regulator 3), stress response (e.g. metallothionein 1a; metallothionein 2a; interleukin-6 receptor; heme oxygenase (decycling) 1; and glutathione S-transferase, theta 3), and hormones associated with insulin resistance (e.g. resistin; FK506 binding protein 5; galanin/GMAP prepropeptide). Moreover the expression of some other genes with no definite cardiac function was also changed such as e.g. similar to apolipoprotein L2; brain expressed X-linked 1; prostaglandin b2 synthase (brain). MVT-treatment in diabetic rats showed opposite gene expression changes in the cases of 19 genes associated with diabetic cardiomyopathy. In healthy hearts, MVT-treatment resulted in cardiac gene expression changes mostly related to immune response (e.g. complement factor B; complement component 4a; interferon regulatory factor 7; hepcidin). Conclusions MVT-treatment improved diagnostic markers of diabetes. This is the first demonstration that MVT-treatment significantly alters cardiac gene expression profile in both control and diabetic rats. Our results and further studies exploring the mechanistic role of individual genes may contribute to the prevention or diagnosis of cardiac complications in diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12933-015-0248-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Márton Pipicz
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Katalin Éder
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | - Veronika Fekete
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | | | | | - Csaba Csonka
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - László G Puskás
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Csaba Kónya
- Béres Pharmaceuticals Ltd, Budapest, Hungary.
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary. .,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
34
|
The role of KCa3.1 channels in cardiac fibrosis induced by pressure overload in rats. Pflugers Arch 2015; 467:2275-85. [DOI: 10.1007/s00424-015-1694-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
|
35
|
Yang L, Ni L, Duan Q, Wang X, Chen C, Chen S, Chaugai S, Zeldin DC, Tang JR, Wang DW. CYP epoxygenase 2J2 prevents cardiac fibrosis by suppression of transmission of pro-inflammation from cardiomyocytes to macrophages. Prostaglandins Other Lipid Mediat 2015; 116-117:64-75. [PMID: 25686540 DOI: 10.1016/j.prostaglandins.2015.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/03/2023]
Abstract
Cytochrome P450 epoxygenase (CYP450)-derived epoxyeicosatrienoic acids (EETs) are important regulators of cardiac remodeling; but the underlying mechanism remains unclear. The present study aimed to elucidate how EETs regulated cardiac fibrosis in response to isoprenaline (Iso) or angiotensin (Ang) II. Cardiac-specific human CYP2J2 transgenic mice (Tr) and wild-type (WT) C57BL/6 littermates were infused with Iso- or Ang II. Two weeks after infusion, Tr mice showed more alleviative cardiac fibrosis and inflammation compared with WT mice. In vitro, we found Iso or Ang II induced nuclear transfer of NF-κB p65 and inflammatory cytokines expression in cardiomyocytes. Furthermore, inflammation response emerged in macrophages cultured in cardiomyocytes-conditioned medium. When pretreatment with 14,15-EET in cardiomyocytes, the inflammatory response was markedly suppressed and the transmission of inflammation from cardiomyocytes to macrophages was reduced. In conclusion, CYP2J2 and EETs prevent cardiac fibrosis and cardiac dysfunction by suppressing transmission of pro-inflammation from cardiomyocytes to macrophages in heart, suggesting that elevation of EETs level could be a potential strategy to prevent cardiac fibrosis.
