1
|
Yang W, Yan X, Chen R, Xin X, Ge S, Zhao Y, Yan X, Zhang J. Smad4 deficiency in hepatocytes attenuates NAFLD progression via inhibition of lipogenesis and macrophage polarization. Cell Death Dis 2025; 16:58. [PMID: 39890803 PMCID: PMC11785999 DOI: 10.1038/s41419-025-07376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a major cause of chronic liver disorders, has become a serious public health issue. Although the Smad4 signaling pathway has been implicated in the progression of NAFLD, the specific role of Smad4 in hepatocytes in NAFLD pathogenesis remains unclear. Hepatocyte-specific knockout Smad4 mice (AlbSmad4-/-) were first constructed using the Cre-Loxp recombinant system to establish a high-fat diet induced NAFLD model. The role of Smad4 in the occurrence and development of NAFLD was determined by monitoring the body weight of mice, detecting triglycerides and free fatty acids in serum and liver tissue homogenates, staining the tissue sections to observe the accumulation of liver fat, and RT-qPCR detecting the expression of genes related to lipogenesis, fatty acid intake, and fatty acid β oxidation. The molecular mechanism of Smad4 in hepatocytes affecting NAFLD was therefore investigated through combining in vitro and in vivo experiments. Smad4 deficiency in hepatocytes mitigated NAFLD progression and decreased inflammatory cell infiltration. Moreover, Smad4 deficiency inhibited CXCL1 secretion by suppressing the activation of the ASK1/P38/JNK signaling pathway. Furthermore, targeting CXCL1 using CXCR2 inhibitors diminished hepatocyte lipogenesis and inhibited the polarization of M1-type macrophages. Collectively, these results suggested that Smad4 plays a vital role in exacerbating NAFLD and may be a promising candidate for anti-NAFLD therapy.
Collapse
Affiliation(s)
- Wei Yang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xuanxuan Yan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Rui Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Shuang Ge
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China.
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China.
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Fang Z, Jin Z, Zhao Q, Weng J, Zhang Z, Yang Y, Jiang H. Multi-omics revealed activation of TNF-α induced apoptosis signaling pathway in testis of DEHP treated prepubertal male rat. Reprod Toxicol 2024; 132:108758. [PMID: 39613166 DOI: 10.1016/j.reprotox.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) exposure has been associated with male reproductive damage, but the mechanisms involved remain incompletely defined. This study aims to investigate the effects of DEHP exposure on the testes of prepubertal rats through an integrative analysis of metabolomics and transcriptomics, combined with molecular experiments. DEHP exposure resulted in decreased testis weight and increased oxidative stress level in the testis tissues of prepubertal male rats. Moreover, our findings showed a disordered testis structure, reduced spermatogenic and Sertoli cells as well as destruction of mitochondria structure in the testis tissues of DEHP-treated prepubertal male rats. Transcriptome function analysis together with metabolome function analysis indicated that spermatogenesis, apoptosis, inflammatory, lipid metabolism as well as DNA repair signaling pathway were enriched in the testis of DEHP-treated prepubertal male rats. The integrative omics analysis further suggested that TNF-α induced apoptosis played a crucial role in mediating the detrimental effects of DEHP exposure on the testis of prepubertal rats, which was validated by ELISA, Western blotting and Tunel assays. Validation experiments conducted in vitro using GC-2 cells corroborated these findings, demonstrating that mono-(2-ethylhexyl) phthalate (MEHP), the main active metabolite of DEHP, significantly inhibits cell proliferation and increases apoptosis via activating the TNF-α apoptosis pathway. Overall, these findings provided a novel mechanism of dysregulated spermatogenesis of DEHP exposure on the testes of prepubertal rats.
Collapse
Affiliation(s)
- Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Zirun Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Jiaming Weng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yuzhuo Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Xishiku Road, Xicheng District, Beijing 100034, China.
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| |
Collapse
|
3
|
Nguyen PA, Won JS, Cho MK. Acer tegmentosum Maxim and Bacillus subtilis-fermented products inhibit TNF-α-induced endothelial inflammation and vascular dysfunction of the retina: the role of tyrosol moiety in active compounds targeting Glu 230 in SIRT1. Front Pharmacol 2024; 15:1392179. [PMID: 39635433 PMCID: PMC11614635 DOI: 10.3389/fphar.2024.1392179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Acer tegmentosum Maxim (AT) is a medicinal plant used to treat hepatic, neurological diseases, and cancer. However, the beneficial effects of AT on endothelial dysfunction have not been reported yet. In this study, we evaluated the effects of AT and the main compounds against TNF-α-mediated inflammatory responses and their possible mechanism of action. The anti-inflammatory effect and its molecular mechanism were analyzed by adhesion assay, immunoblotting, promoter-luciferase assay, ELISA, RT-PCR, immunocytochemistry, immunoprecipitation, siRNA gene knockdown, docking, and molecular dynamics simulation. AT and its compounds salidroside and tyrosol reduced TNF-α-induced adhesion between monocytes and endothelial cells. Fermentation of AT with Bacillus subtilis converted salidroside to tyrosol, which is salidroside's aglycone. The fermented AT product (ATF) potently inhibited TNF-α-mediated monocyte adhesion with higher potency than AT. AT or ATF abrogated TNF-α-induced expression of adhesion molecules (VCAM-1 and ICAM-1) and production of MCP-1 with the inhibition of phosphorylated MAP kinases. TNF-α-mediated NF-κB transactivation and RelA/p65 acetylation were suppressed by AT and ATF through the interaction of NF-κB with sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase. Sirt1 gene knockdown diminished the protective effects of AT and ATF against TNF-α-mediated signaling and inflammatory response. Interestingly, SIRT1 protein expression was significantly increased by ATF and tyrosol rather than by AT and salidroside, respectively. Molecular docking showed that the tyrosol moiety is critical for the interaction with Glu230 of SIRT1 (PDB ID: 4ZZH and 4ZZJ) for the deacetylase activity. Molecular dynamics revealed that tyrosol can induce the movement of the N-terminal domain toward the catalytic domain of SIRT1. This study demonstrates the potential of AT and ATF to prevent endothelial inflammation and vascular dysfunction of the retina by the MAPK/NF-κB/SIRT1 signaling pathways and targeting of the tyrosol moiety to Glu230 in SIRT1.
Collapse
Affiliation(s)
| | | | - Min Kyung Cho
- Department of Pharmacology, College of Oriental Medicine, Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
4
|
SenGupta S, Cohen E, Serrenho J, Ott K, Coulombe PA, Parent CA. TGFβ1-TNFα regulated secretion of neutrophil chemokines is independent of epithelial-mesenchymal transitions in breast tumor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617845. [PMID: 39416223 PMCID: PMC11483069 DOI: 10.1101/2024.10.11.617845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neutrophils have tumor-promoting roles in breast cancer and are detected in higher numbers in aggressive breast tumors. How aggressive breast tumors recruit neutrophils remains undefined. Here, we investigated the roles of TGF-β1 and TNF-α in the regulation of neutrophil recruitment by breast cancer cells. TGF-β1 and TNF-α are pro-inflammatory factors upregulated in breast tumors and induce epithelial to mesenchymal transitions (EMT), a process linked to cancer cell aggressiveness. We report that, as expected, dual treatment with TGF-β1 and TNF-α induces EMT signatures in premalignant M2 cells, which are part of the MCF10A breast cancer progression model. Conditioned media (CM) harvested from M2 cells treated with TGF-β1/TNF-α gives rise to amplified neutrophil chemotaxis compared to CM from control M2 cells. This response correlates with higher levels of the neutrophil chemokines CXCL1, CXCL2, and CXCL8 and is significantly attenuated in the presence of a CXCL8-neutralizing antibody. Furthermore, we found that secretion of CXCL1 and CXCL8 from treated M2 cells depends on p38MAPK activity. By combining gene editing, immunological and biochemical approaches, we show that the regulation of neutrophil recruitment and EMT signatures are not mechanistically linked in treated M2 cells. Finally, analysis of publicly available cancer cell line transcriptomic databases revealed a significant correlation between CXCL8 and TGF-β1/TNF-α-regulated or effector genes in breast cancer. Together, our findings establish a novel role for the TGF-β1/TNF-α/p38 MAPK signaling axis in regulating neutrophil recruitment in breast cancer, independent of TGF-β1/TNF-α regulated EMT.
Collapse
|
5
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2024:S0091-6749(24)00942-4. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
6
|
D'Souza BN, Yadav M, Chaudhary PP, Ratley G, Lu MY, Alves DA, Myles IA. Derivation of novel metabolic pathway score identifies alanine metabolism as a targetable influencer of TNF-alpha signaling. Heliyon 2024; 10:e33502. [PMID: 39035522 PMCID: PMC11259870 DOI: 10.1016/j.heliyon.2024.e33502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Background Better understanding of the interaction between metabolism and immune response will be key to understanding physiology and disease. Tumor Necrosis Factor-alpha (TNFα) has been studied widely. However, despite the extensive knowledge about TNFα, the cytokine appears to induce not only variable, but often contradictory, effects on inflammation and cell proliferation. Despite advancements in the metabolomics field, it is still difficult to analyze the types of multi-dose, multi-time point studies needed for elucidating the varied immunologic responses induced by TNFα. Results We studied the dose and time course effects of TNFα on murine fibroblast cultures and further elucidated these connections using selective blockade of the TNF receptors (TNFR1 and TNFR2). To streamline analysis, we developed a method to collate the metabolic pathway output from MetaboAnalyst into a single value for the Index of pathway significance (IPS). Using this metric, we tested dose-, time-, and receptor-dependent effects of TNFα signaling on cell metabolism. Guided by these results, we then demonstrate that alanine supplementation enriched TNFR1-related responses in both cell and mouse models. Conclusions Our results suggest that TNFα, particularly when signaling through TNFR1, may preferentially use alanine metabolism for energy. These results are limited in by cell type used and immune outputs measured. However, we anticipate that our novel method may assist other researchers in identifying metabolic targets that influence their disease or model of interest through simplifying the analysis of multi-condition experiments. Furthermore, our results endorse the consideration of follow up studies in immunometabolism to improve outcomes in TNF-mediated diseases.
