1
|
Kamimura R, Uchida D, Kanno SI, Shiraishi R, Hyodo T, Sawatani Y, Shimura M, Hasegawa T, Tsubura-Okubo M, Yaguchi E, Komiyama Y, Fukumoto C, Izumi S, Fujita A, Wakui T, Kawamata H. Identification of Binding Proteins for TSC22D1 Family Proteins Using Mass Spectrometry. Int J Mol Sci 2021; 22:ijms222010913. [PMID: 34681573 PMCID: PMC8536140 DOI: 10.3390/ijms222010913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
TSC-22 (TGF-β stimulated clone-22) has been reported to induce differentiation, growth inhibition, and apoptosis in various cells. TSC-22 is a member of a family in which many proteins are produced from four different family genes. TSC-22 (corresponding to TSC22D1-2) is composed of 144 amino acids translated from a short variant mRNA of the TSC22D1 gene. In this study, we attempted to determine the intracellular localizations of the TSC22D1 family proteins (TSC22D1-1, TSC-22 (TSC22D1-2), and TSC22(86) (TSC22D1-3)) and identify the binding proteins for TSC22D1 family proteins by mass spectrometry. We determined that TSC22D1-1 was mostly localized in the nucleus, TSC-22 (TSC22D1-2) was localized in the cytoplasm, mainly in the mitochondria and translocated from the cytoplasm to the nucleus after DNA damage, and TSC22(86) (TSC22D1-3) was localized in both the cytoplasm and nucleus. We identified multiple candidates of binding proteins for TSC22D1 family proteins in in vitro pull-down assays and in vivo binding assays. Histone H1 bound to TSC-22 (TSC22D1-2) or TSC22(86) (TSC22D1-3) in the nucleus. Guanine nucleotide-binding protein-like 3 (GNL3), which is also known as nucleostemin, bound to TSC-22 (TSC22D1-2) in the nucleus. Further investigation of the interaction of the candidate binding proteins with TSC22D1 family proteins would clarify the biological roles of TSC22D1 family proteins in several cell systems.
Collapse
Affiliation(s)
- Ryouta Kamimura
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Daisuke Uchida
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan;
| | - Shin-ichiro Kanno
- Division of Dynamic Proteome, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Aobaku, Japan;
| | - Ryo Shiraishi
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Toshiki Hyodo
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Yuta Sawatani
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
- Section of Dentistry, Oral and Maxillofacial Surgery, Kamitsuga General Hospital, 1-1033 Shimoda-machi, Kanuma 322-8550, Tochigi, Japan
| | - Michiko Shimura
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
- Section of Dentistry and Oral and Maxillofacial Surgery, Sano Kosei General Hospital, 1728 Horigomecho, Sano 327-8511, Tochigi, Japan
| | - Tomonori Hasegawa
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Maki Tsubura-Okubo
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
- Section of Dentistry and Oral and Maxillofacial Surgery, Sano Kosei General Hospital, 1728 Horigomecho, Sano 327-8511, Tochigi, Japan
| | - Erika Yaguchi
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Yuske Komiyama
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Chonji Fukumoto
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Sayaka Izumi
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Atsushi Fujita
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Takahiro Wakui
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
| | - Hitoshi Kawamata
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Shimotsuga, Mibu 321-0293, Tochigi, Japan; (R.K.); (R.S.); (T.H.); (Y.S.); (M.S.); (T.H.); (M.T.-O.); (E.Y.); (Y.K.); (C.F.); (S.I.); (A.F.); (T.W.)
- Correspondence: ; Tel.: +81-282-87-2130; Fax: +81-282-86-1681
| |
Collapse
|
2
|
Abstract
Because human corneal endothelial cells (HCECs) do not proliferate once the endothelial monolayer has formed, corneal wound healing is believed to be mediated by cell enlargement or migration, rather than by proliferation. However, the cellular mechanisms involved in wound healing by HCECs have not been fully determined. In this review, we focus on the effects of promyelocytic leukemia zinc finger (PLZF), a DNA-binding transcription factor, and transforming growth factor (TGF)-β2 on the proliferation and migration of cultured HCECs. Involvement of the mitogen-activated protein kinase (MAPK) signaling pathway in the migration of HCECs was also investigated. Expression of PLZF mRNA decreased as cell-cell contact was disrupted and returned to the original level as cell-cell contact was re-formed. Assessment with a real-time cell electronic sensing system revealed that proliferation of cultured HCECs was inhibited after infection with Ad-PLZF and exposure to TGF-β2. Migration of cultured HCECs was increased by TGF-β2 through p38 MAPK activation. We conclude that PLZF expression in cultured HCECs is closely related to the formation of cell-cell contact and that TGF-β2 suppresses proliferation of cultured HCECs, while promoting their migration through p38 MAPK activation.
Collapse
|
3
|
Cho MJ, Lee JY, Shin MG, Kim HJ, Choi YJ, Rho SB, Kim BR, Jang IS, Lee SH. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget 2017; 8:97990-98003. [PMID: 29228668 PMCID: PMC5716708 DOI: 10.18632/oncotarget.20296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Colony stimulating factor 1 receptor (CSF-1R) regulates the monocyte/macrophage system, which is an essential component of cancer development. Therefore, CSF-1R might be an effective target for anti-cancer therapy. The overexpression of transforming growth factor (TGF)-β stimulated clone-22 (TSC-22) inhibits cancer cell proliferation and induces apoptosis, and TSC-22 is emerging as a key factor in tumorigenesis. In this study, we discovered CSF-1R as a new interacting partner of TSC-22 and identified its elevated expression in cervical cancer cells. In particular, we found that TSC-22 interacted with the intracellular tyrosine kinase insert domain (539–749) of CSF-1R, which activates the AKT and ERK signaling pathways. This binding blocked AKT and ERK signaling, thereby suppressing the transcriptional activity of NF-κB. The overexpression of TSC-22 significantly decreased CSF-1R protein levels, affecting their autocrine loop. TSC-22 injected into a xenograft mouse model of human cervical cancer markedly inhibited tumor growth. The reduction of CSF-1R protein significantly suppresses cervical cancer cell proliferation and motility and induces apoptotic cell death. This association between TSC-22 and CSF-1R could be used as a novel therapeutic target and prognostic marker for cervical cancer.
Collapse
Affiliation(s)
- Min-Ji Cho
- Department of Life Science, YongIn University, Yonginsi, Korea
| | - Ji-Yeon Lee
- Department of Life Science, YongIn University, Yonginsi, Korea
| | - Min-Gwan Shin
- Department of Life Science, YongIn University, Yonginsi, Korea
| | - Hyun-Ji Kim
- Department of Life Science, YongIn University, Yonginsi, Korea
| | - Yu-Joung Choi
- Department of Life Science, YongIn University, Yonginsi, Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, Goyang-si, Korea
| | - Boh-Ram Kim
- Research Institute, National Cancer Center, Goyang-si, Korea
| | - Ik Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea
| | - Seung-Hoon Lee
- Department of Life Science, YongIn University, Yonginsi, Korea
| |
Collapse
|
4
|
Li Q, Chen P, Zeng Z, Liang F, Song Y, Xiong F, Li X, Gong Z, Zhou M, Xiang B, Peng C, Li X, Chen X, Li G, Xiong W. Yeast two-hybrid screening identified WDR77 as a novel interacting partner of TSC22D2. Tumour Biol 2016; 37:12503-12512. [PMID: 27337956 DOI: 10.1007/s13277-016-5113-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor β-stimulated clone 22 domain family, member 2 (TSC22D2), a member of the TSC22D family, has been implicated as a tumor-associated gene, but its function remains unknown. To further explore its biological role, yeast two-hybrid screening combined with multiple bioinformatics tools was used to identify 44 potential interacting partners of the TSC22D2 protein that were mainly involved in gene transcription, cellular metabolism, and cell cycle regulation. The protein WD repeat domain 77 (WDR77) was selected for further validation due to its function in the cell cycle and tumor development, as well as its high detection frequency in the yeast two-hybrid assay. Immunoprecipitation and immunofluorescence experiments confirmed an interaction between the TSC22D2 and WDR77 proteins. Our work greatly expands the putative protein interaction network of TSC22D2 and provides deeper insight into the biological functions of the TSC22D2 and WDR77 proteins.
