1
|
Ang DA, Harmston N, Li Y. ATF4:p52 complex activates oncogenic enhancers in multiple myeloma via p300/CBP recruitment to regulate BACH1. Cancer Lett 2025; 623:217727. [PMID: 40250789 DOI: 10.1016/j.canlet.2025.217727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Multiple myeloma (MM) is a B-cell malignancy accounting for 20 % of all blood-associated cancers. MM patients with a poorer prognosis and high-risk stratification were previously observed to be causally linked to the constitutive activation of non-canonical NF-κB (ncNF-κB) pathway. Consistent with this, the ncNF-κB p52 transcription factor was earlier found to regulate the enhancer landscape of MM to potentiate oncogenic transcription. However, the mechanism by which aberrant p52 expression is involved in coordinating enhancer activity has not been well explored. In this study, we analysed H3K27ac ChIP-seq and ATAC-seq data from MM cell lines and patient samples to screen for putative transcription factors that cooperate with p52 to regulate enhancers activated in MM. We report that ATF4 interacts with p52 and together, this complex mediates the activity of a subset of MM-associated enhancers through the recruitment of histone acetyltransferases (HATs), p300 and CBP (CREB-binding protein). We also identified a ATF4:p52 regulated target gene BACH1 under the regulation of a proximal super-enhancer, which was found to drive oncogenesis in MM by promoting cell cycle progression and proliferation. Together, our findings provide further mechanistic insights into how aberrant enhancer activation observed in MM tumours could lead to disease progression.
Collapse
Affiliation(s)
- Daniel Aron Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Nathan Harmston
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
2
|
Cristóbal-Vargas S, Cuadrado M, Gutiérrez NC. MYC alterations in multiple myeloma: Genetic insights and prognostic impact. Neoplasia 2025; 66:101177. [PMID: 40375408 DOI: 10.1016/j.neo.2025.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
Multiple myeloma (MM) is a hematologic malignancy with high genetic complexity. The genetic alterations that drive MM have classically been classified as primary abnormalities, including IGH translocations and hyperdiploidy, and secondary abnormalities, mainly composed of 1q gains, 17p deletions and MYC rearrangements. Dysregulation of the MYC oncogene has been proposed as a key factor in disease progression from monoclonal gammopathy of undetermined significance (MGUS), smoldering MM and overt MM. MYC, a multifunctional transcription factor, is frequently activated in MM through various mechanisms, including translocations, amplifications, and overexpression, thereby contributing to the growth and survival of malignant plasma cells. The role of MYC abnormalities in the prognosis of MM remains controversial and continues to be overlooked in current prognostic indices for MM. The different methodologies used to detect MYC lesions may hinder the interpretation of the apparently contradictory results between studies analyzing the impact of these alterations on the survival of MM patients. On the other hand, the mouse models that best mimic the characteristics of human MM are those driven by MYC. In this review, we provide an overview of the MYC alterations described in MM, indicating the methodologies used to detect them and discussing their influence on patient prognosis. We also summarize the main characteristics of the genetically engineered mouse models driven by MYC. Finally, we assess the therapeutic potential of MYC inhibition in MM and the strategies currently approved for clinic use.
Collapse
Affiliation(s)
- Sara Cristóbal-Vargas
- Hematology Department, University Hospital of Salamanca, IBSAL, Salamanca, Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.
| | - Myriam Cuadrado
- Hematology Department, University Hospital of Salamanca, IBSAL, Salamanca, Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.
| | - Norma C Gutiérrez
- Hematology Department, University Hospital of Salamanca, IBSAL, Salamanca, Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Salamanca, Spain.
| |
Collapse
|
3
|
Guermouche H, Roynard P, Servoli F, Lestringant V, Quilichini B, Terré C, Defasque S, Roche-Lestienne C, Penther D, Daudignon A. Deciphering Genomic Complexity of Multiple Myeloma Using Optimized Optical Genome Mapping. J Mol Diagn 2025; 27:306-322. [PMID: 40148066 DOI: 10.1016/j.jmoldx.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 03/29/2025] Open
Abstract
The genomic evaluation of multiple myeloma in routine diagnostics involves isolating plasma cells expressing CD138, usually followed by fluorescence in situ hybridization analyses. However, cell sorting often yields a limited number of cells, restricting the number of probes that can be used and limiting the analysis to a few markers required for minimal prognostic classification. Optical genome mapping is a high-resolution technology capable of identifying structural variants and copy number variations across the entire genome; however, it currently requires 1 million cells. To overcome this constraint, an innovative strategy was implemented in this work based on mixing CD138-positive and CD138-negative fractions from the same patient, optimizing the use of available CD138-positive cells for genome-wide analysis. First, dilution experiments demonstrated that a 50% CD138-positive mix was sufficient to achieve complete detection of clonal structural and copy number variants, while establishing a detection threshold of 24% for copy number variants. Using this optimized protocol, 13 additional samples from 13 patients were analyzed. Optical genome mapping achieved 93% (13/15) concordance with fluorescence in situ hybridization for clonal anomalies and revealed >22 additional genomic variations not detected by fluorescence in situ hybridization. This strategy consolidated multiple analyses into a single test, minimized material requirements, and addressed critical prognostic and increasingly described anomalies, providing refined stratification for patients with multiple myeloma.
Collapse
Affiliation(s)
- Hélène Guermouche
- Institute of Medical Genetics, Lille University Hospital, Lille, France
| | - Pauline Roynard
- Institute of Medical Genetics, Lille University Hospital, Lille, France
| | - Francesca Servoli
- Institute of Medical Genetics, Lille University Hospital, Lille, France
| | - Valentin Lestringant
- Department of Biological Hematology, Amiens-Picardie University Hospital, Amiens, France
| | | | - Christine Terré
- Hematological Cytogenetics Laboratory, Versailles University Hospital, Le Chesnay, France
| | - Sabine Defasque
- Hematological Cytogenetics Sector, Cerba Laboratory, Saint-Ouen l'Aumône, France
| | - Catherine Roche-Lestienne
- Institute of Medical Genetics, Lille University Hospital, Lille, France; University Lille, Centre National de la Recherche Scientifique, Inserm, Lille University Hospital, Institut pour la Recherche sur le Cancer de Lille, UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | | | - Agnès Daudignon
- Institute of Medical Genetics, Lille University Hospital, Lille, France; Hematology and Immunology Laboratory, Valenciennes University Hospital, Valenciennes, France.
| |
Collapse
|
4
|
Rahmat M, Clement K, Alberge JB, Sklavenitis-Pistofidis R, Kodgule R, Fulco CP, Heilpern-Mallory D, Nilsson K, Dorfman D, Engreitz JM, Getz G, Pinello L, Ryan RJH, Ghobrial IM. Selective Enhancer Gain-of-Function Deregulates MYC Expression in Multiple Myeloma. Cancer Res 2024; 84:4173-4183. [PMID: 39312195 PMCID: PMC11649448 DOI: 10.1158/0008-5472.can-24-1440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 09/11/2024] [Indexed: 12/17/2024]
Abstract
MYC deregulation occurs in the majority of multiple myeloma cases and is associated with progression and worse prognosis. Enhanced MYC expression occurs in about 70% of patients with multiple myeloma, but it is known to be driven by translocation or amplification events in only ∼40% of myelomas. Here, we used CRISPR interference to uncover an epigenetic mechanism of MYC regulation whereby increased accessibility of a plasma cell-type-specific enhancer leads to increased MYC expression. This native enhancer activity was not associated with enhancer hijacking events but led to specific binding of cMAF, IRF4, and SPIB transcription factors that activated MYC expression in the absence of known genetic aberrations. In addition, focal amplification was another mechanism of activation of this enhancer in approximately 3.4% of patients with multiple myeloma. Together, these findings define an epigenetic mechanism of MYC deregulation in multiple myeloma beyond known translocations or amplifications and point to the importance of noncoding regulatory elements and their associated transcription factor networks as drivers of multiple myeloma progression. Significance: The discovery of a native developmental enhancer that sustains the expression of MYC in a subset of myelomas could help identify predictive biomarkers and therapeutic targets to improve the outcomes of patients with multiple myeloma.
Collapse
Affiliation(s)
- Mahshid Rahmat
- Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston MA, USA
| | - Kendell Clement
- Harvard Medical School, Boston MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston MA, USA
| | - Jean-Baptiste Alberge
- Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Romanos Sklavenitis-Pistofidis
- Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Rohan Kodgule
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Charles P. Fulco
- Broad Institute of MIT and Harvard, Cambridge MA, USA
- Current address: Bristol Myers Squibb, Cambridge MA, USA
| | | | - Katarina Nilsson
- Department of Biochemistry, Northeastern University, Boston MA, USA
| | - David Dorfman
- Department of Pathology, Brigham and Women's Hospital, Boston MA, USA
| | - Jesse M. Engreitz
- Broad Institute of MIT and Harvard, Cambridge MA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford CA, USA
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford CA, USA
| | - Gad Getz
- Harvard Medical School, Boston MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge MA, USA
- Cancer Center, Massachusetts General Hospital, Charlestown MA, USA
| | - Luca Pinello
- Harvard Medical School, Boston MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge MA, USA
| | | | - Irene M. Ghobrial
- Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston MA, USA
| |
Collapse
|
5
|
Giacomini A, Taranto S, Gazzaroli G, Faletti J, Capoferri D, Marcheselli R, Sciumè M, Presta M, Sacco A, Roccaro AM. The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma. J Exp Clin Cancer Res 2024; 43:294. [PMID: 39482742 PMCID: PMC11529022 DOI: 10.1186/s13046-024-03217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Among blood cancers, multiple myeloma (MM) represents the second most common neoplasm and is characterized by the accumulation and proliferation of monoclonal plasma cells within the bone marrow. Despite the last few decades being characterized by the development of different therapeutic strategies against MM, at present such disease is still considered incurable. Although MM is highly heterogeneous in terms of genetic and molecular subtypes, about 67% of MM cases are associated with abnormal activity of the transcription factor c-Myc, which has so far revealed a protein extremely difficult to target. We have recently demonstrated that activation of fibroblast growth factor (FGF) signaling protects MM cells from oxidative stress-induced apoptosis by stabilizing the oncoprotein c-Myc. Accordingly, secretion of FGF ligands and autocrine activation of FGF receptors (FGFR) is observed in MM cells and FGFR3 genomic alterations represent some 15-20% MM cases and are associated with poor outcome. Thus, FGF/FGFR blockade may represent a promising strategy to indirectly target c-Myc in MM. On this basis, the present review aims at providing an overview of recently explored connections between the FGF/FGFR system and c-Myc oncoprotein, sustaining the therapeutic potential of targeting the FGF/FGFR/c-Myc axis in MM by using inhibitors targeting FGF ligands or FGF receptors. Importantly, the provided findings may represent the rationale for using FDA approved FGFR TK inhibitors (i.e. Pemigatinib, Futibatinib, Erdafitinib) for the treatment of MM patients presenting with an aberrant activation of this axis.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Sara Taranto
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jessica Faletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Capoferri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Marcheselli
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Margherita Sciumè
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy.
