1
|
Meseko C, Sanicas M, Asha K, Sulaiman L, Kumar B. Antiviral options and therapeutics against influenza: history, latest developments and future prospects. Front Cell Infect Microbiol 2023; 13:1269344. [PMID: 38094741 PMCID: PMC10716471 DOI: 10.3389/fcimb.2023.1269344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Drugs and chemotherapeutics have helped to manage devastating impacts of infectious diseases since the concept of 'magic bullet'. The World Health Organization estimates about 650,000 deaths due to respiratory diseases linked to seasonal influenza each year. Pandemic influenza, on the other hand, is the most feared health disaster and probably would have greater and immediate impact on humanity than climate change. While countermeasures, biosecurity and vaccination remain the most effective preventive strategies against this highly infectious and communicable disease, antivirals are nonetheless essential to mitigate clinical manifestations following infection and to reduce devastating complications and mortality. Continuous emergence of the novel strains of rapidly evolving influenza viruses, some of which are intractable, require new approaches towards influenza chemotherapeutics including optimization of existing anti-infectives and search for novel therapies. Effective management of influenza infections depend on the safety and efficacy of selected anti-infective in-vitro studies and their clinical applications. The outcomes of therapies are also dependent on understanding diversity in patient groups, co-morbidities, co-infections and combination therapies. In this extensive review, we have discussed the challenges of influenza epidemics and pandemics and discoursed the options for anti-viral chemotherapies for effective management of influenza virus infections.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Melvin Sanicas
- Medical and Clinical Development, Clover Biopharmaceuticals, Boston, MA, United States
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Lanre Sulaiman
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Zhu M, Anirudhan V, Du R, Rong L, Cui Q. Influenza virus cell entry and targeted antiviral development. J Med Virol 2023; 95:e29181. [PMID: 37930075 DOI: 10.1002/jmv.29181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Influenza virus infection is currently one of the most prevalent and transmissible diseases in the world causing local outbreaks every year. It has the potential to cause devastating global pandemics as well. The development of anti-influenza drugs possessing novel mechanisms of action is urgently needed to control the spread of influenza infections; thus, drugs that inhibit influenza virus entry into target cells are emerging as a hot research topic. In addition to discussing the biological significance of hemagglutinin in viral replication, this article provides recent updates on the natural products, small molecules, proteins, peptides, and neutralizing antibody-like proteins that have anti-influenza potency.
Collapse
Affiliation(s)
- Murong Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
3
|
Zhou H, Xie P, Qiu M, Dong S, Xia X, Yang Z, Yuan Y, Shen L. Arbidol increases the survival rate by mitigating inflammation in suckling mice infected with human coronavirus OC43 virus. J Med Virol 2023; 95:e29052. [PMID: 37650132 DOI: 10.1002/jmv.29052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
Human coronavirus OC43 (HCoV-OC43) often causes common cold and is able to neuroinvasive, but it can also induce lower respiratory tract infections (LRTI) especially in children and the elderly adults with underlying diseases. HCoV-OC43 infections currently have no approved antiviral treatment. Arbidol (ARB) is a broad-spectrum antiviral and is an antiviral medication for the treatment of influenza used in Russia and China. Due to its multiple mechanisms of action, such as inhibition of viral fusion and entry, immunomodulation, and modulation of host cell signaling pathways, ARB has the potential to be an effective treatment option for viral infections. Therefore, the study aims to investigate the activities of ARB against HCoV-OC43 infections. Suckling mice were infected with HCoV-OC43 and treated with ARB (50, 25 and 12.5 mg/kg/d) by gavage once daily for 4 days. the survival rates and body weight were recorded, the viral titer was measured by real-time quantitative polymerase chain reaction, cytokine levels were measured by Bio-Plex assays. Histopathological changes of the lungs and brain were analyzed. Our results show ARB increased the survival rate, reduced viral copy numbers in the lung, mitigated pro-inflammatory cytokine production, and improved brain and lung histopathology significantly without any significant toxicity or side effects in vivo. Our results suggest ARB could be a promising approach for the prevention and treatment of HCoV-OC43 while further studies are needed to address these possibilities and the underlying mechanism.
Collapse
Affiliation(s)
- Hongxia Zhou
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, China
| | - Peifang Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Minshan Qiu
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, China
| | - Shuwei Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoqin Yuan
- Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, China
| | - Lihan Shen
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, China
| |
Collapse
|
4
|
Bostanghadiri N, Ziaeefar P, Mofrad MG, Yousefzadeh P, Hashemi A, Darban-Sarokhalil D. COVID-19: An Overview of SARS-CoV-2 Variants-The Current Vaccines and Drug Development. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1879554. [PMID: 37674935 PMCID: PMC10480030 DOI: 10.1155/2023/1879554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
The world is presently in crisis facing an outbreak of a health-threatening microorganism known as COVID-19, responsible for causing uncommon viral pneumonia in humans. The virus was first reported in Wuhan, China, in early December 2019, and it quickly became a global concern due to the pandemic. Challenges in this regard have been compounded by the emergence of several variants such as B.1.1.7, B.1.351, P1, and B.1.617, which show an increase in transmission power and resistance to therapies and vaccines. Ongoing researches are focused on developing and manufacturing standard treatment strategies and effective vaccines to control the pandemic. Despite developing several vaccines such as Pfizer/BioNTech and Moderna approved by the U.S. Food and Drug Administration (FDA) and other vaccines in phase 4 clinical trials, preventive measures are mandatory to control the COVID-19 pandemic. In this review, based on the latest findings, we will discuss different types of drugs as therapeutic options and confirmed or developing vaccine candidates against SARS-CoV-2. We also discuss in detail the challenges posed by the variants and their effect on therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Ziaeefar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morvarid Golrokh Mofrad
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parsa Yousefzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kang Y, Shi Y, Xu S. Arbidol: The current demand, strategies, and antiviral mechanisms. Immun Inflamm Dis 2023; 11:e984. [PMID: 37647451 PMCID: PMC10461429 DOI: 10.1002/iid3.984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND High morbidity and mortality of influenza virus infection have made it become one of the most lethal diseases threatening public health; the lack of drugs with strong antiviral activity against virus strains exacerbates the problem. METHODS Two independent researchers searched relevant studies using Embase, PubMed, Web of Science, Google Scholar, and MEDLINE databases from its inception to December 2022. RESULTS Based on the different antiviral mechanisms, current antiviral strategies can be mainly classified into virus-targeting approaches such as neuraminidase inhibitors, matrix protein 2 ion channel inhibitors, polymerase acidic protein inhibitors and other host-targeting antivirals. However, highly viral gene mutation has underscored the necessity of novel antiviral drug development. Arbidol (ARB) is a Russian-made indole-derivative small molecule licensed in Russia and China for the prevention and treatment of influenza and other respiratory viral infections. ARB also has inhibitory effects on many other viruses such as severe acute respiratory syndrome coronavirus 2, Coxsackie virus, respiratory syncytial virus, Hantaan virus, herpes simplex virus, and hepatitis B and C viruses. ARB is a promising drug which can not only exert activity against virus at different steps of virus replication cycle, but also directly target on hosts before infection to prevent virus invasion. CONCLUSION ARB is a broad-spectrum antiviral drug that inhibits several viruses in vivo and in vitro, with high safety profile and low resistance; the antiviral mechanisms of ARB deserve to be further explored and more high-quality clinical studies are required to establish the efficacy and safety of ARB.
Collapse
Affiliation(s)
- Yue Kang
- Jiangsu Key Laboratory of NeurodegenerationSchool of Pharmacy, Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yin Shi
- Department of PharmacyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Silu Xu
- Department of PharmacyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
6
|
Li R, Qu S, Qin M, Huang L, Huang Y, Du Y, Yu Z, Fan F, Sun J, Li Q, So KF. Immunomodulatory and antiviral effects of Lycium barbarum glycopeptide on influenza a virus infection. Microb Pathog 2023; 176:106030. [PMID: 36773941 DOI: 10.1016/j.micpath.2023.106030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Influenza is caused by a respiratory virus and has a major global impact on human health. Influenza A viruses in particular are highly pathogenic to humans and have caused multiple pandemics. An important consequence of infection is viral pneumonia, and with serious complications of excessive inflammation and tissue damage. Therefore, simultaneously reducing direct damage caused by virus infection and relieving indirect damage caused by excessive inflammation would be an effective treatment strategy. Lycium barbarum glycopeptide (LbGp) is a mixture of five highly branched polysaccharide-protein conjuncts (LbGp1-5) isolated from Lycium barbarum fruit. LbGp has pro-immune activity that is 1-2 orders of magnitude stronger than that of other plant polysaccharides. However, there are few reports on the immunomodulatory and antiviral activities of LbGp. In this study, we evaluated the antiviral and immunomodulatory effects of LbGp in vivo and in vitro and investigated its therapeutic effect on H1N1-induced viral pneumonia and mechanisms of action. In vitro, cytokine secretion, NF-κB p65 nuclear translocation, and CD86 mRNA expression in LPS-stimulated RAW264.7 cells were constrained by LbGp treatment. In A549 cells, LbGp can inhibit H1N1 infection by blocking virus attachment and entry action. In vivo experiments confirmed that administration of LbGp can effectively increase the survival rate, body weight and decrease the lung index of mice infected with H1N1. Compared to the model group, pulmonary histopathologic symptoms in lung sections of mice treated with LbGp were obviously alleviated. Further investigation revealed that the mechanism of LbGp in the treatment of H1N1-induced viral pneumonia includes reducing the viral load in lung, regulating the phenotype of pulmonary macrophages, and inhibiting excessive inflammation. In conclusion, LbGp exhibits potential curative effects against H1N1-induced viral pneumonia in mice, and these effects are associated with its good immuno-regulatory and antiviral activities.
Collapse
Affiliation(s)
- Runwei Li
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qin
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Yichun Huang
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Du
- Center of Clinical Evaluation and Analysis, Pharmacy Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Zhexiong Yu
- Ningxia Tianren Goji Biotechnology, Ningxia, 755100, China
| | - Fu Fan
- Ningxia Tianren Goji Biotechnology, Ningxia, 755100, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, Pharmacy Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China.