Collapse
Affiliation(s)
- Qiao Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Fang Liang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yali Song
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Overexpression of TSC-22 (transforming growth factor- β-stimulated clone-22) causes marked obesity, splenic abnormality and B cell lymphoma in transgenic mice. Oncotarget 2016; 7:14310-23. [PMID: 26872059 PMCID: PMC4924717 DOI: 10.18632/oncotarget.7308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/29/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, we generated transgenic (Tg) mice, which overexpressed transforming growth factor (TGF)-β stimulated clone-22 (TSC-22), and investigate the functional role of TSC-22 on their development and pathogenesis. We obtained 13 Tg-founders (two mice from C57BL6/J and 11 mice from BDF1). Three of 13 Tg-founders were sterile, and the remaining Tg-founders also could generate only a limited number of the F1 generation. We obtained 32 Tg-F1 mice. Most of the Tg-mice showed marked obesity. Histopathological examination could be performed on 31 Tg-mice; seventeen mice died by some disease in their entire life and 14 mice were killed for examination. Most of the Tg-mice examined showed splenic abnormality, in which marked increase of the megakaryocytes, unclearness of the margin of the red pulp and the white pulp, and the enlargement of the white pulp was observed. B cell lymphoma was developed in 10 (71%) of 14 disease-died F1 mice. These results indicate that constitutive over-expression of TSC-22 might disturb the normal embryogenesis and the normal lipid metabolism, and induce the oncogenic differentiation of hematopoietic cells.
Collapse
|
6
|
Kelloniemi A, Aro J, Näpänkangas J, Koivisto E, Mustonen E, Ruskoaho H, Rysä J. TSC-22 up-regulates collagen 3a1 gene expression in the rat heart. BMC Cardiovasc Disord 2015; 15:122. [PMID: 26464165 PMCID: PMC4604760 DOI: 10.1186/s12872-015-0121-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transforming growth factor (TGF)-β is one of the key mediators in cardiac remodelling occurring after myocardial infarction (MI) and in hypertensive heart disease. The TGF-β-stimulated clone 22 (TSC-22) is a leucine zipper protein expressed in many tissues and possessing various transcription-modulating activities. However, its function in the heart remains unknown. METHODS The aim of the present study was to characterize cardiac TSC-22 expression in vivo in cardiac remodelling and in myocytes in vitro. In addition, we used TSC-22 gene transfer in order to examine the effects of TSC-22 on cardiac gene expression and function. RESULTS We found that TSC-22 is rapidly up-regulated by multiple hypertrophic stimuli, and in post-MI remodelling both TSC-22 mRNA and protein levels were up-regulated (4.1-fold, P <0.001 and 3.0-fold, P <0.05, respectively) already on day 1. We observed that both losartan and metoprolol treatments reduced left ventricular TSC-22 gene expression. Finally, TSC-22 overexpression by local intramyocardial adenovirus-mediated gene delivery showed that TSC-22 appears to have a role in regulating collagen type IIIα1 gene expression in the heart. CONCLUSIONS These results demonstrate that TSC-22 expression is induced in response to cardiac overload. Moreover, our data suggests that, by regulating collagen expression in the heart in vivo, TSC-22 could be a potential target for fibrosis-preventing therapies.
Collapse
Affiliation(s)
- Annina Kelloniemi
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland
| | - Jani Aro
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland
| | - Juha Näpänkangas
- Department of Pathology, Institute of Diagnostics, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Elina Koivisto
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland
| | - Erja Mustonen
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland.,Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jaana Rysä
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland. .,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
7
|
See YY, Dang TT, Chen A, Seayad AM. Concise Synthesis of Vesnarinone and Its Analogues by Using Pd-Catalyzed C-N Bond-Forming Reactions. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Synthesis, X-ray crystallographic study, and biological evaluation of coumarin and quinolinone carboxamides as anticancer agents. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-0986-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Yoon CH, Rho SB, Kim ST, Kho S, Park J, Jang IS, Woo S, Kim SS, Lee JH, Lee SH. Crucial role of TSC-22 in preventing the proteasomal degradation of p53 in cervical cancer. PLoS One 2012; 7:e42006. [PMID: 22870275 PMCID: PMC3411576 DOI: 10.1371/journal.pone.0042006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
The p53 tumor suppressor function can be compromised in many tumors by the cellular antagonist HDM2 and human papillomavirus oncogene E6 that induce p53 degradation. Restoration of p53 activity has strong therapeutic potential. Here, we identified TSC-22 as a novel p53-interacting protein and show its novel function as a positive regulator of p53. We found that TSC-22 level was significantly down-regulated in cervical cancer tissues. Moreover, over-expression of TSC-22 was sufficient to inhibit cell proliferation, promote cellular apoptosis in cervical cancer cells and suppress growth of xenograft tumors in mice. Expression of also TSC-22 enhanced the protein level of p53 by protecting it from poly-ubiquitination. When bound to the motif between amino acids 100 and 200 of p53, TSC-22 inhibited the HDM2- and E6-mediated p53 poly-ubiquitination and degradation. Consequently, ectopic over-expression of TSC-22 activated the function of p53, followed by increased expression of p21Waf1/Cip1 and PUMA in human cervical cancer cell lines. Interestingly, TSC-22 did not affect the interaction between p53 and HDM2. Knock-down of TSC-22 by small interfering RNA clearly enhanced the poly-ubiquitination of p53, leading to the degradation of p53. These results suggest that TSC-22 acts as a tumor suppressor by safeguarding p53 from poly-ubiquitination mediated-degradation.
Collapse
Affiliation(s)
- Cheol-Hee Yoon
- Division of AIDS, Center for Immunology and Pathology, National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si Gyeonggi-do, Korea
| | - Seong-Tae Kim
- Department of Life Science, Yongin University, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea
| | - Seongho Kho
- Department of Life Science, Yongin University, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea
| | - Junsoo Park
- Division of Biological Sciences and Technology, Yonsei University, Wonju, Korea
| | - Ik-Soon Jang
- Korea Basic Science Institute, Daegeon Center, Daegion, Korea
| | - Seonock Woo
- South Sea Environment Research Department, Korea Ocean Research and Development Institute, Geoje, Korea
| | - Sung Soon Kim
- Division of AIDS, Center for Immunology and Pathology, National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Je-Ho Lee
- School of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea
- * E-mail: (J-HL); (S-HL)
| | - Seung-Hoon Lee
- Department of Life Science, Yongin University, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea
- * E-mail: (J-HL); (S-HL)
| |
Collapse
|
10
|
Küppers M, Ittrich C, Faust D, Dietrich C. The transcriptional programme of contact-inhibition. J Cell Biochem 2010; 110:1234-43. [PMID: 20564218 DOI: 10.1002/jcb.22638] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proliferation of non-transformed cells is regulated by cell-cell contacts, which are referred to as contact-inhibition. Vice versa, transformed cells are characterised by a loss of contact-inhibition. Despite its generally accepted importance for cell-cycle control, little is known about the intracellular signalling pathways involved in contact-inhibition. Unravelling the molecular mechanisms of contact-inhibition and its loss during tumourigenesis will be an important step towards the identification of novel target genes in tumour diagnosis and treatment. To better understand the underlying molecular mechanisms we identified the transcriptional programme of contact-inhibition in NIH3T3 fibroblast using high-density microarrays. Setting the cut off: >or=1.5-fold, P <or= 0.05, 853 genes and 73 cDNA sequences were differentially expressed in confluent compared to exponentially growing cultures. Importing these data into GenMAPP software revealed a comprehensive list of cell-cycle regulatory genes mediating G0/G1 arrest, which was confirmed by RT-PCR and Western blot. In a narrow analysis (cut off: >or=2-fold, P <or= 0.002), we found 110 transcripts to be differentially expressed representing 107 genes and 3 cDNA sequences involved, for example, in proliferation, signal transduction, transcriptional regulation, cell adhesion and communication. Interestingly, the majority of genes was upregulated indicating that contact-inhibition is not a passive state, but actively induced. Furthermore, we confirmed differential expression of eight genes by semi-quantitative RT-PCR and identified the potential tumour suppressor transforming growth factor-beta (TGF-beta)-1-induced clone 22 (TSC-22; tgfb1i4) as a novel protein to be induced in contact-inhibited cells.