Collapse
Affiliation(s)
- Brandon N. D'Souza
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Manoj Yadav
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Prem Prashant Chaudhary
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grace Ratley
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Max Yang Lu
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Derron A. Alves
- Infectious Disease Pathogenesis Section (IDPS), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian A. Myles
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
8
|
Hirth E, Cao W, Peltonen M, Kapetanovic E, Dietsche C, Svanberg S, Filippova M, Reddy S, Dittrich PS. Self-assembled and perfusable microvasculature-on-chip for modeling leukocyte trafficking. LAB ON A CHIP 2024; 24:292-304. [PMID: 38086670 PMCID: PMC10793075 DOI: 10.1039/d3lc00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Leukocyte recruitment from blood to tissue is a process that occurs at the level of capillary vessels during both physiological and pathological conditions. This process is also relevant for evaluating novel adoptive cell therapies, in which the trafficking of therapeutic cells such as chimeric antigen receptor (CAR)-T cells throughout the capillaries of solid tumors is important. Local variations in blood flow, mural cell concentration, and tissue stiffness contribute to the regulation of capillary vascular permeability and leukocyte trafficking throughout the capillary microvasculature. We developed a platform to mimic a biologically functional human arteriole-venule microcirculation system consisting of pericytes (PCs) and arterial and venous primary endothelial cells (ECs) embedded within a hydrogel, which self-assembles into a perfusable, heterogeneous microvasculature. Our device shows a preferential association of PCs with arterial ECs that drives the flow-dependent formation of microvasculature networks. We show that PCs stimulate basement membrane matrix synthesis, which affects both vessel diameter and permeability in a manner correlating with the ratio of ECs to PCs. Moreover, we demonstrate that hydrogel concentration can affect capillary morphology but has no observed effect on vascular permeability. The biological function of our capillary network was demonstrated using an inflammation model, where significantly higher expression of cytokines, chemokines, and adhesion molecules was observed after tumor necrosis factor-alpha (TNF-α) treatment. Accordingly, T cell adherence and transendothelial migration were significantly increased in the immune-activated state. Taken together, our platform allows the generation of a perfusable microvasculature that recapitulates the structure and function of an in vivo capillary bed that can be used as a model for developing potential immunotherapies.
Collapse
Affiliation(s)
- Elisabeth Hirth
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Wuji Cao
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Marina Peltonen
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Claudius Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Sara Svanberg
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Maria Filippova
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Sai Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| |
Collapse
|
9
|
Hridoy HM, Haidar MN, Khatun C, Sarker A, Hossain MP, Aziz MA, Hossain MT. In silico based analysis to explore genetic linkage between atherosclerosis and its potential risk factors. Biochem Biophys Rep 2023; 36:101574. [PMID: 38024867 PMCID: PMC10652116 DOI: 10.1016/j.bbrep.2023.101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis (ATH) is a chronic cardiovascular disease characterized by plaque formation in arteries, and it is a major cause of illness and death. Although therapeutic advances have significantly improved the prognosis of ATH, missing therapeutic targets pose a significant residual threat. This research used a systems biology approach to identify the molecular biomarkers involved in the onset and progression of ATH, analysing microarray gene expression datasets from ATH and tissues impacted by risk factors such as high cholesterol, adipose tissue, smoking, obesity, sedentary lifestyle, stress, alcohol consumption, hypertension, hyperlipidaemia, high fat, diabetes to find the differentially expressed genes (DEGs). Bioinformatic analyses of Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted on differentially expressed genes, revealing metabolic and signaling pathways (the chemokine signaling pathway, cytokine-cytokine receptor interaction, the cytosolic DNA-sensing pathway, the peroxisome proliferator-activated receptors signaling pathway, and the nuclear factor-kappa B signaling pathway), ten hubs proteins (CCL5, CCR1, TLR1, CCR2, FCGR2A, IL1B, CD163, AIF1, CXCL-1 and TNF), five transcription factors (YY1, FOXL1, FOXC1, SRF, and GATA2), and five miRNAs (mir-27a-3p, mir-124-3p, mir-16-5p, mir-129-2-3p, mir-1-3p). These findings identify potential biomarkers that may increase knowledge of the mechanisms underlying ATH and their connection to risk factors, aiding in the development of new therapies.
Collapse
Affiliation(s)
- Hossain Mohammad Hridoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nasim Haidar
- Department of Electrical and Electronic Engineering, Rangpur Engineering College, Rangpur, Bangladesh
| | - Chadni Khatun
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Arnob Sarker
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Pervez Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Abdul Aziz
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Tofazzal Hossain
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
10
|
Du L, Wu Y, Pan Y, Wang L, Zhang H, Li J, Liu Y, Zhang H, He P. Lipopolysaccharide and Glycolipoprotein Coordinately Triggered Necroptosis Contributes to the Pathogenesis of Leptospira Infection in Mice. J Infect Dis 2023; 228:944-956. [PMID: 37166078 DOI: 10.1093/infdis/jiad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Leptospirosis is a recurring but neglected zoonotic disease caused by pathogenic Leptospira. The explicit underlying mechanism of necroptosis and its role in Leptospira infection have not yet been elucidated. Here we reported that leptospiral pathogen-associated molecular patterns, lipopolysaccharide, and glycolipoprotein activate the necroptotic RIPK1-RIPK3-MLKL cascade through the TLR4 signaling pathway in mouse macrophages. Using the murine acute leptospirosis model, we reveal that abolition of necroptosis exhibited significantly improved outcomes in acute phases, with enhanced eradication of Leptospira from liver, mild clinical symptoms, and decreased cytokine production. RIPK3 was also found to exert a necroptosis-independent function in CXCL1 production and neutrophil recruitment, with the consequence of improved Leptospira control. These findings improve our understanding of the mechanism of Leptospira-macrophage interactions, indicating potential therapeutic values by targeting necroptosis signaling pathways.
Collapse
Affiliation(s)
- Lin Du
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqiang Wu
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Pan
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxia Wang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiwei Zhang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiayin Li
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya'nan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibing Zhang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping He
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Bao XH, Chen BF, Liu J, Tan YH, Chen S, Zhang F, Lu HS, Li JC. Olink proteomics profiling platform reveals non-invasive inflammatory related protein biomarkers in autism spectrum disorder. Front Mol Neurosci 2023; 16:1185021. [PMID: 37293545 PMCID: PMC10244537 DOI: 10.3389/fnmol.2023.1185021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Background Owing to the lack of valid biomarkers, the diagnosis of autism spectrum disorder (ASD) diagnosis relies solely on the behavioral phenotypes of children. Several researchers have suggested an association between ASD and inflammation; however, the complex relationship between the two is unelucidated to date. Therefore, the current study aims to comprehensively identify novel circulating ASD inflammatory biomarkers. Methods Olink proteomics was applied to compare the plasma inflammation-related protein changes in a group of the healthy children (HC, n = 33) and another with ASD (n = 31). The areas under the receiver operating characteristic curves (AUCs) of the differentially expressed proteins (DEPs) were calculated. The functional analysis of the DEPs was performed using Gene Ontology and Kyoto Encyclopedia Genes and Genomes. Pearson correlation tests were used employed to analyze the correlation between the DEPs and clinical features. Results A total of 13 DEPs were significantly up-regulated in the ASD group compared with the HC group. The four proteins, namely, STAMBP, ST1A1, SIRT2, and MMP-10 demonstrated good diagnostic accuracy with the corresponding AUCs (95% confidence interval, CI) of 0.7218 (0.5946-0.8489), 0.7107 (0.5827-0.8387), 0.7016 (0.5713-0.8319), and 0.7006 (0.568-0.8332). Each panel of STAMBP and any other differential protein demonstrated a better classification performance [AUC values from 0.7147 (0.5858-0.8436, STAMBP/AXIN1) to 0.7681 (0.6496-0.8867, STAMBP/MMP-10)]. These DEP profiles were enriched in immune and inflammatory response pathways, including TNF and NOD-like receptor signaling pathways. The interaction between STAMBP and SIRT2 (R = 0.97, p = 8.52 × 10-39) was found to be the most significant. In addition, several DEPs related to clinical features in patients with ASD, particularly AXIN1 (R = 0.36, p = 0.006), SIRT2 (R = 0.34, p = 0.010) and STAMBP (R = 0.34, p = 0.010), were positively correlated with age and parity, indicating that older age and higher parity may be the inflammation-related clinical factors in ASD. Conclusion Inflammation plays a crucial role in ASD, and the up-regulated inflammatory proteins may serve as potential early diagnostic biomarkers for ASD.