Collapse
Affiliation(s)
- Lei Yang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Ni
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Quanlu Duan
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xingxu Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chen Chen
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Song Chen
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Sandip Chaugai
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - D C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Jia Rong Tang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Dao Wen Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
36
|
Qi GM, Jia LX, Li YL, Li HH, Du J. Adiponectin suppresses angiotensin II-induced inflammation and cardiac fibrosis through activation of macrophage autophagy. Endocrinology 2014; 155:2254-65. [PMID: 24684303 DOI: 10.1210/en.2013-2011] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Previous studies have indicated that adiponectin (APN) protects against cardiac remodeling, but the underlying mechanism remains unclear. The present study aimed to elucidate how APN regulates inflammatory responses and cardiac fibrosis in response to angiotensin II (Ang II). Male APN knockout (APN KO) mice and wild-type (WT) C57BL/6 littermates were sc infused with Ang II at 750 ng/kg per minute. Seven days after Ang II infusion, both APN KO and WT mice developed equally high blood pressure levels. However, APN KO mice developed more severe cardiac fibrosis and inflammation compared with WT mice. This finding was demonstrated by the up-regulation of collagen I, α-smooth muscle actin, IL-1β, and TNF-α and increased macrophage infiltration in APN KO mice. Moreover, there were substantially fewer microtubule-associated protein 1 light chain 3-positive autophagosomes in macrophages in the hearts of Ang II-infused APN KO mice. Additional in vitro studies also revealed that globular APN treatment induced autophagy, inhibited Ang II-induced nuclear factor-κB activity, and enhanced the expression of antiinflammatory cytokines, including IL-10, macrophage galactose N-acetyl-galactosamine specific lectin 2, found in inflammatory zone 1, and type-1 arginase in macrophages. In contrast, APN-induced autophagy and antiinflammatory cytokine expression was diminished in Atg5-knockdown macrophages or by Compound C, an inhibitor of adenosine 5'-monophosphate-activated protein kinase. Our study indicates that APN activates macrophage autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway and suppresses Ang II-induced inflammatory responses, thereby reducing the extent of cardiac fibrosis.
Collapse
Affiliation(s)
- Guan-Ming Qi
- Beijing Anzhen Hospital (G.-M.Q., L.-X.J., Y.-L.L., J.D.), The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China; and Department of Pathology (H.-H.L.), Capital Medical University, Beijing 100069, China
| | | | | | | | | |
Collapse
|
37
|
Heme oxygenase suppresses markers of heart failure and ameliorates cardiomyopathy in L-NAME-induced hypertension. Eur J Pharmacol 2014; 734:23-34. [PMID: 24726875 DOI: 10.1016/j.ejphar.2014.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 01/08/2023]
Abstract
Heart failure and related cardiac complications remains a great health challenge. We investigated the effects of upregulating heme-oxygenase (HO) on myocardial histo-pathological lesions, proinflammatory cytokines/chemokines, oxidative mediators and important markers of heart failure such as osteopontin and osteoprotergerin in N(ω)-nitro-l-arginine methyl ester (L-NAME)-induced hypertension. Treatment with the HO-inducer, heme-arginate improved myocardial morphology in L-NAME hypertensive rats by attenuating subendocardial injury, interstitial fibrosis, mononuclear-cell infiltration and cardiomyocyte hypertrophy. These were associated with the reduction of several inflammatory/oxidative mediators including chemokines/cytokines such as macrophage inflammatory protein-1 alpha (MIP-1α), macrophage chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, endothelin-1, 8-isoprostane, nitrotyrosine, and aldosterone. Similarly, heme-arginate abated the elevated levels of extracellular matrix/remodeling proteins including transforming-growth factor beta (TGF-β1) and collagen-IV in the myocardium. These were accompanied by significant reduction of proteins of heart failure such as osteopontin and osteoprotegerin. Interestingly, the cardio-protective effects of heme-arginate were associated with the potentiation of adiponectin, atrial-natriuretic peptide (ANP), HO-1, HO-activity, cyclic gnanosine monophosphate (cGMP) and the total-anti-oxidant capacity, whereas the HO-inhibitor, chromium-mesoporphyrin nullified the effects of heme-arginate, exacerbating inflammatory injury and oxidative insults. We conclude that heme-arginate therapy protects myocardial damage by potentiating the HO-adiponectin-ANP axis, which in turn suppressed the elevated levels of aldosterone, pro-inflammatory chemokines/cytokines, mononuclear-cell infiltration and oxidative stress, with concomitant reduction of extracellular matrix/remodeling proteins and heart failure proteins. These data suggest a cardio-protective role of the HO system against L-NAME-induced hypertension that could be explored in the design of novel strategies against cardiomyopathy.