Collapse
Affiliation(s)
- Monika Küppers
- Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr 67, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
11
|
Nikpour M, Sadeghian H, Saberi MR, Nick RS, Seyedi SM, Hosseini A, Parsaee H, Bozorg ATD. Design, synthesis and biological evaluation of 6-(benzyloxy)-4-methylquinolin-2(1H)-one derivatives as PDE3 inhibitors. Bioorg Med Chem 2010; 18:855-62. [DOI: 10.1016/j.bmc.2009.11.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 11/28/2022]
|
12
|
Huser CA, Pringle MA, Heath VJ, Bell AK, Kendrick H, Smalley MJ, Crighton D, Ryan KM, Gusterson BA, Stein T. TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death Differ 2009; 17:304-15. [PMID: 19745830 DOI: 10.1038/cdd.2009.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transforming growth factor beta (TGFbeta)-stimulated clone-22 domain family member 1 (TSC-22D1) has previously been associated with enhanced apoptosis in several cell systems. In an attempt to identify novel factors that are involved in the control of cell death during mammary gland involution, we found that the mRNA for isoform 2 of TSC-22D1 was highly upregulated 24 h after forced weaning, when a dramatic increase in cell death occurred, closely following the expression of the known inducer of cell death during involution, TGFbeta3. This was paralleled by strongly increased TSC-22D1 isoform 2 protein levels in the luminal epithelium. In contrast, RNA and protein expression levels of the isoform 1 of TSC-22D1 did not change during development. Whereas isoform 2 induced cell death, isoform 1 suppressed TGFbeta-induced cell death and enhanced proliferation in mammary epithelial cell lines. Furthermore, four distinct forms of isoform 2 protein were detected in the mammary gland, of which only a 15-kDa form was associated with early involution. Our data describe novel opposing functions of the two mammalian TSC-22D1 isoforms in cell survival and proliferation, and establish the TSC-22D1 isoform 2 as a potential regulator of cell death during mammary gland involution.
Collapse
Affiliation(s)
- C A Huser
- Division of Cancer Sciences and Molecular Pathology, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Uchida D, Onoue T, Begum NM, Kuribayashi N, Tomizuka Y, Tamatani T, Nagai H, Miyamoto Y. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells. Mol Cancer 2009; 8:62. [PMID: 19671192 PMCID: PMC2738650 DOI: 10.1186/1476-4598-8-62] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/12/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC). Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. RESULTS The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl)-1-piperazinyl]-2-(1H)-quinolinone) in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2), as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. CONCLUSION These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Oral Surgery, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Inage M, Nakamura H, Saito H, Abe S, Hino T, Takabatake N, Terashita K, Ogura M, Kato S, Hosokawa T, Sata M, Tomoike H. Vesnarinone represses the fibrotic changes in murine lung injury induced by bleomycin. Int J Biol Sci 2009; 5:304-10. [PMID: 19381349 PMCID: PMC2669598 DOI: 10.7150/ijbs.5.304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 04/14/2009] [Indexed: 12/03/2022] Open
Abstract
We investigated the potential usefulness of vesnarinone, a novel cytokine inhibitor, for the treatment of lung fibrosis using a murine model of bleomycin (BLM)-induced pulmonary fibrosis. Mice were fed a control diet (n=42), or a diet containing low (n=42) or high (n=42) dose of vesnarinone. Dietary intake of vesnarinone minimized the BLM toxicity as reflected by significant decreases in numbers of inflammatory cells, KC, and soluble TNF receptors in the bronchoalveolar lavage fluid. A quantitative evaluation of histology demonstrated significantly mild lung parenchymal lesions in BLM-treated mice fed with diet containing high dose of vesnarinone than in the control diet group. Consistent with the histopathology, hydroxyproline levels in lung tissue from BLM-treated mice fed with diet containing vesnarinone were significantly lower than that from mice fed with control diet. We concluded that vesnarinone inhibits BLM-induced pulmonary fibrosis, at least in part, by the inhibition of acute lung injuries in the early phase.
Collapse
Affiliation(s)
- Minoru Inage
- First Department of Internal Medicine, Yamagata University School of Medicine, Yamagata, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Canterini S, Bosco A, De Matteis V, Mangia F, Fiorenza MT. THG-1pit moves to nucleus at the onset of cerebellar granule neurons apoptosis. Mol Cell Neurosci 2009; 40:249-57. [PMID: 19084601 DOI: 10.1016/j.mcn.2008.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 10/28/2008] [Accepted: 10/31/2008] [Indexed: 11/23/2022] Open
Abstract
Thg-1pit (Tsc22d4), a murine gene belonging to the TGF-beta1-stimulated clone 22 domain (TSC22D) family, is expressed in developing and adult cerebellar granule neurons and mature Purkinje cells. We have studied THG-1pit function in primary cultures of mouse cerebellar granule neurons maintained in vitro in the presence of a medium containing 25 mM K+ (differentiating condition) or 5 mM K+ (pro-apoptotic condition), and determined the effect of culture medium, TGF-beta1 and IGF-1 on THG-1pit expression and intracellular localization. Thg-1pit encoded a 42 kDa MW protein and other, higher MW and developmentally-regulated forms. Cell exposure to 5 mM K+ elicited early and/or late waves of Thg-1pit transcription, depending on the presence/absence of TGF-beta1, and caused THG-1pit to massively and transiently move from cytoplasm and neurites to the nucleus. THG-1pit nuclear entrance was concomitant to that of AIF, suggesting that THG-1pit is involved in the induction of granule neuron apoptosis.
Collapse
Affiliation(s)
- Sonia Canterini
- Department of Psychology, Section of Neuroscience, Istituto Pasteur-Fondazione Cenci Bolognetti and "Daniel Bovet" Research Center, La Sapienza University of Rome, Italy
| | | | | | | | | |
Collapse
|
16
|
The Drosophila homolog of human tumor suppressor TSC-22 promotes cellular growth, proliferation, and survival. Proc Natl Acad Sci U S A 2008; 105:5414-9. [PMID: 18375761 DOI: 10.1073/pnas.0800945105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TSC22D1, which encodes transforming growth factor beta-stimulated clone 22 (TSC-22), is thought to be a tumor suppressor because its expression is lost in many glioblastoma, salivary gland, and prostate cancers. TSC-22 is the founding member of the TSC-22/DIP/Bun family of leucine zipper transcription factors; its functions have not been investigated in a multicellular environment. Genetic studies in the model organism Drosophila melanogaster often provide fundamental insights into mechanisms disrupted in carcinogenesis, because of the strong evolutionary conservation of molecular mechanisms between flies and humans. Whereas humans and mice have four TSC-22 domain genes with numerous isoforms, Drosophila has only one TSC-22 domain gene, bunched (bun), which encodes both large and small protein isoforms. Surprisingly, Drosophila Bun proteins promote cellular growth and proliferation in ovarian follicle cells. Loss of both large isoforms has the strongest phenotypes, including increased apoptosis. Cultured S2 cells depleted for large Bun isoforms show increased apoptosis and less frequent cell division, with decreased cell size. Altogether, these data indicate that Drosophila TSC-22/DIP/Bun proteins are necessary for cellular growth, proliferation, and survival both in culture and in an epithelial context. Previous work demonstrated that bun prevents recruitment of epithelial cells to a migratory fate and, thus, maintains epithelial organization. We speculate that reduced TSC22D1 expression generally reduces cellular fitness and only contributes to carcinogenesis in specific tissue environments.
Collapse
|
17
|
Gluderer S, Oldham S, Rintelen F, Sulzer A, Schütt C, Wu X, Raftery LA, Hafen E, Stocker H. Bunched, the Drosophila homolog of the mammalian tumor suppressor TSC-22, promotes cellular growth. BMC DEVELOPMENTAL BIOLOGY 2008; 8:10. [PMID: 18226226 PMCID: PMC2253523 DOI: 10.1186/1471-213x-8-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/28/2008] [Indexed: 01/21/2023]
Abstract
BACKGROUND Transforming Growth Factor-beta1 stimulated clone-22 (TSC-22) is assumed to act as a negative growth regulator and tumor suppressor. TSC-22 belongs to a family of putative transcription factors encoded by four distinct loci in mammals. Possible redundancy among the members of the TSC-22/Dip/Bun protein family complicates a genetic analysis. In Drosophila, all proteins homologous to the TSC-22/Dip/Bun family members are derived from a single locus called bunched (bun). RESULTS We have identified bun in an unbiased genetic screen for growth regulators in Drosophila. Rather unexpectedly, bun mutations result in a growth deficit. Under standard conditions, only the long protein isoform BunA - but not the short isoforms BunB and BunC - is essential and affects growth. Whereas reducing bunA function diminishes cell number and cell size, overexpression of the short isoforms BunB and BunC antagonizes bunA function. CONCLUSION Our findings establish a growth-promoting function of Drosophila BunA. Since the published studies on mammalian systems have largely neglected the long TSC-22 protein version, we hypothesize that the long TSC-22 protein is a functional homolog of BunA in growth regulation, and that it is antagonized by the short TSC-22 protein.