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Zhao J, Li Y, Chen R, Xu Y, Yang Q, Zhang H, Yin Z, Gu W, Hu J, Chen L, Li J, Ning G, Cheng Q, Zhou M, Qu J. Real-world experience of arbidol for Omicron variant of SARS-CoV-2. J Thorac Dis 2023; 15:452-461. [PMID: 36910077 PMCID: PMC9992600 DOI: 10.21037/jtd-22-980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/13/2022] [Indexed: 02/17/2023]
Abstract
Background At a crucial time with the rapid spread of Omicron severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus variant globally, we conducted a study to evaluate the efficacy and safety of arbidol tablets in the treatment of this variant. Methods From Mar 26 to April 26, 2022, we conducted a prospective, open-labeled, controlled, and investigator-initiated trial involving adult patients with confirmed Omicron variant infection. Patients with asymptomatic or mild clinical status were stratified 1:2 to receive either standard-of-care (SOC) or SOC plus arbidol tablets (oral administration of 200 mg per time, three times a day for 5 days). The primary endpoint was the negative conversion rate within the first week. Results A total of 367 patients were enrolled in the study; 246 received arbidol tablet treatment, and 121 were in the control group. The negative conversion rate of SARS-CoV-2 within the first week in patients receiving arbidol tablets was significantly higher than that of the SOC group [47.2% (116/246) vs. 35.5% (43/121); odds ratio (OR), 1.619; 95% confidence interval (CI): 1.034-2.535; P=0.035]. Compared to those in the SOC group, patients receiving arbidol tablets had a shorter negative conversion time [median 8.3 vs. 10.0 days; hazard ratio (HR), 0.645; 95% CI: 0.516-0.808; P<0.001], and a shorter duration of hospitalization (median 11.4 vs. 13.7 days; HR, 1.214; 95% CI: 0.966-1.526; P<0.001). Moreover, the addition of arbidol tablets led to better recovery of declined blood lymphocytes, CD3+, CD4+, and CD8+ cell counts. The most common adverse event (AE) was transaminase elevation in patients treated with arbidol tablets (3/246, 1.2%). No one withdrew from the study due to AEs or disease progression. Conclusions As a whole, arbidol may represent an effective and safe treatment in asymptomatic-mild patients suffering from Omicron variant during the pandemic of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Jingya Zhao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Respiratory Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| | - Yong Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Respiratory Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| | - Rong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Respiratory Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| | - Yanping Xu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Respiratory Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| | - Qingyuan Yang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Respiratory Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| | - Haiqing Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Respiratory Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| | - Zhengxin Yin
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiting Gu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinsong Hu
- Department of Traumatology of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Li
- Clinical Research Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Research Centre for Endocrine and Metabolic Disease, State Key Laboratory of Medicine Genomics, Shanghai Institute for Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qijian Cheng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Respiratory Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Respiratory Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Respiratory Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Disease, Shanghai, China
| |
Collapse
|
8
|
Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin Emerg Drugs 2022; 27:389-403. [PMID: 36396398 DOI: 10.1080/14728214.2022.2149734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Both vaccines and antiviral drugs represent the mainstay for preventing and treating influenza. However, approved M2 ion channel inhibitors, neuraminidase inhibitors, polymerase inhibitors, and various vaccines cannot meet therapeutic needs because of viral resistance. Thus, the discovery of new targets for the virus or host and the development of more effective inhibitors are essential to protect humans from the influenza virus. AREAS COVERED This review summarizes the latest progress in vaccines and antiviral drug research to prevent and treat influenza, providing the foothold for developing novel antiviral inhibitors. EXPERT OPINION Vaccines embody the most effective approach to preventing influenza virus infection, and recombinant protein vaccines show promising prospects in developing next-generation vaccines. Compounds targeting the viral components of RNA polymerase, hemagglutinin and nucleoprotein, and the modification of trusted neuraminidase inhibitors are future research directions for anti-influenza virus drugs. In addition, some host factors affect the replication of virus in vivo, which can be used to develop antiviral drugs.
Collapse
Affiliation(s)
- Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Yihang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Nanfang Hospital, Guangzhou Guangdong China
| |
Collapse
|
9
|
Ultrafiltration isolation, structure and effects on H1N1-induced acute lung injury of a heteropolysaccharide from Houttuynia cordata. Int J Biol Macromol 2022; 222:2414-2425. [DOI: 10.1016/j.ijbiomac.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
10
|
Howard FHN, Kwan A, Winder N, Mughal A, Collado-Rojas C, Muthana M. Understanding Immune Responses to Viruses-Do Underlying Th1/Th2 Cell Biases Predict Outcome? Viruses 2022; 14:1493. [PMID: 35891472 PMCID: PMC9324514 DOI: 10.3390/v14071493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging and re-emerging viral diseases have increased in number and geographical extent during the last decades. Examples include the current COVID-19 pandemic and the recent epidemics of the Chikungunya, Ebola, and Zika viruses. Immune responses to viruses have been well-characterised within the innate and adaptive immunity pathways with the outcome following viral infection predominantly attributed to properties of the virus and circumstances of the infection. Perhaps the belief that the immune system is often considered as a reactive component of host defence, springing into action when a threat is detected, has contributed to a poorer understanding of the inherent differences in an individual's immune system in the absence of any pathology. In this review, we focus on how these host factors (age, ethnicity, underlying pathologies) may skew the T helper cell response, thereby influencing the outcome following viral infection but also whether we can use these inherent biases to predict patients at risk of a deviant response and apply strategies to avoid or overcome them.
Collapse
Affiliation(s)
- Faith H. N. Howard
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; (A.K.); (N.W.); (A.M.); (C.C.-R.); (M.M.)
| | | | | | | | | | | |
Collapse
|
11
|
Beheshtirouy S, Khani E, Khiali S, Entezari-Maleki T. Investigational antiviral drugs for the treatment of COVID-19 patients. Arch Virol 2022; 167:751-805. [PMID: 35138438 DOI: 10.1007/s00705-022-05368-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
In the current pandemic of coronavirus disease 2019 (COVID-19), antiviral drugs are at the center of attention because of their critical role against severe acute respiratory disease syndrome coronavirus 2 (SARS-CoV-2). In addition to designing new antivirals against SARS-COV-2, a drug repurposing strategy is a practical approach for treating COVID-19. A brief insight about antivirals would help clinicians to choose the best medication for the treatment of COVID-19. In this review, we discuss both novel and repurposed investigational antivirals, focusing on in vitro, in vivo, and clinical trial studies.
Collapse
Affiliation(s)
- Samineh Beheshtirouy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Khani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Khiali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Glycomic Analysis Reveals That Sialyltransferase Inhibition Is Involved in the Antiviral Effects of Arbidol. J Virol 2022; 96:e0214121. [PMID: 35044216 PMCID: PMC8941891 DOI: 10.1128/jvi.02141-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Due to the high mutation rate of influenza virus and the rapid increase of drug resistance, it is imperative to discover host-targeting antiviral agents with broad-spectrum antiviral activity. Considering the discrepancy between the urgent demand of antiviral drugs during an influenza pandemic and the long-term process of drug discovery and development, it is feasible to explore host-based antiviral agents and strategies from antiviral drugs on the market. In the current study, the antiviral mechanism of arbidol (ARB), a broad-spectrum antiviral drug with potent activity at early stages of viral replication, was investigated from the aspect of hemagglutinin (HA) receptors of host cells. N-glycans that act as the potential binding receptors of HA on 16-human bronchial epithelial (16-HBE) cells were comprehensively profiled for the first time by using an in-depth glycomic approach based on TiO2-PGC chip-Q-TOF MS. Their relative levels upon the treatment of ARB and virus were carefully examined by employing an ultra-high sensitive qualitative method based on Chip LC-QQQ MS, showing that ARB treatment led to significant and extensive decrease of sialic acid (SA)-linked N-glycans (SA receptors), and thereby impaired the virus utilization on SA receptors for rolling and entry. The SA-decreasing effect of ARB was demonstrated to result from its inhibitory effect on sialyltransferases (ST), ST3GAL4 and ST6GAL1 of 16-HBE cells. Silence of STs, natural ST inhibitors, as well as sialidase treatment of 16-HBE cells, resulted in similar potent antiviral activity, whereas ST-inducing agent led to the diminished antiviral effect of ARB. These observations collectively suggesting the involvement of ST inhibition in the antiviral effect of ARB. IMPORTANCE This study revealed, for the first time, that ST inhibition and the resulted destruction of SA receptors of host cells may be an underlying mechanism for the antiviral activity of ARB. ST inhibition has been proposed as a novel host-targeting antiviral approach recently and several compounds are currently under exploration. ARB is the first antiviral drug on the market that was found to possess ST inhibiting function. This will provide crucial evidence for the clinical usages of ARB, such as in combination with neuraminidase (NA) inhibitors to exert optimized antiviral effect, etc. More importantly, as an agent that can inhibit the expression of STs, ARB can serve as a novel lead compound for the discovery and development of host-targeting antiviral drugs.
Collapse
|
13
|
Freidel M, Armen RS. Modeling the Structure-Activity Relationship of Arbidol Derivatives and Other SARS-CoV-2 Fusion Inhibitors Targeting the S2 Segment of the Spike Protein. J Chem Inf Model 2021; 61:5906-5922. [PMID: 34898207 PMCID: PMC8691200 DOI: 10.1021/acs.jcim.1c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Umifenovir (Arbidol) has been reported to exhibit some degree of efficacy in multiple clinical trials for the treatment of COVID-19 as a monotherapy. It has also demonstrated synergistic inhibition of SARS-CoV-2 with other direct-acting antivirals such as Remdesivir. A computational approach was used to identify the most favorable binding site to the SARS-CoV-2 Spike S2 segment and to perform virtual screening. Compounds selected from modeling were evaluated in a live SARS-CoV-2 infection assay. An Arbidol (ARB) derivative with substitutions at both the C-4 and C-6 positions was found to exhibit a modest improvement in activity and solubility properties in comparison to ARB. However, all of the derivatives were found to only be partial inhibitors, rather than full inhibitors in a virus-induced cytopathic effect-based assay. The binding mode is also corroborated by parallel modeling of a series of oleanolic acid trisaccharide saponin fusion inhibitors shown to bind to the S2 segment. Recently determined experimental structures of the Spike protein allowed atomic resolution modeling of fusion inhibitor binding as a function of pH, and the implications for the molecular mechanism of direct-acting fusion inhibitors targeting the S2 segment are discussed.