Collapse
|
38
|
Jiang XY, Ning QL. Expression profiling of long noncoding RNAs and the dynamic changes of lncRNA-NR024118 and Cdkn1c in angiotensin II-treated cardiac fibroblasts. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1325-1336. [PMID: 24817929 PMCID: PMC4014213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/15/2014] [Indexed: 06/03/2023]
Abstract
A growing body of evidence shows that long non-coding RNAs (lncRNAs) are involved in multiple human diseases than previously realized. However, no information is available now about lncRNAs in cardiac fibroblasts. The expression profile of lncRNAs was analyzed in Ang II-treated cardiac fibroblasts using lncRNAs arrays. The analysis showed that 282 of 4376 detected lncRNAs demonstrated >2-fold differential expression in response to the treatment with Ang II (100 nm) for 24 h. Among of them, 22 lncRNAs showed a greater than 4-fold changes. Meanwhile, Ang II also induced a widely expression changes in protein-coding genes in cardiac fibroblasts. Quantitative real time PCR confirmed the changes of six lncRNAs (AF159100, BC086588, MRNR026574, MRAK134679, NR024118, AX765700) and mRNAs (IL6, RGS2, PRG4, TIMP1, Cdkn1c, TIMP3, Col I, Col III and Fibronectin) in cardiac fibroblasts. Bioinformatic analysis indicated the process of cell proliferation. Further studies revealed that the down-regulating of Ang II on the expression of lncRNA-NR024118 was time-dependent, that the level of NR024118 was lowest at 24 h and back at 48 h. Ang II also dynamically down regulated the expression of Cdkn1c in cardiac fibroblasts. Ang II at a range from 10(-9) M to 10(-6) M induced a decrease of NR024118 and Cdkn1c in cardiac fibroblasts. In conclusion, the expression profile of lncRNAs was significantly altered in the Ang II-treated cardiac fibroblasts and Ang II dynamically regulated the expression of lncRNA-NR024118 and Cdkn1c in cardiac fibroblasts, indicating the potential role of NR024118 in cardiac fibroblasts.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p57/genetics
- Cyclin-Dependent Kinase Inhibitor p57/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Male
- Microarray Analysis
- Models, Animal
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Time Factors
Collapse
Affiliation(s)
- Xiao-Ying Jiang
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University Xi'an, 710061, Shaanxi, China
| | - Qi-Lan Ning
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University Xi'an, 710061, Shaanxi, China
| |
Collapse
|
39
|
Zia MI, Ghugre NR, Roifman I, Strauss BH, Walcarius R, Mohammed M, Sparkes JD, Dick AJ, Wright GA, Connelly KA. Comparison of the frequencies of myocardial edema determined by cardiac magnetic resonance in diabetic versus nondiabetic patients having percutaneous coronary intervention for ST elevation myocardial infarction. Am J Cardiol 2014; 113:607-12. [PMID: 24332697 DOI: 10.1016/j.amjcard.2013.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
The specific mechanisms by which diabetes may affect the myocardial tissue response to ischemia are unclear. Our objective was to prospectively quantify the degree of myocardial edema in diabetics versus nondiabetics with ST elevation myocardial infarction using cardiac magnetic resonance. Fifty-two patients (16 diabetics and 36 nondiabetics) were enrolled after primary percutaneous coronary intervention and underwent cardiac magnetic resonance on a 1.5-T scanner at 48 hours and 6 months. Myocardial edema was quantified using a T2 mapping technique, and infarct size and microvascular obstruction size were assessed by way of a contrast-enhanced T1-weighted inversion recovery gradient-echo sequence. The infarct segment T2 was elevated in diabetics compared with nondiabetics (59.0 ± 8.0 vs 50.8 ± 3.1 ms, p <0.001) at 48 hours. Multivariate analysis demonstrated that diabetes (p <0.001) and symptom-to-balloon time (p = 0.04) were independent predictors of the degree of acute myocardial edema. Infarct size was nonsignificantly higher in the diabetic group at 48 hours (26.9 ± 9.4% vs 20.1 ± 10.1% of myocardium, p = 0.07) and 6 months (17.1 ± 6.3% vs 13.4 ± 6.1% of myocardium, p = 0.09). Microvascular obstruction size was equivalent in both groups, and there was a trend toward lower myocardial salvage index in diabetics (34.2 ± 11.8 vs 49.6 ± 13.4, p = 0.08). In conclusion, diabetes is associated with increased myocardial edema in the acute phase after primary percutaneous coronary intervention. Our results offer insight into the complex processes that characterize myocardial tissue response to injury in diabetic patients.
