1
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Du C, Wang S, Shi X, Jing P, Wang H, Wang L. Identification of senescence related hub genes and potential therapeutic compounds for dilated cardiomyopathy via comprehensive transcriptome analysis. Comput Biol Med 2024; 179:108901. [PMID: 39029429 DOI: 10.1016/j.compbiomed.2024.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a common cause of heart failure. However, the role of cellular senescence in DCM has not been fully elucidated. Here, we aimed to investigate senescence in DCM, identify senescence related characteristic genes, and explore the potential small molecule compounds for DCM treatment. METHODS DCM-associated datasets and senescence-related genes were respectively obtained from Gene Expression Omnibus (GEO) database and CellAge database. The characteristic genes were identified through methods including weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and random forest. The expression of characteristic genes was verified in the mouse DCM model. Moreover, the CIBERSORT algorithm was applied to analyze immune characteristics of DCM. Finally, several therapeutic compounds were predicted by CMap analysis, and the potential mechanism of chlorogenic acid (CGA) was investigated by molecular docking and molecular dynamics simulation. RESULTS Three DCM- and senescence-related characteristic genes (MME, GNMT and PLA2G2A) were ultimately identified through comprehensive transcriptome analysis, and were experimentally verified in the doxorubicin induced mouse DCM. Meanwhile, the established diagnostic model, derived from dataset analysis, showed ideal diagnostic performance for DCM. Immune cell infiltration analysis suggested dysregulation of inflammation in DCM, and the characteristic genes were significantly associated with invasive immune cells. Finally, based on the specific gene expression profile of DCM, several potential therapeutic compounds were predicted through CMap analysis. In addition, molecular docking and molecular dynamics simulations suggested that CGA could bind to the active pocket of MME protein. CONCLUSION Our study presents three characteristic genes (MME, PLA2G2A, and GNMT) and a novel senescence-based diagnostic nomogram, and discusses potential therapeutic compounds, providing new insights into the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Chong Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinying Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Jing
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Ma F, Liu J, Li S, Sun P. Effects of Lonicera japonica Extract with Different Contents of Chlorogenic Acid on Lactation Performance, Serum Parameters, and Rumen Fermentation in Heat-Stressed Holstein High-Yielding Dairy Cows. Animals (Basel) 2024; 14:1252. [PMID: 38672400 PMCID: PMC11047513 DOI: 10.3390/ani14081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This examined the effects of Lonicera japonica extract (LJE) with different chlorogenic acid (CGA) contents on lactation performance, antioxidant status and immune function and rumen fermentation in heat-stressed high-yielding dairy cows. In total, 45 healthy Chinese Holstein high-yielding dairy cows, all with similar milk yield, parity, and days in milk were randomly allocated to 3 groups: (1) the control group (CON) without LJE; (2) the LJE-10% CGA group, receiving 35 g/(d·head) of LJE-10% CGA, and (3) the LJE-20% CGA group, receiving 17.5 g/(d·head) of LJE-20% CGA. The results showed that the addition of LJE significantly reduced RT, and enhanced DMI, milk yield, milk composition, and improved rumen fermentation in high-yielding dairy cows experiencing heat stress. Through the analysis of the serum biochemical, antioxidant, and immune indicators, we observed a reduction in CREA levels and increased antioxidant and immune function. In this study, while maintaining consistent CGA content, the effects of addition from both types of LJE are similar. In conclusion, the addition of LJE at a level of 4.1 g CGA/(d·head) effectively relieved heat stress and improved the lactation performance of dairy cows, with CGA serving as the effective ingredient responsible for its anti-heat stress properties.
Collapse
Affiliation(s)
- Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhao Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| |
Collapse
|
4
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024; 16:924. [PMID: 38612964 PMCID: PMC11013850 DOI: 10.3390/nu16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
5
|
Rayzah M, Elderdery AY, Alzerwi NAN, Alzahrani B, Alsrhani A, Alsultan A, Idrees B, Rayzah F, Bakhsh Y, Alzahrani AM, Subbiah SK, Mok PL. Syzygium cumini (L.) Extract-Derived Green Titanium Dioxide Nanoparticles Induce Caspase-Dependent Apoptosis in Hepatic Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3174. [PMID: 37765338 PMCID: PMC10537597 DOI: 10.3390/plants12183174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023]
Abstract
An aqueous extract of Syzygium cumini seeds was utilized to green synthesize titanium dioxide nanoparticles (TiO2 NPs). UV-Visible, DLS, FTIR, XRD, FESEM, TEM, SAED, EDAX, and photoluminescence spectroscopy techniques were employed to characterize the prepared TiO2 nanoparticles. The rutile crystal structure of TiO2 NPs was revealed by XRD study. The TEM and FESEM images of the TiO2 NPs revealed an average particle size of 50-100 nm. We employed EDAX to investigate the elemental compositions of TiO2 NPs. The O-Ti-O stretching bands appeared in the FTIR spectrum of TiO2 NPs at wavenumbers of 495 cm-1. The absorption edge peaks of TiO2 NPs were found in the UV-vis spectra at 397 nm. The MTT study revealed that TiO2 NPs effectively inhibited the growth of liver cancer Hep3 and Hep-G2 cells. The results of the corresponding fluorescent staining assays showed that TiO2 NPs significantly increased ROS generation, decreased MMP, and induced apoptosis in both liver cancer Hep3 and Hep-G2 cells. TiO2 nanoparticles lessened SOD, CAT, and GSH levels while augmenting MDA contents in Hep3 and Hep-G2 cells. In both Hep3 and Hep-G2 cells treated with TiO2 NPs, the Bax, CytC, p53, caspase-3, -8, and -9 expressions were remarkably augmented, while Bcl-2 expression was reduced. Overall, these findings revealed that formulated TiO2 NPs treatment considerably inhibited growth and triggered apoptosis in Hep3 and HepG2 cells.