| |
Collapse
|
6
|
Yoon J, Jeon T, Kwon JA, Yoon SY. Characterization of MYC Rearrangements in Multiple Myeloma: an Optical Genome Mapping Approach. Blood Cancer J 2024; 14:165. [PMID: 39304649 PMCID: PMC11415510 DOI: 10.1038/s41408-024-01147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Jung Yoon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Taesung Jeon
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jung-Ah Kwon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Soo-Young Yoon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Rees MJ, Kumar S. High-risk multiple myeloma: Redefining genetic, clinical, and functional high-risk disease in the era of molecular medicine and immunotherapy. Am J Hematol 2024; 99:1560-1575. [PMID: 38613829 DOI: 10.1002/ajh.27327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Multiple myeloma (MM) exhibits significant heterogeneity in its presentation, genetics, and treatment response. Despite therapeutic advances, some patients continue to relapse early (ER, <18-months) and rapidly cycle through therapies. Myriad prognostic factors have been identified and incorporated into risk stratification models; however, these produce discordant, often three-tiered outputs that fail to identify many patients destined for ER. Treatment strategies are increasingly focused on disease biology and trials enriched for high-risk (HR)MM, but consensus on the minimum required testing and a succinct, specific, and clinically meaningful definition for HRMM remains elusive. We review the risk-factors, definitions, and future directions for HRMM.
Collapse
Affiliation(s)
- Matthew J Rees
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Bolomsky A, Ceribelli M, Scheich S, Rinaldi K, Huang DW, Chakraborty P, Pham L, Wright GW, Hsiao T, Morris V, Choi J, Phelan JD, Holewinski RJ, Andresson T, Wisniewski J, Riley D, Pittaluga S, Hill E, Thomas CJ, Muppidi J, Young RM. IRF4 requires ARID1A to establish plasma cell identity in multiple myeloma. Cancer Cell 2024; 42:1185-1201.e14. [PMID: 38906156 PMCID: PMC11233249 DOI: 10.1016/j.ccell.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy that exploits transcriptional networks driven by IRF4. We employ a multi-omics approach to discover IRF4 vulnerabilities, integrating functional genomics screening, spatial proteomics, and global chromatin mapping. ARID1A, a member of the SWI/SNF chromatin remodeling complex, is required for IRF4 expression and functionally associates with IRF4 protein on chromatin. Deleting Arid1a in activated murine B cells disrupts IRF4-dependent transcriptional networks and blocks plasma cell differentiation. Targeting SWI/SNF activity leads to rapid loss of IRF4-target gene expression and quenches global amplification of oncogenic gene expression by MYC, resulting in profound toxicity to MM cells. Notably, MM patients with aggressive disease bear the signature of SWI/SNF activity, and SMARCA2/4 inhibitors remain effective in immunomodulatory drug (IMiD)-resistant MM cells. Moreover, combinations of SWI/SNF and MEK inhibitors demonstrate synergistic toxicity to MM cells, providing a promising strategy for relapsed/refractory disease.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristina Rinaldi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Papiya Chakraborty
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisette Pham
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, DCTD, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald J Holewinski
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Thorkell Andresson
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deanna Riley
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Hill
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Testa U, Pelosi E, Castelli G, Leone G. Recent Advances in The Definition of the Molecular Alterations Occurring in Multiple Myeloma. Mediterr J Hematol Infect Dis 2024; 16:e2024062. [PMID: 38984097 PMCID: PMC11232684 DOI: 10.4084/mjhid.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Multiple myeloma (MM) is a disorder of the monoclonal plasma cells and is the second most common hematologic malignancy. MM initiation and progression are dependent upon complex genomic abnormalities. The current pathogenic model of MM includes two types of primary events, represented by chromosome translocations or chromosome number alterations resulting in hyperdiploidy. These primary molecular events are observed both in MM and in monoclonal gammopathy, its premalignant precursor. Subsequent genetic events allow the progression of monoclonal gammopathy to MM and, together with primary events, contribute to the genetic complexity and heterogeneity of MM. Newer therapies have considerably improved patient outcomes; however, MM remains an incurable disease and most patients experience multiple relapses. The dramatic progresses achieved in the analysis of the heterogeneous molecular features of different MM patients allowed a comprehensive molecular classification of MM and the definition of an individualized prognostic model to predict an individual MM patient's response to different therapeutic options. Despite these progresses, prognostic models fail to identify a significant proportion of patients destined to early relapse. Treatment strategies are increasingly. Based on disease biology, trials are enriched for high-risk MMs, whose careful definition and categorization requires DNA sequencing studies.
Collapse
Affiliation(s)
- Ugo Testa
- Istituto Superiore di Sanità, Roma, Italy
| | | | | | - Giuseppe Leone
- Department of Radiological and Hematological Sciences, Catholic University, Rome, Italy
| |
Collapse
|
10
|
Malard F, Neri P, Bahlis NJ, Terpos E, Moukalled N, Hungria VTM, Manier S, Mohty M. Multiple myeloma. Nat Rev Dis Primers 2024; 10:45. [PMID: 38937492 DOI: 10.1038/s41572-024-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
Multiple myeloma (MM) is a haematological lymphoid malignancy involving tumoural plasma cells and is usually characterized by the presence of a monoclonal immunoglobulin protein. MM is the second most common haematological malignancy, with an increasing global incidence. It remains incurable because most patients relapse or become refractory to treatments. MM is a genetically complex disease with high heterogeneity that develops as a multistep process, involving acquisition of genetic alterations in the tumour cells and changes in the bone marrow microenvironment. Symptomatic MM is diagnosed using the International Myeloma Working Group criteria as a bone marrow infiltration of ≥10% clonal plasma cells, and the presence of at least one myeloma-defining event, either standard CRAB features (hypercalcaemia, renal failure, anaemia and/or lytic bone lesions) or biomarkers of imminent organ damage. Younger and fit patients are considered eligible for transplant. They receive an induction, followed by consolidation with high-dose melphalan and autologous haematopoietic cell transplantation, and maintenance therapy. In older adults (ineligible for transplant), the combination of daratumumab, lenalidomide and dexamethasone is the preferred option. If relapse occurs and requires further therapy, the choice of therapy will be based on previous treatment and response and now includes immunotherapies, such as bi-specific monoclonal antibodies and chimeric antigen receptor T cell therapy.
Collapse
Affiliation(s)
- Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nour Moukalled
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Salomon Manier
- Department of Hematology, Lille University Hospital and INSERM UMR-S1277 and CNRS UMR9020, Lille, France
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| |
Collapse
|
11
|
Jin X, Li H, Zhang D, Liu S, Song Y, Zhang F, Li Z, Zhuang J. Myc rearrangement redefines the stratification of high-risk multiple myeloma. Cancer Med 2024; 13:e7194. [PMID: 38845529 PMCID: PMC11157166 DOI: 10.1002/cam4.7194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Myc rearrangement (Myc-R) is a controversial factor linked to adverse outcomes in newly diagnosed multiple myeloma (NDMM). AIMS This study aimed to evaluate the impact of Myc-R on the prognosis of NDMM patients and its role in risk stratification compared with traditional high-risk cytogenetic abnormalities (HRCAs). MATERIALS & METHODS A total of 417 NDMM patients enrolled from May 2009 to September 2022 were included. Fluorescence in situ hybridization (FISH) was used to detect Myc-R and other Myc abnormalities (Myc-OA). Median progression-free survival (PFS) and overall survival (OS) were analyzed using Kaplan-Meier methods and log-rank tests. Multivariate Cox regression analysis was used to identify independent risk factors. RESULTS Myc-R was identified in 13.7% of patients, while 14.6% had Myc-OA. Patients with Myc-R had significantly shorter median PFS (15.9 months) and OS (25.1 months) compared with those with Myc-OA (24.5 months PFS; 29.8 months OS) and Myc-negative (Myc-N) status (29.8 months PFS, 29.8 months OS). Myc-R was independently associated with worse PFS and OS compared to Myc-OA. Patients with Myc-R alone had inferior median PFS (15.9 months vs. 28.1 months, p = 0.032) and OS (25.1 months vs. 61.2 months, p = 0.04) compared to those with traditional single HRCA. DISCUSSION The study suggests that traditional single HRCA may not significantly impact survival in NDMM patients. However, incorporating Myc rearrangement or traditional double/triple-hit HRCAs into the risk stratification model improves its predictive value, highlighting the importance of Myc rearrangement in risk assessment. CONCLUSION Myc rearrangement is an independent adverse prognostic factor in NDMM. The incorporation of Myc rearrangement or multiple HRCAs into risk stratification models improves their prognostic value, providing a novel perspective on high-risk factors in NDMM.