Collapse
|
40
|
Epigenetic regulation of fibrocyte differentiation? J Mol Cell Cardiol 2014; 69:85-7. [PMID: 24512845 DOI: 10.1016/j.yjmcc.2014.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 11/22/2022]
|
41
|
Burghardt KM, Avinashi V, Kosar C, Xu W, Wales PW, Avitzur Y, Muise A. A CARD9 polymorphism is associated with decreased likelihood of persistent conjugated hyperbilirubinemia in intestinal failure. PLoS One 2014; 9:e85915. [PMID: 24465786 PMCID: PMC3897546 DOI: 10.1371/journal.pone.0085915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Recently, genetic associations have been described in intestinal transplants. Namely, Crohn's disease susceptibility gene NOD2 polymorphisms have been reported to be more prevalent in patients with graft failure following intestinal transplantation (IT). Therefore, we sought to determine if polymorphisms in the NOD2 signaling cascade, including NOD2, CARD9, RAC1 and ATG16L1 are associated with intestinal failure (IF) or its complications. We carried out a cross-sectional study of 59 children with IF and 500 healthy Caucasian controls. Using the Taqman platform we determined the prevalence of NOD2 as well as ATG16L1, RAC1 and CARD9 SNPs. NOD2 pathway polymorphisms were evaluated in relation to outcomes of episodes of sepsis, ICU admissions, hyperbilirubinemia and need for IT. We found that the minor allele of a CARD9 SNP was associated with protection from developing IF when compared to healthy controls and was also associated with decreased odds of sustained conjugated hyperbilirubinemia. Therefore, IF patients with CARD9 polymorphism are less likely to develop progressive liver disease and suggests that host innate immunity may play a role in IF associated liver disease.
Collapse
Affiliation(s)
- Karolina Maria Burghardt
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant Centre, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Toronto, Ontario, Canada
| | - Vishal Avinashi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children Hospital, Vancouver, British Columbia, Canada
| | - Christina Kosar
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant Centre, Toronto, Ontario, Canada
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Paul W. Wales
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant Centre, Toronto, Ontario, Canada
| | - Yaron Avitzur
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant Centre, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Toronto, Ontario, Canada
- * E-mail: (YA); (AM)
| | - Aleixo Muise
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Toronto, Ontario, Canada
- SickKids IBD Centre, Program in Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (YA); (AM)
| |
Collapse
|
42
|
The risk of heart failure and cardiometabolic complications in obesity may be masked by an apparent healthy status of normal blood glucose. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:253657. [PMID: 24454978 PMCID: PMC3876462 DOI: 10.1155/2013/253657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/12/2013] [Indexed: 11/18/2022]
Abstract
Although many obese individuals are normoglycemic and asymptomatic of cardiometabolic complications, this apparent healthy state may be a misnomer. Since heart failure is a major cause of mortality in obesity, we investigated the effects of heme-oxygenase (HO) on heart failure and cardiometabolic complications in obese normoglycemic Zucker-fatty rats (ZFs). Treatment with the HO-inducer, hemin, reduced markers of heart failure, such as osteopontin and osteoprotegerin, abated left-ventricular (LV) hypertrophy/fibrosis, extracellular matrix/profibrotic proteins including collagen IV, fibronectin, TGF-β1, and reduced cardiac lesions. Furthermore, hemin suppressed inflammation by abating macrophage chemoattractant protein-1, macrophage-inflammatory protein-1 alpha, TNF-α, IL-6, and IL-1β but enhanced adiponectin, atrial-natriuretic peptide (ANP), HO activity, insulin sensitivity, and glucose metabolism. Correspondingly, hemin improved several hemodynamic/echocardiographic parameters including LV-diastolic wall thickness, LV-systolic wall thickness, mean-arterial pressure, arterial-systolic pressure, arterial-diastolic pressure, LV-developed pressure, +dP/dt, and cardiac output. Contrarily, the HO-inhibitor, stannous mesoporphyrin nullified the hemin effect, exacerbating inflammatory/oxidative insults and aggravated insulin resistance (HOMA-index). We conclude that perturbations in insulin signaling and cardiac function may be forerunners to overt hyperglycemia and heart failure in obesity. Importantly, hemin improves cardiac function by suppressing markers of heart failure, LV hypertrophy, cardiac lesions, extracellular matrix/profibrotic proteins, and inflammatory/oxidative mediators, while concomitantly enhancing the HO-adiponectin-ANP axis.