Collapse
Affiliation(s)
- Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Nasser A. N. Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, As Sulimaniyah 12233, Saudi Arabia
| | - Fares Rayzah
- Aseer Central Hospital, Abha 62523, Saudi Arabia
| | - Yaser Bakhsh
- Iman General Hospital, Riyadh 12211, Saudi Arabia
| | - Ahmed M. Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Suresh K. Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| |
Collapse
|
6
|
Gechev T, Petrov V. Plant Systems Biology in 2022 and Beyond. Int J Mol Sci 2022; 23:ijms23084159. [PMID: 35456977 PMCID: PMC9027235 DOI: 10.3390/ijms23084159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria;
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Correspondence: or
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria;
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University—Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Haque E, Kamal MS, Tahsin MR, Ahmed R, Choudhury JA, Choudhury AA, Kabir S, Amran MS, Uddin MS. Current Knowledge Regarding Pharmacological Profile and Chemical Constituents of Gynura procumbens. Curr Top Med Chem 2021; 21:2671-2686. [PMID: 34607545 DOI: 10.2174/1568026621666211004094902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
Gynura procumbens (Lour.) Merr. is a well-known plant used in the folkloric medicine in tropical Asian countries. The plant is prevalently employed by traditional healers in the treatment of diabetes, cancer, hypertension, inflammation, fever and skin disorders. Several scientific studies reported that, Gynura procumbens possesses considerable therapeutic value for the development of emerging treatment options. The diverse pharmacological effects of this plant are attributed to its vast phytoconstituent content. Different chemical classes including alkaloids, flavonoids, phenolics, steroids, proteins and polysaccharides have been isolated from this plant. In this review, we tried to explore the different aspects of Gynura procumbens as an established medicinal plant. The data gathered here give an indication that the plant Gynura procumbens is a good natural source of chemical compounds with different types of pharmacological actions and these chemical compounds can be used as model for the development of de novo therapeutic agents.
Collapse
Affiliation(s)
- Ehfazul Haque
- Molecular Pharmacology and Herbal Drug Research Laboratory, Department of Pharmaceutical chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000. Bangladesh
| | - Mir Shahriar Kamal
- Deaprtment of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000. Bangladesh
| | - Md Rafat Tahsin
- Department of Pharmaceutical Sciences, North South University, Dhaka. Bangladesh
| | - Raju Ahmed
- Molecular Pharmacology and Herbal Drug Research Laboratory, Department of Pharmaceutical chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000. Bangladesh
| | - Jakir Ahmed Choudhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000. Bangladesh
| | - Abu Asad Choudhury
- Molecular Pharmacology and Herbal Drug Research Laboratory, Department of Pharmaceutical chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000. Bangladesh
| | - Shaila Kabir
- Molecular Pharmacology and Herbal Drug Research Laboratory, Department of Pharmaceutical chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000. Bangladesh
| | - Md Shah Amran
- Molecular Pharmacology and Herbal Drug Research Laboratory, Department of Pharmaceutical chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000. Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| |
Collapse
|
8
|
Meng X, Li J, Li M, Wang H, Ren B, Chen J, Li W. Traditional uses, phytochemistry, pharmacology and toxicology of the genus Gynura (Compositae): A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114145. [PMID: 33932518 DOI: 10.1016/j.jep.2021.114145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynura cass., belonging to the tribe Senecoineae of the family Compositae, contains more than 40 accepted species as annual or perennial herbs, mainly distributed in Asia, Africa and Australia. Among them, 11 species are distributed in China. Many of the Gynura species have been used as traditional herbal medicines for the treatment of diabetes mellitus, rheumatism, eruptive fever, gastric ulcer, bleeding, abscesses, bruises, burning pains, rashes and herpes zoster infection in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Some of the species have been used as vegetables, tea beverage or ornamental plants by the local people. AIM OF THE STUDY A more comprehensive and in-depth review about the geographical distribution, traditional uses, chemical constituents and pharmacological activities as well as safe and toxicity of Gynura species has been summarized, hoping to provide a scientific basis for rational development and utilization as well as to foster further research of these important medicinal plant resources in the future. MATERIALS AND METHODS A review of the literature was performed based on the existing peer-reviewed researches by consulting scientific databases including Web of Science, PubMed, Elsevier, Google Scholar, SciFinder and China National Knowledge Infrastructure. RESULTS Many of the Gynura species have been phytochemically studied, which led to the isolation of more than 338 compounds including phenolics, flavonoids, alkaloids, terpenoids, steroids, cerebrosides, aliphatics and other compounds. Pharmacological studies in vitro and in vivo have also confirmed the various bioactive potentials of extracts or pure compounds from many Gynura plants, based on their claimed ethnomedicinal and anecdotal uses, including antioxidant, anti-inflammation, anticancer, antidiabetic, antihypertension, antibacterial and other activities. However, pyrrolizidine alkaloids (PAs) pose a threat to the medication safety and edible security of Gynura plants because of toxicity issues, requiring the need to pay great attention to this phenomenon. CONCLUSION The traditional uses, phytochemistry and pharmacology of Gynura species described in this review demonstrated that these plants contain a great number of active constituents and display a diversity of pharmacological activities. However, the mechanism of action, structure-activity relationship, potential synergistic effects and pharmacokinetics of these components need to be further elucidated. Moreover, further detailed research is urgently needed to explain the mechanisms of toxicity induced by PAs. In this respect, effective detoxification strategies need to be worked out, so as to support the safe and reasonable utilization of Gynura plant resources in the future.