Collapse
Affiliation(s)
- Xiao-Hong Bao
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Bao-Fu Chen
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Jun Liu
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Yu-Hua Tan
- Department of Children Rehabilitation, Shaoguan Maternal and Child Health Hospital, Shaoguan, China
| | - Shu Chen
- Department of Children Rehabilitation, Shaoguan Maternal and Child Health Hospital, Shaoguan, China
| | - Fan Zhang
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Hong-Sheng Lu
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Ji-Cheng Li
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute of Cell Biology, Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
12
|
Blethen KE, Sprowls SA, Arsiwala TA, Wolford CP, Panchal DM, Fladeland RA, Glass MJ, Dykstra LP, Kielkowski BN, Blackburn JR, Andrick CJ, Lockman PR. Effects of whole-brain radiation therapy on the blood-brain barrier in immunocompetent and immunocompromised mouse models. Radiat Oncol 2023; 18:22. [PMID: 36732754 PMCID: PMC9896731 DOI: 10.1186/s13014-023-02215-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Approximately 20% of all cancer patients will develop brain metastases in their lifespan. The standard of care for patients with multiple brain metastases is whole-brain radiation therapy, which disrupts the blood-brain barrier. Previous studies have shown inflammatory mediators play a role in the radiation-mediated increase in permeability. Our goal was to determine if differential permeability post-radiation occurs between immunocompetent and immunocompromised mice. METHODS We utilized a commissioned preclinical irradiator to irradiate brains of C57Bl/6J wild-type and athymic nude mice. Acute (3-24 h) effects on blood-brain barrier integrity were evaluated with our in-situ brain perfusion technique and quantitative fluorescent and phosphorescent microscopy. The presence of inflammatory mediators in the brain and serum was determined with a proinflammatory cytokine panel. RESULTS Blood-brain barrier integrity and efflux transporter activity were altered in the immunocompetent mice 12 h following irradiation without similar observations in the immunocompromised mice. We observed increased TNF-α concentrations in the serum of wild-type mice immediately post-radiation and nude mice 12 h post-radiation. The brain concentration of CXCL1 was also increased in both mouse strains at the 12-h time point. CONCLUSIONS The immune response plays a role in the magnitude of blood-brain barrier disruption following irradiation in a time- and size-dependent manner.
Collapse
Affiliation(s)
- K E Blethen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - S A Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - T A Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - C P Wolford
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - D M Panchal
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, USA
| | - R A Fladeland
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - M J Glass
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - L P Dykstra
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - B N Kielkowski
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - J R Blackburn
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - C J Andrick
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - P R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
13
|
Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines-A Review. Pathogens 2023; 12:pathogens12020166. [PMID: 36839438 PMCID: PMC9962459 DOI: 10.3390/pathogens12020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite's developmental stages only have a marginal role in contributing to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune response to the infection. This response includes antibody production, erythrophagocytosis, oxidative damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover, both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels. All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α, IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and chemokines in the mechanisms leading to anemia in infected dogs.
Collapse
|
14
|
Niu N, Shen X, Zhang L, Chen Y, Lu P, Yang W, Liu M, Shi J, Xu D, Tang Y, Yang X, Weng Y, Zhao X, Wu L, Sun Y, Xue J. Tumor Cell-Intrinsic SETD2 Deficiency Reprograms Neutrophils to Foster Immune Escape in Pancreatic Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202937. [PMID: 36453584 PMCID: PMC9839845 DOI: 10.1002/advs.202202937] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Indexed: 06/07/2023]
Abstract
Genetic and epigenetic alterations play central roles in shaping the immunosuppressive tumor microenvironment (TME) to evade immune surveillance. The previous study shows that SETD2-H3K36me3 loss promotes KRAS-induced pancreatic tumorigenesis. However, little is known about its role in remodeling the TME and immune evasion. Here, it is shown that SETD2 deficiency can reprogram neutrophils to an immunosuppressive phenotype, thereby promoting immune escape during pancreatic tumor progression. By comprehensive profiling of the intratumoral immune cells, neutrophils are identified as the subset with the most significant changes upon Setd2 loss. Setd2-deficient pancreatic tumor cells directly enhance neutrophil recruitment and reprogramming, thereby inhibiting the cytotoxicity of CD8+ T cells to foster tumor progression. Mechanistically, it is revealed that Setd2-H3K36me3 loss leads to ectopic gain of H3K27me3 to downregulate Cxadr expression, which boosts the PI3K-AKT pathway and excessive expression of CXCL1 and GM-CSF, thereby promoting neutrophil recruitment and reprogramming toward an immunosuppressive phenotype. The study provides mechanistic insights into how tumor cell-intrinsic Setd2 deficiency strengthens the immune escape during pancreatic tumorigenesis, which may offer potential therapeutic implications for pancreatic cancer patients with SETD2 deficiency.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xuqing Shen
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yueyue Chen
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Wenjuan Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Dapeng Xu
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yingying Tang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yawen Weng
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xinxin Zhao
- Department of RadiologyRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Lian‐Ming Wu
- Department of RadiologyRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yongwei Sun
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| |
Collapse
|
15
|
Chan LP, Tseng YP, Wang HC, Chien CY, Wu CW, Wang LF, Liang CH. Growth Regulated Oncogene-α Upregulates TNF-α and COX-2 and Activates NOD1/RIPK2 mediated-MAPK Pathway in Head and Neck Squamous Cell Carcinoma. J Cancer 2023; 14:989-1000. [PMID: 37151389 PMCID: PMC10158519 DOI: 10.7150/jca.82300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose: The long-term prognosis and survival rate of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) are poor, although the identification of specific biomarkers that reveal its nature and aggressiveness has improved it. Growth-related oncogene alpha (Groα) and NOD1 (nucleotide-binding oligomerization domain 1) can be used as prognosis markers to identify subgroups of HNSCC patients with low survival rates and as potential therapeutic targets for HNSCC patients. However, the mechanism associated with the Groα-mediated NOD pathway in HNSCC progression remains unclear. Method: Overall survival analysis and multiple-gene comparison were analyzed using Gene Expression Profiling Interactive Analysis (GEPIA). qRT-PCR and RT-PCR were used to analyze mRNA expression. Microarray, immunofluorescence staining or western blot analyses were carried out to detect protein expression. Results: Groα was significantly higher in the grade 4 HNSCC tumor tissues compared with that in grade 1-3 and healthy subjects. High expression of Groα, NOD1 and RIPK2 (receptor-interacting serine-threonine kinase 2) is correlated with survival rate in HNSCC patients. Treatment of SCC25 and OECM-1 cells with Groα increased the expression of NOD1 and RIPK2 in a concentration-dependent manner. The findings herein reveal the association of Groα, NOD1 and RIPK2 biomarkers with HNSCC carcinogenesis. Moreover, Groα is the major stimulus of inflammatory mediation and promotes TNF-α (tumor necrosis factor-α) and COX-2 (cyclooxygenase-2) expression in HNSCC. Groα induces TNF-α and COX-2 expression through regulation involving ERK (extracellular signal-regulated kinase)-, JNK (C-Jun N-terminal kinase)- and p38 MAPK (mitogen-activated protein kinase)-dependent signaling pathways. Conclusions: Our findings herein constitute the first evidence that Groα is important in HNSCC progression and metastasis via the NOD1-mediated MAPK pathway, suggesting a role for Groα and NOD1 in mediating metastasis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Leong-Perng Chan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- ✉ Corresponding authors: (L.-P. C.); (C.-H. L.); Tel.: +886-6-2664911 (ext. 2441)
| | - Ya-Ping Tseng
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Wang
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Yu Chien
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Che-Wei Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Feng Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- ✉ Corresponding authors: (L.-P. C.); (C.-H. L.); Tel.: +886-6-2664911 (ext. 2441)
| |
Collapse
|
16
|
Hemmersbach L, Schreiner Y, Zhang X, Dicke F, Hünemeyer L, Neudörfl J, Fleming T, Yard B, Schmalz H. Synthesis and Biological Evaluation of Water‐Soluble Esterase‐Activated CO‐Releasing Molecules Targeting Mitochondria. Chemistry 2022; 28:e202201670. [PMID: 35771078 PMCID: PMC9543658 DOI: 10.1002/chem.202201670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Lars Hemmersbach
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Yannick Schreiner
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Xinmiao Zhang
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Finn Dicke
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Leon Hünemeyer
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | | | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry University Hospital of Heidelberg 69120 Heidelberg Germany
- German Center for Diabetes Research (DZD) 85764 Neuherberg Germany
| | - Benito Yard
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | | |
Collapse
|
17
|
Ding DF, Xue Y, Wu XC, Zhu ZH, Ding JY, Song YJ, Xu XL, Xu JG. Recent Advances in Reactive Oxygen Species (ROS)-Responsive Polyfunctional Nanosystems 3.0 for the Treatment of Osteoarthritis. J Inflamm Res 2022; 15:5009-5026. [PMID: 36072777 PMCID: PMC9443071 DOI: 10.2147/jir.s373898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is an inflammatory and degenerative joint disease with severe effects on individuals, society, and the economy that affects millions of elderly people around the world. To date, there are no effective treatments for OA; however, there are some treatments that slow or prevent its progression. Polyfunctional nanosystems have many advantages, such as controlled release, targeted therapy and high loading rate, and have been widely used in OA treatment. Previous mechanistic studies have revealed that inflammation and ROS are interrelated, and a large number of studies have demonstrated that ROS play an important role in different types of OA development. In this review article, we summarize third-generation ROS-sensitive nanomaterials that scavenge excessive ROS from chondrocytes and osteoclasts in vivo. We only focus on polymer-based nanoparticles (NPs) and do not review the effects of drug-loaded or heavy metal NPs. Mounting evidence suggests that polyfunctional nanosystems will be a promising therapeutic strategy in OA therapy due to their unique characteristics of being sensitive to changes in the internal environment.
Collapse
Affiliation(s)
- Dao-Fang Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University, Shanghai, People’s Republic of China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yong-Jia Song
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
- Correspondence: Xiao-Ling Xu, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, People’s Republic of China, Email
| | - Jian-Guang Xu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Jian-Guang Xu, Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 200000, People’s Republic of China, Email
| |
Collapse
|
18
|
Goodla L, Xue X. The Role of Inflammatory Mediators in Colorectal Cancer Hepatic Metastasis. Cells 2022; 11:2313. [PMID: 35954156 PMCID: PMC9367504 DOI: 10.3390/cells11152313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of death in cancer patients in the USA, whereas the major cause of CRC deaths is hepatic metastases. The liver is the most common site of metastasis in patients with CRC due to hepatic portal veins receiving blood from the digestive tract. Understanding the cellular and molecular mechanisms of hepatic metastases is of dire need for the development of potent targeted therapeutics. Immuno-signaling molecules including cytokines and chemokines play a pivotal role in hepatic metastases from CRC. This brief review discusses the involvement of three representative cytokines (TNF-α, IL-6 and IL-1β), a lipid molecule PGE2 and two chemokines (CXCL1 and CXCL2) in the process of CRC liver metastases.