Collapse
Affiliation(s)
- Xianghong Jin
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
- Department of Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Hui Li
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Dingding Zhang
- Medical Research Center, State Key laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shuangjiao Liu
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Yuhang Song
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Fujing Zhang
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Ziping Li
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
12
|
Lai G, De Grossi F, Catusi I, Pesce E, Manfrini N. Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance. Cancers (Basel) 2024; 16:1706. [PMID: 38730656 PMCID: PMC11083040 DOI: 10.3390/cancers16091706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
FAM46C is a well-established tumour suppressor with a role that is not completely defined or universally accepted. Although FAM46C expression is down-modulated in several tumours, significant mutations in the FAM46C gene are only found in multiple myeloma (MM). Consequently, its tumour suppressor activity has primarily been studied in the MM context. However, emerging evidence suggests that FAM46C is involved also in other cancer types, namely colorectal, prostate and gastric cancer and squamous cell and hepatocellular carcinoma, where FAM46C expression was found to be significantly reduced in tumoural versus non-tumoural tissues and where FAM46C was shown to possess anti-proliferative properties. Accordingly, FAM46C was recently proposed to function as a pan-cancer prognostic marker, bringing FAM46C under the spotlight and attracting growing interest from the scientific community in the pathways modulated by FAM46C and in its mechanistic activity. Here, we will provide the first comprehensive review regarding FAM46C by covering (1) the intracellular pathways regulated by FAM46C, namely the MAPK/ERK, PI3K/AKT, β-catenin and TGF-β/SMAD pathways; (2) the models regarding its mode of action, specifically the poly(A) polymerase, intracellular trafficking modulator and inhibitor of centriole duplication models, focusing on connections and interdependencies; (3) the regulation of FAM46C expression in different environments by interferons, IL-4, TLR engagement or transcriptional modulators; and, lastly, (4) how FAM46C expression levels associate with increased/decreased tumour cell sensitivity to anticancer agents, such as bortezomib, dexamethasone, lenalidomide, pomalidomide, doxorubicin, melphalan, SK1-I, docetaxel and norcantharidin.
Collapse
Affiliation(s)
- Giancarlo Lai
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Federica De Grossi
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Ilaria Catusi
- SC Clinical Pathology, SS Medical Genetics Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
13
|
Chen X, Varma G, Davies F, Morgan G. Approach to High-Risk Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:497-510. [PMID: 38195306 DOI: 10.1016/j.hoc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Improving the outcome of high-risk myeloma (HRMM) is a key therapeutic aim for the next decade. To achieve this aim, it is necessary to understand in detail the genetic drivers underlying this clinical behavior and to target its biology therapeutically. Advances have already been made, with a focus on consensus guidance and the application of novel immunotherapeutic approaches. Cases of HRMM are likely to have impaired prognosis even with novel strategies. However, if disease eradication and minimal disease states are achieved, then cure may be possible.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Gaurav Varma
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Faith Davies
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Gareth Morgan
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
14
|
Tonon G. Myeloma and DNA damage. Blood 2024; 143:488-495. [PMID: 37992215 DOI: 10.1182/blood.2023021384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT DNA-damaging agents have represented the first effective treatment for the blood cancer multiple myeloma, and after 65 years since their introduction to the clinic, they remain one of the mainstay therapies for this disease. Myeloma is a cancer of plasma cells. Despite exceedingly slow proliferation, myeloma cells present extended genomic rearrangements and intense genomic instability, starting at the premalignant stage of the disease. Where does such DNA damage stem from? A reliable model argues that the powerful oncogenes activated in myeloma as well the phenotypic peculiarities of cancer plasma cells, including the dependency on the proteasome for survival and the constant presence of oxidative stress, all converge on modulating DNA damage and repair. Beleaguered by these contraposing forces, myeloma cells survive in a precarious balance, in which the robust engagement of DNA repair mechanisms to guarantee cell survival is continuously challenged by rampant genomic instability, essential for cancer cells to withstand hostile selective pressures. Shattering this delicate equilibrium has been the goal of the extensive use of DNA-damaging agents since their introduction in the clinic, now enriched by novel approaches that leverage upon synthetic lethality paradigms. Exploiting the impairment of homologous recombination caused by myeloma genetic lesions or treatments, it is now possible to design therapeutic combinations that could target myeloma cells more effectively. Furthermore, DNA-damaging agents, as demonstrated in solid tumors, may sensitize cells to immune therapies. In all, targeting DNA damage and repair remains as central as ever in myeloma, even for the foreseeable future.
Collapse
Affiliation(s)
- Giovanni Tonon
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology and Center for Omics Sciences, Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
De Wilde S, Plawny L, Berchem G. Real-world experience with isatuximab in the treatment of relapsed-refractory multiple myeloma: a case series from the Grand Duchy of Luxembourg. Hematology 2023; 28:2182098. [PMID: 36880781 DOI: 10.1080/16078454.2023.2182098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND & OBJECTIVE Anti-CD38 targeting has become an important pillar of the treatment for patients with multiple myeloma (MM). This evolution was spearheaded by daratumumab, but more recently isatuximab became the second CD38-directed monoclonal antibody to receive EMA approval for the treatment of patients with relapsed/refractory (RR) MM. In recent years, real-world studies have become increasingly important to confirm and solidify the clinical potential of novel anti-myeloma therapies. METHODS This article describes the real-world experience with isatuximab-based therapy in a selection of four RRMM patients treated with an isatuximab-based treatment regimen in the Grand Duchy of Luxembourg. RESULTS Three of the four cases described in this article consist of heavily pretreated patients who were previously exposed to daratumumab-based therapy. Interestingly, the isatuximab-based therapy provided clinical benefit to all three of these patients illustrating that prior exposure to an anti-CD38 mAb does not preclude a response to isatuximab. As such, these findings further support the design of larger prospective studies looking into the impact of prior daratumumab use on the efficacy of isatuximab-based therapy. In addition, two of the cases included in this report displayed renal insufficiency and the experience with isatuximab in these patients further supports the use of this agent in this setting. CONCLUSION the clinical cases described illustrate the clinical potential of isatuximab-based treatment for RRMM patient in a real-world setting.
Collapse
Affiliation(s)
- Sigrid De Wilde
- Service d'Hémato-Oncologie, Centre Hospitalier Luxembourg, Luxembourg City, Luxembourg
| | - Laurent Plawny
- Service d'Hémato-Oncologie, Centre Hospitalier Luxembourg, Luxembourg City, Luxembourg
| | - Guy Berchem
- Service d'Hémato-Oncologie, Centre Hospitalier Luxembourg, Luxembourg City, Luxembourg
| |
Collapse
|
16
|
Iyshwarya BK, Ramakrishnan V. A study to identify novel biomarkers associated with multiple myeloma. SIBERIAN JOURNAL OF ONCOLOGY 2023; 22:134-144. [DOI: 10.21294/1814-4861-2023-22-5-134-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background. multiple myeloma (mm) is a plasma cell cancer that affects white blood cells. plasma cells from the bone marrow grow abnormally, as a consequence of which patients have high amounts of monoclonal immunoglobulin in their blood and urine, poor renal function, and recurring infections due to this condition. osteolytic bone lesions and immunodeficiency also impact multiple myeloma patients’ longevity and quality of life. The disease accounts for 13 % of all hematological malignancies worldwide, making it the second most common blood cancer.Material and Methods. The studies investigating mm biomarkers from 2000 to 2021 are collected from various databases. “multiple myeloma”, “biomarkers”, “genetic markers”, “prognostic markers”, “epidemiology of multiple myeloma”, and “risk factors for multiple myeloma” are the key phrases utilized to gather the articles.Results. The scientific and medical research progressed into mm, and the number of cases increased over time and continues to rise, prompting researchers and clinicians to discover new consequences of the disease and new markers for prognosis, diagnosis, detection, and treatment of cancer in the earliest stages. Prognostic and predictive signs for illness recurrence and response to medication may be detected adequately by innovative potential biomarkers, which are more accurate than current approaches.Conclusion. treatment for multiple myeloma includes a variety of chemotherapeutic medicines, including immune modulators and proteasome inhibitors; however, most patients still experience recurrence after completing treatment. There have been numerous novel techniques for managing multiple myeloma, and this review summarises the most commonly used and the new ones that have appeared in the previously published articles.
Collapse
|
17
|
Daudignon A, Cuccuini W, Bracquemart C, Godon C, Quilichini B, Penther D. Cytogenetics in the management of multiple Myeloma: The guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103427. [PMID: 38035476 DOI: 10.1016/j.retram.2023.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. Despite considerable advances in the treatment, MM is considered an incurable chronic disease with a very heterogeneous prognosis, mostly depending on genomic alterations whose complexity evolves over time. The cytogenetic analysis of MM is performed on CD138+ sorted PCs, in order to detect the following high risk cytogenetic abnormalities: t(4;14), 17p/TP53 deletion, 1q21 gain/amplification, 1p32 deletion, as well as t(11;14) because of its therapeutic implication. This minimal panel can be enlarged to detect other recurrent abnormalities, according to the prognostic score chosen by the laboratory. Although the knowledge of the genetic landscape of MM is evolving rapidly with improved molecular technologies, risk scores remain to be refined as they require more time for consensual validation. The GFCH present here the overview of genomics alterations identified in MM and related PCs diseases associated with their prognostic factor, when available, and recommendations from an expert group for identification and characterization of those alterations. This work is the update of previous 2016 recommendations.