Collapse
Affiliation(s)
- Xiuhua Meng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Mimi Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Hongjiang Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
9
|
Ryang J, Liu F, Ng TB. Purified antioxidant from the medicinal mushroom Phellinus pini protects rat H9c2 cell against H 2 O 2 -induced oxidative stress. J Food Biochem 2021; 45:e13818. [PMID: 34121192 DOI: 10.1111/jfbc.13818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
In this study, through the combination of AB-8 macroporous resin, Sephadex LH-20 column chromatography and semi-preparative HPLC, an antioxidant component was purified from the crude extract of Phellinus pini, thereby evaluating the cardioprotective effect of the fraction. As a result, total phenolic content of the 60% ethanol elution was increased by 4.8-fold after one run treatment on Sephadex LH-20 chromatography with gradient elution. After semi-preparative HPLC separation, the first peak (PP-S4-1) showed that inhibition ratio of erythrocyte hemolysis was 91.9%, and inhibition ratio of lipid peroxidation was also increased by 87.6%, at 50 μg/ml (p < .01). Based on the results of ESI-MS, 1 HNMR, 13 CNMR, and RP-HPLC compared to many published results, PP-S4-1was identified as catechin (MW 290.015, C15 H14 O6 ). The results showed that PP-S4-1 pretreatment made cell viability increased, and the generation of reactive oxygen species (ROS) inhibited. Meanwhile, PP-S4-1 remarkably decreased the fluorescence intensity of Ca2+ , and increased mitochondrial membrane potential (MMP; ΔΨm). In addition, PP-S4-1 could significantly inhibit the decrease of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity as well as the increase of MDA content in H9c2 cells induced by H2 O2 . Moreover, pretreatment with PP-S4-1 significantly improved the morphological changes and prevented H2 O2 -induced DNA damage. Therefore, this study clarifies the ability of PP-S4-1 to treat H9c2 cell oxidative stress damage induced by H2 O2 through its antioxidant effect. PRACTICAL APPLICATIONS: This research is not only helpful to elaborate the cardioprotective effect of Phellinus pini but also can contribute to the development of health foods or drug supplements for heart disease in the future. This is the first report dealing with phenolic component and cardioprotective activity of a medicinal mushroom P. pini belonging to the genus Phellinus.
Collapse
Affiliation(s)
- Junhyok Ryang
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,Department of Long Life Drug, Institute of Microbiology, The State Academy of Sciences, Pyongyang, DPR Korea
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Bari MS, Khandokar L, Haque E, Romano B, Capasso R, Seidel V, Haque MA, Rashid MA. Ethnomedicinal uses, phytochemistry, and biological activities of plants of the genus Gynura. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113834. [PMID: 33465439 DOI: 10.1016/j.jep.2021.113834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Gynura (Compositae) includes around 46 species and is native to the tropical regions of Southeast Asia, Africa and Australia. Many species within this genus are used in ethnomedicine to treat various disorders including skin diseases, injuries, ulcers, wounds, burns, sores, scalds, as well as for the management of diabetes, hypertension, hyperlipidemia, constipation, rheumatism, bronchitis and inflammation. AIM OF THE REVIEW This review is an attempt to provide scientific information regarding the ethnopharmacology, phytochemistry, pharmacological and toxicological profiles of Gynura species along with the nomenclature, distribution, taxonomy and botanical features of the genus. A critical analysis has been undertaken to understand the current and future pharmaceutical prospects of the genus. MATERIALS & METHODS Several electronic databases, including Google scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE and CNKI Scholar, were explored as information sources. The Plant List Index was used for taxonomical authentications. SciFinder and PubChem assisted in the verification of chemical structures. RESULTS A large number of phytochemical analyses on Gynura have revealed the presence of around 342 phytoconstituents including pyrrolizidine alkaloids, phenolic compounds, chromanones, phenylpropanoid glycosides, flavonoids, flavonoid glycosides, steroids, steroidal glycosides, cerebrosides, carotenoids, triterpenes, mono- and sesquiterpenes, norisoprenoids, oligosaccharides, polysaccharides and proteins. Several in vitro and in vivo studies have demonstrated the pharmacological potential of Gynura species, including antidiabetic, anti-oxidant, anti-inflammatory, antimicrobial, antihypertensive and anticancer activities. Although the presence of pyrrolizidine alkaloids within a few species has been associated with possible hepatotoxicity, most of the common species have a good safety profile. CONCLUSIONS The importance of the genus Gynura both as a prominent contributor in ethnomedicinal systems as well as a source of promising bioactive molecules is evident. Only about one fourth of Gynura species have been studied so far. This review aims to provide some scientific basis for future endeavors, including in-depth biological and chemical investigations into already studied species as well as other lesser known species of Gynura.
Collapse
Affiliation(s)
- Md Sazzadul Bari
- Department of Pharmacy, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Labony Khandokar
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh
| | - Ehfazul Haque
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Barbara Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; Drug & Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia.
| | - Mohammad Abdur Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
11
|
Chlorogenic acid enhances autophagy by upregulating lysosomal function to protect against SH-SY5Y cell injury induced by H 2O 2. Exp Ther Med 2021; 21:426. [PMID: 33747165 PMCID: PMC7967846 DOI: 10.3892/etm.2021.9843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy serves an important role in amyloid-β (Aβ) metabolism and τ processing and clearance in Alzheimer's disease. The progression of Aβ plaque accumulation and hyperphosphorylation of τ proteins are enhanced by oxidative stress. A hydrogen peroxide (H2O2) injury cell model was established using SH-SY5Y cells. Cells were randomly divided into normal, H2O2 and chlorogenic acid (5-caffeoylquinic acid; CGA) groups. The influence of CGA on cell viability was evaluated using a Cell Counting Kit-8 assay and cell death was assessed using Hoechst 33342 nuclear staining. Autophagy induction and fusion of autophagic vacuoles assays were performed using monodansylcadaverine staining. Additionally, SH-SY5Y cells expressing Ad-mCherry-green fluorescent protein-LC3B were established to detect autophagic flow. LysoTracker Red staining was used to evaluate lysosome function and LysoSensor™ Green staining assays were used to assess lysosomal acidification. The results demonstrated that CGA decreased the apoptosis rate, increased cell viability and improved cell morphology in H2O2-treated SH-SY5Y cells. Furthermore, CGA alleviated the accumulation of autophagic vacuoles, reduced the LC3BII/I ratio and decreased P62 levels, resulting in increased autophagic flux. Additionally, CGA upregulated lysosome acidity and increased the expression levels of cathepsin D. Importantly, these effects of CGA on H2O2-treated SH-SY5Y cells were mediated via the mTOR-transcription factor EB signaling pathway. These results indicated that CGA protected cells against H2O2-induced oxidative damage via the upregulation of autophagosomes, which promoted autophagocytic degradation and increased autophagic flux.