Collapse
Affiliation(s)
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| |
Collapse
|
19
|
Baker JR, Fenwick PS, Koss CK, Owles HB, Elkin SL, Fine JS, Thomas M, Kasmi KC, Barnes PJ, Donnelly LE. Imbalance between IL-36 receptor agonist and antagonist drives neutrophilic inflammation in COPD. JCI Insight 2022; 7:155581. [PMID: 35763349 PMCID: PMC9462491 DOI: 10.1172/jci.insight.155581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Current treatments fail to modify the underlying pathophysiology and disease progression of chronic obstructive pulmonary disease (COPD), necessitating alternative therapies. Here, we show that COPD subjects have increased IL-36γ and decreased IL-36 receptor antagonist (IL-36Ra) in bronchoalveolar and nasal fluid compared to control subjects. IL-36γ is derived from small airway epithelial cells (SAEC) and further induced by a viral mimetic, whereas IL-36RA is derived from macrophages. IL-36γ stimulates release of the neutrophil chemoattractants CXCL1 and CXCL8, as well as elastolytic matrix metalloproteinases (MMPs) from small airway fibroblasts (SAF). Proteases released from COPD neutrophils cleave and activate IL-36γ thereby perpetuating IL-36 inflammation. Transfer of culture media from SAEC to SAF stimulated release of CXCL1, that was inhibited by exogenous IL-36RA. The use of a therapeutic antibody that inhibits binding to the IL-36 receptor (IL-36R) attenuated IL-36γ driven inflammation and cellular cross talk. We have demonstrated a mechanism for the amplification and propagation of neutrophilic inflammation in COPD and that blocking this cytokine family via a IL-36R neutralizing antibody could be a promising new therapeutic strategy in the treatment of COPD.
Collapse
Affiliation(s)
- Jonathan R Baker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter S Fenwick
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carolin K Koss
- Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Harriet B Owles
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sarah L Elkin
- Department of Respiratory Medicine, Imperial College Healthcare Trust, London, United Kingdom
| | - Jay S Fine
- Immunology and Respiratory Diseases, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, United States of America
| | - Matthew Thomas
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Karim C Kasmi
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Luxen M, van Meurs M, Molema G. Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Front Immunol 2022; 13:867625. [PMID: 35634305 PMCID: PMC9136877 DOI: 10.3389/fimmu.2022.867625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a devastating clinical condition that can lead to multiple organ failure and death. Despite advancements in our understanding of molecular mechanisms underlying sepsis and sepsis-associated multiple organ failure, no effective therapeutic treatment to directly counteract it has yet been established. The endothelium is considered to play an important role in sepsis. This review highlights a number of signal transduction pathways involved in endothelial inflammatory activation and dysregulated endothelial barrier function in response to sepsis conditions. Within these pathways – NF-κB, Rac1/RhoA GTPases, AP-1, APC/S1P, Angpt/Tie2, and VEGF/VEGFR2 – we focus on the role of kinases and phosphatases as potential druggable targets for therapeutic intervention. Animal studies and clinical trials that have been conducted for this purpose are discussed, highlighting reasons why they might not have resulted in the expected outcomes, and which lessons can be learned from this. Lastly, opportunities and challenges that sepsis and sepsis-associated multiple organ failure research are currently facing are presented, including recommendations on improved experimental design to increase the translational power of preclinical research to the clinic.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthijs Luxen,
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Tailoring PEGylated nanoparticle surface modulates inflammatory response in vascular endothelial cells. Eur J Pharm Biopharm 2022; 174:155-166. [DOI: 10.1016/j.ejpb.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
|
22
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
23
|
Huang R, Gao Y, Chen J, Duan Q, He P, Zhang J, Huang H, Zhang Q, Ma G, Zhang Y, Nie K, Wang L. TGR5 agonist INT-777 alleviates inflammatory neurodegeneration in parkinson’s disease mouse model by modulating mitochondrial dynamics in microglia. Neuroscience 2022; 490:100-119. [DOI: 10.1016/j.neuroscience.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
|
24
|
CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space. Int J Mol Sci 2022; 23:ijms23020792. [PMID: 35054978 PMCID: PMC8776070 DOI: 10.3390/ijms23020792] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1β, IL-17, TGF-β and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.
Collapse
|
25
|
Lin G, Zhang L, Yan Z, Jiang W, Wu B, Li D, Xiong X. Identification of heterogeneous subsets of aortic interleukin-17A-expressing CD4 + T cells in atherosclerotic mice. Int J Immunopathol Pharmacol 2022; 36:3946320221117933. [PMID: 35932160 PMCID: PMC9364180 DOI: 10.1177/03946320221117933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objectives: T helper 17 (Th17) cells are involved in the inflammatory response of
atherosclerosis. However, their heterogeneity in the atherosclerotic aorta remains
elusive. This study was designed to identify aortic Th17 subsets. Methods: The surface
markers and transcription factors of aortic interleukin-17A (IL-17A)-expressing T cells
were determined by flow cytometry in an ApoE-deficient mouse atherosclerotic model. Viable
aortic IL-17A-expressing T cell subsets were isolated by flow cytometry on the basis of
surface markers, followed by characterizing their transcription factors by either flow
cytometry or real-time RT-PCR. The effect of aortic IL-17A-expressing T cell subsets on
aortic endothelial cells was determined in vitro. Results: C-X-C Motif Chemokine Receptor
3 (CXCR3), interleukin-17 receptor E (IL-17RE), CD200, and C-C Motif Chemokine Receptor 4
(CCR4) marked three subsets of aortic IL-17A-expressing T cells:
CXCR3+IL-17RElowCD200+CCR4- T cells
expressing T-box protein expressed in T cells (T-bet) and interferon-gamma (IFN-γ),
CXCR3+IL-17RElowCD200+CCR4+ T cells
expressing T-bet but fewer IFN-γ, and
CXCR3−IL-17REhighCD200+CCR4+ T cells
expressing very low T-bet and no IFN-γ. Based on these markers, viable aortic Th17 cells,
Th17.1 cells, and transitional Th17.1 cells were identified. Both Th17.1 cells and
transitional Th17.1 cells were more proliferative than Th17 cells. Compared with Th17
cells, Th17.1 cells plus transitional Th17.1 cells induced higher expression of C-X-C
motif chemokine ligand 1 (CXCL1), C-C motif chemokine ligand 2 (CCL2), C-X-C motif
chemokine 5 (CXCL5), and granulocyte-macrophage colony-stimulating factor (GM-CSF) in
aortic endothelial cells. Conclusion: IL-17A-expressing CD4+ T cells were
heterogeneous in atherosclerotic aortas.
Collapse
Affiliation(s)
- Guizhen Lin
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Lei Zhang
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Zheng Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Wei Jiang
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Beibei Wu
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Dongsheng Li
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Xiaofang Xiong
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| |
Collapse
|
26
|
Nagarajan M, Maadurshni GB, Tharani GK, Udhayakumar I, Kumar G, Mani KP, Sivasubramanian J, Manivannan J. Exposure to zinc oxide nanoparticles (ZnO-NPs) induces cardiovascular toxicity and exacerbates pathogenesis - Role of oxidative stress and MAPK signaling. Chem Biol Interact 2021; 351:109719. [PMID: 34699767 DOI: 10.1016/j.cbi.2021.109719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
The precise toxico-pathogenic effects of zinc oxide nanoparticles (ZnO-NPs) on the cardiovascular system under normal and cardiovascular disease (CVD) risk factor milieu are unclear. In this study, we have investigated the dose-dependent effects of ZnO-NPs on developing chicken embryo and cell culture (H9c2 cardiomyoblast, HUVEC and aortic VSMC) models. In addition, the potentiation effect of ZnO-NPs on simulated risk factor conditions was evaluated using; 1. Reactive oxygen species (ROS) induced cardiac remodeling, 2. Angiotensin-II induced cardiac hypertrophy, 3. TNF-α induced HUVEC cell death and 4. Inorganic phosphate (Pi) induced aortic VSMC calcification models. The observed results illustrates that ZnO-NPs exposure down regulates vascular development and elevates oxidative stress in heart tissue. At the cellular level, ZnO-NPs exposure reduced the cell viability and increased the intracellular ROS generation, lipid peroxidation and caspase-3 activity in a dose-dependent manner in all three cell types. In addition, ZnO-NPs exposure significantly suppressed the endothelial nitric oxide (NO) generation, cardiac Ca2+ - ATPase activity and enhanced the cardiac mitochondrial swelling. Moreover, inhibition of p38 MAPK and JNK signaling pathways influence the cytotoxicity. Overall, ZnO-NPs exposure affects the cardiovascular system under normal conditions and it exacerbates the cardiovascular pathogenesis under selected risk factor milieu.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Ganeshmurthy Kanniamal Tharani
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Inbamani Udhayakumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Gayathri Kumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Krishna Priya Mani
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
27
|