Collapse
|
43
|
Inhibition of Toll-like receptor 2 reduces cardiac fibrosis by attenuating macrophage-mediated inflammation. Cardiovasc Res 2013; 101:383-92. [DOI: 10.1093/cvr/cvt258] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
44
|
Jiang HM, Wang HX, Yang H, Zeng XJ, Tang CS, Du J, Li HH. Role for granulocyte colony stimulating factor in angiotensin II-induced neutrophil recruitment and cardiac fibrosis in mice. Am J Hypertens 2013; 26:1224-33. [PMID: 23761490 DOI: 10.1093/ajh/hpt095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Granulocyte colony stimulating factor (G-CSF) is a key mediator of neutrophil infiltration and is profibrotic in the liver, lung, and infarcted heart, but its roles in angiotensin II (Ang II)-induced hypertension and cardiac remodeling have not been fully determined. Thus, we sought to investigate the causal relation of G-CSF to neutrophil recruitment and cardiac fibrosis in C57BL/6J mice. METHODS Hypertension and cardiac fibrosis were induced in wild-type (WT) mice receiving continuous infusion of Ang II (1,500ng/kg/min). After 7 days, heart sections were stained with hematoxylin and eosin, Masson's trichrome, and immunohistochemistry. The mRNA expression of cytokines was detected by real-time polymerase chain reaction analysis. The protein levels were measured by Western blot analysis. RESULTS After Ang II infusion, myocardial G-CSF expression was significantly elevated in the hearts. Moreover, WT mice exhibited increased blood pressure, marked neutrophil accumulation, proinflammatory cytokine expression, reactive oxygen species production, and cardiac fibrosis after 7 days of Ang II infusion. However, administration of anti-G-CSF neutralizing antibody, but not with control immunoglobulin G, significantly attenuated these effects. In addition, neutralizing G-CSF antibody reversed Ang II-induced activation of ERK1/2, STAT3, and AKT signaling pathways in the hearts. CONCLUSIONS This study demonstrates that G-CSF plays a critical role in hypertension and cardiac fibrosis and targeting this cytokine may be a novel therapeutic strategy to ameliorate hypertensive heart disease.
Collapse
Affiliation(s)
- Hui-Min Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Ministry of Education, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One 2013; 8:e74535. [PMID: 24040275 PMCID: PMC3770549 DOI: 10.1371/journal.pone.0074535] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/03/2013] [Indexed: 02/07/2023] Open
Abstract
Senescence is a recognized mechanism of cardiovascular diseases; however, its contribution to myocardial fibrosis and rupture after infarction and the underlying mechanisms remain unclear. Here we showed that senescent cardiac fibroblasts markedly accumulated in heart after myocardial infarction. The expression of key senescence regulators, especially p53, was significantly up-regulated in the infarcted heart or hypoxia-treated fibroblasts. Furthermore, knockdown of endogenous p53 by siRNA in fibroblasts markedly reduced hypoxia-induced cell senescence, cytokine expression but increased collagen expression, whereas increased expression of p53 protein by adenovirus infection had opposite effects. Consistent with in vitro results in cardiac fibroblasts, p53 deficiency in vivo significantly decreased the accumulation of senescent fibroblasts, the infiltration of macrophages and matrix metalloproteinases, but enhanced collagen deposition after myocardial infarction. In conclusion, these results suggest that the p53-mediated fibroblast senescence limits cardiac collagen production, and inhibition of p53 activity could represent a novel therapeutic target to increase reparative fibrosis and to prevent heart rupture after myocardial infarction.