Collapse
|
12
|
Caffeic and Chlorogenic Acids Synergistically Activate Browning Program in Human Adipocytes: Implications of AMPK- and PPAR-Mediated Pathways. Int J Mol Sci 2020; 21:ijms21249740. [PMID: 33371201 PMCID: PMC7766967 DOI: 10.3390/ijms21249740] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Caffeic acid (CA) and chlorogenic acid (CGA) are phenolic compounds claimed to be responsible for the metabolic effects of coffee and tea consumption. Along with their structural similarities, they share common mechanisms such as activation of the AMP-activated protein kinase (AMPK) signaling. The present study aimed to investigate the anti-obesity potential of CA and CGA as co-treatment in human adipocytes. The molecular interactions of CA and CGA with key adipogenic transcription factors were simulated through an in silico molecular docking approach. The expression levels of white and brown adipocyte markers, as well as genes related to lipid metabolism, were analyzed by real-time quantitative PCR and Western blot analyses. Mechanistically, the CA/CGA combination induced lipolysis, upregulated AMPK and browning gene expression and downregulated peroxisome proliferator-activated receptor γ (PPARγ) at both transcriptional and protein levels. The gene expression profiles of the CA/CGA-co-treated adipocytes strongly resembled brown-like signatures. Major pathways identified included the AMPK- and PPAR-related signaling pathways. Collectively, these findings indicated that CA/CGA co-stimulation exerted a browning-inducing potential superior to that of either compound used alone which merits implementation in obesity management. Further, the obtained data provide additional insights on how CA and CGA modify adipocyte function, differentiation and lipid metabolism.
Collapse
|
13
|
Tan JN, Mohd Saffian S, Buang F, Jubri Z, Jantan I, Husain K, Mohd Fauzi N. Antioxidant and Anti-Inflammatory Effects of Genus Gynura: A Systematic Review. Front Pharmacol 2020; 11:504624. [PMID: 33328981 PMCID: PMC7734347 DOI: 10.3389/fphar.2020.504624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Gynura species have been used traditionally to treat various ailments, such as fever, pain, and to control blood glucose level. This systematic review critically discusses studies regarding Gynura species that exhibited antioxidant and anti-inflammatory effects, thus providing perspectives and instructions for future research of the plants as a potential source of new dietary supplements or medicinal agents. Methods: A literature search from internet databases of PubMed, Scopus, Science Direct, e-theses Online Service, and ProQuest was carried out using a combination of keywords such as "Gynura," "antioxidant," "anti-inflammatory," or other related words. Research articles were included in this study if they were experimental (in vitro and in vivo) or clinical studies on the antioxidant or anti-inflammatory effects of Gynura species and if they were articles published in English. Results: Altogether, 27 studies on antioxidant and anti-inflammatory effects of Gynura species were selected. The antioxidant effects of Gynura species were manifested by inhibition of reactive oxygen species production and lipid peroxidation, modulation of glutathione-related parameters, and enzymatic antioxidant production or activities. The anti-inflammatory effects of Gynura species were through the modulation of inflammatory cytokine production, inhibition of prostaglandin E2 and nitric oxide production, cellular inflammatory-related parameters, and inflammation in animal models. The potential anti-inflammatory signaling pathways modulated by Gynura species are glycogen synthase kinase-3, nuclear factor erythroid 2-related factor 2, PPARγ, MAPK, NF-κB, and PI3K/Akt. However, most reports on antioxidant and anti-inflammatory effects of the plants were on crude extracts, and the chemical constituents contributing to bioactivities were not clearly understood. There is a variation in quality of studies in terms of design, conduct, and interpretation, and in-depth studies on the underlying mechanisms involved in antioxidant and anti-inflammatory effects of the plants are in demand. Moreover, there is limited clinical study on antioxidant and anti-inflammatory effects of Gynura species. Conclusion: This review highlighted antioxidant and anti-inflammatory effects of genus Gynura and supported their traditional uses to treat oxidative stress and inflammatory-related diseases. This review is expected to catalyze further studies on genus Gynura. However, extensive preclinical data need to be generated from toxicity and pharmacokinetic studies before clinical studies can be pursued for their development into clinical medicines to treat oxidative stress and inflammatory conditions.