Nernpermpisooth N, Sarre C, Barrere C, Contreras R, Luz-Crawford P, Tejedor G, Vincent A, Piot C, Kumphune S, Nargeot J, Jorgensen C, Barrère-Lemaire S, Djouad F. PPARβ/δ Is Required for Mesenchymal Stem Cell Cardioprotective Effects Independently of Their Anti-inflammatory Properties in Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:681002. [PMID: 34616778 PMCID: PMC8488150 DOI: 10.3389/fcvm.2021.681002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Myocardial infarction ranks first for the mortality worldwide. Because the adult heart is unable to regenerate, fibrosis develops to compensate for the loss of contractile tissue after infarction, leading to cardiac remodeling and heart failure. Adult mesenchymal stem cells (MSC) regenerative properties, as well as their safety and efficacy, have been demonstrated in preclinical models. However, in clinical trials, their beneficial effects are controversial. In an experimental model of arthritis, we have previously shown that PPARβ/δ deficiency enhanced the therapeutic effect of MSC. The aim of the present study was to compare the therapeutic effects of wild-type MSC (MSC) and MSC deficient for PPARβ/δ (KO MSC) perfused in an ex vivo mouse model of ischemia-reperfusion (IR) injury. For this purpose, hearts from C57BL/6J mice were subjected ex vivo to 30 min ischemia followed by 1-h reperfusion. MSC and KO MSC were injected into the Langendorff system during reperfusion. After 1 h of reperfusion, the TTC method was used to assess infarct size. Coronary effluents collected in basal condition (before ischemia) and after ischemia at 1 h of reperfusion were analyzed for their cytokine profiles. The dose-response curve for the cardioprotection was established ex vivo using different doses of MSC (3.105, 6.105, and 24.105 cells/heart) and the dose of 6.105 MSC was found to be the optimal concentration. We showed that the cardioprotective effect of MSC was PPARβ/δ-dependent since it was lost using KO MSC. Moreover, cytokine profiling of the coronary effluents collected in the eluates after 60 min of reperfusion revealed that MSC treatment decreases CXCL1 chemokine and interleukin-6 release compared with untreated hearts. This anti-inflammatory effect of MSC was also observed when hearts were treated with PPARβ/δ-deficient MSC. In conclusion, our study revealed that the acute cardioprotective properties of MSC in an ex vivo model of IR injury, assessed by a decreased infarct size at 1 h of reperfusion, are PPARβ/δ-dependent but not related to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Nitirut Nernpermpisooth
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Integrative Biomedical Research Unit, Naresuan University, Phitsanulok, Thailand
| | - Charlotte Sarre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Montpellier, France
| | - Christian Barrere
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Rafaël Contreras
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Montpellier, France
| | - Patricia Luz-Crawford
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Montpellier, France.,Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Gautier Tejedor
- MedXCell Science, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Christophe Piot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Sarawut Kumphune
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Integrative Biomedical Research Unit, Naresuan University, Phitsanulok, Thailand.,Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Joel Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Christian Jorgensen
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | | | - Farida Djouad
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
28
|
Loss of GATA4 C-Terminus by p.S335X Mutation Modulates Coronary Artery Vascular Smooth Muscle Cell Phenotype. Mediators Inflamm 2021; 2021:3698386. [PMID: 34545275 PMCID: PMC8449727 DOI: 10.1155/2021/3698386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Coronary artery disease (CAD) has been the leading cause of morbidity and mortality worldwide, and its pathogenesis is closely related with the proliferation and migration of vascular smooth muscle cell (VSMC). We previously reported a truncated GATA4 protein lacking C-terminus induced by p.S335X mutation in cardiomyocyte from ventricular septal defect (VSD) patients. However, it is still unclear whether GATA4 p.S335X mutation could influence the development of CAD. GATA4 wild-type (WT) and p.S335X mutant (MU) overexpression plasmids were constructed and transfected transiently into rat coronary artery smooth muscle cell (RCSMC) to observe the proliferative and migratory abilities by MTS and wound healing assay, respectively. PCR array was used to preliminarily detect the expression of phenotypic modulation-related genes, and QRT-PCR was then carried out to verify the screened differentially expressed genes (DEGs). The results showed that, when stimulated by fetal bovine serum (10%) for 24 h or tumor necrosis factor-α (10 or 30 ng/ml) for 10 or 24 h, deletion of GATA4 C-terminus by p.S335X mutation in GATA4 enhanced the proliferation of RCSMC, without alteration of the migration capability. Twelve DEGs, including Fas, Hbegf, Itga5, Aimp1, Cxcl1, Il15, Il2rg, Il7, Tnfsf10, Il1r1, Irak1, and Tlr3, were screened and identified as phenotypic modulation-related genes. Our data might be beneficial for further exploration regarding the mechanisms of GATA4 p.S335X mutation on the phenotypic modulation of coronary VSMC.
Collapse
|
29
|
Li Z, Jiang J, Gao S. Potential of C-X-C motif chemokine ligand 1/8/10/12 as diagnostic and prognostic biomarkers in idiopathic pulmonary arterial hypertension. CLINICAL RESPIRATORY JOURNAL 2021; 15:1302-1309. [PMID: 34260815 DOI: 10.1111/crj.13421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 07/11/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to evaluate the clinical role of C-X-C motif chemokine ligand (CXCL) family members in idiopathic pulmonary arterial hypertension (IPAH) patients. METHODS CXCL1, CXCL8, CXCL10 and CXCL12 expressions in the serum samples of IPAH patients (N=39) and age/gender-matched controls (N=40) were detected by enzyme-linked immunosorbent assay. In IPAH patients, clinical features were collected and survival information was documented. RESULTS CXCL1 (P<0.001), CXCL8 (P=0.001), CXCL10 (P<0.001) and CXCL12 (P<0.001) were increased in IPAH patients compared with controls, and receiver's operating characteristic curves showed that their combination was highly correlated with IPAH risk (area under curve: 0.881, 95% confidence interval: 0.805-0.958). Meanwhile, CXCL1 was positively correlated with mean pulmonary artery pressure (mPAP) (P=0.029) and high sensitive C-reactive protein (HsCRP) (P=0.015); CXCL8 was positively correlated with mPAP (P=0.044) and HsCRP (P=0.018) but negatively correlated with 6-minute walk test (6MWT) distance (P=0.029); CXCL10 was positively correlated with mean right artery pressure (P=0.002); and CXCL12 was positively correlated with World Health Organization functional class (P=0.047), mPAP (P=0.009), pulmonary vascular resistance (P=0.004), HsCRP (P=0.003) but negatively correlated with 6MWT distance (P=0.003) in IPAH patients. Moreover, CXCL12 was negatively correlated with overall survival (OS) (P=0.025), while CXCL1, CXCL8 and CXCL10 only showed minor tendencies to be negatively correlated with OS in IPAH patients without statistical significance (all P>0.05). CONCLUSION CXCL1, CXCL8, CXCL10 and CXCL12 associate with increased IPAH risk, unfavorable clinical features; besides, CXCL12 correlates with worse OS in IPAH patients.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jie Jiang
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shan Gao
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
30
|
Das D, Podder S. Unraveling the molecular crosstalk between Atherosclerosis and COVID-19 comorbidity. Comput Biol Med 2021; 134:104459. [PMID: 34020127 PMCID: PMC8088080 DOI: 10.1016/j.compbiomed.2021.104459] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Corona virus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) has created ruckus throughout the world. Growing epidemiological studies have depicted atherosclerosis as a comorbid factor of COVID-19. Though both these diseases are triggered via inflammatory rage that leads to injury of healthy tissues, the molecular linkage between them and their co-influence in causing fatality is not yet understood. METHODS We have retrieved the data of differentially expressed genes (DEGs) for both atherosclerosis and COVID-19 from publicly available microarray and RNA-Seq datasets. We then reconstructed the protein-protein interaction networks (PPIN) for these diseases from protein-protein interaction data of corresponding DEGs. Using RegNetwork and TRRUST, we mapped the transcription factors (TFs) in atherosclerosis and their targets (TGs) in COVID-19 PPIN. RESULTS From the atherosclerotic PPIN, we have identified 6 hubs (TLR2, TLR4, EGFR, SPI1, MYD88 and IRF8) as differentially expressed TFs that might control the expression of their 17 targets in COVID-19 PPIN. The important target proteins include IL1B, CCL5, ITGAM, IFIT3, CXCL1, CXCL2, CXCL3 and CXCL8. Consequent functional enrichment analysis of these TGs have depicted inflammatory responses to be overrepresented among the gene sets. CONCLUSION Finally, analyzing the DEGs in cardiomyocytes infected with SARS-CoV-2, we have concluded that MYD88 is a crucial linker of atherosclerosis and COVID-19, the co-existence of which lead to fatal outcomes. Anti-inflammatory therapy targeting MYD88 could be a potent strategy for combating this comorbidity.
Collapse
Affiliation(s)
- Deepyaman Das
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134, West Bengal, India
| | - Soumita Podder
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134, West Bengal, India.
| |
Collapse
|
31
|
Wang Z, Ao X, Shen Z, Ao L, Wu X, Pu C, Guo W, Xing W, He M, Yuan H, Yu J, Li L, Xu X. TNF-α augments CXCL10/CXCR3 axis activity to induce Epithelial-Mesenchymal Transition in colon cancer cell. Int J Biol Sci 2021; 17:2683-2702. [PMID: 34345201 PMCID: PMC8326125 DOI: 10.7150/ijbs.61350] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/13/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation-induced metastases have long been regarded as one of the significant obstacles in treating cancer. Tumor necrosis factor-α (TNF-α), a main inflammation mediator within tumor microenvironment, affects tumor development by inducing multiple chemokines to establish a complex network. Recent reports have revealed that CXCL10/CXCR3 axis affects cancer cells invasiveness and metastases, and Epithelial-mesenchymal transition (EMT) is the main reason for frequent proliferation and distant organ metastases of colon cancer (CC) cells, However, it is unclear whether TNF-α- mediated chronic inflammation can synergically enhance EMT-mediated CC metastasis through promoting chemokine expression. According to this study, TNF-α activated the PI3K/Akt and p38 MAPK parallel signal transduction pathways, then stimulate downstream NF-κB pathway p65 into the nucleus to activate CXCL10 transcription. CXCL10 enhanced the metastases of CC-cells by triggering small GTPases such as RhoA and cdc42. Furthermore, overexpression of CXCL10 significantly enhanced tumorigenicity and mobility of CC cells in vivo. We further clarified that CXCL10 activated the PI3K/Akt pathway through CXCR3, resulting in suppression of GSK-3β phosphorylation and leading to upregulation of Snail expression, thereby regulating EMT in CC cells. These outcomes lay the foundation for finding new targets to inhibit CC metastases.