Collapse
|
46
|
Ning Q, Jiang X. Angiotensin II upregulated the expression of microRNA-224 but not microRNA-21 in adult rat cardiac fibroblasts. Biomed Rep 2013; 1:776-780. [PMID: 24649028 DOI: 10.3892/br.2013.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023] Open
Abstract
The role of microRNA-21 (miRNA-21, miR-21) in cardiac fibrosis remains controversial, while the role of microRNA-224 (miRNA-224, miR-224) in cardiac fibroblasts has not been reported. Angiotensin II (Ang II) is known to play a pivotal role in the pathogenesis of cardiac fibrosis. The aim of this study was to confirm whether the expression of miR-21 and miR-224 is regulated by Ang II in adult rat cardiac fibroblasts. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR) were performed to measure the levels of miR-21 and miR-224 in Ang II-treated or untreated adult rat cardiac fibroblasts. The RT-PCR, qPCR and previous miRNA array results demonstrated that treatment with Ang II (100 nM) for 24 h did not induce the increase of miR-21 in cardiac fibroblasts, although the level of miR-21 in cardiac fibroblasts was not considered as low. The results of the present study also demonstrated that Ang II significantly upregulated the expression of miR-224 in adult rat cardiac fibroblasts. Bioinformatic analysis revealed that the potential target genes of miR-224 included SMAD4, SMAD5, cyclin-dependent kinase 9 and early growth response 1/2. In previous studies, it was reported that miR-224 was upregulated in tumors by promoting cell proliferation and targeting SMAD4. Those results indicated the potential roles of miR-224 in cardiac fibroblasts and cardiac fibrosis. In conclusion, results of the present study demonstrated that miR-21 was not induced by Ang II, whereas Ang II upregulated miR-224 expression in adult rat cardiac fibroblasts, a finding that may provide a starting point for the investigation of the potential role of miR-224 in cardiac fibrosis.
Collapse
Affiliation(s)
- Qilan Ning
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoying Jiang
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
47
|
Wang L, Li H, Yang S. Role of oxygen free radicals in the proliferation of myofibroblasts induced by AngII. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2012.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
48
|
Jiang X, Ning Q, Wang J. Angiotensin II induced differentially expressed microRNAs in adult rat cardiac fibroblasts. J Physiol Sci 2013; 63:31-38. [PMID: 23007623 PMCID: PMC10717151 DOI: 10.1007/s12576-012-0230-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Angiotensin II (Ang II) plays a pivotal role in cardiac fibrosis, and microRNAs (miRNAs) have been shown to participate in diverse pathological processes. Our aim is to identify the Ang II-induced miRNAs in cardiac fibroblasts (CFs). The miRNA array was used to analyze the miRNA expression profile in CFs treated by Ang II and control cells. Stem-loop real-time PCR was performed to re-measure the levels of the differentially expressed miRNAs. Analysis of miRNA arrays showed that 33 miRNAs were differentially expressed (13 up- and 20 downregulated) in response to Ang II (100 nM) for 24 h as compared to control cells. Quantitative PCR revealed that Ang II upregulated the levels of miR-132, -125b-3p and miR-146b but downregulated the levels of miR-300-5p, -204* and miR-181b in CFs. The trend of miRNA change is consistent with microarray and qRT-PCR. Bioinformatic analysis revealed that MMP9 as the target of miR-132, MMP16 as the target of miR-146b and TIMP3 as the target of miR-181b have been listed in the miR database with experimentally validated targets, indicating the potential role of those miRNAs in cardiac fibrosis. Our results demonstrated that we did identify a subset of miRNAs that was differentially expressed in Ang II-treated CFs, which provide a starting point to explore their potential roles in cardiac fibrosis and hypertension.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- NIHR Translational Research Facility in Respiratory Medicine Group, School of Translational Medicine, Stopford Building, University of Manchester, Manchester, M13 9PT, UK.