Collapse
Affiliation(s)
- Matthew
R. Freidel
- Department of Pharmaceutical
Sciences, College of Pharmacy, Thomas Jefferson
University, 901 Walnut St. Suite 918, Philadelphia, Pennsylvania 19170, United States
| | - Roger S. Armen
- Department of Pharmaceutical
Sciences, College of Pharmacy, Thomas Jefferson
University, 901 Walnut St. Suite 918, Philadelphia, Pennsylvania 19170, United States
| |
Collapse
|
14
|
Amani B, Amani B, Zareei S, Zareei M. Efficacy and safety of arbidol (umifenovir) in patients with COVID-19: A systematic review and meta-analysis. Immun Inflamm Dis 2021; 9:1197-1208. [PMID: 34347937 PMCID: PMC8426686 DOI: 10.1002/iid3.502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To provide the latest evidence for the efficacy and safety of arbidol (umifenovir) in COVID-19 treatment. METHODS A literature systematic search was carried out in PubMed, Cochrane Library, Embase, and medRxiv up to May 2021. The Cochrane risk of bias tool and Newcastle-Ottawa scale were used to assess the quality of included studies. Meta-analysis was performed using RevMan 5.3. RESULTS Sixteen studies were met the inclusion criteria. No significant difference was observed between arbidol and non-antiviral treatment groups neither for primary outcomes, including the negative rate of PCR (NR-PCR) on Day 7 (risk ratio [RR]: 0.94; 95% confidence interval (CI): 0.78-1.14) and Day 14 (RR: 1.10; 95% CI: 0.96-1.25), and PCR negative conversion time (PCR-NCT; mean difference [MD]: 0.74; 95% CI: -0.87 to 2.34), nor secondary outcomes (p > .05). However, arbidol was associated with higher adverse events (RR: 2.24; 95% CI: 1.06-4.73). Compared with lopinavir/ritonavir, arbidol showed better efficacy for primary outcomes (p < .05). Adding arbidol to lopinavir/ritonavir also led to better efficacy in terms of NR-PCR on Day 7 and PCR-NCT (p < .05). There was no significant difference between arbidol and chloroquine in primary outcomes (p > .05). No remarkable therapeutic effect was observed between arbidol and other agents (p > .05). CONCLUSION The present meta-analysis showed no significant benefit of using arbidol compared with non-antiviral treatment or other therapeutic agents against COVID-19 disease. High-quality studies are needed to establish the efficacy and safety of arbidol for COVID-19.
Collapse
Affiliation(s)
- Behnam Amani
- Department of Health Management and Economics, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Bahman Amani
- Health Management and Economics Research Center, Health Management Research InstituteIran University of Medical SciencesTehranIran
| | - Sara Zareei
- Department of Cell & Molecular Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mahsa Zareei
- Department of Health Services Management, School of Health Management and Information SciencesIran University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Lu JZ, Ye D, Chen L, Ma BL. Pharmacokinetic comparison of four arbidol hydrochloride preparations in beagle dogs. Biomed Chromatogr 2021; 36:e5245. [PMID: 34532879 DOI: 10.1002/bmc.5245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022]
Abstract
This study aimed to compare the pharmacokinetic properties of four preparations (dispersible tablets, ordinary tablets, capsules and granules) of arbidol hydrochloride, a broad-spectrum antiviral drug, in beagle dogs. Briefly, a single dose of 100 mg of the four preparations of arbidol hydrochloride was orally administered to dogs; blood was then collected from the veins of the foreleg at different times after administration to prepare plasma samples. The plasma concentration of arbidol hydrochloride was measured using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that when orally administered with dispersible tablets, ordinary tablets, capsules and granules suspended with water, there were no significant differences in the pharmacokinetic parameters (including peak time, peak concentration, elimination half-life, area under the curve (AUC0-t ), and mean retention time) of arbidol hydrochloride. However, in the case of the dispersible tablets, the pharmacokinetics of arbidol hydrochloride was significantly affected by the mode of administration. Compared with direct feeding, peak time [0.50 (0.13, 0.50) vs. 1.00 (0.50, 2.00)] was significantly shortened (P = 0.033) and the AUC0-48 h (8726.5 ± 2509.3 vs. 3650.8 ± 1536.9 ng h/ml) was significantly increased (P = 0.012) when the dispersible tablets were orally administered as water dispersion. In conclusion, the pharmacokinetics of four preparations of arbidol hydrochloride were not significant different in beagle dogs. However, compared with direct feeding, the absorption of arbidol hydrochloride was faster and the bioavailability was better when the dispersible tablets were orally administered as water dispersion.
Collapse
Affiliation(s)
- Jing-Ze Lu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Disease-drug and drug-drug interaction in COVID-19: Risk and assessment. Biomed Pharmacother 2021; 139:111642. [PMID: 33940506 PMCID: PMC8078916 DOI: 10.1016/j.biopha.2021.111642] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is announced as a global pandemic in 2020. Its mortality and morbidity rate are rapidly increasing, with limited medications. The emergent outbreak of COVID-19 prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps spreading. In this infection, a patient's immune response plays pivotal role in the pathogenesis. This inflammatory factor was shown by its mediators that, in severe cases, reach the cytokine at peaks. Hyperinflammatory state may sparks significant imbalances in transporters and drug metabolic machinery, and subsequent alteration of drug pharmacokinetics may result in unexpected therapeutic response. The present scenario has accounted for the requirement for therapeutic opportunities to relive and overcome this pandemic. Despite the diminishing developments of COVID-19, there is no drug still approved to have significant effects with no side effect on the treatment for COVID-19 patients. Based on the evidence, many antiviral and anti-inflammatory drugs have been authorized by the Food and Drug Administration (FDA) to treat the COVID-19 patients even though not knowing the possible drug-drug interactions (DDI). Remdesivir, favipiravir, and molnupiravir are deemed the most hopeful antiviral agents by improving infected patient’s health. Dexamethasone is the first known steroid medicine that saved the lives of seriously ill patients. Some oligopeptides and proteins have also been using. The current review summarizes medication updates to treat COVID-19 patients in an inflammatory state and their interaction with drug transporters and drug-metabolizing enzymes. It gives an opinion on the potential DDI that may permit the individualization of these drugs, thereby enhancing the safety and efficacy.
Collapse
|
17
|
Kumar D, Kumari K, Chandra R, Jain P, Vodwal L, Gambhir G, Singh P. A review targeting the infection by CHIKV using computational and experimental approaches. J Biomol Struct Dyn 2021; 40:8127-8141. [PMID: 33783313 DOI: 10.1080/07391102.2021.1904004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rise of normal body temperature of 98.6 °F beyond 100.4 °F in humans indicates fever due to some illness or infection. Viral infections caused by different viruses are one of the major causes of fever. One of such viruses is, Chikungunya virus (CHIKV) is known to cause Chikungunya fever (CHIKF) which is transmitted to humans through the mosquitoes, which actually become the primary source of transmission of the virus. The genomic structure of the CHIKV consists of the two open reading frames (ORFs). The first one is a 5' end ORF and it encodes the nonstructural protein (nsP1-nsP4). The second is a 3' end ORF and it encodes the structural proteins, which is consisted of capsid, envelope (E), accessory peptides, E3 and 6 K. Till date, there is no effective vaccine or medicine available for early detection of the CHIKV infection and appropriate diagnosis to cure the patients from the infection. NSP3 of CHIKV is the prime target of the researchers as it is responsible for the catalytic activity. This review has updates of literature on CHIKV; pathogenesis of CHIKV; inhibition of CHIKV using theoretical and experimental approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Faculty of Engineering and Technology, Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Lata Vodwal
- Department of Chemistry, Maitreyi College, University of Delhi, New Delhi, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| |
Collapse
|
18
|
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev 2021; 170:1-25. [PMID: 33359141 PMCID: PMC7759095 DOI: 10.1016/j.addr.2020.12.011] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022]
Abstract
Due to the high prevalence and long incubation periods often without symptoms, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected millions of individuals globally, causing the coronavirus disease 2019 (COVID-19) pandemic. Even with the recent approval of the anti-viral drug, remdesivir, and Emergency Use Authorization of monoclonal antibodies against S protein, bamlanivimab and casirimab/imdevimab, efficient and safe COVID-19 vaccines are still desperately demanded not only to prevent its spread but also to restore social and economic activities via generating mass immunization. Recent Emergency Use Authorization of Pfizer and BioNTech's mRNA vaccine may provide a pathway forward, but monitoring of long-term immunity is still required, and diverse candidates are still under development. As the knowledge of SARS-CoV-2 pathogenesis and interactions with the immune system continues to evolve, a variety of drug candidates are under investigation and in clinical trials. Potential vaccines and therapeutics against COVID-19 include repurposed drugs, monoclonal antibodies, antiviral and antigenic proteins, peptides, and genetically engineered viruses. This paper reviews the virology and immunology of SARS-CoV-2, alternative therapies for COVID-19 to vaccination, principles and design considerations in COVID-19 vaccine development, and the promises and roles of vaccine carriers in addressing the unique immunopathological challenges presented by the disease.
Collapse
Affiliation(s)
- Jee Young Chung
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America
| | - Melissa N Thone
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America; Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States of America; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States of America; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
19
|
Khodashahi R, Naderi H, Bojdy A, Heydari AA, Sani AT, Ghabouli MJ, Sarvghad MR, Haddad M, Arian M, Jahanian S, Mazidi S, Pasand MM, Hoseini B, Dadgarmoghaddam M, Khorsand A, Khodashahi M. Comparison the Effect of Arbidol Plus Hydroxychloroquine vs Hydroxychloroquine Alone in Treatment of COVID-19 Disease: A Randomized Clinical Trial. CURRENT RESPIRATORY MEDICINE REVIEWS 2021. [DOI: 10.2174/1573398x17666210129125703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and Aim:
The main challenging issue about coronavirus disease 2019
(COVID-19) is the production of safe and stable vaccines, which is a very long process. Due to the
emergency situation, regular and extensive screening of available and traditional drugs, which are
commonly used for the treatment of similar viral diseases, can be a reasonable option. The present
study aimed to compare the administration of hydroxychloroquine (HCQ) plus arbidol to the use of
HCQ alone in the treatment of COVID-19 infection.