Collapse
Affiliation(s)
- Agnès Daudignon
- Institut de Génétique Médicale - Hôpital Jeanne de Flandre - CHU de Lille, Lille, France
| | - Wendy Cuccuini
- Laboratoire d'hématologie, Hôpital Saint-Louis -Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Claire Bracquemart
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Structure Fédérative d'Oncogénétique cyto-moléculaire (MOCAE), Caen, France
| | - Catherine Godon
- Laboratoire d'Hématologie Biologique, CHU Nantes, Nantes, France
| | | | | |
Collapse
|
18
|
Kent D, Marchetti L, Mikulasova A, Russell LJ, Rico D. Broad H3K4me3 domains: Maintaining cellular identity and their implication in super-enhancer hijacking. Bioessays 2023; 45:e2200239. [PMID: 37350339 DOI: 10.1002/bies.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.
Collapse
Affiliation(s)
- Daniel Kent
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Letizia Marchetti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Aneta Mikulasova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lisa J Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Rico
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
20
|
Stephenson-Gussinye A, Furlan-Magaril M. Chromosome conformation capture technologies as tools to detect structural variations and their repercussion in chromatin 3D configuration. Front Cell Dev Biol 2023; 11:1219968. [PMID: 37457299 PMCID: PMC10346842 DOI: 10.3389/fcell.2023.1219968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
3D genome organization regulates gene expression in different physiological and pathological contexts. Characterization of chromatin structure at different scales has provided information about how the genome organizes in the nuclear space, from chromosome territories, compartments of euchromatin and heterochromatin, topologically associated domains to punctual chromatin loops between genomic regulatory elements and gene promoters. In recent years, chromosome conformation capture technologies have also been used to characterize structural variations (SVs) de novo in pathological conditions. The study of SVs in cancer, has brought information about transcriptional misregulation that relates directly to the incidence and prognosis of the disease. For example, gene fusions have been discovered arising from chromosomal translocations that upregulate oncogenes expression, and other types of SVs have been described that alter large genomic regions encompassing many genes. However, studying SVs in 2D cannot capture all their regulatory implications in the genome. Recently, several bioinformatic tools have been developed to identify and classify SVs from chromosome conformation capture data and clarify how they impact chromatin structure in 3D, resulting in transcriptional misregulation. Here, we review recent literature concerning bioinformatic tools to characterize SVs from chromosome conformation capture technologies and exemplify their vast potential to rebuild the 3D landscape of genomes in cancer. The study of SVs from the 3D perspective can produce essential information about drivers, molecular targets, and disease evolution.
Collapse
|
21
|
Tang ASO, Ahmad Asnawi AW, Koh AZY, Chong SL, Liew PK, Selvaratnam V, Md Fauzi A, Lau NS, Tan SM. Plasma Cell Leukemia with Successful Upfront Venetoclax in Combination with Allogeneic Transplantation. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e938868. [PMID: 36882990 PMCID: PMC10009647 DOI: 10.12659/ajcr.938868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND Plasma cell leukemia (PCL) is an aggressive form of plasma cell neoplasm. We report the first case of primary PCL successfully treated with upfront novel agents consisting of Venetoclax and daratumumab in combination with intensive chemotherapy and allogeneic transplantation. CASE REPORT A 59-year-old woman presented with epistaxis, gum bleeding, and blurred vision. On examination, she appeared pale, with multiple petechiae and hepatomegaly. Fundoscopy revealed retinal hemorrhages. Laboratory investigations revealed bicytopenia and leukocytosis, with mild coagulopathy and hypofibrinogenemia. Elevated globulin and calcium levels were also observed. Serum protein electrophoresis demonstrated IgG lambda paraproteinemia, with a serum-free light chain kappa-to-lambda ratio of 0.074. A skeletal survey revealed the presence of lytic lesions. Bone marrow investigations confirmed the presence of lambda-light-chain-restricted clonal plasma cells. FISH detected t(11;14) and 17p13.1 deletion. Therefore, a final diagnosis of primary PCL was made. The patient received 1 cycle of bortezomib, cyclophosphamide, and dexamethasone (VCD) and 5 cycles of Venetoclax-VCD, followed by an unsuccessful stem cell mobilization. One cycle of daratumumab in combination with bortezomib, lenalidomide, and dexamethasone (VRD) was then given. The patient achieved complete remission. She underwent allogeneic stem cell transplantation of an HLA-matched sibling donor. Post-transplant marrow assessment showed disease remission and absence of t(11;14) and 17p deletions. She was administered pamidronate and lenalidomide maintenance. She remained clinically well with a good performance status and no active graft-versus-host disease 18 months after transplant. CONCLUSIONS The success of our patient in achieving complete remission has highlighted the efficacy and safety of this novel therapy in the front-line management of PCL.
Collapse
Affiliation(s)
- Andy Sing Ong Tang
- Hematology Department, Ampang Hospital, Ampang, Ministry of Health, Malaysia
| | - Asral Wirda Ahmad Asnawi
- Hematology Department, Ampang Hospital, Ampang, Ministry of Health, Malaysia.,Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Negeri Sembilan, Ministry of Health, Malaysia
| | - Alex Zhi Yang Koh
- Hematology Department, Ampang Hospital, Ampang, Ministry of Health, Malaysia
| | - Siew Lian Chong
- Hematology Department, Ampang Hospital, Ampang, Ministry of Health, Malaysia
| | - Pek Kuen Liew
- Hematology Department, Ampang Hospital, Ampang, Ministry of Health, Malaysia
| | - Veena Selvaratnam
- Hematology Department, Ampang Hospital, Ampang, Ministry of Health, Malaysia
| | - Alina Md Fauzi
- Hematology Department, Ampang Hospital, Ampang, Ministry of Health, Malaysia.,Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Negeri Sembilan, Ministry of Health, Malaysia
| | - Ngee Siang Lau
- Hematology Department, Ampang Hospital, Ampang, Ministry of Health, Malaysia
| | - Sen Mui Tan
- Hematology Department, Ampang Hospital, Ampang, Ministry of Health, Malaysia
| |
Collapse
|
22
|
Fitzpatrick MJ, Murali MR, Nardi V. Molecular Diagnostics of Plasma Cell Neoplasms. Surg Pathol Clin 2023; 16:401-410. [PMID: 37149365 DOI: 10.1016/j.path.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Genetic characterization of myeloma at diagnosis by interphase fluorescence in situ hybridization and next-generation sequencing (NGS) can assist with risk stratification and treatment planning. Measurable residual disease (MRD) status after treatment, as evaluated by next-generation flow cytometry or NGS on bone marrow aspirate material, is one of the most important predictors of prognosis. Less-invasive tools for MRD assessment such as liquid biopsy approaches have also recently emerged as potential alternatives.
Collapse
|
23
|
Hao Y, Zhang S, Shao C, Li J, Zhao G, Zhang DE, Fu XD. ZetaSuite: computational analysis of two-dimensional high-throughput data from multi-target screens and single-cell transcriptomics. Genome Biol 2022; 23:162. [PMID: 35879727 PMCID: PMC9310463 DOI: 10.1186/s13059-022-02729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Two-dimensional high-throughput data have become increasingly common in functional genomics studies, which raises new challenges in data analysis. Here, we introduce a new statistic called Zeta, initially developed to identify global splicing regulators from a two-dimensional RNAi screen, a high-throughput screen coupled with high-throughput functional readouts, and ZetaSuite, a software package to facilitate general application of the Zeta statistics. We compare our approach with existing methods using multiple benchmarked datasets and then demonstrate the broad utility of ZetaSuite in processing public data from large-scale cancer dependency screens and single-cell transcriptomics studies to elucidate novel biological insights.
Collapse
Affiliation(s)
- Yajing Hao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shuyang Zhang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Junhui Li
- , 29 Rosedale Ave, MA 01545, Shrewsbury, USA
| | - Guofeng Zhao
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dong-Er Zhang
- Moores Cancer Center, Department of Biological Sciences, Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
24
|
Sudha P, Ahsan A, Ashby C, Kausar T, Khera A, Kazeroun MH, Hsu CC, Wang L, Fitzsimons E, Salminen O, Blaney P, Czader M, Williams J, Abu Zaid MI, Ansari-Pour N, Yong KL, van Rhee F, Pierceall WE, Morgan GJ, Flynt E, Gooding S, Abonour R, Ramasamy K, Thakurta A, Walker BA. Myeloma Genome Project Panel is a Comprehensive Targeted Genomics Panel for Molecular Profiling of Patients with Multiple Myeloma. Clin Cancer Res 2022; 28:2854-2864. [PMID: 35522533 PMCID: PMC9250632 DOI: 10.1158/1078-0432.ccr-21-3695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE We designed a comprehensive multiple myeloma targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. EXPERIMENTAL DESIGN The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNA). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical FISH (translocations), multiplex ligation probe analysis (MLPA; CNAs), whole-genome sequencing (WGS; CNAs, mutations, translocations), or droplet digital PCR (ddPCR) of known standards (mutations). RESULTS Canonical immunoglobulin heavy chain translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for 1 patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2 = 0.969. Variant allele frequency (VAF) for 74 mutations were compared between sequencing and ddPCR with concordance of R2 = 0.9849. CONCLUSIONS In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost-effective, comprehensive, clinically actionable, and can be routinely deployed to assist risk stratification at diagnosis or posttreatment to guide sequencing of therapies.