Collapse
Affiliation(s)
- Silvia Gluderer
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli-Str, 16, 8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shiraishi A, Joko T, Higashiyama S, Ohashi Y. Role of promyelocytic leukemia zinc finger protein in proliferation of cultured human corneal endothelial cells. Cornea 2007; 26:S55-8. [PMID: 17881917 DOI: 10.1097/ico.0b013e31812f6b67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To review the role of promyelocytic leukemia zinc finger (PLZF), a transcriptional repressor and negative regulator of cell cycling, in the proliferation of cultured human corneal endothelial cells (HCECs). METHODS The expression pattern of PLZF mRNA was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time quantitative PCR in HCECs and normal human corneal epithelia. The effect of cell-cell contact on expression of the PLZF gene was studied after incubation of the cultured HCECs in EDTA. The proliferation rate of cultured HCECs was assayed by a real-time electronic sensing (RT-CES) system, and DNA microarray analysis was performed to find the PLZF-regulating genes in cultured HCECs infected with LacZ- and PLZF-carrying adenoviruses (Ad-LacZ, Ad-PLZF). RESULTS PLZF mRNA was expressed in HCECs in vivo and in completely confluent HCECs but not in subconfluent HCECs in vitro. Real-time PCR showed that the expression of PLZF mRNA was decreased by approximately 20-fold when incubated with EDTA and returned to a normal level as the cell-cell contact reformed. Cell proliferation assay by the RT-CES system showed that infection of cultured HCECs with Ad-PLZF inhibited proliferation. CONCLUSIONS These findings suggest that PLZF plays an important role in the suppression of proliferation of HCECs.
Collapse
Affiliation(s)
- Atsushi Shiraishi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | | | | | | |
Collapse
|
19
|
Lu Y, Kitaura J, Oki T, Komeno Y, Ozaki K, Kiyono M, Kumagai H, Nakajima H, Nosaka T, Aburatani H, Kitamura T. Identification of TSC-22 as a potential tumor suppressor that is upregulated by Flt3-D835V but not Flt3-ITD. Leukemia 2007; 21:2246-57. [PMID: 17690703 DOI: 10.1038/sj.leu.2404883] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor-beta (TGF-beta)-stimulated clone-22 (TSC-22) was originally isolated as a TGF-beta-inducible gene. In this study, we identified TSC-22 as a potential leukemia suppressor. Two types of FMS-like tyrosine kinase-3 (Flt3) mutations are frequently found in acute myeloid leukemia: Flt3-ITD harboring an internal tandem duplication in the juxtamembrane domain associated with poor prognosis and Flt3-TKD harboring a point mutation in the kinase domain. Comparison of gene expression profiles between Flt3-ITD- and Flt3-TKD-transduced Ba/F3 cells revealed that constitutive activation of Flt3 by Flt3-TKD, but not Flt3-ITD, upregulated the expression of TSC-22. Importantly, treatment with an Flt3 inhibitor PKC412 or an Flt3 small interfering RNA decreased the expression level of TSC-22 in Flt3-TKD-transduced cells. Forced expression of TSC-22 suppressed the growth and accelerated the differentiation of several leukemia cell lines into monocytes, in particular, in combination with differentiation-inducing reagents. On the other hand, a dominant-negative form of TSC-22 accelerated the growth of Flt3-TKD-transduced 32Dcl.3 cells. Collectively, these results suggest that TSC-22 is a possible target of leukemia therapy.
Collapse
Affiliation(s)
- Y Lu
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hashiguchi A, Hitachi K, Inui M, Okabayashi K, Asashima M. TSC-box is essential for the nuclear localization and antiproliferative effect of XTSC-22. Dev Growth Differ 2007; 49:197-204. [PMID: 17394598 DOI: 10.1111/j.1440-169x.2007.00908.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transforming growth factor-beta1-stimulated clone 22 (TSC-22) encodes a leucine zipper-containing protein that is highly conserved among various species. Mammalian TSC-22 is a potential tumor suppressor gene. It translocates into nuclei and suppresses cell division upon antiproliferative stimuli. In human colon carcinoma cells, TSC-22 inhibits cell growth by upregulating expression of the p21 gene, a cyclin-dependent kinase (Cdk) inhibitor. We previously showed that the Xenopus laevis homologue of the TSC-22 gene (XTSC-22) is required for cell movement during gastrulation through cell cycle regulation. In this report, we investigated the molecular mechanism of the antiproliferative effect of XTSC-22. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis suggested that XTSC-22 did not affect the expression levels of the p21 family of Cdk inhibitors or other cell cycle regulators. Analysis of deletion mutants of XTSC-22 revealed that nuclear localization of the N-terminal TSC-box is necessary for cell cycle inhibition by XTSC-22. Further experiments suggested that p27Xic1, a key Cdk inhibitor in Xenopus, interacts with XTSC-22. Because p27Xic1 is a cell cycle inhibitor with a nuclear localization signal, it is possible that XTSC-22 suppresses cell division by translocating into the nucleus with p27Xic1, where it may potentiate the intranuclear action of p27Xic1.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
21
|
Joko T, Nanba D, Shiba F, Miyata K, Shiraishi A, Ohashi Y, Higashiyama S. Effects of promyelocytic leukemia zinc finger protein on the proliferation of cultured human corneal endothelial cells. Mol Vis 2007; 13:649-58. [PMID: 17515885 PMCID: PMC2765476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To determine whether the promyelocytic leukemia zinc finger (PLZF) protein, a transcriptional repressor and negative regulator during cell cycling, plays a role in the proliferation of cultured human corneal endothelial cells (HCECs). METHODS The expressions of the mRNA and the protein of PLZF were determined by real-time PCR and western blot analysis, respectively. The changes in the expression of the PLZF gene of cultured HCECs were investigated at different times after cell-cell contacts were disrupted by incubation with EDTA. The cell proliferation rate was assessed with a real-time cell electronic sensing (RT-CES) system after cultured HCECs were infected with either PLZF or LacZ encoding adenovirus vector (Ad-PLZF or Ad-LacZ). The PLZF-regulating genes were analyzed by DNA microarray analysis in cultured HCECs infected with Ad-PLZF. RESULTS The expression of the mRNA of PLZF was first detected when the cultured HCECs became confluent, and the relative amount of PLZF mRNA continued to increase for up to 5 days as the cell-cell contacts were formed more firmly. On the other hand, the expression of the mRNA of PLZF decreased about 20 fold 3 h after EDTA exposure, and gradually returned to the original level as the cell-cell contacts were reformed at 72 h after the exposure. The assessment using the RT-CES system showed that the proliferation of cultured HCECs was inhibited for up to 72 h when infected by Ad-PLZF. DNA microarray analysis revealed that the transforming growth factor-beta stimulated clone 22 (TSC-22) gene was up-regulated by 2.32 fold when infected by Ad-PLZF. CONCLUSIONS These findings indicate that the expression of PLZF in HCECs is closely related to the formation of cell-cell contacts, and that PLZF may play a role in suppressing their proliferation.