Methods and Materials:
This single-blind randomized controlled trial was carried out on a total of
100 patients with COVID-19 referring to the infection ward of Imam Reza Hospital in Mashhad,
Iran, in 2020. The patients were randomly assigned to two HCQ alone and HCQ plus arbidol
groups.
Results:
According to the obtained results, hematological parameters, including white blood cell
count, hemoglobin level, lymphocyte count, and platelet count, improved in patients with
COVID-19 after the treatment with both HCQ plus arbidol and HCQ alone (P<0.005). The mean
values of the reduction time of C-reactive protein (CRP) were 4.48±1.24 and 8.22±2.08 days in the
arbidol and HCQ alone groups, respectively, indicating that CRP decreased faster in the arbidol
group than that reported for the HCQ alone group (Z=0.-7.85; P<0.000). The mean scores of hospital
stay were reported as 5.89±2.04 and 9.35±3.72 days in the arbidol and HCQ alone groups, respectively
(Z=-4.31; P<0.005). All the patients in the arbidol group survived, while 6% of the subjects
in the HCQ alone group died. In addition, the drug regimen was not changed for any patient,
and no subject was transferred to the intensive care unit in the arbidol group.
Conclusion:
In summary, the administration of both arbidol and HCQ leads to the improvement of
the hematological parameters. The present study introduced arbidol as an effective treatment for
moderate to severe patients with COVID-19, which not only reduced the time of CRP normalization
level but also decreased the hospitalization duration and mortality compared to those reported
for HCQ.
Collapse
Affiliation(s)
- Rozita Khodashahi
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Naderi
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Bojdy
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbar Heydari
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashraf Tavanaee Sani
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Javad Ghabouli
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Sarvghad
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Haddad
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Arian
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrzad Jahanian
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Mazidi
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Mortazavi Pasand
- Department of Infectious Diseases and Tropical Medicine ,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Binyamin Hoseini
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Dadgarmoghaddam
- Community Medicine Department, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Khorsand
- Department of Complementary and Chinese Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mandana Khodashahi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Meena MK, Kumar D, Kumari K, Kaushik NK, Kumar RV, Bahadur I, Vodwal L, Singh P. Promising inhibitors of nsp2 of CHIKV using molecular docking and temperature-dependent molecular dynamics simulations. J Biomol Struct Dyn 2021; 40:5827-5835. [PMID: 33472563 DOI: 10.1080/07391102.2021.1873863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection due to the Chikungunya virus (CHIKV) has taken the life of lots of people; and researchers are working to find the vaccine or promisng drug candidates against this viral infection. In this work, the authors have designed one component reaction based on the thia-/oxa-azolidineone and created a library of 2000 molecules based on the product obtained. Further, the compounds were screened through the docking using iGemdock against the non-structural protein 2 (nsp2) of CHIKV. Molecular docking gives the binding energy (BE) or energy for the formation of the complex between the designed compound and nsp2 of CHIKV; and CMPD222 gave the lowest energy. This is based on the energy obtained from van der Waal's interaction, hydrogen bonding and electrostatic instructions. Further, molecular dynamics simulations (MDS) of nsp2 of CHIKV with and without screened compound (222) were performed to validate the docking results and the change in free energy for the formation of the complex is -10.8327 kcal/mol. To explore the potential of CMPD222, the MDS of the CMPD222-nsp2 of CHIKV were performed at different temperatures (325, 350, 375 and 400 K) to understand the inhibition of the protease. MM-GBSA calculations were performed to determined change in entropy, change in enthalpy and change in free energy to understand the inhibition. Maximum inhibition of nsp2 of CHIKV with CMPD222 is observed at 375 K with a change in free energy of -19.3754 kcal/mol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahendera Kumar Meena
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.,Department of Chemistry, Shivaji College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Nagendra Kumar Kaushik
- Deptartment of Electrical & Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | | | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
| | - Lata Vodwal
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
21
|
Shoji M, Sugimoto M, Matsuno K, Fujita Y, Mii T, Ayaki S, Takeuchi M, Yamaji S, Tanaka N, Takahashi E, Noda T, Kido H, Tokuyama T, Tokuyama T, Tokuyama T, Kuzuhara T. A novel aqueous extract from rice fermented with Aspergillus oryzae and Saccharomyces cerevisiae possesses an anti-influenza A virus activity. PLoS One 2021; 16:e0244885. [PMID: 33449947 PMCID: PMC7810313 DOI: 10.1371/journal.pone.0244885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
Human influenza virus infections occur annually worldwide and are associated with high morbidity and mortality. Hence, development of novel anti-influenza drugs is urgently required. Rice Power® extract developed by the Yushin Brewer Co. Ltd. is a novel aqueous extract of rice obtained via saccharization and fermentation with various microorganisms, such as Aspergillus oryzae, yeast [such as Saccharomyces cerevisiae], and lactic acid bacteria, possessing various biological and pharmacological properties. In our previous experimental screening with thirty types of Rice Power® extracts, we observed that the 30th Rice Power® (Y30) extract promoted the survival of influenza A virus-infected Madin-Darby canine kidney (MDCK) cells. Therefore, to identify compounds for the development of novel anti-influenza drugs, we aimed to investigate whether the Y30 extract exhibits anti-influenza A virus activity. In the present study, we demonstrated that the Y30 extract strongly promoted the survival of influenza A H1N1 Puerto Rico 8/34 (A/PR/8/34), California 7/09, or H3N2 Aichi 2/68 (A/Aichi/2/68) viruses-infected MDCK cells and inhibited A/PR/8/34 or A/Aichi/2/68 viruses infection and growth in the co-treatment and pre-infection experiments. The pre-treatment of Y30 extract on MDCK cells did not induce anti-influenza activity in the cell. The Y30 extract did not significantly affect influenza A virus hemagglutination, and neuraminidase and RNA-dependent RNA polymerase activities. Interestingly, the electron microscopy experiment revealed that the Y30 extract disrupts the integrity of influenza A virus particles by permeabilizing the viral membrane envelope, suggesting that Y30 extract has a direct virucidal effect against influenza A virus. Furthermore, we observed that compared to the ethyl acetate (EtOAc) extract, the water extract of Y30 extract considerably promoted the survival of cells infected with A/PR/8/34 virus. These results indicated that more anti-influenza components were present in the water extract of Y30 extract than in the EtOAc extract. Our results highlight the potential of a rice extract fermented with A. oryzae and S. cerevisiae as an anti-influenza medicine and a drug source for the development of anti-influenza compounds.
Collapse
Affiliation(s)
- Masaki Shoji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail: (MS); (TK)
| | - Minami Sugimoto
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Kosuke Matsuno
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Yoko Fujita
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Mii
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Satomi Ayaki
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Misa Takeuchi
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Saki Yamaji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Narue Tanaka
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Kido
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | - Takaaki Tokuyama
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | | | - Takashi Tokuyama
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail: (MS); (TK)
| |
Collapse
|
22
|
Fan L, Liu H, Li N, Liu C, Gu Y, Liu Y, Chen Y. Medical treatment of 55 patients with COVID-19 from seven cities in northeast China who fully recovered: A single-center, retrospective, observational study. Medicine (Baltimore) 2021; 100:e23923. [PMID: 33466134 PMCID: PMC7808500 DOI: 10.1097/md.0000000000023923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an emerging disease caused by severe acute respiratory syndrome coronavirus 2; no specific effective medication to treat the disease has been identified to date. We aimed to investigate the administered medications and intervention times for patients who completely recovered from COVID-19.This single-center, retrospective, observational study included 55 patients with COVID-19 who were transferred to Shenyang Sixth People's Hospital between January 20 and March 15, 2020. Data on demographics, symptoms, laboratory indicators, treatment processes, and clinical outcomes were collected. Administered drugs and intervention times were compared in 47 and 8 patients with mild and severe symptoms, respectively.All 55 patients recovered. Fifty-three patients (96.36%) received antiviral therapy, including 45 in the mild group (median treatment: 14 days; 17 received umifenovir) and all 8 severe-group patients (median treatment: 17.5 days; 4 received lopinavir/ritonavir). Twenty-nine patients (52.72%) were administered antibiotics, including 21 in the mild group (median treatment: 13.5 days; 15 received moxifloxacin) and all 8 in the severe group (median treatment: 9 days; 2 received linezolid). Moreover, 7 patients (12.72%) were treated with glucocorticoids and 9 (16.36%) with immunomodulators.Given the 100% recovery rate, early administration of antiviral drugs can be considered. Umifenovir may benefit patients with mild symptoms, while lopinavir/ritonavir may benefit those with severe symptoms. Prophylactic administration of common antibiotics may reduce the risk of co-infection. The use of glucocorticoids is usually not necessary. Randomized, double-blind, and controlled trials remain necessary for more accurate conclusions.
Collapse
Affiliation(s)
| | | | - Na Li
- Department of Central Laboratory
| | - Chang Liu
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital, Shenyang Chest Hospital
| | - Ye Gu
- Department of Respiratory, Shenyang Sixth People's Hospital, Shenyang 110044, Liaoning, China
| | - Yongyu Liu
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital, Shenyang Chest Hospital
| | | |
Collapse
|
23
|
Pagliano P, Scarpati G, Sellitto C, Conti V, Spera AM, Ascione T, Piazza O, Filippelli A. Experimental Pharmacotherapy for COVID-19: The Latest Advances. J Exp Pharmacol 2021; 13:1-13. [PMID: 33442304 PMCID: PMC7800714 DOI: 10.2147/jep.s255209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
The coronavirus infectious disease-2019 (COVID-19) has overwhelmed like a shock wave in a completely unprepared world. Despite coronavirus infections were involved in previous epidemic outbreaks, no antiviral agent was developed for specific treatment. As a consequence, since the beginning of this pandemic, both repositioned and experimental drugs were used to treat the infected patients without evidence of clinical efficacy. Just based on experience coming from the use of antiviral agents to treat other viruses (eg, lopinavir/ritonavir, remdesivir) and supposed antiviral or immunomodulatory activities of drugs with no approved antiviral indications (eg hydroxychloroquine, tocilizumab), clinicians have faced the ongoing pandemic. Currently, after about 9 months from the COVID-19 spread, there is still no antiviral agent capable of ensuring the cure of this syndrome. Clinical trials are beginning to confirm the benefits of some drugs, while for other compounds, efficacy and safety have not yet been confirmed. Randomized clinical trials (RCT) have denied or downsized the beneficial effects attributed to certain molecules, such as aminoquinolines, largely used in clinical practice at the beginning of COVID-19 spread. Conversely, at the same time, they have provided evidence for unexpected effectiveness of other agents that have been underutilized, such as steroids, which were not used in SARS treatment because of the threatened effect on viral replication. Evidence deriving from pathologic studies have demonstrated that the prothrombotic effects of SARS-CoV-2 can be prevented by heparin prophylaxis, underlining the need for personalized treatment for patients with severe disease. The main aim of this review is to synthesize the available information and evidence on both repositioned and experimental drugs for the treatment of COVID-19, focusing on the need to exercise caution on the use of unproven medical therapies.