Collapse
Affiliation(s)
- Parvathi Sudha
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Aarif Ahsan
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Cody Ashby
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tasneem Kausar
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Akhil Khera
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Mohammad H. Kazeroun
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Chih-Chao Hsu
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Lin Wang
- Department of Pathology and Laboratory Research, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | | | - Outi Salminen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Patrick Blaney
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Magdalena Czader
- Department of Pathology and Laboratory Research, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Jonathan Williams
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Mohammad I. Abu Zaid
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Naser Ansari-Pour
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kwee L. Yong
- Cancer Institute, University College London, London, United Kingdom
| | - Frits van Rhee
- Myeloma Center, Winthrop P. Rockefeller Cancer institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Gareth J. Morgan
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Erin Flynt
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Sarah Gooding
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Center for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | - Rafat Abonour
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Karthik Ramasamy
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Center for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Anjan Thakurta
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
- Oxford Center for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Brian A. Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
25
|
Hagen P, Sellin M, Berg S, Zhang J. Increasing genomic discovery in newly diagnosed multiple myeloma: defining disease biology and its correlation to risk. Ann Hematol 2022; 101:1407-1420. [PMID: 35585246 PMCID: PMC9756633 DOI: 10.1007/s00277-022-04856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023]
Abstract
Our understanding of MM genomics has expanded rapidly in the past 5-10 years as a consequence of cytogenetic analyses obtained in routine clinical practice as well as the ability to perform whole-exome/genome sequencing and gene expression profiling on large patient data sets. This knowledge has offered new insights into disease biology and is increasingly defining high-risk genomic patterns. In this manuscript, we present a thorough review of our current knowledge of MM genomics. The epidemiology and biology of chromosomal abnormalities including both copy number abnormalities and chromosomal translocation are described in full with a focus on those most clinically impactful such as 1q amplification and del(17p) as well as certain chromosome 14 translocations. A review of our ever-expanding knowledge of genetic mutations derived from recent whole-genome/exome data sets is then reviewed including those that drive disease pathogenesis from precursor states as well as those that may impact clinical outcomes. We then transition and attempt to elucidate how both chromosomal abnormalities and gene mutations are evolving our understanding of disease risk. We conclude by offering our perspectives moving forward as to how we might apply whole-genome/exome-level data in addition to routine cytogenetic analyses to improve patient outcomes as well as further knowledge gaps that must be addressed.
Collapse
Affiliation(s)
- Patrick Hagen
- Department of Hematology/Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mark Sellin
- Department of Hematology/Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Stephanie Berg
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA,Department of Pathology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA
| |
Collapse
|
26
|
Linked-read whole-genome sequencing resolves common and private structural variants in multiple myeloma. Blood Adv 2022; 6:5009-5023. [PMID: 35675515 PMCID: PMC9631623 DOI: 10.1182/bloodadvances.2021006720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/31/2022] [Indexed: 01/18/2023] Open
Abstract
Linked-read WGS can be performed without DNA purification and allows for resolution of the diverse structural variants found in MM. Linked-read WGS can, as a standalone assay, provide comprehensive genetics in myeloma and other diseases with complex genomes.
Multiple myeloma (MM) is an incurable and aggressive plasma cell malignancy characterized by a complex karyotype with multiple structural variants (SVs) and copy-number variations (CNVs). Linked-read whole-genome sequencing (lrWGS) allows for refined detection and reconstruction of SVs by providing long-range genetic information from standard short-read sequencing. This makes lrWGS an attractive solution for capturing the full genomic complexity of MM. Here we show that high-quality lrWGS data can be generated from low numbers of cells subjected to fluorescence-activated cell sorting (FACS) without DNA purification. Using this protocol, we analyzed MM cells after FACS from 37 patients with MM using lrWGS. We found high concordance between lrWGS and fluorescence in situ hybridization (FISH) for the detection of recurrent translocations and CNVs. Outside of the regions investigated by FISH, we identified >150 additional SVs and CNVs across the cohort. Analysis of the lrWGS data allowed for resolution of the structure of diverse SVs affecting the MYC and t(11;14) loci, causing the duplication of genes and gene regulatory elements. In addition, we identified private SVs causing the dysregulation of genes recurrently involved in translocations with the IGH locus and show that these can alter the molecular classification of MM. Overall, we conclude that lrWGS allows for the detection of aberrations critical for MM prognostics and provides a feasible route for providing comprehensive genetics. Implementing lrWGS could provide more accurate clinical prognostics, facilitate genomic medicine initiatives, and greatly improve the stratification of patients included in clinical trials.
Collapse
|
27
|
High-risk disease in newly diagnosed multiple myeloma: beyond the R-ISS and IMWG definitions. Blood Cancer J 2022; 12:83. [PMID: 35637223 PMCID: PMC9151761 DOI: 10.1038/s41408-022-00679-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM) is an acquired malignant plasma cell disorder that develops late in life. Although progression free and overall survival has improved across all age, race, and ethnic groups, a subset of patients have suboptimal outcomes and are labeled as having high risk disease. A uniform approach to risk in NDMM remains elusive despite several validated risk stratification systems in clinical use. While we attempt to capture risk at diagnosis, the reality is that many important prognostic characteristics remain ill-defined as some patients relapse early who were defined as low risk based on their genomic profile at diagnosis. It is critical to establish a definition of high risk disease in order to move towards risk-adapted treatment approaches. Defining risk at diagnosis is important to both effectively design future clinical trials and guide which clinical data is needed in routine practice. The goal of this review paper is to summarize and compare the various established risk stratification systems, go beyond the R-ISS and international myeloma working group risk stratifications to evaluate specific molecular and cytogenetic abnormalities and how they impact prognosis independently. In addition, we explore the wealth of new genomic information from recent whole genome/exome sequencing as well as gene expression data and review known clinical factors affecting outcome such as disease burden and early relapse as well as patient related factors such as race. Finally, we provide an outlook on developing a new high risk model system and how we might make sense of co-occurrences, oncogenic dependencies, and mutually exclusive mutations.
Collapse
|
28
|
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS, Storlazzi CT. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer 2022; 126:835-850. [PMID: 34754096 PMCID: PMC8927338 DOI: 10.1038/s41416-021-01584-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Debora Traversa
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Giorgia Simonetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Visci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Martina Ghetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | | |
Collapse
|
29
|
Maura F, Boyle EM, Rustad EH, Ashby C, Kaminetzky D, Bruno B, Braunstein M, Bauer M, Blaney P, Wang Y, Ghamlouch H, Williams L, Stoeckle J, Davies FE, Walker BA, Maclachlan K, Diamond B, Landgren O, Morgan GJ. Chromothripsis as a pathogenic driver of multiple myeloma. Semin Cell Dev Biol 2022; 123:115-123. [PMID: 33958284 PMCID: PMC12147211 DOI: 10.1016/j.semcdb.2021.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/29/2022]
Abstract
Analysis of the genetic basis for multiple myeloma (MM) has informed many of our current concepts of the biology that underlies disease initiation and progression. Studying these events in further detail is predicted to deliver important insights into its pathogenesis, prognosis and treatment. Information from whole genome sequencing of structural variation is revealing the role of these events as drivers of MM. In particular, we discuss how the insights we have gained from studying chromothripsis suggest that it can be used to provide information on disease initiation and that, as a consequence, it can be used for the clinical classification of myeloma precursor diseases allowing for early intervention and prognostic determination. For newly diagnosed MM, the integration of information on the presence of chromothripsis has the potential to significantly enhance current risk prediction strategies and to better characterize patients with high-risk disease biology. In this article we summarize the genetic basis for MM and the role played by chromothripsis as a critical pathogenic factor active at early disease phases.
Collapse
Affiliation(s)
- Francesco Maura
- Myeloma Program, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Eileen M Boyle
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Even H Rustad
- Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Cody Ashby
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Benedetto Bruno
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Marc Braunstein
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patrick Blaney
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Yubao Wang
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | | | - Louis Williams
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - James Stoeckle
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Faith E Davies
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology Indiana University, Indianapolis, IN, USA
| | - Kylee Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ben Diamond
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ola Landgren
- Myeloma Program, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Gareth J Morgan
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
30
|
Dias JD, Sarica N, Cournac A, Koszul R, Neuveut C. Crosstalk between Hepatitis B Virus and the 3D Genome Structure. Viruses 2022; 14:445. [PMID: 35216038 PMCID: PMC8877387 DOI: 10.3390/v14020445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses that transcribe their DNA within the nucleus have to adapt to the existing cellular mechanisms that govern transcriptional regulation. Recent technological breakthroughs have highlighted the highly hierarchical organization of the cellular genome and its role in the regulation of gene expression. This review provides an updated overview on the current knowledge on how the hepatitis B virus interacts with the cellular 3D genome and its consequences on viral and cellular gene expression. We also briefly discuss the strategies developed by other DNA viruses to co-opt and sometimes subvert cellular genome spatial organization.