Collapse
Affiliation(s)
- Takeshi Joko
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Daisuke Nanba
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Fumio Shiba
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | | | - Atsushi Shiraishi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuichi Ohashi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, Japan
| |
Collapse
|
22
|
Hashiguchi A, Okabayashi K, Asashima M. Role of TSC-22 during early embryogenesis in Xenopus laevis. Dev Growth Differ 2005; 46:535-44. [PMID: 15610143 DOI: 10.1111/j.1440-169x.2004.00770.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transforming growth factor-beta1-stimulated clone 22 (TSC-22) encodes a leucine zipper-containing protein that is highly conserved. During mouse embryogenesis, TSC-22 is expressed at the site of epithelial-mesenchymal interaction. Here, we isolated Xenopus laevis TSC-22 (XTSC-22) and analyzed its function in early development. XTSC-22 mRNA was first detected in the ectoderm of late blastulae. Translational knockdown using XTSC-22 antisense morpholino oligonucleotides (XTSC-22-MO) caused a severe delay in blastopore closure in gastrulating embryos. This was not due to mesoderm induction or convergent-extension, as confirmed by whole-mount in situ hybridization and animal cap assay. Cell lineage tracing revealed that migration of ectoderm cells toward blastopore was disrupted in XTSC-22-depleted embryos, and these embryos had a marked increase in the number of dividing cells. In contrast, cell division was suppressed in XTSC-22 mRNA-injected embryos. Co-injection of XTSC-22-MO and mRNA encoding p27Xic1, which inhibits cell cycle promotion by binding cyclin/Cdk complexes, reversed aberrant cell division. This was accompanied by rescue of the delay in blastopore closure and cell migration. These results indicate that XTSC-22 is required for cell movement during gastrulation though cell cycle regulation.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | |
Collapse
|
23
|
Michel C, Roberts RA, Desdouets C, Isaacs KR, Boitier E. Characterization of an Acute Molecular Marker of Nongenotoxic Rodent Hepatocarcinogenesis by Gene Expression Profiling in a Long Term Clofibric Acid Study. Chem Res Toxicol 2005; 18:611-8. [PMID: 15833021 DOI: 10.1021/tx049705v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evaluation of the nongenotoxic potential early during the development of a drug presents a major challenge. Recently, two genes were identified as potential molecular markers of rodent hepatic carcinogenesis: transforming growth factor-beta stimulated clone 22 (TSC-22) and NAD(P)H cytochrome P450 oxidoreductase (CYP-R) (1). They were identified after comparing the gene expression profiles obtained from the livers of Sprague-Dawley rats treated with different genotoxic and nongenotoxic compounds in a 5 day repeat dose in vivo study. To assess the potential of these two genes as acute markers of carcinogenesis, we investigated their modulation during a long-term nongenotoxic study in the rat using a classic initiation-promotion regime. Clofibric acid (CLO), which belongs to the broad class of chemicals known as peroxisome proliferators, was used as a nongenotoxic hepatocarcinogen. Male F344 rats were given a single nonnecrogenic injection of diethylnitrosamine (0 or 30 mg/kg) and fed a diet containing none or 5000 ppm CLO for up to 20 months. Necropsies of five rats per groups were performed at 18, 46, 102, 264, 377, 447 (control, DEN, and DEN + CLO rats), 524, and 608 days (for the CLO and control rats). Gross macroscopic and microscopic evaluation and gene expression profiling (on Affymetrix microarrays) were performed in peritumoral and tumoral liver tissues. Bioanalysis of the liver gene expression data revealed that TSC-22 was strongly down-regulated early in the study. Its underexpression was maintained throughout the study but disappeared upon CLO withdrawal. These modulations were confirmed by real-time polymerase chain reaction. However, CYP-R gene expression was not significantly altered in our study. Taken together, our results showed that TSC-22, but not CYP-R, has the potential to be an acute early molecular marker for nongenotoxic hepatocarcinogenesis in rodents.
Collapse
Affiliation(s)
- Cécile Michel
- Faculté de Médecine Necker-Enfants Malades, INSERM U370, 156 rue de Vaugirard, 75730 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
24
|
Iida M, Anna CH, Holliday WM, Collins JB, Cunningham ML, Sills RC, Devereux TR. Unique patterns of gene expression changes in liver after treatment of mice for 2 weeks with different known carcinogens and non-carcinogens. Carcinogenesis 2004; 26:689-99. [PMID: 15618236 DOI: 10.1093/carcin/bgi005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously we demonstrated that the mouse liver tumor response to the non-genotoxic carcinogens oxazepam and Wyeth-14,643 involved more differences than similarities in changes in early gene expression. In this study we used quantitative real-time PCR and oligonucleotide microarray analysis to identify genes that were up- or down-regulated in mouse liver early after treatment with different known carcinogens, including oxazepam (125 and 2500 p.p.m.), o-nitrotoluene (1250 and 5000 p.p.m.) and methyleugenol (75 mg/kg/day), or the non-carcinogens p-nitrotoluene (5000 p.p.m.), eugenol (75 mg/kg/day) and acetaminophen (6000 p.p.m.). Starting at 6 weeks of age, mice were treated with the different compounds for 2 weeks in the diet, at which time the livers were collected. First, expression of 12 genes found previously to be altered in liver after 2 weeks treatment with oxazepam and/or Wyeth-14,643 was examined in livers from the various chemical treatment groups. These gene expression changes were confirmed for the livers from the oxazepam-treated mice in the present study, but were not good early markers for all the carcinogens in this study. In addition, expression of 20 842 genes was assessed by oligonucleotide microarray [n = 4 livers/group, 2 hybridizations/liver (with fluor reversals)] and the results were analyzed using the Rosetta Resolver System and GeneSpring software. The analyses revealed that several cancer-related genes, including Fhit, Wwox, Tsc-22 and Gadd45b, were induced or repressed in unique patterns for specific carcinogens and not altered by the non-carcinogens. The data indicate that even if the tumor response, including molecular alterations, is similar, such as for oxazepam and methyleugenol, early gene expression changes appear to be carcinogen specific and seem to involve apoptosis and cell cycle-related genes.
Collapse
Affiliation(s)
- Mari Iida
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Uchida D, Begum NM, Almofti A, Kawamata H, Yoshida H, Sato M. Frequent downregulation of 14-3-3 sigma protein and hypermethylation of 14-3-3 sigma gene in salivary gland adenoid cystic carcinoma. Br J Cancer 2004; 91:1131-8. [PMID: 15292943 PMCID: PMC2747720 DOI: 10.1038/sj.bjc.6602004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
14-3-3 sigma:, a target gene of the p53 tumour suppressor protein, has been shown to regulate the cell cycle at the G2/M checkpoint. Recent studies have demonstrated that 14-3-3 sigma is downregulated by hypermethylation of the CpG island in several types of cancer. In this study, we investigated the expression and methylation status of 14-3-3 sigma in human salivary gland adenoid cystic carcinoma (ACC) and mucoepidermoid carcinoma (MEC). Immunohistochemical analysis revealed that the positive expression rate of 14-3-3 sigma in ACC (one out of 14) was markedly lower than that in MEC (ten out of 10). Since most of the ACCs carried the wild-type p53 protein, downregulation of 14-3-3 sigma in ACC may not be due to the dysfunction of p53 pathway. Microdissection-methylation-specific PCR revealed that frequent hypermethylation of the 14-3-3 sigma gene was observed in ACC when compared to that in MEC. In cultured-ACC cells, we confirmed the downregulation of 14-3-3 sigma via hemimethylation of the gene by sequencing analysis after sodium bisulphite treatment. Furthermore, re-expression of 14-3-3 sigma in the ACC cells was induced by the treatment with DNA demethylating agent, 5-aza-2'-deoxycytidine. Irradiation apparently induced the enhanced expression of 14-3-3 sigma and G2/M arrest in normal salivary gland cells; however, in the ACC cells, neither induction of 14-3-3 sigma nor G2/M arrest was induced by irradiation. These results suggest that downregulation of 14-3-3 sigma might play critical roles in the neoplastic development and radiosensitivity of ACC.
Collapse
Affiliation(s)
- D Uchida
- Second Department of Oral and Maxillofacial Surgery, Tokushima University School of Dentistry, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Kramer JA, Curtiss SW, Kolaja KL, Alden CL, Blomme EAG, Curtiss WC, Davila JC, Jackson CJ, Bunch RT. Acute Molecular Markers of Rodent Hepatic Carcinogenesis Identified by Transcription Profiling. Chem Res Toxicol 2004; 17:463-70. [PMID: 15089088 DOI: 10.1021/tx034244j] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, the only way to identify nongenotoxic hepatocarcinogens is through long-term repeat dose studies such as the 2 year rodent carcinogenicity assay. Such assays are both time consuming and expensive and require large amounts of active pharmaceutical or chemical ingredients. Thus, the results of the 2 year assay are not known until very late in the discovery and development process for new pharmaceutical entities. Although in many cases nongenotoxic carcinogenicity in rodents is considered to be irrelevant for humans, a positive finding in a 2 year carcinogenicity assay may increase the number of studies to demonstrate the lack of relevance to humans, delay final submission and subsequent registration of a product, and may result in a "black box" carcinogenicity warning on the label. To develop early identifiers of carcinogenicity, we applied transcription profiling using several prototype rodent genotoxic and nongenotoxic carcinogens, as well as two noncarcinogenic hepatotoxicants, in a 5 day repeat dose in vivo toxicology study. Fluorescent-labeled probes generated from liver mRNA prepared from male Sprague-Dawley rats treated with one of three dose levels of bemitradine, clofibrate, doxylamine, methapyrilene, phenobarbital, tamoxifen, 2-acetylaminofluorene, 4-acetylaminofluorene, or isoniazid were hybridized against rat cDNA microarrays. Correlation of the resulting data with an estimated carcinogenic potential of each compound and dose level identified several candidate molecular markers of rodent nongenotoxic carcinogenicity, including transforming growth factor-beta stimulated clone 22 and NAD(P)H cytochrome P450 oxidoreductase.