Collapse
Affiliation(s)
- Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Anna Maria Spera
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Diseases, Cardarelli Hospital, Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| |
Collapse
|
24
|
Hossain MJ, Rahman SMA. Repurposing therapeutic agents against SARS-CoV-2 infection: most promising and neoteric progress. Expert Rev Anti Infect Ther 2020; 19:1009-1027. [PMID: 33355520 DOI: 10.1080/14787210.2021.1864327] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The pathogenic and highly transmissible etiological agent, SARS-CoV-2, has caused a serious threat COVID-19 pandemic. WHO has declared the epidemic a public health emergency of international concern owing to its high contagiosity, mortality rate, and morbidity. Till now, there is no approved vaccine or drug to combat the COVID-19 and avert this global crisis. AREAS COVERED In this narrative review, we summarized the updated results (January to August 2020) of the most promising repurposing therapeutic candidates to treat the SARS-CoV-2 viral infection. The repurposed drugs classified under four headlines like antivirals, anti-parasitic, immune-modulating, and miscellaneous drugs were discussed with their in vitro efficacy to recent clinical advancements against COVID-19. EXPERT OPINION Currently, palliative care, ranging from outpatient management to intensive care, including oxygen administration, ventilator support, intravenous fluids therapy, with some repurposed drugs, are the primary weapons to fight against COVID-19. Until a safe and effective vaccine is developed, an evidence-based drug repurposing strategy might be the wisest option to save people from this catastrophe. Several existing drugs are now under clinical trials, and some of them are approved in different places of the world for emergency use or as adjuvant therapy in COVID-19 with standard of care.
Collapse
Affiliation(s)
- Md Jamal Hossain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - S M Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
25
|
Fang J, Li H, Du W, Yu P, Guan YY, Ma SY, Liu D, Chen W, Shi GC, Bian XL. Efficacy of Early Combination Therapy With Lianhuaqingwen and Arbidol in Moderate and Severe COVID-19 Patients: A Retrospective Cohort Study. Front Pharmacol 2020; 11:560209. [PMID: 33071781 PMCID: PMC7530276 DOI: 10.3389/fphar.2020.560209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/27/2020] [Indexed: 01/08/2023] Open
Abstract
Objective Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan City, China, coronavirus disease 2019 (COVID-19) has become a global pandemic. However, no special therapeutic drugs have been identified for COVID-19. The aim of this study was to search for drugs to effectively treat COVID-19. Materials and Methods We conducted a retrospective cohort study with a total of 162 adult inpatients (≥18 years old) from Ruijin Hospital (Shanghai, China) and Tongji Hospital (Wuhan, China) between January 27, 2020, and March 10, 2020. The enrolled COVID-19 patients were first divided into the Lianhuaqingwen (LHQW) monotherapy group and the LHQW + Arbidol combination therapy group. Then, these two groups were further classified into moderate and severe groups according to the clinical classification of COVID-19. Results The early combined usage of LHQW and Arbidol can significantly accelerate the recovery of patients with moderate COVID-19 by reducing the time to conversion to nucleic acid negativity, the time to chest CT improvement, and the length of hospital stay. However, no benefit was observed in severe COVID-19 patients treated with the combination of LHQW + Arbidol. In this study, both Arbidol and LHQW were well tolerated without serious drug-associated adverse events. Conclusion The early combined usage of LHQW and Arbidol may accelerate recovery and improve the prognosis of patients with moderate COVID-19.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Li
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Du
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,School of Medicine, Institute of Respiratory Diseases, Shanghai Jiaotong University, Shanghai, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shi-Yu Ma
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dong Liu
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,School of Medicine, Institute of Respiratory Diseases, Shanghai Jiaotong University, Shanghai, China
| | - Wei Chen
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,School of Medicine, Institute of Respiratory Diseases, Shanghai Jiaotong University, Shanghai, China
| | - Guo-Chao Shi
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,School of Medicine, Institute of Respiratory Diseases, Shanghai Jiaotong University, Shanghai, China
| | - Xiao-Lan Bian
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Florindo HF, Kleiner R, Vaskovich-Koubi D, Acúrcio RC, Carreira B, Yeini E, Tiram G, Liubomirski Y, Satchi-Fainaro R. Immune-mediated approaches against COVID-19. NATURE NANOTECHNOLOGY 2020; 15:630-645. [PMID: 32661375 PMCID: PMC7355525 DOI: 10.1038/s41565-020-0732-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/08/2020] [Indexed: 05/05/2023]
Abstract
The coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The long incubation period of this new virus, which is mostly asymptomatic yet contagious, is a key reason for its rapid spread across the world. Currently, there is no worldwide-approved treatment for COVID-19. Therefore, the clinical and scientific communities have joint efforts to reduce the severe impact of the outbreak. Research on previous emerging infectious diseases have created valuable knowledge that is being exploited for drug repurposing and accelerated vaccine development. Nevertheless, it is important to generate knowledge on SARS-CoV-2 mechanisms of infection and its impact on host immunity, to guide the design of COVID-19 specific therapeutics and vaccines suitable for mass immunization. Nanoscale delivery systems are expected to play a paramount role in the success of these prophylactic and therapeutic approaches. This Review provides an overview of SARS-CoV-2 pathogenesis and examines immune-mediated approaches currently explored for COVID-19 treatments, with an emphasis on nanotechnological tools.
Collapse
Affiliation(s)
- Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniella Vaskovich-Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Liubomirski
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Souza PFN, Lopes FES, Amaral JL, Freitas CDT, Oliveira JTA. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Int J Biol Macromol 2020; 164:66-76. [PMID: 32693122 PMCID: PMC7368152 DOI: 10.1016/j.ijbiomac.2020.07.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
The global outbreak of COVID-19 (Coronavirus Disease 2019) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome caused by Coronavirus 2) began in December 2019. Its closest relative, SARS-CoV-1, has a slightly mutated Spike (S) protein, which interacts with ACE2 receptor in human cells to start the infection. So far, there are no vaccines or drugs to treat COVID-19. So, research groups worldwide are seeking new molecules targeting the S protein to prevent infection by SARS-CoV-2 and COVID-19 establishment. We performed molecular docking analysis of eight synthetic peptides against SARS-CoV-2 S protein. All interacted with the protein, but Mo-CBP3-PepII and PepKAA had the highest affinity with it. By binding to the S protein, both peptides led to conformational alterations in the protein, resulting in incorrect interaction with ACE2. Therefore, given the importance of the S protein-ACE2 interaction for SARS-CoV-2 infection, synthetic peptides could block SARS-CoV-2 infection. Moreover, unlike other antiviral drugs, peptides have no toxicity to human cells. Thus, these peptides are potential molecules to be tested against SARS-CoV-2 and to develop new drugs to treat COVID-19. Synthetic peptides bind to SARS-CoV-2 Spike protein. Synthetic peptides induced conformational changes on SARS-CoV-2 spike protein structure. Synthetic peptides bind to ACE2 protein but did not affect its structure. Synthetic peptides induced the wrong interaction of SARS-CoV-2 with ACE2 receptor.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil.
| | - Francisco E S Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| |
Collapse
|
28
|
Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, Rajagopal S, Pai AR, Kutty S. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front Immunol 2020; 11:1648. [PMID: 32754159 PMCID: PMC7365905 DOI: 10.3389/fimmu.2020.01648] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine storm is an acute hyperinflammatory response that may be responsible for critical illness in many conditions including viral infections, cancer, sepsis, and multi-organ failure. The phenomenon has been implicated in critically ill patients infected with SARS-CoV-2, the novel coronavirus implicated in COVID-19. Critically ill COVID-19 patients experiencing cytokine storm are believed to have a worse prognosis and increased fatality rate. In SARS-CoV-2 infected patients, cytokine storm appears important to the pathogenesis of several severe manifestations of COVID-19: acute respiratory distress syndrome, thromboembolic diseases such as acute ischemic strokes caused by large vessel occlusion and myocardial infarction, encephalitis, acute kidney injury, and vasculitis (Kawasaki-like syndrome in children and renal vasculitis in adult). Understanding the pathogenesis of cytokine storm will help unravel not only risk factors for the condition but also therapeutic strategies to modulate the immune response and deliver improved outcomes in COVID-19 patients at high risk for severe disease. In this article, we present an overview of the cytokine storm and its implications in COVID-19 settings and identify potential pathways or biomarkers that could be targeted for therapy. Leveraging expert opinion, emerging evidence, and a case-based approach, this position paper provides critical insights on cytokine storm from both a prognostic and therapeutic standpoint.