Collapse
Affiliation(s)
- Zhengcheng Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhilin Shen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaofeng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chengxiu Pu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min He
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jianhua Yu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ling Li
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
32
|
Saika A, Nagatake T, Hirata SI, Sawane K, Adachi J, Abe Y, Isoyama J, Morimoto S, Node E, Tiwari P, Hosomi K, Matsunaga A, Honda T, Tomonaga T, Arita M, Kabashima K, Kunisawa J. ω3 fatty acid metabolite, 12-hydroxyeicosapentaenoic acid, alleviates contact hypersensitivity by downregulation of CXCL1 and CXCL2 gene expression in keratinocytes via retinoid X receptor α. FASEB J 2021; 35:e21354. [PMID: 33749892 DOI: 10.1096/fj.202001687r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/11/2022]
Abstract
ω3 fatty acids show potent bioactivities via conversion into lipid mediators; therefore, metabolism of dietary lipids is a critical determinant in the properties of ω3 fatty acids in the control of allergic inflammatory diseases. However, metabolic progression of ω3 fatty acids in the skin and their roles in the regulation of skin inflammation remains to be clarified. In this study, we found that 12-hydroxyeicosapentaenoic acid (12-HEPE), which is a 12-lipoxygenase metabolite of eicosapentaenoic acid, was the prominent metabolite accumulated in the skin of mice fed ω3 fatty acid-rich linseed oil. Consistently, the gene expression levels of Alox12 and Alox12b, which encode proteins involved in the generation of 12-HEPE, were much higher in the skin than in the other tissues (eg, gut). We also found that the topical application of 12-HEPE inhibited the inflammation associated with contact hypersensitivity by inhibiting neutrophil infiltration into the skin. In human keratinocytes in vitro, 12-HEPE inhibited the expression of two genes encoding neutrophil chemoattractants, CXCL1 and CXCL2, via retinoid X receptor α. Together, the present results demonstrate that the metabolic progression of dietary ω3 fatty acids differs in different organs, and identify 12-HEPE as the dominant ω3 fatty acid metabolite in the skin.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - So-Ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Nippon Flour Mills Co., Ltd, Innovation Center, Atsugi, Japan
| | - Jun Adachi
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan.,Division of Molecular Diagnosis, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Eri Node
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Dermatology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, Tokyo, Japan.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
33
|
Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J, Chen Z, Yan C, Yang Z, Xian S, Wang L. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis 2020; 11:574. [PMID: 32710001 PMCID: PMC7382480 DOI: 10.1038/s41419-020-02777-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Chronic heart failure (CHF) is the final outcome of many cardiovascular diseases, and is a severe health issue faced by the elderly population. Mixed lineage kinase 3 (MLK3), a member of MAP3K family, is associated with aging, inflammation, oxidative stress, and related diseases, such as CHF. MLK3 has also been reported to play an important role in protecting against cardiomyocyte injury; however, its function in myocardial fibrosis is unknown. To investigate the role of MLK3 in myocardial fibrosis, we inhibited the expression of MLK3, and examined cardiac function and remodeling in TAC mice. In addition, we assessed the expression of MLK3 protein in ventricular cells and its downstream associated protein. We found that MLK3 mainly regulates NF-κB/NLRP3 signaling pathway-mediated inflammation and that pyroptosis causes myocardial fibrosis in the early stages of CHF. Similarly, MLK3 mainly regulates the JNK/p53 signaling pathway-mediated oxidative stress and that ferroptosis causes myocardial fibrosis in the advanced stages of CHF. We also found that promoting the expression of miR-351 can inhibit the expression of MLK3, and significantly improve cardiac function in mice subjected to TAC. These results suggest the pyroptosis and ferroptosis induced by MLK3 signaling in cardiomyocytes are essential for adverse myocardial fibrosis, in response to pressure overload. Furthermore, miR-351, which has a protective effect on ventricular remodeling in heart failure caused by pressure overload, may be a key target for the regulation of MLK3.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Weitao Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zheng Zhou
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lu Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Birong Liang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiaqi He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Cui Yan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
34
|
Sellau J, Groneberg M, Fehling H, Thye T, Hoenow S, Marggraff C, Weskamm M, Hansen C, Stanelle-Bertram S, Kuehl S, Noll J, Wolf V, Metwally NG, Hagen SH, Dorn C, Wernecke J, Ittrich H, Tannich E, Jacobs T, Bruchhaus I, Altfeld M, Lotter H. Androgens predispose males to monocyte-mediated immunopathology by inducing the expression of leukocyte recruitment factor CXCL1. Nat Commun 2020; 11:3459. [PMID: 32651360 PMCID: PMC7351718 DOI: 10.1038/s41467-020-17260-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatic amebiasis, predominantly occurring in men, is a focal destruction of the liver due to the invading protozoan Entamoeba histolytica. Classical monocytes as well as testosterone are identified to have important functions for the development of hepatic amebiasis in mice, but a link between testosterone and monocytes has not been identified. Here we show that testosterone treatment induces proinflammatory responses in human and mouse classical monocytes. When treated with 5α-dihydrotestosterone, a strong androgen receptor ligand, human classical monocytes increase CXCL1 production in the presence of Entamoeba histolytica antigens. Moreover, plasma testosterone levels of individuals undergoing transgender procedure correlate positively with the TNF and CXCL1 secretion from their cultured peripheral blood mononuclear cells following lipopolysaccharide stimulation. Finally, testosterone substitution of castrated male mice increases the frequency of TNF/CXCL1-producing classical monocytes during hepatic amebiasis, supporting the hypothesis that the effects of androgens may contribute to an increased risk of developing monocyte-mediated pathologies.
Collapse
Affiliation(s)
- Julie Sellau
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Groneberg
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thorsten Thye
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Hoenow
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Claudia Marggraff
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Weskamm
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Charlotte Hansen
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Stanelle-Bertram
- Department Viral Zoonoses - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Svenja Kuehl
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jill Noll
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Vincent Wolf
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Nahla Galal Metwally
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sven Hendrik Hagen
- Research Department Virus Immunology, Heinrich Pette Institute, Hamburg, Germany
| | | | - Julia Wernecke
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Egbert Tannich
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Heinrich Pette Institute, Hamburg, Germany.,Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannelore Lotter
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
35
|
Gehrke N, Schattenberg JM. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020; 158:1929-1947.e6. [PMID: 32068022 DOI: 10.1053/j.gastro.2020.02.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.
Collapse
Affiliation(s)
- Nadine Gehrke
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany.
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
36
|
Liu Y, Sun J, Wu T, Lu X, Du Y, Duan H, Yu W, Su D, Lu J, Tian J. Effects of serum from breast cancer surgery patients receiving perioperative dexmedetomidine on breast cancer cell malignancy: A prospective randomized controlled trial. Cancer Med 2019; 8:7603-7612. [PMID: 31663690 PMCID: PMC6912063 DOI: 10.1002/cam4.2654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/24/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Adrenergic receptors (ARs) have gained attention for their involvement in breast cancer (BC) progression. Dexmedetomidine, a selective α2 -AR agonist, has been reported to increase the malignancy of BC cells in vitro or stimulate tumor growth in mice. However, clinical evidence is lacking. Clinical research in this area is important as dexmedetomidine is widely used in BC surgery patients. Here we allocated 24 women with primary BC to the dexmedetomidine group (who received a total dose of 2 μg kg-1 dexmedetomidine perioperatively) or to the control group (who received the same volume of normal saline). Venous blood was obtained from all patients immediately upon entering the operating room and 24 hours postoperatively. Serum was then exposed to MCF-7 cells at a concentration of 10% for 24 hours. Cell proliferation, migration, and invasion were analyzed using EdU, Transwell, and Matrigel methods, respectively. We found that postoperative serum from those who received dexmedetomidine was associated with significantly increased cell proliferation, migration, and invasion compared with preoperative serum when used to culture MCF-7 cells. The mean percentage change from post to preoperative values in these cell functions was significantly larger in the dexmedetomidine group than in the control group (proliferation, 30.44% vs 8.45%, P = .0024; migration, 15.90% vs 3.25%, P = .0015; invasion, 8.17% vs 2.13%, P = .04). In conclusion, these findings suggest that in patients undergoing surgery for primary BC, perioperative administration of dexmedetomidine might influence the serum milieu in a way that favors the malignancy of MCF-7 cells. Clinical trial registration: NCT03108937.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Sun
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Wu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Lu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yueyao Du
- Department of Breast, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongwei Duan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Lu
- Department of Breast, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Landegger LD, Vasilijic S, Fujita T, Soares VY, Seist R, Xu L, Stankovic KM. Cytokine Levels in Inner Ear Fluid of Young and Aged Mice as Molecular Biomarkers of Noise-Induced Hearing Loss. Front Neurol 2019; 10:977. [PMID: 31632328 PMCID: PMC6749100 DOI: 10.3389/fneur.2019.00977] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide, frequently caused by noise trauma and aging, with inflammation being implicated in both pathologies. Here, we provide the first direct measurements of proinflammatory cytokines in inner ear fluid, perilymph, of adolescent and 2-year-old mice. The perilymph of adolescent mice exposed to the noise intensity resulting in permanent auditory threshold elevations had significantly increased levels of IL-6, TNF-α, and CXCL1 6 h after exposure, with CXCL1 levels being most elevated (19.3 ± 6.2 fold). We next provide the first immunohistochemical localization of CXCL1 in specific cochlear supporting cells, and its presumed receptor, Duffy antigen receptor for chemokines (DARC), in hair cells and spiral ganglion neurons. Our results demonstrate the feasibility of molecular diagnostics of SNHL using only 0.5 μL of perilymph, and motivate future sub-μL based diagnostics of human SNHL based on liquid biopsy of the inner ear to guide therapy, promote hearing protection, and monitor response to treatment.