Collapse
Affiliation(s)
- Jeffrey A Kramer
- Pfizer Corporation, World Wide Safety Science, 800 North Lindbergh Boulevard, St Louis, Missouri 63167, USA. a.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Soma T, Dohrmann CE, Hibino T, Raftery LA. Profile of Transforming Growth Factor-β Responses During the Murine Hair Cycle. J Invest Dermatol 2003; 121:969-75. [PMID: 14708594 DOI: 10.1046/j.1523-1747.2003.12516.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-beta (TGF-beta) appears to promote the regression phase of the mammalian hair cycle, in vivo in mice and in organ culture of human hair follicles. To assess the relationship between TGF-beta activity and apoptosis of epithelial cells during the murine hair cycle, we identified active TGF-beta responses using phospho-Smad2/3-specific antibodies (PS2). Strong, nuclear PS2 staining was observed in the outer root sheath throughout the anagen growth phase. Some bulb matrix cells were positive for PS2 during late anagen. Extensive, but weak, staining was observed in this region at the anagen-catagen transition. We also examined expression of TGF-beta-stimulated clone-22 (TSC-22), which is associated with TGF-beta-induced apoptosis of some cell lines. Recombinant rat TSC-22 was used to generate a rabbit anti-TSC-22 antibody useful for immunohistochemistry. TSC-22 RNA accumulation and immunoreactivity were observed in follicles throughout the murine hair cycle, including the dermal papilla and lower epithelial strand of late-catagen hair follicles. Neither the expression pattern nor the presence of nuclear TSC-22 correlated with the sites of apoptosis, suggesting that TSC-22 is not an effector of apoptosis in mouse catagen hair follicles. These studies support a complex role for TGF-beta in regulating the regression phase of the cycle, with potential for indirect promotion of apoptosis during the anagen-catagen transition.
Collapse
Affiliation(s)
- Tsutomu Soma
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
28
|
Kawamata H, Omotehara F, Nakashiro KI, Uchida D, Hino S, Fujimori T. Vesnarinone: a differentiation-inducing anti-cancer drug. Anticancer Drugs 2003; 14:391-5. [PMID: 12853878 DOI: 10.1097/00001813-200307000-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vesnarinone has been shown to be a unique anti-proliferating, differentiation-inducing and apoptosis inducing drug against several human malignancies, including leukemia and several solid tumors. Furthermore, vesnarinone potentiates the effect of conventional cytotoxic chemotherapy or radiation therapy. Combination of differentiation-inducing therapy by vesnarinone with conventional chemotherapy or radiation therapy might be second- or third-line therapy in patients with advanced cancer. Analysis of the molecular mechanisms of the tumor differentiation therapy by vesnarinone might provide selective and targeted molecules for novel tumor dormancy therapy.
Collapse
Affiliation(s)
- Hitoshi Kawamata
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Mibu, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Uchida D, Omotehara F, Nakashiro KI, Tateishi Y, Hino S, Begum NM, Fujimori T, Kawamata H. Posttranscriptional regulation of TSC-22 (TGF-beta-stimulated clone-22) gene by TGF-beta 1. Biochem Biophys Res Commun 2003; 305:846-54. [PMID: 12767908 DOI: 10.1016/s0006-291x(03)00854-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
TSC-22 gene was composed of three exons and its length was approximately 5.5 kb including 2.9 kb promoter region. The transcription starting site was located at 7 and 29 bp downstream from TATA box. Promoter analysis revealed that 2146 bp of TSC-22 promoter was activated by several differentiation inducing drugs. Although originally TSC-22 was isolated as a TGF-beta-inducible gene, TSC-22 promoter was not activated by the enhanced TGF-beta signaling. We found 3 copies of the Shaw-Kamens sequence (AUUUA) in the human TSC-22 mRNA 3'-UTR and identified three proteins (40, 20, and 15 kDa) which bound to this. Only the 40 kDa protein-RNA complex was decreased by treatment with TGF-beta 1. Moreover, the TSC-22 mRNA 3'-UTR destabilized the heterologous luciferase mRNA, but the destabilization was recovered with TGF-beta 1. These observations suggest that up-regulation of TSC-22 mRNA by TGF-beta 1 is achieved by mRNA stabilization, but not by transcriptional activation.
Collapse
Affiliation(s)
- Daisuke Uchida
- Second Department of Oral and Maxillofacial Surgery, Tokushima University School of Dentistry, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shostak KO, Dmitrenko VV, Garifulin OM, Rozumenko VD, Khomenko OV, Zozulya YA, Zehetner G, Kavsan VM. Downregulation of putative tumor suppressor gene TSC-22 in human brain tumors. J Surg Oncol 2003; 82:57-64. [PMID: 12501169 DOI: 10.1002/jso.10180] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Our objective was to identify differentially expressed genes involved in the pathogenesis of glioblastoma multiforme (GBM). METHODS Screening of arrayed human fetal brain and human postnatal brain cDNA libraries was performed by differential hybridization with glioblastoma multiforme and human normal brain cDNAs. RESULTS Repeated differential hybridization of more than 100 cDNA clones selected by primary screening and analysis of RNA from adult normal brain and glial tumors showed 16 nucleotide sequences differentially expressed between normal brain and brain tumors. Among others, decreased content in astrocytic tumors was determined for TSC-22 mRNA corresponding to cDNA in the ICRFp507J1041 clone from human fetal brain cDNA library. Northern blot hybridization of RNA from different human brain tumors showed very low amounts of TSC-22 mRNA in most investigated samples of GBM, anaplastic astrocytoma, and some other tumors. Complete lack of expression of TSC-22 occurred in one sample of anaplastic astrocytoma, as well as in meningioma, brain sarcoma, sarcomatous meningioma, and oligodendroglioma. The differential expression of TSC-22 gene was confirmed by semiquantitative RT-PCR in 15 samples of astrocytomas WHO grade II-IV and three samples of normal brain. CONCLUSIONS Significantly decreased levels of TSC-22 mRNA in human brain and salivary gland tumors and antiproliferative role of TSC-22 strongly suggest a tumor suppressor role for TSC-22. J.
Collapse
|
31
|
Omotehara F, Kawamata H, Uchida D, Hino S, Nakashiro K, Fujimori T. Vesnarinone, a differentiation inducing drug, directly activates p21(waf1) gene promoter via Sp1 sites in a human salivary gland cancer cell line. Br J Cancer 2002; 87:1042-6. [PMID: 12434298 PMCID: PMC2364327 DOI: 10.1038/sj.bjc.6600592] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Revised: 08/06/2002] [Accepted: 08/15/2002] [Indexed: 11/10/2022] Open
Abstract
We previously demonstrated that a differentiation inducing drug, vesnarinone induced the growth arrest and p21(waf1) gene expression in a human salivary gland cancer cell line, TYS. In the present study, we investigated the mechanism of the induction of p21(waf1) gene by vesnarinone in TYS cells. We constructed several reporter plasmids containing the p21(waf1) promoter, and attempted to identify vesnarinone-responsive elements in the p21(waf1) promoter. By the luciferase reporter assay, we identified the minimal vesnarinone-responsive element in the p21(waf1) promoter at -124 to -61 relative to the transcription start site. Moreover, we demonstrated by electrophoretic mobility shift assay that Sp1 and Sp3 transcription factors bound to the vesnarinone-responsive element. Furthermore, we found that vesnarinone induced the histone hyperacetylation in TYS cells. These results suggest that vesnarinone directly activates p21(waf1) promoter via the activation of Sp1 and Sp3 transcription factors and the histone hyperacetylation in TYS cells.