Collapse
Affiliation(s)
- Sonu Bhaskar
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Neurology & Neurophysiology, Liverpool Hospital and South Western Sydney Local Health District, Sydney, NSW, Australia
- Neurovascular Imaging Laboratory & NSW Brain Clot Bank, Ingham Institute for Applied Medical Research, The University of New South Wales, UNSW Medicine, Sydney, NSW, Australia
| | - Akansha Sinha
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- The University of New South Wales, UNSW Medicine, Sydney, NSW, Australia
| | - Maciej Banach
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Góra, Zielona Gora, Poland
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Shikha Mittoo
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Rheumatology, University Health Network and The University of Toronto, Toronto, ON, Canada
| | - Robert Weissert
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Joseph S. Kass
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Neurology, Ben Taub General Hospital and Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, TX, United States
| | - Santhosh Rajagopal
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- World Health Organisation, Country Office for India, NPSP, Madurai, India
| | - Anupama R. Pai
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Neuromicrobiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Shelby Kutty
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Pediatric and Congenital Cardiology, Blalock-Taussig-Thomas Heart Center, John Hopkins Hospital, Baltimore, MD, United States
- Johns Hopkins Bloomberg School of Public Health, School of Medicine, John Hopkins University, Baltimore, MD, United States
| |
Collapse
|
29
|
Elhusseiny KM, Abd-Elhay FAE, Kamel MG. Possible therapeutic agents for COVID-19: a comprehensive review. Expert Rev Anti Infect Ther 2020; 18:1005-1020. [PMID: 32538209 DOI: 10.1080/14787210.2020.1782742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged in China. There are no available vaccines or antiviral drugs for COVID-19 patients. Herein, we represented possible therapeutic agents that may stand as a potential therapy against COVID-19. AREAS COVERED We searched PubMed, Google Scholar, and clinicaltrials.gov for relevant papers. We showed some agents with potentially favorable efficacy, acceptable safety as well as good pharmacokinetic profiles. Several therapies are under assessment to evaluate their efficacy and safety for COVID-19. However, some drugs were withdrawn due to their side effects after demonstrating some clinical efficacy. Indeed, the most effective therapies could be organ function support, convalescent plasma, anticoagulants, and immune as well as antiviral therapies, especially anti-influenza drugs due to the similarities between respiratory viruses regarding viral entry, uncoating, and replication. We encourage giving more attention to favipiravir, remdesivir, and measles vaccine. EXPERT OPINION A combination, at least dual or even triple therapy, of the aforementioned efficacious and safe therapies is greatly recommended for COVID-19. Further, patients should have a routine assessment for their coagulation and bleeding profiles as well as their inflammatory and cytokine concentrations.
Collapse
Affiliation(s)
- Khaled Mosaad Elhusseiny
- Faculty of Medicine, Al-Azhar University , Cairo, Egypt.,Sayed Galal University Hospital , Cairo, Egypt.,Egyptian Collaborative Research Team , Egypt
| | | | | |
Collapse
|
30
|
Chen W, Yao M, Fang Z, Lv X, Deng M, Wu Z. A study on clinical effect of Arbidol combined with adjuvant therapy on COVID-19. J Med Virol 2020; 92:2702-2708. [PMID: 32510169 PMCID: PMC7300876 DOI: 10.1002/jmv.26142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
This study aims to explore the clinical effect of Arbidol (ARB) combined with adjuvant therapy on patients with coronavirus disease 2019 (COVID‐19). The study included 62 patients with COVID‐19 admitted to the First Hospital of Jiaxing from January to March 2020, and all patients were divided into the test group and the control group according to whether they received ARB during hospitalization. Various indexes in the two groups before and after treatment were observed and recorded, including fever, cough, hypodynamia, nasal obstruction, nasal discharge, diarrhea, C‐reactive protein (CRP), procalcitonin (PCT), blood routine indexes, blood biochemical indexes, time to achieve negative virus nucleic acid, and so on. The fever and cough in the test group were relieved markedly faster than those in the control group (P < .05); there was no obvious difference between the two groups concerning the percentage of patients with abnormal CRP, PCT, blood routine indexes, aspartate aminotransferase, and alanine aminotransferase (P > .05); the time for two consecutive negative nucleic acid tests in the test group were shorter than that in the control group; the hospitalization period of the patients in the test group and control group were (16.5 ± 7.14) days and (18.55 ± 7.52) days, respectively. ARB combined with adjuvant therapy might be able to relieve the fever of COVID‐19 sufferers faster and accelerate the cure time to some degree, hence it's recommended for further research clinically. Arbidol combined with adjuvant therapy could shorten the course of patient's basic symptoms; Arbidol combined with adjuvant therapy could normalize patient's temperature faster; Viral nucleic acid of patients treated with Arbidol combined with adjuvant therapy could turn negative within a shorter time.
Collapse
Affiliation(s)
- Wenyu Chen
- Department of Respiration, Affiliated Hospital of Jiaxing University/The First Hospital of Jiaxing, Jiaxing, China
| | - Ming Yao
- Center for Pain Medicine, Affiliated Hospital of Jiaxing University/The First Hospital of Jiaxing, Jiaxing, China
| | - Zhixian Fang
- Department of Respiration, Affiliated Hospital of Jiaxing University/The First Hospital of Jiaxing, Jiaxing, China
| | - Xiaodong Lv
- Department of Respiration, Affiliated Hospital of Jiaxing University/The First Hospital of Jiaxing, Jiaxing, China
| | - Min Deng
- Department of Infectious Disease, Affiliated Hospital of Jiaxing University/The First Hospital of Jiaxing, Jiaxing, China
| | - Zhen Wu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Development of small-molecule inhibitors against hantaviruses. Microbes Infect 2020; 22:272-277. [PMID: 32445882 DOI: 10.1016/j.micinf.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022]
Abstract
Hantavirus (HV), a pathogen of animal infectious diseases that poses a threat to humans, has attracted extensive attention. Clinically, HV can cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), between which HFRS is mostly in Eurasia, and HPS is mostly in the Americas. This paper reviews the research progress of small-molecule inhibitors of HV.
Collapse
|
32
|
Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, Li Y, Zhao L, Li W, Sun X, Yang X, Shi Z, Deng F, Hu Z, Zhong W, Wang M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov 2020; 6:28. [PMID: 32373347 PMCID: PMC7195821 DOI: 10.1038/s41421-020-0169-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850 China
| | - Huanyu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Jia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Mingyue Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850 China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850 China
| | - Xiulian Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Xinglou Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Zhengli Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850 China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| |
Collapse
|
33
|
Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int J Antimicrob Agents 2020; 56:105998. [PMID: 32360231 PMCID: PMC7187825 DOI: 10.1016/j.ijantimicag.2020.105998] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic is a global public health emergency, and new therapeutics are needed. This article reports the potential drug target and mechanism of action of Arbidol (umifenovir) to treat coronavirus disease 2019 (COVID-19). Molecular dynamics and structural analysis were used to show how Arbidol targets the SARS-CoV-2 spike glycoprotein and impedes its trimerization, which is key for host cell adhesion and hijacking, indicating the potential of Arbidol to treat COVID-19. It is hoped that knowledge of the potential drug target and mechanism of action of Arbidol will help in the development of new therapeutics for SARS-CoV-2.
Collapse
|
34
|
Abstract
Introduction. Respiratory infections are among the leaders in morbidity and mortality worldwide. The most severe cases of the disease are most often caused by the flu virus. Currently, there are many ways of specific prevention and treatment of influenza infection, but their effectiveness is far from ideal. This is due to the high variability of the influenza virus and the subsequent occurrence of resistance to the drugs used. In this regard, the improvement and development of antiviral drugs is an urgent task.Text. Influenza virus is an RNA-containing virus that causes massive epidemics and pandemics. Specific influenza prophylaxis includes vaccination. However, antigenic variability of the virus reduces the effectiveness of the vaccine, which requires constant costly development of its more advanced modifications. Specific treatment for influenza infection includes several classes of drugs, such as neuraminidase (NA) inhibitors oseltamivir, zanamivir and M2 protein inhibitors amantadine, rimantadine. At one time, these drugs were quite effective. But the formed resistance of influenza viruses to these drugs requires the creation of new or modifications of existing antiviral agents. Among the new domestic developments of antiviral drugs, histidyl-1-adamantainethylamine, which is a modification of the rimantadine molecule, has shown sufficient antiviral activity at the stage of preclinical studies. A representative of another class of drugs is arbidol (umifenovir), an inhibitor of hemagglutinin (HA) of the influenza virus. According to studies, the drug has high profiles of efficacy and safety, but the recommendation of the World Health Organization is to continue clinical trials. Currently, clinical studies of new classes of drugs are underway – baloxavir marboxil and favipiravir. Baloxavir marboxyl is a prodrug that is converted in vivo to baloxavir, an inhibitor of cap-dependent endonuclease. Favipiravir is an inhibitor of RNA-dependent RNA polymerase. In vitro studies in cell culture and in vivo in laboratory animals have shown higher efficacy of these drugs than the above with minimal toxicity.Conclusion. The rapid evolution of the influenza virus leads to a gradual decrease in the effectiveness of modern antiviral drugs. New compounds targeting targets important for virus reproduction are in clinical trials. The future of the fight against influenza depends on the outcome of these tests, according to which the compounds can become effective drugs for the prevention and treatment of influenza.
Collapse
|
35
|
Luo D, Ma L, Zhou Z, Huang Z. Synthesis, single crystal X-ray analysis, and vibrational spectral studies of ethyl 6-bromo-5-((5-bromopyrimidin-2-yl)oxy)-2-((2, 6-dimethylmorpholino)methyl)-1-methyl-1H-indole-3-carboxylate. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Ma N, Shen M, Chen T, Liu Y, Mao Y, Chen L, Xiong H, Hou W, Liu D, Yang Z. Assessment of a new arbidol derivative against herpes simplex virus II in human cervical epithelial cells and in BALB/c mice. Biomed Pharmacother 2019; 118:109359. [PMID: 31545243 DOI: 10.1016/j.biopha.2019.109359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the highly contagious forms, herpes simplex virus type 2 (HSV-2) commonly caused severe genital diseases and closely referred to the HIV infection. The lack of effective vaccines and drug-resistance proclaimed the preoccupation for alternative antiviral agents against HSV-2. Molecules bearing indole nucleus presented diverse biological properties involving antiviral and anti-inflammatory activities. In this study, one of the indole molecules, arbidol derivative (ARD) was designed and synthesized prior to the evaluation of its anti-HSV-2 activity. Our data showed that the ARD effectively suppressed HSV-2-induced cytopathic effects and the generation of progeny virus, with 50% effective concentrations of 3.386 and 1.717 μg/mL, respectively. The results of the time-course assay suggested that the ARD operated in a dual antiviral way by interfering virus entry and impairing the earlier period of viral cycle during viral DNA synthesis. The ARD-mediated HSV-2 inhibition was partially attained by blocking NF-κB pathways and down-regulating the expressions of several inflammatory cytokines. Furthermore, in vivo studies showed that oral administration of ARD protected BALB/c mice from intravaginal HSV-2 challenge by alleviating serious vulval lesions and histopathological changes in the target organs. Besides, the treatment with ARD also made the levels of viral protein, NF-κB protein and inflammatory cytokines lower, in consistent with the in-vitro studies. Collectively, ARD unveiled therapeutic potential for the prevention and treatment of HSV-2 infections.