Collapse
Affiliation(s)
- Lukas D Landegger
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sasa Vasilijic
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Takeshi Fujita
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Vitor Y Soares
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Richard Seist
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Kalinin RE, Suchkov IA, Korotkova NV, Mzhavanadze ND. The research of the molecular mechanisms of endothelial dysfunction in vitro. GENES & CELLS 2019; 14:22-32. [DOI: 10.23868/201903003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Endothelial dysfunction is universally regarded as one of the key elements in the pathogenesis of most of cardiovascular diseases including ischemic heart disease, atherosclerosis, arterial hypertension, myocardial infarction, stroke, dilated cardiomyopathy, as well as diabetes mellitus, inflammatory, oncological, and autoimmune diseases. Localization of endothelial cells in tunica intima of the vessels limits in vivo analysis of the intracellular proteins and other molecules, which regulate cellular functional activity. A possible solution to this problem may be setting experimental conditions for physiological and pathological functioning of endothelial cells. In vitro modeling of endothelial dysfunction may be a useful tool for the development of methods to improve the endothelial function and evaluate the effects of medicinal products. The objective of this literature review is to summarize main trends in studying endothelial dysfunction in vitro using different endothelial cell cultures.
Collapse
|
39
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
You L, Fang Z, Shen G, Wang Q, He Y, Ye S, Wang L, Hu M, Lin Y, Liu M, Jiang A. Astragaloside IV prevents high glucose‑induced cell apoptosis and inflammatory reactions through inhibition of the JNK pathway in human umbilical vein endothelial cells. Mol Med Rep 2019; 19:1603-1612. [PMID: 30628687 PMCID: PMC6390021 DOI: 10.3892/mmr.2019.9812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is a key pathophysiological step in early stage diabetes mellitus (DM) macrovascular complications and is also crucial in the inflammatory mechanisms of macrovascular complications. However, there is currently no effective intervention to improve endothelial dysfunction associated with DM macrovascular complications. Astragaloside IV (AS-IV), which can be extracted from the traditional Chinese medicine Astragalus membranaceus, has potential therapeutic effects on DM and its complications. The present study evaluated the effect of AS-IV on high glucose-induced human umbilical vein endothelial cell (HUVEC) injury and its possible mechanism. The result indicated that AS-IV has a significant protective effect on high glucose-induced HUVEC injury. AS-IV could significantly promote cell proliferation, reduce apoptosis and decrease the protein and mRNA expression levels of tumor necrosis factor-α and interleukin-1β in HUVECs. Furthermore, AS-IV could decrease the expression of phosphorylated c-Jun NH2-terminal kinase (JNK) phosphorylated apoptosis signal-regulating kinase 1, cytochrome c, cleaved-caspase-9, cleaved-caspase-3 and the relative ratio of B-cell lymphoma-2 associated X protein/B-cell lymphoma-2 in HUVECs. In conclusion, the present study demonstrated that AS-IV could suppress apoptosis and inflammatory reactions promoted by high glucose conditions in HUVECs by inhibiting the JNK signaling pathway. These findings suggest that AS-IV could inhibit the process of endothelial dysfunction in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Liangzhen You
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Guoming Shen
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Qin Wang
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Ying He
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - She Ye
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Liu Wang
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Mengjie Hu
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yixuan Lin
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Mengmeng Liu
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Aijuan Jiang
- Graduate Institute, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
41
|
Yu B, Chen Q, Le Bras A, Zhang L, Xu Q. Vascular Stem/Progenitor Cell Migration and Differentiation in Atherosclerosis. Antioxid Redox Signal 2018; 29:219-235. [PMID: 28537424 DOI: 10.1089/ars.2017.7171] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Atherosclerosis is a major cause for the death of human beings, and it takes place in large- and middle-sized arteries. The pathogenesis of the disease has been widely investigated, and new findings on vascular stem/progenitor cells could have an impact on vascular regeneration. Recent Advances: Recent studies have shown that abundant stem/progenitor cells present in the vessel wall are mainly responsible for cell accumulation in the intima during vascular remodeling. It has been demonstrated that the mobilization and recruitment of tissue-resident stem/progenitor cells give rise to endothelial and smooth muscle cells (SMCs) that participate in vascular repair and remodeling such as neointimal hyperplasia and arteriosclerosis. Interestingly, cell lineage tracing studies indicate that a large proportion of SMCs in neointimal lesions is derived from adventitial stem/progenitor cells. CRITICAL ISSUES The influence of stem/progenitor cell behavior on the development of atherosclerosis is crucial. An understanding of the regulatory mechanisms that control stem/progenitor cell migration and differentiation is essential for stem/progenitor cell therapy for vascular diseases and regenerative medicine. FUTURE DIRECTIONS Identification of the detailed process driving the migration and differentiation of vascular stem/progenitor cells during the development of atherosclerosis, discovery of the environmental cues, and signaling pathways that control cell fate within the vasculature will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Baoqi Yu
- 1 Department of Emergency, Guangdong General Hospital , Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qishan Chen
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Alexandra Le Bras
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| | - Li Zhang
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Qingbo Xu
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| |
Collapse
|
42
|
Levo-corydalmine alleviates vincristine-induced neuropathic pain in mice by inhibiting an NF-kappa B-dependent CXCL1/CXCR2 signaling pathway. Neuropharmacology 2018. [DOI: 10.1016/j.neuropharm.2018.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Cianchetti S, Cardini C, Corti A, Menegazzi M, Darra E, Ingrassia E, Pompella A, Paggiaro P. The beclomethasone anti-inflammatory effect occurs in cell/mediator-dependent manner and is additively enhanced by formoterol: NFkB, p38, PKA analysis. Life Sci 2018; 203:27-38. [PMID: 29660434 DOI: 10.1016/j.lfs.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
AIMS Beclomethasone/formoterol (BDP/FOR) has been reported to be more effective than its separate components in airway disease control and in airway inflammation improvement. However, BDP/FOR effects on cytokine-induced inflammation in structural cells have not been described and whether these effects occur in a cell- and mediator-dependent manner has not been fully elucidated. We sought to evaluate BDP and/or FOR effects on endothelial ICAM-1, E-selectin, IL-8 and on bronchial epithelial ICAM-1 and IL-8. Specific intracellular signaling pathways were also investigated. MATERIALS AND METHODS Surface adhesion molecule expression and IL-8 release induced by TNF-alpha were measured by ELISA. Intracellular signaling pathways were investigated by a) EMSA and Western blot analysis to evaluate NF-κB DNA-binding and MAPK-p38 phosphorylation; b) PDTC/SB203580 as NF-κB/p38 inhibitors; c) forskolin/H-89 as PKA activator/inhibitor. KEY FINDINGS BDP/FOR additively reduced endothelial E-selectin and IL-8 as well as bronchial epithelial ICAM-1 and IL-8. BDP/FOR and SB203580 showed the highest inhibitory effect on epithelial IL-8, whereas endothelial ICAM-1 was never affected by BDP/FOR and PDTC. TNF-alpha-induced NF-κB DNA-binding and MAPK-p38 phosphorylation were not influenced by BDP/FOR. Forskolin mimicked FOR effects; H-89 partially reversed the BDP/FOR inhibition in a mediator-dependent manner. SIGNIFICANCE The BDP/FOR inhibition degree was related to the inflammatory mediator- and cell-type considered. FOR additively enhanced BDP effects by partially involving both dependent- and independent-PKA mechanisms. Our results might contribute to highlight the strong relationship between specific molecular pathways and different sensitivity to the corticosteroid/β2-agonist effects and to clarify the molecular mechanisms underlying the BDP/FOR anti-inflammatory activity in vivo.
Collapse
Affiliation(s)
- Silvana Cianchetti
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, Pisa, Italy.
| | - Cristina Cardini
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, Pisa, Italy
| | - Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, Pisa, Italy
| | - Marta Menegazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elena Darra
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alfonso Pompella
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, Pisa, Italy
| | - Pierluigi Paggiaro
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
Masuda S, Tanaka M, Inoue T, Ohue-Kitano R, Yamakage H, Muranaka K, Kusakabe T, Shimatsu A, Hasegawa K, Satoh-Asahara N. Chemokine (C-X-C motif) ligand 1 is a myokine induced by palmitate and is required for myogenesis in mouse satellite cells. Acta Physiol (Oxf) 2018; 222. [PMID: 28960786 DOI: 10.1111/apha.12975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/20/2023]
Abstract
AIM The functional significance of the myokines, cytokines and peptides produced and released by muscle cells has not been fully elucidated. The purpose of this study was to identify a myokine with increased secretion levels in muscle cells due to saturated fatty acids and to examine the role of the identified myokine in the regulation of myogenesis. METHODS Human primary myotubes and mouse C2C12 myotubes were used to identify the myokine; its secretion was stimulated by palmitate loading. The role of the identified myokine in the regulation of the activation, proliferation, differentiation and self-renewal was examined in mouse satellite cells (skeletal muscle stem cells). RESULTS Palmitate loading promoted the secretion of chemokine (C-X-C motif) ligand 1 (CXCL1) in human primary myotubes, and it also increased CXCL1 gene expression level in C2C12 myotubes in a dose- and time-dependent manner. Palmitate loading increased the production of reactive oxygen species along with the activation of nuclear factor-kappa B (NF-κB) signalling. Pharmacological inhibition of NF-κB signalling attenuated the increase in CXCL1 gene expression induced by palmitate and hydrogen peroxide. Palmitate loading significantly increased CXC receptor 2 gene expression in undifferentiated cells. CXCL1 knockdown attenuated proliferation and myotube formation by satellite cells, with reduced self-renewal. CXCL1 knockdown also significantly decreased the Notch intracellular domain protein level. CONCLUSION These results suggest that secretion of the myokine CXCL1 is stimulated by saturated fatty acids and that CXCL1 promotes myogenesis from satellite cells to maintain skeletal muscle homeostasis.