| | - Qilan Ning
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Juanli Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
49
|
Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 2012. [PMID: 23184935 DOI: 10.1074/jbc.m112.419788] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation and microenvironment play a crucial role in muscle regeneration. IL (interleukin)-6, as a multifunctional cytokine is involved in the processes. However, the causative effect of IL-6 in muscle regeneration remains unclear. In a mouse model of cardiotoxin-induced muscle injury/regeneration, infiltrated monocytes/macrophages produce a high level of IL-6 started on 1 day (24 h) after injury. In IL-6 knock-out (-/-) mice, the muscle regeneration procedure was impaired along with decreased myogenic determination factor (MyoD) and myogenin mRNA level and increased interstitial fibrosis. The IL-6(-/-) mice exhibited less macrophage infiltration, lower inflammatory cytokine (IL-1β, inducible NO synthase, Transforming growth factor (TGF)-β1, and IL-10) and chemokine (CCL2, CCL3, and CCL5) expression, and inhibited myoblast proliferation. In vitro, IL-6 deficiency or Signal Transducer and Activator of Transcription 3 (STAT3) knockdown in activated macrophage attenuated the expression of CCL2, CCL3, but not CCL5, which resulted in less macrophage migration. Moreover, inflammatory macrophages promoted myoblast proliferation in an IL-6-dependent manner. Finally, adoptive transfer IL-6(+/+) BM cells into IL-6(-/-) mice rescued the impaired regeneration with improved MyoD and myogenin expression. Taken together, IL-6 expression and the activated STAT3 signaling pathway in monocytes/macrophages is a critical mediator of macrophage migration and myoblast proliferation during muscle regeneration.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | | | | | | | | | | |
Collapse
|
50
|
Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling. Am J Hypertens 2012; 25:994-1001. [PMID: 22717542 DOI: 10.1038/ajh.2012.74] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The carboxyl terminus of heat shock protein 70-interacting protein (CHIP), an E3 ligase/chaperone, was found to protect cardiomyocytes against apoptosis induced by ischemic injury; however, the functional role of CHIP in remodeling induced by angiotensin II (Ang II) remains unclear. METHODS We generated CHIP-overexpressed transgenic (TG) mice infused with Ang II (1,500 ng/kg/min) or saline for days or small interfering RNA (siRNA) knockdown of neonatal rat cardiomyocytes. Heart sections were stained with hematoxylin and eosin, Masson trichrome, TdT-mediated dUTP nick-end labeling (TUNEL) staining, and immunohistochemistry, and the levels of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPK) were measured by western blot analysis. RESULTS Seven days after Ang II infusion, cardiac-specific overexpression of CHIP significantly enhanced cardiac contractile performance in mice and attenuated cardiac apoptosis, fibrosis, and inflammation: the number of TUNEL-positive cells, fibrotic areas, macrophage infiltration, and the expression of interleukin-1β (IL-1β), IL-6, monocyte chemoattractant protein-1 (MCP-1) and intercellular adhesion molecule-1 (ICAM-1) in heart tissues were decreased as compared with wild-type (WT) mice (all P < 0.05). In contrast, CHIP siRNA knockdown markedly increased Ang II-induced apoptosis and the expression of proinflammatory cytokines, as compared with siRNA control. The mechanisms underlying these beneficial actions were associated with CHIP-mediated inhibition of NF-κB and MAPK (p38 and JNK) pathways. CONCLUSIONS CHIP plays an important role in regulating Ang II-triggered hypertensive cardiac apoptosis, inflammation, and fibrosis.
Collapse
|