Collapse
Affiliation(s)
- Jiah Ning Tan
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shamin Mohd Saffian
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fhataheya Buang
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Khairana Husain
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxido-inflammatory stress and apoptotic responses. Chem Biol Interact 2020; 333:109333. [PMID: 33242462 DOI: 10.1016/j.cbi.2020.109333] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Arsenic, a major environmental pollutant of global concern, is well-known for its reproductive toxicity. In this study, the protective potential of chlorogenic acid (CGA), a caffeoylquinic acid isomer abundantly found in many plants, was investigated against sodium arsenite (NaAsO2)-induced testicular dysfunctions. Adult male Swiss mice were either administered NaAsO2 alone at 5 mg kg-1 or co-treated with CGA at 100 mg kg-1 or 200 mg kg-1 body weight for 4 weeks. Results showed that NaAsO2-treated mice exhibited marked declines in testes weight, sperm count, and viability accompanied by decreases in sexual hormonal levels. Moreover, NaAsO2 toxicity evoked exhaustion of antioxidant markers (SOD, CAT, GPx, GR, and GSH), down-regulation of Nrf2 (nuclear factor erythroid 2-related factor 2) gene expression level, and elevations in malondialdehyde. Further, elevations in inflammatory cytokines (IL-1, TNF-α, and IL-6) together with the up-regulation of pro-apoptotic biomarkers (Bax and caspase- 3) and down-regulation of anti-apoptotic Bcl-2 were observed in NaAsO2 intoxication. Immunohistochemical analysis of testis sections of NaAsO2-treated mice showed high caspase-3 expression. These findings were well supported with testicular histopathological examination. However, pretreatment of mice with CGA resulted in noteworthy improvements in testicular damage induced by arsenic in a dose-dependent manner possibly mediated by the Nrf2 signaling pathway. Conclusively, CGA counteracted arsenic-induced testicular injury through its antioxidant, anti-inflammatory, and anti-apoptotic properties. Therefore, CGA could serve as a favorable intervention in the alleviation of arsenic-induced reproductive toxicity.
Collapse
|
15
|
Shi P, Geng Q, Chen L, Du T, Lin Y, Lai R, Meng F, Wu Z, Miao X, Yao H. Schisandra chinensis bee pollen's chemical profiles and protective effect against H 2O 2-induced apoptosis in H9c2 cardiomyocytes. BMC Complement Med Ther 2020; 20:274. [PMID: 32912207 PMCID: PMC7487998 DOI: 10.1186/s12906-020-03069-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
Background Schisandra chinensis (Turcz.) Baill bee pollen extract (SCBPE) is often used as a functional food in China due to its good antioxidant property. However, its chemical compositions and effects on H9c2 cardiomyocytes against H2O2-induced cell injury still lacks of reports thus far. This study aimed to characterize the main components of SCBPE and investigate its protective effects against H2O2-induced H9c2 cardiomyocyte injury. Methods The main components of SCBPE were analyzed via ultraperformance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (UPLC–QTOF MS/MS). The three main nucleosides in SCBPE were quantitatively analyzed via ultraperformance liquid chromatography–diode array detection. Furthermore, the potential mechanism by which SCBPE exerts protective effects against H2O2-induced H9c2 cardiomyocyte injury was explored for the first time via cell survival rate measurements; cell morphological observation; myocardial superoxide dismutase (SOD) activity and malondialdehyde (MDA) and glutathione (GSH) level determination; flow cytometry; and quantitative polymerase chain reaction. Results Two carbohydrates, three nucleosides, and nine quinic acid nitrogen-containing derivatives in SCBPE were identified or tentatively characterized via UPLC–QTOF MS/MS. The nine quinic acid nitrogen-containing derivatives were first reported in bee pollen. The contents of uridine, guanosine, and adenosine were 2.4945 ± 0.0185, 0.1896 ± 0.0049, and 1.8418 ± 0.0157 μg/mg, respectively. Results of in vitro experiments showed that cell survival rate, myocardial SOD activity, and GSH level significantly increased and myocardial MDA level significantly decreased in SCBPE groups compared with those in H2O2 group. Cell morphology in SCBPE groups also markedly improved compared with that in H2O2 group. Results indicated that SCBPE protected H9c2 cardiomyocytes from H2O2-induced apoptosis by downregulating the mRNA expressions of Bax, cytochrome C, and caspase-3 and upregulating the Bcl-2 mRNA expression. Conclusions This study is the first to report that SCBPE could protect against oxidative stress injury and apoptosis in H2O2-injured H9c2 cells. Results indicated that the nucleosides and quinic acid nitrogen-containing derivatives could be the main substances that exert protective effects against H2O2-induced H9c2 cardiomyocyte injury.
Collapse
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianqian Geng
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lifu Chen
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyu Du
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Lin
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongcai Lai
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fei Meng
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Wu
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqing Miao
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
16
|
Wang P, Huang H, Chen B, Su Y, Shi P, Yao H. Systems Pharmacology Dissection of Mechanisms of Dengzhan Xixin Injection against Cardiovascular Diseases. Chem Pharm Bull (Tokyo) 2020; 68:837-847. [PMID: 32879224 DOI: 10.1248/cpb.c20-00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dengzhan Xixin injection (DZXXI), a herbal product prepared from a Chinese herb called Erigeron breviscapus, is a classical and traditional therapeutic for cadiovascular diseases (CVDs), including coronary heart disease (CHD), angina, and stroke, etc. However, its potential pharmacology mechanism against CVDs remains unclear. In this paper, a systems pharmacology-based strategy is presented for predicting drug targets and understanding therapeutic mechanisms of DZXXI against CVDs. The main ingredients were identified by HPLC-diode array detector (DAD). The target fishing was performed on the PharmMapper Server (http://lilab-ecust.cn/pharmmapper/). Potential targets were confirmed by two molecular docking tools, Sybyl-X 1.3 and Ledock to ensure the accuracy. The resulting target proteins were applied as baits to fish their related diseases and pathways from the molecular annotation system (MAS 3.0, http://bioinfo.capitalbio.com/mas3/) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/). Network generation and topological analysis were performed in Cytoscape 3.6.0. 15 main ingredients from DZXXI were identified. Forty five putative drug targets and 50 KEGG pathways, which have highly relevance to the therapeutic effects of DZXXI against CVDs, were then obtained. The systems analysis suggested that DZXXI could attenuate cardiac fibrosis, regulate cardiac contractility, and preserve heart function in adverse cardiac remodeling; meanwhile DZXXI also could have the function of activating blood circulation and dilating blood vessels. DZXXI exerts its therapeutic effects on CVDs possibly through multi-targets including CMA1, epidermal growth factor receptor (EGFR), phenylalanine-4-hydroxylase (PAH), SRC, F7, etc., and multi-pathways including Focal adhesion, mitogen-activated protein kinase (MAPK) signaling pathway, complement and coagulation cascades, Wnt signaling pathway, vascular endothelial growth factor (VEGF) signaling pathway, Renin-angiotensin system, etc.