Collapse
Affiliation(s)
- João Diogo Dias
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS, Université de Montpellier, 34000 Montpellier, France; (J.D.D.); (N.S.)
| | - Nazim Sarica
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS, Université de Montpellier, 34000 Montpellier, France; (J.D.D.); (N.S.)
| | - Axel Cournac
- Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, Université de Paris, 75015 Paris, France; (A.C.); (R.K.)
| | - Romain Koszul
- Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, Université de Paris, 75015 Paris, France; (A.C.); (R.K.)
| | - Christine Neuveut
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS, Université de Montpellier, 34000 Montpellier, France; (J.D.D.); (N.S.)
| |
Collapse
|
31
|
Deng J, Xiao W, Wang Z. FAM46C as a Potential Marker for Pan-Cancer Prognosis and Predicting Immunotherapeutic Efficacy. Front Genet 2022; 13:810252. [PMID: 35222533 PMCID: PMC8864238 DOI: 10.3389/fgene.2022.810252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Background:FAM46C is a common mutated gene in tumours. A comprehensive understanding of the relationship between FAM46C expression and pan-cancer can guide clinical prognosis and broaden the immunotherapeutic targets.Methods: Data from The Cancer Genome Atlas and Genotype-Tissue Expression (GTEx) databases were obtained, and gene expression of different tumour types and stages was analysed. Immunohistochemical analysis was performed to detect differences in the FAM46C protein levels in normal and cancerous tissues. The genetic variation of FAM46C was characterised using cBioPortal. The clinical prognostic value of FAM46C and the impact of FAM46C expression levels on the prognosis of patients with different types of cancer were assessed based on Kaplan–Meier and Cox regression analyses. Gene set enrichment analysis (GSEA) was used to analyse the pathways associated with FAM46C. Correlations between FAM46C expression levels and immune infiltration were assessed using the TIMER2 database and CIBERSORT algorithm, and correlations between FAM46C expression and the ESTIMATE, immune and stromal scores were analysed using the ESTIMATE algorithm. In addition, we also analysed the correlation between FAM46C expression and immune activation, suppression genes and immune chemokines.Results: The expression level of FAM46C was correlated with the prognosis of most tumours, and low expression levels often suggested a poor prognosis. FAM46C was positively correlated with the abundance of CD4+ T cells, CD8+ T cells and plasma B lymphocytes in the tumour microenvironment. FAM46C exhibited a strong correlation with immunomodulatory pathways, immunomodulatory factors and immune markers. In addition, high FAM46C expression correlated with tumour mutational burden in acute myeloid leukaemia and microsatellite instability in endometrial cancer.Conclusion: Our study suggests that FAM46C can be a potential prognostic marker for pan-cancer, is closely associated with immune regulation and may be an immune checkpoint to guide future clinical immunotherapy.
Collapse
Affiliation(s)
- Jiehua Deng
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wei Xiao
- Department of Clinical Medicine, Medical College of Shihezi University, Shihezi, China
| | - Zheng Wang
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Zheng Wang,
| |
Collapse
|
32
|
Abdallah NH, Binder M, Rajkumar SV, Greipp PT, Kapoor P, Dispenzieri A, Gertz MA, Baughn LB, Lacy MQ, Hayman SR, Buadi FK, Dingli D, Go RS, Hwa YL, Fonder AL, Hobbs MA, Lin Y, Leung N, Kourelis T, Warsame R, Siddiqui MA, Kyle RA, Bergsagel PL, Fonseca R, Ketterling RP, Kumar SK. A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer J 2022; 12:21. [PMID: 35102148 PMCID: PMC8803917 DOI: 10.1038/s41408-022-00611-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
Abstract
Risk stratification in multiple myeloma is important for prognostication, patient selection for clinical trials, and comparison of treatment approaches. We developed and validated a staging system that incorporates additional FISH abnormalities not included in the R-ISS and reflects the additive effects of co-occurring high-risk disease features. We first evaluated the prognostic value of predefined cytogenetic and laboratory abnormalities in 2556 Mayo Clinic patients diagnosed between February 2004 and June 2019. We then used data from 1327 patients to develop a risk stratification model and validated this in 502 patients enrolled in the MMRF CoMMpass study. On multivariate analysis, high-risk IgH translocations [risk ratio (RR): 1.7], 1q gain/amplification (RR: 1.4), chromosome17 abnormalities (RR: 1.6), ISS III (RR: 1.7), and elevated LDH (RR: 1.3) were independently associated with decreased overall survival (OS). Among 1327 evaluable patients, OS was 11.0 (95% CI: 9.2–12.6), 7.0 (95% CI: 6.3–9.2), and 4.5 (95% CI: 3.7–5.2) years in patients with 0 (stage I), 1 (stage II), and ≥2 (stage III) high-risk factors, respectively. In the MMRF cohort, median OS was 7.8 (95% CI: NR-NR), 6.0 (95% CI: 5.7-NR), and 4.3 (95% CI: 2.7-NR) years in the 3 groups, respectively (P < 0.001). This 5-factor, 3-tier system is easy to implement in practice and improves upon the current R-ISS.
Collapse
Affiliation(s)
| | - Moritz Binder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Linda B Baughn
- Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Martha Q Lacy
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Yi L Hwa
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Amie L Fonder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Rahma Warsame
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Robert A Kyle
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Belloucif Y, Lobry C. Super-Enhancers Dysregulations in Hematological Malignancies. Cells 2022; 11:196. [PMID: 35053311 PMCID: PMC8774084 DOI: 10.3390/cells11020196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
Hematological malignancies affecting either the lymphoid or the myeloid lineages involve epigenetic mutations or dysregulation in the majority of cases. These epigenetic abnormalities can affect regulatory elements in the genome and, particularly, enhancers. Recently, large regulatory elements known as super-enhancers, initially identified for their critical roles in cell-type specific expression regulation of genes controlling cell identity, have been shown to also be involved in tumorigenesis in many cancer types and hematological malignancies via the regulation of numerous oncogenes, including MYC. In this review, we highlight the existing links between super-enhancers and hematological malignancies, with a particular focus on acute myeloid leukemia, a clonal hematopoietic neoplasm with dismal outcomes, resulting in an uncontrolled proliferation of myeloblasts, abnormally blocked during differentiation and accumulating within the patient's bone marrow. We report recent works, performed during the last few years, treating this subject and consider the possibility of targeting oncogenic regulatory elements, as well as the effectiveness and limitations reported so far for such strategies.
Collapse
Affiliation(s)
| | - Camille Lobry
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France;
| |
Collapse
|
34
|
Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Targeting transcription cycles in cancer. Nat Rev Cancer 2022; 22:5-24. [PMID: 34675395 DOI: 10.1038/s41568-021-00411-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Accurate control of gene expression is essential for normal development and dysregulation of transcription underpins cancer onset and progression. Similar to cell cycle regulation, RNA polymerase II-driven transcription can be considered as a unidirectional multistep cycle, with thousands of unique transcription cycles occurring in concert within each cell. Each transcription cycle comprises recruitment, initiation, pausing, elongation, termination and recycling stages that are tightly controlled by the coordinated action of transcriptional cyclin-dependent kinases and their cognate cyclins as well as the opposing activity of transcriptional phosphatases. Oncogenic dysregulation of transcription can entail defective control of gene expression, either at select loci or more globally, impacting a large proportion of the genome. The resultant dependency on the core-transcriptional machinery is believed to render 'transcriptionally addicted' cancers sensitive to perturbation of transcription. Based on these findings, small molecules targeting transcriptional cyclin-dependent kinases and associated proteins hold promise for the treatment of cancer. Here, we utilize the transcription cycles concept to explain how dysregulation of these finely tuned gene expression processes may drive tumorigenesis and how therapeutically beneficial responses may arise from global or selective transcriptional perturbation. This conceptual framework helps to explain tumour-selective transcriptional dependencies and facilitates the rational design of combination therapies.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer R Devlin
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingxing Teng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
36
|
Lomas OC, Gooding S, Cabes M, Dreau H, Wilson E, Polzella P, Genomics England Research Consortium, Ramasamy K, Hamblin AD. Validation of clinical-grade whole genome sequencing reproduces cytogenetic analysis and identifies mutational landscape in newly-diagnosed multiple myeloma patients: A pilot study from the 100,000 Genomes Project. EJHAEM 2021; 2:809-812. [PMID: 35845211 PMCID: PMC9175844 DOI: 10.1002/jha2.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
Multiple myeloma is characterized by chromosomal abnormalities and genetic variation, which may inform prognosis and guide treatment. This pilot study sought to examine the feasibility of incorporating Whole Genome Sequencing (WGS) alongside the routine laboratory evaluation of 14 patients with newly diagnosed multiple myeloma who had enrolled in the 100,000 Genomes Project. In all 14 cases, WGS data could be obtained in a timely fashion within existing clinical frameworks in a tertiary hospital setting. The data not only replicated standard-of-care FISH analysis of chromosomal abnormalities but also provided further chromosomal and molecular genetic insights that may influence patient management.
Collapse
Affiliation(s)
- Oliver C. Lomas
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Sarah Gooding
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Maite Cabes
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Helene Dreau
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Edward Wilson
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Paolo Polzella
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | | | - Karthik Ramasamy
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Angela D. Hamblin
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| |
Collapse
|
37
|
Sharma N, Smadbeck JB, Abdallah N, Zepeda-Mendoza C, Binder M, Pearce KE, Asmann YW, Peterson JF, Ketterling RP, Greipp PT, Leif Bergsagel P, Vincent Rajkumar S, Kumar SK, Baughn LB. The Prognostic Role of MYC Structural Variants Identified by NGS and FISH in Multiple Myeloma. Clin Cancer Res 2021; 27:5430-5439. [PMID: 34233962 PMCID: PMC8738776 DOI: 10.1158/1078-0432.ccr-21-0005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Structural variants (SV) of the MYC gene region are common in multiple myeloma and influence disease progression. However, the prognostic significance of different MYC SVs in multiple myeloma has not been clearly established. EXPERIMENTAL DESIGN We conducted a retrospective study of multiple myeloma comparing MYC SV subtypes identified by next-generation sequencing (NGS) and FISH to MYC expression and disease survival using 140 cases from Mayo Clinic and 658 cases from the MMRF CoMMpass study. RESULTS MYC SVs were found in 41% of cases and were classified into nine subtypes. A correlation between the presence of a MYC SV and increased MYC expression was identified. Among the nine MYC subtypes, the non-immunoglobulin (non-Ig) insertion subtype was independently associated with improved outcomes, while the Ig insertion subtype, specifically involving the IgL gene partner, was independently associated with poorer outcomes compared with other MYC SV subtypes. Although the FISH methodology failed to detect approximately 70% of all MYC SVs, those detected by FISH were associated with elevated MYC gene expression and poor outcomes suggesting a different pathogenic role for FISH-detected MYC subtypes compared with other MYC subtypes. CONCLUSIONS Understanding the impact of different MYC SVs on disease outcome is necessary for the reliable interpretation of MYC SVs in multiple myeloma. NGS approaches should be considered as a replacement technique for a more comprehensive evaluation of the multiple myeloma clone.