Collapse
Affiliation(s)
- F Omotehara
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu, Shimo-Tsuga, Tochigi, 321-0293, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Hino S, Kawamata H, Omotehara F, Uchida D, Miwa Y, Begum NM, Yoshida H, Sato M, Fujimori T. Cytoplasmic TSC-22 (transforming growth factor-beta-stimulated clone-22) markedly enhances the radiation sensitivity of salivary gland cancer cells. Biochem Biophys Res Commun 2002; 292:957-63. [PMID: 11944908 DOI: 10.1006/bbrc.2002.6776] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We transfected a salivary gland cancer cell line, TYS, with three different forms of TSC-22 (transforming growth factor-beta-stimulated clone-22) gene: full-length TSC-22 (TSC-22FL) containing nuclear export signal, TSC-box and leucine zipper, truncated TSC-22 (TSC-22LZ) containing only TSC-box and leucine zipper, and truncated TSC-22 with nuclear localization signal (NLS-TSC-22LZ). High expression of TSC-22FL in the cytoplasm markedly enhanced the radiation-sensitivity of TYS cells, while, moderate expression of TSC-22FL marginally affected the radiation-sensitivity. TSC-22LZ, which was expressed in the cytoplasm and the nucleus, enhanced the radiation-sensitivity of TYS cells irrespective to its expression level. NLS-TSC-22LZ, which was expressed only in the nucleus, marginally affected the radiation-sensitivity of the cells even at high expression level. Interestingly, cytoplasmic TSC-22 translocates to nucleus concomitant with radiation-induced apoptosis. These results suggest that cytoplasmic localization of TSC-22 and translocation of TSC-22 from cytoplasm to nucleus is important for regulating the cell death signal after irradiation-induced DNA damage.
Collapse
Affiliation(s)
- Satoshi Hino
- Second Department of Oral and Maxillofacial Surgery, Tokushima University School of Dentistry, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Patnaik A, Rowinsky EK, Tammara BK, Hidalgo M, Drengler RL, Garner AM, Siu LL, Hammond LA, Felton SA, Mallikaarjun S, Von Hoff DD, Eckhardt SG. Phase I and pharmacokinetic study of the differentiating agent vesnarinone in combination with gemcitabine in patients with advanced cancer. J Clin Oncol 2000; 18:3974-85. [PMID: 11099327 DOI: 10.1200/jco.2000.18.23.3974] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To evaluate the maximum-tolerated dose, dose-limiting toxicities (DLTs), and pharmacokinetic profile of vesnarinone given once daily in combination with gemcitabine. PATIENTS AND METHODS Twenty-six patients were treated with oral vesnarinone once daily on a continuous schedule at doses of 60, 90, 120, 150, and 180 mg in combination with intravenous (IV) gemcitabine at a dose of 1,000 mg/m(2) on days 1, 8, and 15 every 4 weeks. To determine whether biologically relevant concentrations were being achieved, predose concentrations (C(min)) of vesnarinone were obtained weekly. Plasma gemcitabine and 2',2'-difluorodeoxyuridine concentrations were obtained during courses 1 and 2. RESULTS Twenty-six patients were treated with 92 courses of vesnarinone/gemcitabine. The principal toxicities of the regimen consisted of neutropenia and thrombocytopenia, which were dose-limiting in two of eight heavily pretreated new patients treated at the 90 mg/1,000 mg/m(2) dose level and one of 10 minimally pretreated new patients at the 120 mg/1,000 mg/m(2) dose level. None of three patients treated with 15 courses at the vesnarinone/gemcitabine dose levels of 60 mg/1,000 mg/m(2) experienced DLT. Pharmacokinetic studies of vesnarinone revealed significant interpatient variability at any given dose level. There was evidence of a linear relationship between vesnarinone dose and mean C(min) at dosages of vesnarinone less than 150 mg, with plateauing of mean C(min) values at higher dosages. There was no impact of vesnarinone on gemcitabine concentrations, and the vesnarinone pharmacokinetics did not change with gemcitabine between weeks 1 and 2. Two partial responses occurred in patients with refractory breast and non-small-cell lung carcinoma. CONCLUSION When combined with gemcitabine, the recommended dose of vesnarinone for phase II evaluations is 90 mg orally once daily with gemcitabine 1,000 mg/m(2) IV on days 1, 8, and 15 every 4 weeks. There is no evidence of pharmacokinetic interaction between vesnarinone and gemcitabine. Further studies of vesnarinone as a single agent or in combination with gemcitabine and other antineoplastic agents are warranted.
Collapse
Affiliation(s)
- A Patnaik
- Institute for Drug Development, Cancer Therapy and Research Center, and The University of Texas Health Science Center at San Antonio, 78229, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hino S, Kawamata H, Uchida D, Omotehara F, Miwa Y, Begum NM, Yoshida H, Fujimori T, Sato M. Nuclear translocation of TSC-22 (TGF-beta-stimulated clone-22) concomitant with apoptosis: TSC-22 as a putative transcriptional regulator. Biochem Biophys Res Commun 2000; 278:659-64. [PMID: 11095965 DOI: 10.1006/bbrc.2000.3840] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the alteration of the subcellular localization of TSC-22 (TGF-beta-stimulated clone-22) after induction of apoptosis and the transcription-regulatory activity of TSC-22. In the living cells, TSC-22-green fluorescent protein (GFP) fusion protein was clearly localized to the cytoplasm, however, in the apoptotic cells, the TSC-22-GFP fusion protein was translocated from the cytoplasm to the nucleus. TSC-22 fused to GAL4-DNA binding domain (GAL4BD) did not show the transcriptional activity on the reporter genes in yeast and in HSG (salivary gland cancer cells) and Hela. However, in CHO cells, TSC-22-GAL4BD fusion protein strongly activated the reporter gene. The transcriptional activity of the leucine zipper structure of TSC-22 is greater than that of the full-length TSC-22. These findings suggest that after receiving the apoptotic stimuli, TSC-22 translocates from the cytoplasm to the nucleus and shows the transcription-regulatory activity.
Collapse
Affiliation(s)
- S Hino
- Second Department of Oral and Maxillofacial Surgery, Tokushima University School of Dentistry, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kester HA, Ward-van Oostwaard TM, Goumans MJ, van Rooijen MA, van Der Saag PT, van Der Burg B, Mummery CL. Expression of TGF-beta stimulated clone-22 (TSC-22) in mouse development and TGF-beta signalling. Dev Dyn 2000; 218:563-72. [PMID: 10906776 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1021>3.0.co;2-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
TSC-22 is a highly conserved member of a novel family of transcription factors, that is a direct target of transforming growth factor-beta (TGF-beta) in osteoblastic cells. We have investigated the expression of TSC-22 in detail during mouse development using in situ hybridization. We detected strong expression of TSC-22 in the embryo proper first at embryonic day 8.5 (E8.5), in the primitive heart, intermediate mesoderm and the neural tube. The dynamics of the TSC-22 distribution in the neural tube was particularly striking, with ubiquitous expression rostrally and restriction to neural tissue nearer the floor plate more caudally; between E8.5 and E9.5 the zone of restricted expression extended rostrally. At later stages of development, TSC-22 was detected in the mesenchymal compartment of many tissues and organs, including the lung, trachea, kidney, stomach, intestine, tooth buds, and in precartilage condensations. Furthermore, TSC-22 was highly expressed in the floor plate itself and notochord, and the endothelium lining the blood vessels, in particular the major arteries. Many of these sites have been proposed previously as possible TGF-beta target tissues; the results imply that TSC-22 may also be a direct TGF-beta target gene during mouse embryogenesis. Experiments on TSC-22 expression in embryoid bodies of embryonic stem (ES) cells expressing dominant negative TGF-beta binding receptors initially supported this hypothesis. However, examination of somatic chimeras derived from these same mutant ES cells at nominal E9.5 showed that TSC-22 expression in the heart and neural tube was still detectable despite obvious phenotypic abnormalities. We therefore propose that although TSC-22 may be a direct target of TGF-beta in late development, other factors are likely to be major regulators of expression at earlier stages.