Collapse
Affiliation(s)
- Nian Ma
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Mengxin Shen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Tian Chen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Yidong Mao
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Liangjun Chen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Dongying Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China.
| | - Zhanqiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
37
|
He J, Li Z, Huang W, Guan W, Ma H, Yang ZF, Wang X. Efficacy and safety of Chou-Ling-Dan granules in the treatment of seasonal influenza via combining Western and traditional Chinese medicine: protocol for a multicentre, randomised controlled clinical trial. BMJ Open 2019; 9:e024800. [PMID: 30944133 PMCID: PMC6500347 DOI: 10.1136/bmjopen-2018-024800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Chou-Ling-Dan (CLD) (Laggerapterodonta) granules are an ethnic herbal medicine from Yunnan province of China. CLD granules have been used for the treatment of inflammatory conditions and feverish diseases in China, including seasonal influenza, but few evidence-based medicine (EBM) clinical studies have been conducted to assess its efficacy and safety in the treatment of influenza. Here, we performed an EBM clinical trial combining Western Chinese medicine and traditional Chinese medicine (TCM) evaluation systems to evaluate the efficacy and safety of CLD granules in the treatment of seasonal influenza. METHODS AND ANALYSIS The study is designed as a multicentre, randomised, double-blinded, double-simulation, oseltamivir-controlled and placebo-controlled, parallel-design clinical trial. Eligible subjects (n=318) will be allocated after satisfying the criteria (Western medicine). Subjects will be randomised to receive CLD granules, oseltamivir, or a placebo for 5 days of treatment and with follow-up after treatment to record symptoms and signs and to collect pharyngeal/throat swabs and serum samples for detecting the virus and antibodies. At the same time, the syndrome differentiation criteria of TCM, such as tongue body, furred tongue and type of pulse, will be recorded as determined by doctors of both Western and Chinese medicine. Participants will be instructed to comply with the protocol and to keep a daily record of symptoms. The primary and secondary outcomes and safety indicators will be used to evaluate the efficacy and safety of CLD granules in the treatment of seasonal influenza based on both Western Chinese medicine and TCM evaluation systems. ETHICS AND DISSEMINATION The CLD granules clinical trial will be conducted in accordance with the Declaration of Helsinki and Good Clinical Practice and has been approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University. All participants must provide written informed consent. The results obtained will be disseminated at international medical conferences and in peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT02662426; Pre-results.
Collapse
Affiliation(s)
- Jiayang He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanyi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenda Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Zi feng Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Fink SL, Vojtech L, Wagoner J, Slivinski NSJ, Jackson KJ, Wang R, Khadka S, Luthra P, Basler CF, Polyak SJ. The Antiviral Drug Arbidol Inhibits Zika Virus. Sci Rep 2018; 8:8989. [PMID: 29895962 PMCID: PMC5997637 DOI: 10.1038/s41598-018-27224-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
There are many emerging and re-emerging globally prevalent viruses for which there are no licensed vaccines or antiviral medicines. Arbidol (ARB, umifenovir), used clinically for decades in several countries as an anti-influenza virus drug, inhibits many other viruses. In the current study, we show that ARB inhibits six different isolates of Zika virus (ZIKV), including African and Asian lineage viruses in multiple cell lines and primary human vaginal and cervical epithelial cells. ARB protects against ZIKV-induced cytopathic effects. Time of addition studies indicate that ARB is most effective at suppressing ZIKV when added to cells prior to infection. Moreover, ARB inhibits pseudoviruses expressing the ZIKV Envelope glycoprotein. Thus, ARB, a broadly acting anti-viral agent with a well-established safety profile, inhibits ZIKV, likely by blocking viral entry.
Collapse
Affiliation(s)
- Susan L Fink
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Jessica Wagoner
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Natalie S J Slivinski
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Konner J Jackson
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Ruofan Wang
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Sudip Khadka
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Priya Luthra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
39
|
Cappariloside A shows antiviral and better anti-inflammatory effects against influenza virus via regulating host IFN signaling, in vitro and vivo. Life Sci 2018; 200:115-125. [DOI: 10.1016/j.lfs.2018.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/22/2022]
|
40
|
Liu H, Gambino F, Algenio C, Bouchard C, Qiao L, Bu P, Zhao S. Zidovudine protects hyperosmolarity-stressed human corneal epithelial cells via antioxidant pathway. Biochem Biophys Res Commun 2018; 499:177-181. [DOI: 10.1016/j.bbrc.2018.03.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 12/26/2022]
|
41
|
Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses. Viruses 2018; 10:v10040184. [PMID: 29642580 PMCID: PMC5923478 DOI: 10.3390/v10040184] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Arthropod-borne flaviviruses are human pathogens of global medical importance, against which no effective small molecule-based antiviral therapy has currently been reported. Arbidol (umifenovir) is a broad-spectrum antiviral compound approved in Russia and China for prophylaxis and treatment of influenza. This compound shows activities against numerous DNA and RNA viruses. The mode of action is based predominantly on impairment of critical steps in virus-cell interactions. Here we demonstrate that arbidol possesses micromolar-level anti-viral effects (EC50 values ranging from 10.57 ± 0.74 to 19.16 ± 0.29 µM) in Vero cells infected with Zika virus, West Nile virus, and tick-borne encephalitis virus, three medically important representatives of the arthropod-borne flaviviruses. Interestingly, no antiviral effects of arbidol are observed in virus infected porcine stable kidney cells (PS), human neuroblastoma cells (UKF-NB-4), and human hepatoma cells (Huh-7 cells) indicating that the antiviral effect of arbidol is strongly cell-type dependent. Arbidol shows increasing cytotoxicity when tested in various cell lines, in the order: Huh-7 < HBCA < PS < UKF-NB-4 < Vero with CC50 values ranging from 18.69 ± 0.1 to 89.72 ± 0.19 µM. Antiviral activities and acceptable cytotoxicity profiles suggest that arbidol could be a promising candidate for further investigation as a potential therapeutic agent in selective treatment of flaviviral infections.
Collapse
|
42
|
Jia K, Yuan Y, Liu W, Liu L, Qin Q, Yi M. Identification of Inhibitory Compounds Against Singapore Grouper Iridovirus Infection by Cell Viability-Based Screening Assay and Droplet Digital PCR. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:35-44. [PMID: 29209860 DOI: 10.1007/s10126-017-9785-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Singapore grouper iridovirus (SGIV) is one of the major causative agents of fish diseases and has caused significant economic losses in the aquaculture industry. There is currently no commercial vaccine or effective antiviral treatment against SGIV infection. Annually, an increasing number of small molecule compounds from various sources have been produced, and many are proved to be potential inhibitors against viruses. Here, a high-throughput in vitro cell viability-based screening assay was developed to identify antiviral compounds against SGIV using the luminescent-based CellTiter-Glo reagent in cultured grouper spleen cells by quantificational measurement of the cytopathic effects induced by SGIV infection. This assay was utilized to screen for potential SGIV inhibitors from five customized compounds which had been reported to be capable of inhibiting other viruses and 30 compounds isolated from various marine organisms, and three of them [ribavirin, harringtonine, and 2-hydroxytetradecanoic acid (2-HOM)] were identified to be effective on inhibiting SGIV infection, which was further confirmed with droplet digital PCR (ddPCR). In addition, the ddPCR results revealed that ribavirin and 2-HOM inhibited SGIV replication and entry in a dose-dependent manner, and harringtonine could reduce SGIV replication rather than entry at the working concentration without significant toxicity. These findings provided an easy and reliable cell viability-based screening assay to identify compounds with anti-SGIV effect and a way of studying the anti-SGIV mechanism of compounds.
Collapse
Affiliation(s)
- Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongming Yuan
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543, Singapore
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lan Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
43
|
Sornpet B, Potha T, Tragoolpua Y, Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. ASIAN PAC J TROP MED 2017; 10:871-876. [PMID: 29080615 DOI: 10.1016/j.apjtm.2017.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/16/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus (H5N1). METHODS Crude extracts of Andrographis paniculata, Curcuma longa (C. longa), Gynostemma pentaphyllum, Kaempferia parviflora (K. parviflora), and Psidium guajava obtained by both water and ethanol extractions were investigated for their cytotoxicity in the Madin-Darby canine kidney cells. Thereafter, they were investigated in vitro for antiviral activity and cytokine response upon H5N1 virus infection. RESULTS The results revealed that both water and ethanol extracts of all the five studied plants showed significant antiviral activity against H5N1 virus. Among these plants, C. longa and K. parviflora showed strong anti-H5N1 activity. Thus, they were selected for further studies on their cytokine response upon virus infection. It was found that ethanol and water crude extracts of C. longa and K. parviflora induced significant upregulation of TNF-α and IFN-β mRNA expressions, suggesting their roles in the inhibition of H5N1 virus replication. CONCLUSIONS To the best of the authors' knowledge, this study is among the earliest reports to illustrate the antiviral property of these Asian medicinal plants against the highly pathogenic avian H5N1 influenza virus. The results of this study shed light on alternative therapeutic sources for treatment of H5N1 influenza virus infection in the future.