Collapse
Affiliation(s)
- Neeraj Sharma
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - James B. Smadbeck
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Nadine Abdallah
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Moritz Binder
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Kathryn E. Pearce
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Yan W. Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Jess F. Peterson
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rhett P. Ketterling
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Patricia T. Greipp
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ
| | - S. Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Shaji K. Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Linda B. Baughn
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
38
|
From Bench to Bedside: The Evolution of Genomics and Its Implications for the Current and Future Management of Multiple Myeloma. ACTA ACUST UNITED AC 2021; 27:213-221. [PMID: 34549910 DOI: 10.1097/ppo.0000000000000523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT The summation of 20 years of biological studies and the comprehensive analysis of more than 1000 multiple myeloma genomes with data linked to clinical outcome has enabled an increased understanding of the pathogenesis of multiple myeloma in the context of normal plasma cell biology. This novel data have facilitated the identification of prognostic markers and targets suitable for therapeutic manipulation. The challenge moving forward is to translate this genetic and biological information into the clinic to improve patient care. This review discusses the key data required to achieve this and provides a framework within which to explore the use of response-adapted, biologically targeted, molecularly targeted, and risk-stratified therapeutic approaches to improve the management of patients with multiple myeloma.
Collapse
|
39
|
Bendig S, Walter W, Meggendorfer M, Bär C, Fuhrmann I, Kern W, Haferlach T, Haferlach C, Stengel A. Whole genome sequencing demonstrates substantial pathophysiological differences of MYC rearrangements in patients with plasma cell myeloma and B-cell lymphoma. Leuk Lymphoma 2021; 62:3420-3429. [PMID: 34380369 DOI: 10.1080/10428194.2021.1964021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
MYC rearrangements (MYCr) occur in several B-cell neoplasms and impact disease progression and overall survival. We used whole genome sequencing (WGS) and whole transcriptome sequencing (WTS) to analyze and compare MYCr in different B-cell neoplasms. The MYCr features of cases with plasma cell myeloma (PCM) (n = 88) showed distinct characteristics compared to cases with mature B-cell lymphomas (n = 62, including Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL) and high grade lymphoma with MYC and BCL2 and/or BCL6 rearrangements (HGBL)): they were more complex and showed a wider variety of translocation partners and breakpoints. Additionally, unlike B-cell lymphomas, they showed no evidence of activation-induced deaminase (AID) involvement in the formation of MYCr with immunoglobolin heavy chain (IGH), indicating a different mechanism of origin. The different MYCr characteristics resulted in poor MYCr detection rates by fluorescence in situ hybridization of only 50% in PCM, compared to 94% in lymphoma.
Collapse
|
40
|
Zanwar S, Kumar S. Disease heterogeneity, prognostication and the role of targeted therapy in multiple myeloma. Leuk Lymphoma 2021; 62:3087-3097. [PMID: 34304677 DOI: 10.1080/10428194.2021.1957875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy with a heterogeneous disease course. Insights into the genetics of the disease have identified certain high-risk cytogenetic features that are associated with adverse outcomes. While the advances in therapy have translated into dramatic improvements in the outcome of patients with MM, those with high-risk genetic features continue to perform poorly. This has resulted in a need for clinical trials focusing on the high-risk subgroup of MM as they search for additional biomarkers and therapeutic targets continue. In this review, we discuss the currently existing data on prognostic and predictive biomarkers in MM and speculate the role of treatment stratification based on the genetic features of the disease.
Collapse
Affiliation(s)
- Saurabh Zanwar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
Perini T, Materozzi M, Milan E. The Immunity-malignancy equilibrium in multiple myeloma: lessons from oncogenic events in plasma cells. FEBS J 2021; 289:4383-4397. [PMID: 34117720 DOI: 10.1111/febs.16068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells (PC) that grow within the bone marrow and maintain massive immunoglobulin (Ig) production. Disease evolution is driven by genetic lesions, whose effects on cell biology and fitness underlie addictions and vulnerabilities of myeloma cells. Several genes mutated in myeloma are strictly involved in dictating PC identity and antibody factory function. Here, we evaluate the impact of mutations in IRF4, PRDM1, and XBP1, essential transcription factors driving the B to PC differentiation, on MM cell biology and homeostasis. These factors are highly specialized, with limited overlap in their downstream transcriptional programs. Indeed, IRF4 sustains metabolism, survival, and proliferation, while PRDM1 and XBP1 are mainly responsible for endoplasmic reticulum expansion and sustained Ig secretion. Interestingly, IRF4 undergoes activating mutations and translocations, while PRDM1 and XBP1 are hit by loss-of-function events, raising the hypothesis that containment of the secretory program, but not its complete extinction, may be beneficial to malignant PCs. Finally, recent studies unveiled that also the PRDM1 target, FAM46C/TENT5C, an onco-suppressor uniquely and frequently mutated or deleted in myeloma, is directly and potently involved in orchestrating ER homeostasis and secretory activity. Inactivating mutations found in this gene and its interactors strengthen the notion that reduced secretory capacity confers advantage to myeloma cells. We believe that dissection of the evolutionary pressure on genes driving PC-specific functions in myeloma will disclose the cellular strategies by which myeloma cells maintain an equilibrium between antibody production and survival, thus unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Tommaso Perini
- Age related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy.,University Vita-Salute San Raffaele, Milano, Italy.,Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Maria Materozzi
- Age related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy.,Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Enrico Milan
- Age related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy.,University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
42
|
Role of 1q21 in Multiple Myeloma: From Pathogenesis to Possible Therapeutic Targets. Cells 2021; 10:cells10061360. [PMID: 34205916 PMCID: PMC8227721 DOI: 10.3390/cells10061360] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) in the bone marrow (BM). The amplification of 1q21 is one of the most common cytogenetic abnormalities occurring in around 40% of de novo patients and 70% of relapsed/refractory MM. Patients with this unfavorable cytogenetic abnormality are considered to be high risk with a poor response to standard therapies. The gene(s) driving amplification of the 1q21 amplicon has not been fully studied. A number of clear candidates are under investigation, and some of them (IL6R, ILF2, MCL-1, CKS1B and BCL9) have been recently proposed to be potential drivers of this region. However, much remains to be learned about the biology of the genes driving the disease progression in MM patients with 1q21 amp. Understanding the mechanisms of these genes is important for the development of effective targeted therapeutic approaches to treat these patients for whom effective therapies are currently lacking. In this paper, we review the current knowledge about the pathological features, the mechanism of 1q21 amplification, and the signal pathway of the most relevant candidate genes that have been suggested as possible therapeutic targets for the 1q21 amplicon.
Collapse
|
43
|
Zhang H, Zhang SH, Hu JL, Wu YT, Ma XY, Chen Y, Yu B, Liao S, Huang H, Gao S. Structural and functional characterization of multiple myeloma associated cytoplasmic poly(A) polymerase FAM46C. Cancer Commun (Lond) 2021; 41:615-630. [PMID: 34048638 PMCID: PMC8286142 DOI: 10.1002/cac2.12163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of aberrant plasma cells within the bone marrow. The high frequent mutation of family with sequence similarity 46, member C (FAM46C) is closely related with the occurrence and progression of MM. Recently, FAM46C has been identified as a non‐canonical poly(A) polymerase (PAP) that functions as a tumor suppressor in MM. This study aimed to elucidate the structural features of this novel non‐canonical PAP and how MM‐related mutations affect the structural and biochemical properties of FAM46C, eventually advancing our understandings towards FAM46C mutation‐related MM occurrence. Methods We purified and crystallized a mammalian FAM46C construct, and solved its structure. Next, we characterized the property of FAM46C as a PAP through a combination of structural analysis, site‐directed mutagenesis and biochemical assays, and by comparison with its homolog FAM46B. Finally, we structurally analyzed MM‐related FAM46C mutations and tested the enzymatic activity of corresponding mutants. Results We determined the crystal structure of a mammalian FAM46C protein at 2.35 Å, and confirmed that FAM46C preferentially consumed adenosine triphosphate (ATP) and extended A‐rich RNA substrates. FAM46C showed a weaker PAP activity than its homolog FAM46B, and this difference was largely dependent on the residue variance at particular sites. Of them, residues at positions 77, 290, and 298 of mouse FAM46C were most important for the divergence in enzymatic activity. Among the MM‐associated FAM46C mutants, those residing at the catalytic site (D90G and D90H) or putative RNA‐binding site (I155L, S156F, D182Y, F184L, Y247V, and M270V) showed abolished or compromised PAP activity of FAM46C, while N72A and S248A did not severely affect the PAP activity. FAM46C mutants D90G, D90H, I155L, S156F, F184L, Y247V, and M270V had significantly lower inhibitory effect on apoptosis of RPMI‐8226 cells as compared to wild‐type FAM46C. Conclusions FAM46C is a prokaryotic‐like PAP with preference for A‐rich RNA substrates, and showed distinct enzymatic efficiency with its homolog FAM46B. The MM‐related missense mutations of FAM46C lead to various structural and biochemical outcomes to the protein.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shi-Hui Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yu-Tong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510530, P. R. China
| |
Collapse
|
44
|
Schmidt TM, Callander NS. Progress in the Management of Smoldering Multiple Myeloma. Curr Hematol Malig Rep 2021; 16:172-182. [PMID: 33983517 DOI: 10.1007/s11899-021-00623-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Smoldering multiple myeloma (SMM) is defined as an asymptomatic clonal proliferation of pre-malignant plasma cells and an increased risk of progression to multiple myeloma (MM) relative to monoclonal gammopathy of undetermined significance. Whether patients with SMM should be treated prior to development of symptomatic disease is fiercely debated and is a highly active area of research. RECENT FINDINGS The ECOG E3A06 study demonstrated that early treatment with lenalidomide significantly reduced the risk of progression to MM compared to observation in patients with high risk SMM. The IMWG recently validated a risk stratification model to include cytogenetics and a personalized risk calculator for individual patients. Beyond this, molecular genomic aberrations and immunological phenomena that promote progression from asymptomatic disease to MM have been recently characterized and may help to more precisely identify patients who are most suitable for early intervention. As highly effective and tolerable therapies for plasma cell disorders evolve, the field is approaching a paradigm shift that involves the adoption of intervention for patients with SMM who are at high risk for progression to symptomatic myeloma in order to prevent morbidity and mortality. This review highlights our current understanding of the biology of patients with SMM, clarifies the rationale for early intervention, and summarizes early results of various treatment strategies for patients with high-risk smoldering myeloma.