Collapse
Affiliation(s)
- H A Kester
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Uchida D, Kawamata H, Omotehara F, Miwa Y, Hino S, Begum NM, Yoshida H, Sato M. Over-expression of TSC-22 (TGF-beta stimulated clone-22) markedly enhances 5-fluorouracil-induced apoptosis in a human salivary gland cancer cell line. J Transl Med 2000; 80:955-63. [PMID: 10879745 DOI: 10.1038/labinvest.3780098] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have recently isolated TSC-22 (transforming growth factor-beta-stimulated clone-22) cDNA as an anticancer, drug-inducible (with vesnarinone) gene in a human salivary gland cancer cell line, TYS. We have also reported that TSC-22 negatively regulates the growth of TYS cells and that down-regulation of TSC-22 in TYS cells plays a major role in salivary gland tumorigenesis (Nakashiro et al, 1998). In this study, we transfected TYS cells with an expression vector encoding the TSC-22-GFP (green fluorescent protein) fusion protein, and we established TSC-22-GFP-expressing TYS cell clones. Next, we examined (a) the subcellular localization of the fusion protein, (b) the sensitivity of the transfectants to several anticancer drugs (5-fluorouracil, cis-diaminedichloroplatinum, peplomycin), and (c) induction of apoptotic cell death in the transfectants by 5-fluorouracil treatment. The TSC-22-GFP fusion protein was clearly localized to the cytoplasm, but not to the nucleus. Over-expression of the TSC-22-GFP fusion protein did not affect cell growth, but significantly increased the sensitivity of the cells to the anticancer drugs (p < 0.01; one-way ANOVA). Furthermore, over-expression of the TSC-22-GFP fusion protein markedly enhanced 5-fluorouracil-induced apoptosis. These findings suggest that over-expression of TSC-22-GFP protein in TYS cells enhances the chemosensitivity of the cells via induction of apoptosis.
Collapse
Affiliation(s)
- D Uchida
- Second Department of Oral and Maxillofacial Surgery, Tokushima University School of Dentistry, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Frye RF, Tammara B, Cowart TD, Bramer SL. Effect of Disulfiram‐Mediated CYP2E1 Inhibition on the Disposition of Vesnarinone. J Clin Pharmacol 1999. [DOI: 10.1177/009127009903901110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Reginald F. Frye
- Department of Pharmaceutical Sciences, School of Pharmacy and the Center for Clinical Pharmacology, University of Pittsburgh
| | - Brinda Tammara
- Otsuka America Pharmaceutical, Inc., Maryland Office of Clinical Research, Rockville, Maryland
| | - T. Douglas Cowart
- Otsuka America Pharmaceutical, Inc., Maryland Office of Clinical Research, Rockville, Maryland
| | - Steven L. Bramer
- Otsuka America Pharmaceutical, Inc., Maryland Office of Clinical Research, Rockville, Maryland
| |
Collapse
|
38
|
Teague TK, Hildeman D, Kedl RM, Mitchell T, Rees W, Schaefer BC, Bender J, Kappler J, Marrack P. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc Natl Acad Sci U S A 1999; 96:12691-6. [PMID: 10535984 PMCID: PMC23052 DOI: 10.1073/pnas.96.22.12691] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/1999] [Indexed: 01/19/2023] Open
Abstract
During activation T cells are thought to change their patterns of gene expression dramatically. To find out whether this is true for T cells activated in animals, the patterns of genes expressed in resting T cells and T cells 8 and 48 hr after activation were examined by using Affymetrix gene arrays. Gene arrays gave accurate comparisons of gene expression in the different cell types because the expression of genes known to vary during activation changed as expected. Of the approximately 6,300 genes assessed by the arrays, about one-third were expressed to appreciable extents in any of the T cells tested. Thus, resting T cells express a surprisingly large diversity of genes. The patterns of gene expression changed considerably within 8 hr of T cell activation but returned to a disposition more like that of resting T cells within 48 hr of exposure to antigen. Not unexpectedly, the activated T cells expressed genes associated with cell division at higher levels than resting T cells. The resting T cells expressed a number of cytokine receptor genes and some genes thought to suppress cell division, suggesting that the state of resting T cells is not a passive failure to respond to extant external stimuli.
Collapse
Affiliation(s)
- T K Teague
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kester HA, Blanchetot C, den Hertog J, van der Saag PT, van der Burg B. Transforming growth factor-beta-stimulated clone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerize and has transcriptional repressor activity. J Biol Chem 1999; 274:27439-47. [PMID: 10488076 DOI: 10.1074/jbc.274.39.27439] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TGF-beta-stimulated clone-22 (TSC-22) encodes a leucine zipper-containing protein that is highly conserved during evolution. Two homologues are known that share a similar leucine zipper domain and another conserved domain (designated the TSC box). Only limited data are available on the function of TSC-22 and its homologues. TSC-22 is transcriptionally up-regulated by many different stimuli, including anti-cancer drugs and growth inhibitors, and recent data suggest that TSC-22 may play a suppressive role in tumorigenesis. In this paper we show that TSC-22 forms homodimers via its conserved leucine zipper domain. Using a yeast two-hybrid screen, we identified a TSC-22 homologue (THG-1) as heterodimeric partner. Furthermore, we report the presence of two more mammalian family members with highly conserved leucine zippers and TSC boxes. Interestingly, both TSC-22 and THG-1 have transcriptional repressor activity when fused to a heterologous DNA-binding domain. The repressor activity of TSC-22 appears sensitive for promoter architecture, but not for the histone deacetylase inhibitor trichostatin A. Mutational analysis showed that this repressor activity resides in the non-conserved regions of the protein and is enhanced by the conserved dimerization domain. Our results suggest that TSC-22 belongs to a family of leucine zipper-containing transcription factors that can homodimerize and heterodimerize with other family members and that at least two TSC-22 family members may be repressors of transcription.
Collapse
Affiliation(s)
- H A Kester
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Okafuji M, Ita M, Hayatsu Y, Shinozaki F, Oga A, Sasaki K. Identification of genetic aberrations in cell lines from oral squamous cell carcinomas by comparative genomic hybridization. J Oral Pathol Med 1999; 28:241-5. [PMID: 10426195 DOI: 10.1111/j.1600-0714.1999.tb02032.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We detected genetic alterations in 14 cell lines established from 14 human oral squamous cell carcinomas (OSCCs) using comparative genomic hybridization (CGH), which allows a comprehensive analysis of chromosomal imbalances and identification of nonrandom genetic aberrations specific to OSCCs. All cell lines showed gains and losses of DNA copy number. DNA losses were detected for chromosomes 18q (10/14) and 4q (9/14) with minimal overlapping regions of 18q12-32 and 4q31-qter, respectively. In contrast, the common sites for increased copy number were chromosomes 5p (12/14), 8q23-ter (11/14), 20p (8/14), 20q (8/14), and 3q25-ter (7/14). These results suggest that losses of 18q12-22 and 4q31-ter and gains of 5p and 8q23-ter play important roles in the development and/or progression of OSCC.
Collapse
Affiliation(s)
- M Okafuji
- Department of Pathology, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Yoneda K, Yamamoto T, Ueta E, Osaki T. Induction of cyclin-dependent kinase inhibitor p21 in vesnarinone-induced differentiation of squamous cell carcinoma cells. Cancer Lett 1998; 133:35-45. [PMID: 9929158 DOI: 10.1016/s0304-3835(98)00187-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Induction of differentiation is today a useful strategy in cancer therapy but the clinical practice is insufficient in squamous cell carcinomas. We examined the effect of vesnarinone, a differentiation-inducing agent, on the cell cycle and cellular differentiation in four cell lines established from oral squamous cell carcinomas possessing a wild-type or mutated p53. Vesnarinone dose-dependently inhibited cell growth and induced G1 phase accumulation regardless of p53 gene mutation. The expression of involucrin and transglutaminase was increased by 4 days treatment with 60 microg/ml vesnarinone in all cell lines. Although p21 promoter activity was suppressed by vesnarinone, p21-mRNA was stabilized by the agent and expression of p21-mRNA was maintained for a long time. Corresponding to the prolonged p21-mRNA expression, p21 protein was induced by cell treatment with 60 microg/ml vesnarinone for 12 h and longer. The induced p21 protein bound cyclin E and suppressed cyclin E/Cdk2 kinase activity suppressing the phosphorylation of retinoblastoma (Rb) protein. These results suggest that vesnarinone possesses activity to induce p21 protein by stabilizing its mRNA with induction of differentiation of squamous cell carcinoma cells in a p53-independent manner.
Collapse
Affiliation(s)
- K Yoneda
- Department of Oral Surgery, Kochi Medical School, Nakoku-city, Japan
| | | | | | | |
Collapse
|