Collapse
Affiliation(s)
- Panpan Wang
- Department of Traditional Chinese Medicine Resource, Fujian Agriculture and Forestry University.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Hui Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Ya Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource, Fujian Agriculture and Forestry University
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| |
Collapse
|
17
|
Trivedi R, Adhikary S, Kothari P, Ahmad N, Mittapelly N, Pandey G, Shukla M, Kumar S, Dev K, Choudhary D, Maurya R, Lal J, Mishra PR. Self-emulsifying formulation of Spinacia oleracea reduces the dose and escalates bioavailability of bioactive compounds to accelerate fracture repair in rats. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00190-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Spinach (Spinacia oleracea) is a rich source of flavonoids and therefore widely used therapeutically as an antioxidant agent in traditional medicine. The present study was undertaken to study the bone regenerating property of dried Spinacia oleracea extract (DSE) and self-emulsifying formulation of the extract (FDSE) on drill-hole model of fracture repair in rats.
Methods
0.8 mm hole was drilled in the diaphyseal region of femur in adult SD rats. DSE and formulated extract (FDSE) was administered orally and fractured femur was collected after treatment regimen. Micro-CT, transcriptional analysis and measurement of calcein intensity of callus formed at the injured site was performed to study the efficacy of the extract and formulation on bone regeneration. Further, compounds from extract were assessed for in-vitro osteoblast activity.
Results
Micro-architecture of the regenerated bone at injured site exhibited 26% (p < 0.001) and 35% (p < 0.01) increased BV/TV (bone volume /tissue volume) and Tb.N. (trabecular number) for DSE (500 mg.kg− 1). Further, FDSE exhibited similar augmentation in BV/TV (p < 0.01) and Tb. N (p < 0.01) parameters at dose of 250 mg.kg− 1. Analogous results were obtained from transcriptional analysis and calcein intensity at the fractured site. 3-O-Methylpatuletin, one of the compound isolated from the extract stimulated the differentiation and mineralization of primary osteoblast and depicted concentration dependent antagonizing effect of H2O2 in osteoblast apparently, minimizing ROS generation thus affectivity in fracture repair.
Conclusions
The present study showed that bone regenerating property of spinach was augmented by formulating extract to deliverable form and can be further studied to develop as therapeutic agent for fracture repair.
Graphical abstract
Collapse
|
18
|
Li L, Su C, Chen X, Wang Q, Jiao W, Luo H, Tang J, Wang W, Li S, Guo S. Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6464-6484. [PMID: 32441927 DOI: 10.1021/acs.jafc.0c01554] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorogenic acids (CGAs) have gained considerable attention as pervasive human dietary constituents with potential cardiovascular-preserving effects. The main sources include coffee, yerba mate, Eucommia ulmodies leaves, and Lonicerae Japonicae Flos. CGA consumption can reduce the risks of hypertension, atherosclerosis, heart failure, myocardial infarction, and other factors associated with cardiovascular risk, such as obesity and type 2 diabetes. This review recapitulates recent advances of CGAs in the cardiovascular-preserving effects, pharmacokinetics, sources, and safety. Emerging evidence indicates that CGAs exhibit circulatory guarding properties through the suppression of oxidative stress, leukocyte infiltration, platelet aggregation, platelet-leukocyte interactions, vascular remodeling, and apoptosis as well as the regulation of glucose and lipid metabolism and vasodilatory action in the cardiovascular system. CGAs exert these effects by acting on complex signaling networks, but the global mechanisms are still not clear. The oral bioavailability of CGA is poor, and there is a potential sensitization concern about CGA. The bioactive metabolites, systematic toxicity, and optimized structure are needed for further identification.
Collapse
Affiliation(s)
- Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
19
|
Chlorogenic acid supplementation improves skeletal muscle mitochondrial function in a rat model of resistance training. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00429-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Zhao Y, Jiang Y, Chen Y, Zhang F, Zhang X, Zhu L, Yao X. Dissection of mechanisms of Chinese medicinal formula Si-Miao-Yong-an decoction protects against cardiac hypertrophy and fibrosis in isoprenaline-induced heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112050. [PMID: 31265887 DOI: 10.1016/j.jep.2019.112050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Miao-Yong-An decoction (SMYAD) is a traditional Chinese herbal formulation. SMYAD first appeared in the Eastern Han Dynasty according to the "Shen Yi Mi Zhuan". Then the formula was recorded in the "Yan Fang Xin Bian" edited by medical scientist Bao Xiangao in the Qing Dynasty. This well-known prescription has been traditionally used for gangrene and vascular vasculitis. It is mainly used for cardiovascular and endocrine diseases in current clinical applications and research. AIM OF STUDY In this study, the potential mechanisms of SMYAD against cardiac fibrosis and hypertrophy in the β-adrenoceptor agonist isoprenaline induced heart failure model were investigated. MATERIALS AND METHODS The heart failure animal model was established via injected isoprenaline in rats. Echocardiography was used to detect the structure and function of the heart. HE staining and Masson's trichrome staining was performed to assess myocardial tissue morphology. The serum biochemical indexes were detected by dedicated biochemical kit. BNP was tested by ELISA kit. The levels of mRNA were detected by RT-qPCR. Cardiomyocyte morphology was assessed by immunofluorescence. Phosphorylated and total p38, Akt were analyzed by Western blot. The production of reactive oxygen species (ROS) was tested by CM-H2DCFDA probe. Formula identification of chemical constituents of SMYAD in plasma was disclosed through ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). RESULTS SMYAD was able to improve the heart function in ISO induced heart failure rat model via protecting rat from developing cardiac hypertrophy and fibrosis. SMYAD also decreased plasma expression of these biochemical indexes. It was found that SMYAD could regulate cardiac hypertrophy and fibrosis makers' mRNA levels in vitro and vivo. In addition, SMYAD inhibited the phosphorylation of p38 and Akt, which are key mediators in the pathological process of ISO-induced cardiac hypertrophy and myocardial fibrosis. It also showed that the components of SMYAD in rat plasma exerted myocardial cell protective activity. CONCLUSION In summary, SMYAD may comprise more than one active ingredient to the pursuit of combination therapies instead of specifically target a single disease-causing molecule. These experimental results suggest that SMYAD may be a potential drug candidate in diseases of cardiac hypertrophy and myocardial fibrosis caused by β-adrenoceptor abnormalities.