Collapse
Affiliation(s)
- Benjaporn Sornpet
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Teerapong Potha
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
44
|
Li MK, Liu YY, Wei F, Shen MX, Zhong Y, Li S, Chen LJ, Ma N, Liu BY, Mao YD, Li N, Hou W, Xiong HR, Yang ZQ. Antiviral activity of arbidol hydrochloride against herpes simplex virus I in vitro and in vivo. Int J Antimicrob Agents 2017; 51:98-106. [PMID: 28890393 DOI: 10.1016/j.ijantimicag.2017.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) causes significant human diseases ranging from skin lesions to encephalitis, especially in neonates and immunocompromised hosts. The discovery of novel anti-HSV-1 drugs with low toxicity is required for public health. Arbidol hydrochloride (ARB) is an indole derivative molecule with broad-spectrum antiviral activity. In this study, the antiviral effects of ARB against HSV-1 infection were evaluated in vitro and in vivo. The results showed that ARB presents significant inhibitory effect on HSV-1 plaque formation and generation of progeny virus, with EC50 values (50% effective concentration) of 5.39 µg/mL (10.49 µM) and 2.26 µg/mL (4.40 µM), respectively. Moreover, time-of-addition and time-of-removal assays further suggested that ARB has viral inhibitory effects when added up to 12 h post-infection (p.i.), which could be further corroborated by determining the expression of viral immediate-early (ICP4, ICP22 and ICP27), early (ICP8 and UL42) and late (gB, gD, gH, VP1/2 and VP16) genes by real-time quantitative PCR as well as the expression of viral protein ICP4 and ICP8 at 6 h and 12 h p.i. Results of the in vivo study showed that ARB could reduce guinea pig skin lesions caused by HSV-1 infection. Conclusively, this report offers new perspectives in the search for therapeutic measures in the treatment of HSV-1 infection.
Collapse
Affiliation(s)
- Min-Ke Li
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China; Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences, 190 Kaiyuan Road, Guangzhou 510530, China
| | - Yuan-Yuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Fei Wei
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Meng-Xin Shen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Yan Zhong
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Shan Li
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Liang-Jun Chen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Nian Ma
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Bing-Yu Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Yi-Dong Mao
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Ning Li
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China
| | - Hai-Rong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China.
| | - Zhan-Qiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
45
|
Wang Y, Ding Y, Yang C, Li R, Du Q, Hao Y, Li Z, Jiang H, Zhao J, Chen Q, Yang Z, He Z. Inhibition of the infectivity and inflammatory response of influenza virus by Arbidol hydrochloride in vitro and in vivo (mice and ferret). Biomed Pharmacother 2017; 91:393-401. [PMID: 28475918 DOI: 10.1016/j.biopha.2017.04.091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
Influenza virus infections are the main contagious respiratory disease with high levels of morbidity and mortality worldwide. Antiviral drugs are indispensable for the prophylaxis and treatment of influenza and other respiratory viral infections. In this study, the Arbidol hydrochloride (ARB), which has been licensed in Russia and China, is used to investigate its anti-viral and anti-inflammatory efficacy in vitro and in vivo. The antiviral results in vitro showed that ARB had a better inhibition on Influenza virus A/PR/8/34 (H1N1), A/Guangdong/GIRD07/09 (H1N1), A/Aichi/2/68 (H3N2), A/HK/Y280/97 (H9N2) with IC50 ranging from 4.4 to 12.1μM. The further mechanisms study demonstrated that ARB is able to inhibit hemagglutinin-mediated hemolysis at concentration of 3.91-15.63μg/mL. The anti-inflammatory efficacy in vitro indicated that IL-6, IP-10, MCP-1, RANTES and TNF-α levels were diminished by ARB at concentrations of 22.6 and 18.8μM. The in vivo results in mice model displayed that the survival rates of mice administered 25mg/mL and 45mg/mL ARB were 40% and 50% respectively. And also, ARB can inhibit the decrease of body weight at 45mg/mL and inhibit the increase of mice lung index at 25mg/mL and 45mg/mL comparing to virus group. In ferret model, the ARB-treated ferrets showed a fever that peaked at 2 dpi and gradually decreased beginning at 3 dpi while relatively high temperatures were observed until 4 dpi in the virus group. The ARB-treated group scored 0-1 in the activity level at 2 dpi and 3 dpi at all time points. The transcription levels of cytokines in the respiratory tract of ferrets were detected at 3 dpi. Several proinflammatory cytokines induced by influenza (IL-10, TNF-α, IL-8 and IL-6) were down-regulated by post-treatment with ARB. The histopathological results of ferret lung displayed that ARB can alleviate the influenza virus induced lung lesions. Our results clarified the activity of ARB in both suppressing virus propagation and modulating the expression of inflammatory cytokines in vitro and in vivo, it can be as an effective drug to treat the influenza virus infection.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Yuewen Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Yanbing Hao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Qiaoyan Chen
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China; Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, PR China.
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union medicine College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, PR China.
| |
Collapse
|
46
|
Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci U S A 2016; 114:206-214. [PMID: 28003465 DOI: 10.1073/pnas.1617020114] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ∼16 Å from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.
Collapse
|
47
|
Zeng LY, Yang J, Liu S. Investigational hemagglutinin-targeted influenza virus inhibitors. Expert Opin Investig Drugs 2016; 26:63-73. [PMID: 27918208 DOI: 10.1080/13543784.2017.1269170] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Seasonal influenza and pandemic outbreaks typically result in high mortality and morbidity associated with severe economic burdens. Vaccines and anti-influenza drugs have made great contributions to control the infection. However, antigenic drifts and shifts allow influenza viruses to easily escape immune neutralization and antiviral drug activity. Hemagglutinin (HA)is an important envelope protein for the entry of influenza viruses into host cells, thus, HA-targeted agents may be potential anti-influenza drugs. Areas covered: In this review, we describe arbidol, a unique licensed drug targeting HA; discuss and summarize HA-targeted anti-influenza agents been tested before or being tested currently in clinical trials, including monoclonal antibodies, small molecule inhibitors, proteins and peptides. Other small molecule inhibitors are also briefly introduced. Expert opinion: Exploring new clinical applications for existing drugs can provide additional anti-influenza candidates with promising safety and bioavailability, and largely shortened time and costs. To enhance therapeutic efficacy and avoid drug-resistance, combination therapy involving in HA-targeted anti-influenza agent is reasonable and attractive. For drug discovery, it is helpful to keep an eye on the development of methodology in organic synthesis and probe into the co-crystal structure of HA in complex with small molecule.
Collapse
Affiliation(s)
- Li-Yan Zeng
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Jie Yang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Shuwen Liu
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China.,b State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology , Southern Medical University , Guangzhou , China
| |
Collapse
|
48
|
Galiano V, Villalaín J. The Location of the Protonated and Unprotonated Forms of Arbidol in the Membrane: A Molecular Dynamics Study. J Membr Biol 2016; 249:381-91. [PMID: 26843065 PMCID: PMC7080137 DOI: 10.1007/s00232-016-9876-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/24/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Arbidol is a potent broad-spectrum antiviral molecule for the treatment and prophylaxis of many viral infections. Viruses that can be inhibited by arbidol include enveloped and non-enveloped viruses, RNA and DNA viruses, as well as pH-independent and pH-dependent ones. These differences in viral types highlight the broad spectrum of Arb antiviral activity and, therefore, it must affect a common viral critical step. Arbidol incorporates rapidly into biological membranes, and some of its antiviral effects might be related to its capacity to interact with and locate into the membrane. However, no information is available of the molecular basis of its antiviral mechanism/s. We have aimed to locate the protonated (Arp) and unprotonated (Arb) forms of arbidol in a model membrane system. Both Arb and Arp locate in between the hydrocarbon acyl chains of the phospholipids but its specific location and molecular interactions differ from each other. Whereas both Arb and Arp average location in the membrane palisade is a similar one, Arb tends to be perpendicular to the membrane surface, whereas Arp tends to be parallel to it. Furthermore, Arp, in contrast to Arb, seems to interact stronger with POPG than with POPC, implying the existence of a specific interaction between Arp, the protonated from, with negatively charged phospholipids. This data would suggest that the active molecule of arbidol in the membrane is the protonated one, i.e., the positively charged molecule. The broad antiviral activity of arbidol would be defined by the perturbation it exerts on membrane structure and therefore membrane functioning. Graphical Abstract ![]()
Electronic supplementary material The online version of this article (doi:10.1007/s00232-016-9876-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente Galiano
- Physics and Computer Architecture Department, Universitas "Miguel Hernández", 03202, Elche-Alicante, Spain
| | - José Villalaín
- Molecular and Cellular Biology Institute, Universitas "Miguel Hernández", 03202, Elche-Alicante, Spain.
| |
Collapse
|
49
|
Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 2016; 13:3-10. [PMID: 26189369 PMCID: PMC4711683 DOI: 10.1038/cmi.2015.74] [Citation(s) in RCA: 511] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/28/2015] [Accepted: 06/28/2015] [Indexed: 12/25/2022] Open
Abstract
Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as 'cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies.
Collapse
Affiliation(s)
- Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang 443000, China
| | - Yuan-hong Zhou
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang 443000, China
| | - Zhan-qiu Yang
- State Key Laboratory of Virology/Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
50
|
The Flavonoid Isoliquiritigenin Reduces Lung Inflammation and Mouse Morbidity during Influenza Virus Infection. Antimicrob Agents Chemother 2015; 59:6317-27. [PMID: 26248373 DOI: 10.1128/aac.01098-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/21/2015] [Indexed: 01/21/2023] Open
Abstract
The host response to influenza virus infection is characterized by an acute lung inflammatory response in which intense inflammatory cell recruitment, hypercytokinemia, and a high level of oxidative stress are present. The sum of these events contributes to the virus-induced lung damage that leads to high a level of morbidity and mortality in susceptible infected patients. In this context, we identified compounds that can simultaneously reduce the excessive inflammatory response and the viral replication as a strategy to treat influenza virus infection. We investigated the anti-inflammatory and antiviral potential activities of isoliquiritigenin (ILG). Interestingly, we demonstrated that ILG is a potent inhibitor of influenza virus replication in human bronchial epithelial cells (50% effective concentration [EC50] = 24.7 μM). In addition, our results showed that this molecule inhibits the expression of inflammatory cytokines induced after the infection of cells with influenza virus. We demonstrated that the anti-inflammatory activity of ILG in the context of influenza virus infection is dependent on the activation of the peroxisome proliferator-activated receptor gamma pathway. Interestingly, ILG phosphate (ILG-p)-treated mice displayed decreased lung inflammation as depicted by reduced cytokine gene expression and inflammatory cell recruitment. We also demonstrated that influenza virus-specific CD8(+) effector T cell recruitment was reduced up to 60% in the lungs of mice treated with ILG-p (10 mg/kg) compared to that in saline-treated mice. Finally, we showed that administration of ILG-p reduced lung viral titers and morbidity of mice infected with the PR8/H1N1 virus.
Collapse
|