Collapse
Affiliation(s)
- S. Masuda
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - M. Tanaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Inoue
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - R. Ohue-Kitano
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - H. Yamakage
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Muranaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Kusakabe
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - A. Shimatsu
- Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Hasegawa
- Department of Translational Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - N. Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| |
Collapse
|
45
|
Lee J, Song KH, Kim T, Doh J. Endothelial Cell Focal Adhesion Regulates Transendothelial Migration and Subendothelial Crawling of T Cells. Front Immunol 2018; 9:48. [PMID: 29472915 PMCID: PMC5810271 DOI: 10.3389/fimmu.2018.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Leukocytes circulating in the blood stream leave out of blood vessels and infiltrate into inflamed tissues to perform immune responses. Endothelial cells (ECs) lining interior of the post-capillary venules regulate various steps of leukocyte extravasation. In response to inflammatory signals, ECs upregulate adhesion molecules and produce/present chemokines to support firm adhesion and intraluminal crawling of leukocytes. They also remodel junctions to facilitate leukocyte transendothelial migration (TEM). While roles of apical/lateral components of EC layers in regulating leukocyte extravasation have been extensively investigated, relatively little attention has been paid to the basal part of EC layers comprising subendothelial spaces. In this study, we employed interference reflection microscopy (IRM), a microscopy technique specialized for label-free visualization of cell–substrate contact, to study detailed dynamic interactions between basal part of ECs and T cells underneath EC monolayer. For TEM, T cells on EC monolayer extended protrusions through junctions to explore subendothelial spaces, and EC focal adhesions (EC-FAs) acted as physical barrier for the protrusion. Therefore, preferential TEM occurred through junctions where near-junction focal adhesion (NJ-FA) density of ECs was low. After TEM, T cells performed subendothelial crawling (SEC) with flattened morphology and reduced migration velocity due to tight confinement. T cell SEC mostly occurred through gaps formed in between EC-FAs with minimally breaking EC-FAs. Tumor necrosis factor-α (TNF-α) treatment significantly loosened confinement in subendothelial spaces and reduced NJ-FA density of ECs, thus remodeled basal part of EC layer to facilitate leukocyte extravasation.
Collapse
Affiliation(s)
- Jaehyun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Kwang Hoon Song
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Taeyeob Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Junsang Doh
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, South Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
46
|
Ganduri R, Singh V, Biswas A, Karothu DP, Sekar K, Balaji KN, Guru Row TN. Structural and biological evaluation of halogen derivatives of 1,9-pyrazoloanthrones towards the design of a specific potent inhibitor of c-Jun-N-terminal kinase (JNK). NEW J CHEM 2018. [DOI: 10.1039/c8nj00852c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A specifically designed halogen derivatives of anthrapyrazolone for the selective inhibition of JNKs at lower concentrations with minimal off-target effects on MAPKs.
Collapse
Affiliation(s)
- Ramesh Ganduri
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | - Vikas Singh
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore 560012
- India
| | - Ansuman Biswas
- Department of Physics
- Indian Institute of Science
- Bangalore 560012
- India
| | - Durga Prasad Karothu
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences
- Indian Institute of Science
- Bangalore 560012
- India
| | | | - Tayur N. Guru Row
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
47
|
Baicalin attenuates diet induced nonalcoholic steatohepatitis by inhibiting inflammation and oxidative stress via suppressing JNK signaling pathways. Biomed Pharmacother 2017; 98:111-117. [PMID: 29247950 DOI: 10.1016/j.biopha.2017.12.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/02/2017] [Accepted: 12/05/2017] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic steatohepatitis may develop into hepatic cirrhosis. The therapeutic drugs for NASH are absent. Baicalin (BC) has hepatoprotective effect, while whether BC could prevent the development of NASH is unknown. This study aimed to investigate the effect of BC on the development of diet induced NASH and the possible mechanisms involved. Mice were fed with high fat and high cholesterol (HFC) diet to establish a NASH model, BC (0.5% w/w) was added into the diet to evaluate its effect on NASH. Mice fed an HFC diet developed NASH in 12 weeks. BC administration attenuated hepatic steatosis, inflammation and fibrosis induced by HFC diet. The NALFD activity score (NAS) was sharply decreased by BC. Mice serum ALT and AST were decreased in the BC group. BC decreased hepatic inflammatory cell infiltration, inflammatory genes (MCP-1, TNFα) and fibrosis genes (COL1, α-SMA, TGFβ) mRNA expression. BC has antioxidant function evidenced by upregulated hepatic GSH and SOD levels and downregulated MDA levels. BC restored some oxidative stress markers including 4-HNE, 8-OHdG in liver. Western blot analysis stated that BC suppressed pro-inflammatory COX-2 levels, pro-oxidative CYP2E1 levels and phosphorylation of JNK in mice liver. Collectively, BC can attenuate diet induced NASH and the mechanism in which possibly due to its anti-inflammatory and anti-oxidant effects via blockade of the activation of JNK.
Collapse
|
48
|
Prina-Mello A, Jain N, Liu B, Kilpatrick JI, Tutty MA, Bell AP, Jarvis SP, Volkov Y, Movia D. Culturing substrates influence the morphological, mechanical and biochemical features of lung adenocarcinoma cells cultured in 2D or 3D. Tissue Cell 2017; 50:15-30. [PMID: 29429514 DOI: 10.1016/j.tice.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Accepted: 11/26/2017] [Indexed: 01/04/2023]
Abstract
Alternative models such as three-dimensional (3D) cell cultures represent a distinct milestone towards capturing the realities of cancer biology in vitro and reduce animal experimentation in the preclinical stage of drug discovery. Significant work remains to be done to understand how substrates used in in vitro alternatives influence cancer cells phenotype and drug efficacy responses, so that to accurately link such models to specific in vivo disease scenarios. Our study describes how the morphological, mechanical and biochemical properties of adenocarcinoma (A549) cells change in response to a 3D environment and varying substrates. Confocal Laser Scanning (LSCM), He-Ion (HIM) and Atomic Force (AFM) microscopies, supported by ELISA and Western blotting, were used. These techniques enabled us to evaluate the shape, cytoskeletal organization, roughness, stiffness and biochemical signatures of cells grown within soft 3D matrices (PuraMatrix™ and Matrigel™), and to compare them to those of cells cultured on two-dimensional glass substrates. Cell cultures are also characterized for their biological response to docetaxel, a taxane-type drug used in Non-Small-Cell Lung Cancer (NSCLC) treatment. Our results offer an advanced biophysical insight into the properties and potential application of 3D cultures of A549 cells as in vitro alternatives in lung cancer research.
Collapse
Affiliation(s)
- Adriele Prina-Mello
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Namrata Jain
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland
| | - Baiyun Liu
- School of Physics, University College Dublin, Ireland
| | - Jason I Kilpatrick
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Ireland
| | - Melissa A Tutty
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Alan P Bell
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Advanced Microscopy Laboratory (AML), Trinity College Dublin, Ireland
| | - Suzanne P Jarvis
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; School of Physics, University College Dublin, Ireland
| | - Yuri Volkov
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
49
|
Zhou X, An D, Liu X, Jiang M, Yuan C, Hu J. TNFα induces tolerant production of CXC chemokines in colorectal cancer HCT116 cells via A20 inhibition of ERK signaling. Int Immunopharmacol 2017; 54:296-302. [PMID: 29175508 DOI: 10.1016/j.intimp.2017.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
Ubiquitin editing enzyme A20 functions as a tumor suppressor in various cancer. However, the mechanism for A20 regulation of cancer progress is not fully understood. In this study, we found that in human colorectal cancer HCT116 cells, TNFα induced a tolerant production of CXC chemokines, including CXCL1, 2, and 8 in a dose and time dependent manner. TNFα pre-treatment of HCT116 cells down-regulated the chemokine production induced by TNFα re-treatment. TNFα induced the phosphorylation of MAPKs ERK, JNK, P38 and NF-κB P65, but only ERK inhibition decreased TNFα-induced chemokine production. Both RT-PCR and FACS results showed that TNFα treatment did not regulate the expression of TNF receptors. However, TNFα up-regulated the expression of A20 at both mRNA and protein levels significantly. TNFα pre-treatment inhibited the signal transduction of MAPKs induced by TNFα re-stimulation, and A20 over-expression decreased the signal transduction of ERK and P38. Meanwhile, A20 inhibition by RNA interference reversed chemokine down-regulation induced by TNFα re-stimulation after TNFα pre-treatment. Taken together, these results suggested that in human colorectal cancer cells, A20 may function to inhibit cancer progression via down-regulation of TNFα-induced chemokine production by suppression of ERK signaling.
Collapse
Affiliation(s)
- Xin Zhou
- Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China; Graduate School, University of South China, Hengyang, Hunan 421001, China
| | - Dongjian An
- Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China.
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Chuang Yuan
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China.
| |
Collapse
|
50
|
C19, a C-terminal peptide of CKLF1, decreases inflammation and proliferation of dermal capillaries in psoriasis. Sci Rep 2017; 7:13890. [PMID: 29066845 PMCID: PMC5655640 DOI: 10.1038/s41598-017-13799-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disease with undefined etiology. Chemokine-like factor 1 (CKLF1), a human cytokine that is a functional ligand for CCR4, displays chemotactic activities in a wide spectrum of leukocytes and plays an important role in psoriasis development. In previous study, our laboratory found that the expression of CKLF1 increased in psoriatic lesions. C19 as a CKLF1's C-terminal peptide has been reported to exert inhibitory effects on a variety of diseases. However, the protective roles of C19 in endothelial cells proliferation and inflammatory cells chemotaxis remain elusive in psoriasis. In this study we examined the protective effect of C19 on both the cellular model and the animal model. The effects of C19 on endothelial cells proliferation and inflammatory cells chemotaxis were investigated in cultured human umbilical vein endothelial cells (HUVECs) and imiquimod-induced psoriasiform inflammation of BALB/c mice based on techniques including immunohistochemical analysis, quantitative real-time PCR (qRT-PCR), western blot, transwell, and EdU assay. This study shows that CKLF1-C19 significantly protects against psoriasis by inhibiting the infiltration of inflammatory cells and proliferation of microvascular cells, possibly via inhibiting MAPK pathways.
Collapse
|