Collapse
Affiliation(s)
- Yuqian Zhao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yingnan Jiang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Yanmei Chen
- College of Pharmacy, Shihezi University, Xinjiang, 832003, China.
| | - Fengxiang Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Xue Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Xinsheng Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Cano M, Guerrero-Castilla A, Nabavi SM, Ayala A, Argüelles S. Targeting pro-senescence mitogen activated protein kinase (Mapk) enzymes with bioactive natural compounds. Food Chem Toxicol 2019; 131:110544. [PMID: 31201898 DOI: 10.1016/j.fct.2019.05.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Aging is a multifactorial universal process characterized by a gradual decrease in physiological and biochemical functions. Given that life expectancy is on the rise, a better understanding of molecular mechanisms of the aging process is necessary in order to develop anti-aging interventions. Uncontrolled cellular senescence promotes persistent inflammation and accelerates the aging process by decreasing tissue renewal, repair and regeneration. Senescence of immune cells, immunesenescence, is another hallmark of aging. Targeting pro-senescent enzymes increases survival and therefore the lifespan. Although the upregulation of Mitogen Activated Protein Kinases (MAPK) enzymes in aging is still controversial, increasing evidence shows that dysregulation of those enzymes are associated with biological processes that contribute to aging such as irreversible senescence. In this manuscript components of the MAPK pathway will be summarized, including extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38, as well as natural flavonoids, phenolic and diterpenoids with anti-senescence activity that shows positive effects on longevity and MAPK inhibition. Although more studies using additional aging models are needed, we suggest that these selected natural bioactive compounds that regulate MAPK enzymes and reduce senescent cells can be potentially used to improve longevity and prevent/treat age-related diseases.
Collapse
Affiliation(s)
- Mercedes Cano
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antonio Ayala
- Department of Biochemical and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| |
Collapse
|
22
|
Bosso H, Soares Arantes GEP, Barbalho SM, Guiguer ÉL, de Souza MDSS, Bueno PCDS, Chies AB, Oliveira PBD, Mendes CG, Araújo AC. Effects of Green and Ripe Coffee in the Metabolic Profile and Muscle Enzymes in Animals Practicing Physical Exercise. J Med Food 2019; 22:416-420. [DOI: 10.1089/jmf.2018.0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Henrique Bosso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | | | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
- Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília, Brazil
| | - Élen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
- Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília, Brazil
| | | | | | - Agnaldo Bruno Chies
- Department of Pharmacology, Marilia Faculty of Medicine, FAMEMA, Marília, Brazil
| | | | | | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| |
Collapse
|
23
|
Antioxidant and Cytoprotective Effects of the Di-O-Caffeoylquinic Acid Family: The Mechanism, Structure-Activity Relationship, and Conformational Effect. Molecules 2018; 23:molecules23010222. [PMID: 29361719 PMCID: PMC6017143 DOI: 10.3390/molecules23010222] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/06/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022] Open
Abstract
In this study, a series of di-O-caffeoylquinic acids (di-COQs) were systematically investigated for their antioxidant and cytoprotective effects towards •OH-damaged bone marrow-derived mesenchymal stem cells (bmMSCs). Five di-COQs were measured using a set of antioxidant assays. The results show that adjacent 4,5-Di-O-caffeoylquinic acid (4,5-COQ) and 3,4-di-O-caffeoylquinic acid (3,4-COQ) always gave lower IC50 values than did non-adjacent di-COQs. In the Fe2+-chelating assay, 4,5-COQ and 3,4-COQ presented greater UV-Vis spectra and darker colors than did non-adjacent di-COQs. In the UPLC-ESI-MS/MS analysis, no corresponding radical adduct formation (RAF) peak was found in the reaction products of di-COQs with PTIO•. In the MTT assay, all di-COQs (especially 1,5-COQ, 1,3-COQ, and 4,5-COQ) dose-dependently increased the cellular viabilities of •OH-damaged bmMSCs. Based on this evidence, we conclude that the five antioxidant di-COQs can protect bmMSCs from •OH-induced damage. Their antioxidant mechanisms may include electron-transfer (ET), H+-transfer, and Fe2+-chelating, except for RAF. Two adjacent di-COQs (4,5-COQ and 3,4-COQ) always possessed a higher antioxidant ability than the non-adjacent di-COQs (1,3-COQ, 1,5-COQ, and 3,5-COQ) in chemical models. However, non-adjacent 1,3-COQ and 1,5-COQ exhibited a higher cytoprotective effect than did adjacent di-COQs. These differences can be attributed to the relative positions of two caffeoyl moieties and, ultimately, to the conformational effect from the cyclohexane skeleton.