Collapse
Affiliation(s)
- Timothy M Schmidt
- University of Wisconsin Carbone Cancer Center, 600 Highland Ave, Madison, WI, 3792, USA
| | - Natalie S Callander
- University of Wisconsin Carbone Cancer Center, 600 Highland Ave, Madison, WI, 3792, USA.
| |
Collapse
|
45
|
Theodorakakou F, Dimopoulos MA, Kastritis E. Mutation-dependent treatment approaches for patients with complex multiple myeloma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1893605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Foteini Theodorakakou
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A. Dimopoulos
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Lee Z, Raabe M, Hu WS. Epigenomic features revealed by ATAC-seq impact transgene expression in CHO cells. Biotechnol Bioeng 2021; 118:1851-1861. [PMID: 33521928 DOI: 10.1002/bit.27701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Different regions of a mammalian genome have different accessibilities to transcriptional machinery. The integration site of a transgene affects how actively it is transcribed. Highly accessible genomic regions called super-enhancers have been recently described as strong regulatory elements that shape cell identity. Super-enhancers have been identified in Chinese hamster ovary (CHO) cells using the Assay for Transposase-Accessible Chromatin Sequencing (ATAC-seq). Genes near super-enhancer regions had high transcript levels and were enriched for oncogenic signaling and proliferation functions, consistent with an immortalized phenotype. Inaccessible regions in the genome with low ATAC signal also had low transcriptional activity. Genes in inaccessible regions were enriched for remote tissue functions such as taste, smell, and neuronal activation. A lentiviral reporter integration assay showed integration into super-enhancer regions conferred higher reporter expression than insertion into inaccessible regions. Targeted integration of an IgG vector into the Plec super-enhancer region yielded clones that expressed the immunoglobulin light chain gene mostly in the top 20% of all transcripts with the majority in the top 5%. The results suggest the epigenomic landscape of CHO cells can guide the selection of integration sites in the development of cell lines for therapeutic protein production.
Collapse
Affiliation(s)
- Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marina Raabe
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
47
|
Jia Y, Zhou J, Tan TK, Chung TH, Wong RWJ, Chooi JY, Lim JSL, Sanda T, Ooi M, De Mel S, Soekojo C, Chen Y, Zhang E, Cai Z, Shen P, Ruan J, Chng WJ. Myeloma-specific superenhancers affect genes of biological and clinical relevance in myeloma. Blood Cancer J 2021; 11:32. [PMID: 33579893 PMCID: PMC7881003 DOI: 10.1038/s41408-021-00421-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/14/2020] [Accepted: 01/20/2021] [Indexed: 01/09/2023] Open
Abstract
Multiple myeloma (MM) is an aggressive plasma cell neoplasm characterized by genomic heterogeneity. Superenhancers (SEs) are defined as large clusters of enhancers in close genomic proximity, which regulate genes for maintaining cellular identity and promote oncogenic transcription to which cancer cells highly addicted. Here, we analyzed cis-regulatory elements in MM samples with H3K27ac ChIP-seq, to identify novel SE-associated genes involved in the myeloma pathogenesis. SEs and their associated genes in cancerous tissue were compared with the control samples, and we found SE analysis alone uncovered cell-lineage-specific transcription factors and well-known oncogenes ST3GAL6 and ADM. Using a transcriptional CDK7 inhibitor, THZ1, coupled with H3K27ac ChlP-seq, we identified MAGI2 as a novel SE-associated gene of myeloma cells. Elevated MAGI2 was related to myelomagenesis with gradual increased expression from MGUS, SMM to newly diagnosed and relapsed MM. High prevalence of MAGI2 was also associated with poor survival of MM patients. Importantly, inhibition of the SE activity associated with MAGI2 decreased MAGI2 expression, inhibited cell growth and induced cell apoptosis. Mechanistically, we revealed that the oncogenic transcription factor, MAF, directly bound to the SE region and activated gene transcription. In summary, the discoveries of these acquired SEs-associated genes and the novel mechanism by which they are regulated provide new insights into MM biology and MAGI2-MAF-SE regulatory circuit offer potential novel targets for disease treatment.
Collapse
Affiliation(s)
- Yunlu Jia
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medical oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Regina Wan Ju Wong
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Jing-Yuan Chooi
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Julia Sze Lynn Lim
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Melissa Ooi
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Sanjay De Mel
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Cinnie Soekojo
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Peng Shen
- Department of Medical oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ruan
- Department of Medical oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| |
Collapse
|
48
|
Cardona-Benavides IJ, de Ramón C, Gutiérrez NC. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells 2021; 10:336. [PMID: 33562668 PMCID: PMC7914805 DOI: 10.3390/cells10020336] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Some genetic abnormalities of multiple myeloma (MM) detected more than two decades ago remain major prognostic factors. In recent years, the introduction of cutting-edge genomic methodologies has enabled the extensive deciphering of genomic events in MM. Although none of the alterations newly discovered have significantly improved the stratification of the outcome of patients with MM, some of them, point mutations in particular, are promising targets for the development of personalized medicine. This review summarizes the main genetic abnormalities described in MM together with their prognostic impact, and the therapeutic approaches potentially aimed at abrogating the undesirable pathogenic effect of each alteration.
Collapse
Affiliation(s)
- Ignacio J. Cardona-Benavides
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Cristina de Ramón
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Norma C. Gutiérrez
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
49
|
Metabolic Effects of Recurrent Genetic Aberrations in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13030396. [PMID: 33494394 PMCID: PMC7865460 DOI: 10.3390/cancers13030396] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene activation and malignant transformation exerts energetic, biosynthetic and redox demands on cancer cells due to increased proliferation, cell growth and tumor microenvironment adaptation. As such, altered metabolism is a hallmark of cancer, which is characterized by the reprogramming of multiple metabolic pathways. Multiple myeloma (MM) is a genetically heterogeneous disease that arises from terminally differentiated B cells. MM is characterized by reciprocal chromosomal translocations that often involve the immunoglobulin loci and a restricted set of partner loci, and complex chromosomal rearrangements that are associated with disease progression. Recurrent chromosomal aberrations in MM result in the aberrant expression of MYC, cyclin D1, FGFR3/MMSET and MAF/MAFB. In recent years, the intricate mechanisms that drive cancer cell metabolism and the many metabolic functions of the aforementioned MM-associated oncogenes have been investigated. Here, we discuss the metabolic consequences of recurrent chromosomal translocations in MM and provide a framework for the identification of metabolic changes that characterize MM cells.
Collapse
|
50
|
Sessa M, Cavazzini F, Cavallari M, Rigolin GM, Cuneo A. A Tangle of Genomic Aberrations Drives Multiple Myeloma and Correlates with Clinical Aggressiveness of the Disease: A Comprehensive Review from a Biological Perspective to Clinical Trial Results. Genes (Basel) 2020; 11:E1453. [PMID: 33287156 PMCID: PMC7761770 DOI: 10.3390/genes11121453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease, in which the process of tumorigenesis begins and progresses through the appearance and accumulation of a tangle of genomic aberrations. Several are the mechanisms of DNA damage in MM, varying from single nucleotide substitutions to complex genomic events. The timing of appearance of aberrations is well studied due to the natural history of the disease, that usually progress from pre-malignant to malignant phase. Different kinds of aberrations carry different prognostic significance and have been associated with drug resistance in some studies. Certain genetic events are well known to be associated with prognosis and are incorporated in risk evaluation in MM at diagnosis in the revised International Scoring System (R-ISS). The significance of some other aberrations needs to be further explained. Since now, few phase 3 randomized trials included analysis on patient's outcomes according to genetic risk, and further studies are needed to obtain useful data to stratify the choice of initial and subsequent treatment in MM.
Collapse
Affiliation(s)
- Mariarosaria Sessa
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| | - Francesco Cavazzini
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| | - Maurizio Cavallari
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| | - Gian Matteo Rigolin
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| | - Antonio Cuneo
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S.Anna, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|