Collapse
|
24
|
Tian Y, Du YY, Shang H, Wang M, Sun ZH, Wang BQ, Deng D, Wang S, Xu XD, Sun GB, Sun XB. Calenduloside E Analogues Protecting H9c2 Cardiomyocytes Against H 2O 2-Induced Apoptosis: Design, Synthesis and Biological Evaluation. Front Pharmacol 2017; 8:862. [PMID: 29218010 PMCID: PMC5703861 DOI: 10.3389/fphar.2017.00862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
Modulation of apoptosis is therapeutically effective in cardiomyocytes damage. Calenduloside E (CE), a naturally occurring triterpenoid saponin, is a potent anti-apoptotic agent. However, little is known about its synthetic analogues on the protective effects in apoptosis of cardiomyocytes. The present research was performed to investigate the potential protective effect of CE analogues against H2O2-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. Sixteen novel CE anologues have been designed, synthesized and biological evaluation. Among the 16 CE anologues, as well as the positive control CE tested, compound 5d was the most effective in improving cardiomyocytes viability. Pretreatment with anologue 5d inhibited ROS generation, maintained the mitochondrial membrane potential and reduced apoptotic cardiomyocytes. Moreover, exposure to H2O2 significantly increased the levels of Bax, cleaved caspase-3, and cleaved PARP, and decreased the level of Bcl-2, resulting in cell apoptosis. Pretreatment with anologue 5d (0.02-0.5 μg/mL) dose-dependently upregulated antiapoptotic proteins and downregulated proapoptotic proteins mentioned above during H2O2-induced apoptosis. These results suggested that CE analogues provide protection to H9c2 cardiomyocytes against H2O2-induced oxidative stress and apoptosis, most likely via anti-apoptotic mechanism, and provided the basis for the further optimization of the CE analogues.
Collapse
Affiliation(s)
- Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Yang Du
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Shang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhong-Hao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao-Qi Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center of Research and Development on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Di Deng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center of Research and Development on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Shan Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Cho YH, Bahuguna A, Kim HH, Kim DI, Kim HJ, Yu JM, Jung HG, Jang JY, Kwak JH, Park GH, Kwon OJ, Cho YJ, An JY, Jo C, Kang SC, An BJ. Potential effect of compounds isolated from Coffea arabica against UV-B induced skin damage by protecting fibroblast cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:323-332. [DOI: 10.1016/j.jphotobiol.2017.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
|
26
|
Sun Y, Su Q, Li L, Wang X, Lu Y, Liang J. MiR-486 regulates cardiomyocyte apoptosis by p53-mediated BCL-2 associated mitochondrial apoptotic pathway. BMC Cardiovasc Disord 2017; 17:119. [PMID: 28486954 PMCID: PMC5424355 DOI: 10.1186/s12872-017-0549-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cardiomyocyte apoptosis is a common pathological manifestation that occurs in several heart diseases. This study aimed to explore the mechanism of microRNA-486 (miR-486) in cardiomyocyte apoptosis by interfering with the p53-activated BCL-2 associated mitochondrial pathway. METHODS miR-486 mimics and inhibitors were transfected into the primary cardiomyocytes of suckling Sprague-Dawley rat pups, and H2O2 was used to induce apoptosis. Flow cytometry and TUNEL were both used to detect cardiomyocyte apoptosis, while the relative mRNA transcript and protein levels of miR-486, p53, Bbc3, BCL-2, and cleaved caspase-3 were detected using RT-PCR and western blot analysis, respectively. RESULTS miR-486 overexpression significantly decreased the expressions of p53, Bbc3 and cleaved caspase-3 (P < 0.05), and BCL-2 expression was significantly increased (P < 0.05), which in turn caused a significant decrease in the rate of cardiomyocyte apoptosis (P < 0.05). In contrast, miR-486 silencing resulted in an elevated rate of cardiomyocyte apoptosis (P < 0.05). CONCLUSION miR-486 may regulate cardiomyocyte apoptosis via p53-mediated BCL-2 associated mitochondrial apoptotic pathway. Therefore, up-regulating miR-486 expression in cardiomyocytes can effectively reduce the activation of the BCL-2 associated mitochondrial apoptotic pathway, consequently protecting cardiomyocytes.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiang Su
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Xiantao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuanxi Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jiabao Liang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
27
|
Yasuda J, Okada M, Yamawaki H. T3 peptide, an active fragment of tumstatin, inhibits H 2O 2-induced apoptosis in H9c2 cardiomyoblasts. Eur J Pharmacol 2017; 807:64-70. [PMID: 28457922 DOI: 10.1016/j.ejphar.2017.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023]
Abstract
Tumstatin, a cleaved fragment of α3 chain of type IV collagen, is an endogenous anti-angiogenetic peptide. Although the expression level of tumstatin changes in the heart tissues of certain experimental cardiac disease models, its effect on cardiomyocytes has not been clarified. In this study, we examined the effects of T3 peptide, an active subfragment of tumstatin, on hydrogen peroxide (H2O2)-induced cell death in H9c2 cardiomyoblasts. Cell viability was examined by a cell counting assay. Staining using 4', 6-diamidino-2-phenylindole was performed to observe nuclear morphology. Western blotting was performed to examine cleaved caspase-3 expression. Mitochondrial membrane potential and morphology were detected by a Mito Tracker Red staining. Intracellular reactive oxygen species production was examined by 2', 7'-dichlorodihydrofluorescein diacetate staining. T3 peptide (300, 1000ng/ml) suppressed H2O2 (1mM)-induced cell death, apoptotic changes of nuclei and cleaved caspas-3 expression in a concentration-dependent manner. T3 peptide also inhibited H2O2-induced loss of mitochondrial membrane potential, mitochondrial fission and reactive oxygen species production. Cilengitide, an integrin αvβ3/αvβ5 inhibitor, prevents the inhibitory effect of T3 peptide on H2O2-induced reactive oxygen species production. In conclusion, T3 peptide inhibits H2O2-induced apoptosis at least partly via the inhibition of intracellular reactive oxygen species production through the action on integrin.
Collapse
Affiliation(s)
- Jumpei Yasuda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori 034-8628, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori 034-8628, Japan
| |
Collapse
|