1
|
Chiec L, Bruno DS. Immunotherapy for Treatment of Pleural Mesothelioma: Current and Emerging Therapeutic Strategies. Int J Mol Sci 2024; 25:10861. [PMID: 39409190 PMCID: PMC11477297 DOI: 10.3390/ijms251910861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Pleural mesothelioma is a rare malignancy associated with asbestos exposure and very poor prognosis, with a 5-year overall survival of 12%. Outcomes may vary according to stage at time of diagnosis and histologic subtype. Most recently, clinical trials utilizing dual checkpoint inhibitor regimens and chemotherapy in combination with immune oncologic agents have demonstrated impactful changes in outcomes. In this article, we review studies that have led to the successful implementation of immunotherapy in clinical practice for the treatment of this disease and highlight ongoing clinical trials exploring the use of different immunotherapy strategies for the treatment of pleural mesothelioma. We also discuss the challenges of immunotherapy-based approaches in the context of mesothelioma and future strategies currently being investigated to overcome them.
Collapse
Affiliation(s)
- Lauren Chiec
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Debora S. Bruno
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Mrugala MM, Shi W, Iwomoto F, Lukas RV, Palmer JD, Suh JH, Glas M. Global post‑marketing safety surveillance of Tumor Treating Fields (TTFields) therapy in over 25,000 patients with CNS malignancies treated between 2011-2022. J Neurooncol 2024; 169:25-38. [PMID: 38949692 PMCID: PMC11269345 DOI: 10.1007/s11060-024-04682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Tumor Treating Fields (TTFields) are alternating electric fields that disrupt cancer cell processes. TTFields therapy is approved for recurrent glioblastoma (rGBM), and newly-diagnosed (nd) GBM (with concomitant temozolomide for ndGBM; US), and for grade IV glioma (EU). We present an updated global, post-marketing surveillance safety analysis of patients with CNS malignancies treated with TTFields therapy. METHODS Safety data were collected from routine post-marketing activities for patients in North America, Europe, Israel, and Japan (October 2011-October 2022). Adverse events (AEs) were stratified by age, sex, and diagnosis. RESULTS Overall, 25,898 patients were included (diagnoses: ndGBM [68%], rGBM [26%], anaplastic astrocytoma/oligodendroglioma [4%], other CNS malignancies [2%]). Median (range) age was 59 (3-103) years; 66% patients were male. Most (69%) patients were 18-65 years; 0.4% were < 18 years; 30% were > 65 years. All-cause and TTFields-related AEs occurred in 18,798 (73%) and 14,599 (56%) patients, respectively. Most common treatment-related AEs were beneath-array skin reactions (43%), electric sensation (tingling; 14%), and heat sensation (warmth; 12%). Treatment-related skin reactions were comparable in pediatric (39%), adult (42%), and elderly (45%) groups, and in males (41%) and females (46%); and similar across diagnostic subgroups (ndGBM, 46%; rGBM, 34%; anaplastic astrocytoma/oligodendroglioma, 42%; other, 40%). No TTFields-related systemic AEs were reported. CONCLUSIONS This long-term, real-world analysis of > 25,000 patients demonstrated good tolerability of TTFields in patients with CNS malignancies. Most therapy-related AEs were manageable localized, non-serious skin events. The TTFields therapy safety profile remained consistent across subgroups (age, sex, and diagnosis), indicative of its broad applicability.
Collapse
Affiliation(s)
- Maciej M Mrugala
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Phoenix/Scottsdale, Arizona, USA.
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fabio Iwomoto
- Division of Neuro-Oncology, New York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joshua D Palmer
- The Department of Radiation Oncology, The James Cancer Hospital, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, West German Cancer Center (WTZ) and German Cancer Consortium, Partner Site, Essen, Germany
| |
Collapse
|
3
|
Jiang Y, Cai Y, Xu X, Kong X, Cao J. A rare malignant mesothelioma of the tunica vaginalis testis: A case report. Oncol Lett 2024; 27:172. [PMID: 38455661 PMCID: PMC10918515 DOI: 10.3892/ol.2024.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
Malignant mesothelioma of the tunica vaginalis testis is a rare, highly invasive urogenital malignant tumor with no specific clinical manifestations. Reported cases of this disease are limited. Therefore, an early preoperative diagnosis is difficult. The current study presents a case of malignant mesothelioma of the tunica vaginalis testis and a literature review. A 52-year-old man was admitted to Xiaoshan Affiliated Hospital of Wenzhou Medical University (Hangzhou, China) in December 2022 and underwent radical resection of the right testicle and epididymis but did not undergo radiotherapy or chemotherapy. The patient was followed up for 5 months, and no recurrence or metastasis was found. The rarity of testicular mesothelioma poses a challenge to its etiology and diagnosis, which is rarely achieved preoperatively. Malignant mesothelioma of the testicular tunica vaginalis has a poor prognosis and is not sensitive to radiotherapy or chemotherapy, requiring close postoperative follow-up. This condition is rare in clinical practice; therefore, it needs to be reported to aid clinicians' decision-making regarding diagnosis and treatment.
Collapse
Affiliation(s)
- Yiqian Jiang
- Department of Radiotherapy, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang 311200, P.R. China
| | - Yong Cai
- Department of Pediatrics, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang 311200, P.R. China
| | - Xiaoping Xu
- Department of Radiotherapy, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang 311200, P.R. China
| | - Xiangyang Kong
- Department of Radiotherapy, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang 311200, P.R. China
| | - Jianhua Cao
- Department of Respiratory and Critical Care Medicine, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang 311200, P.R. China
| |
Collapse
|
4
|
Congedo MT, West EC, Evangelista J, Mattingly AA, Calabrese G, Sassorossi C, Nocera A, Chiappetta M, Flamini S, Abenavoli L, Margaritora S, Boccuto L, Lococo F. The genetic susceptibility in the development of malignant pleural mesothelioma: somatic and germline variants, clinicopathological features and implication in practical medical/surgical care: a narrative review. J Thorac Dis 2024; 16:671-687. [PMID: 38410609 PMCID: PMC10894363 DOI: 10.21037/jtd-23-611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/18/2023] [Indexed: 02/28/2024]
Abstract
Background and Objective Malignant pleural mesothelioma (MPM) is a very aggressive primary tumor of the pleura whose main risk factor is exposure to asbestos. However, only a minority of exposed people develops MPM and the incidence of MPM cases without an apparent association with asbestos exposure has been increasing in recent years, suggesting that genetic predisposing factors may play a crucial role. In addition, several studies reported familial cases of MPM, suggesting that heredity may be an important and underestimated feature in MPM development. Several candidate genes have been associated with a predisposition to MPM and most of them play a role in DNA repair mechanisms: overall, approximately 20% of MPM cases may be related to genetic predisposition. A particular category of patients with high susceptibility to MPM is represented by carriers of pathogenic variants in the BAP1 gene. Germline variants in BAP1 predispose to the development of MPM following an autosomal dominant pattern of inheritance in the familial cases. MPMs in these patients are significantly less aggressive, and patients require a multidisciplinary approach that involves genetic counseling, medical genetics, pathology, surgical, medical, and radiation oncology expertise. In the present narrative review, we presented a comprehensive overview of genetic susceptibility in the development of MPM. Methods The narrative review is based on a selective literature carried out in PubMed in 2023. Inclusion criteria were original articles in English language, and clinical trials (randomized, prospective, or retrospective). Key Content and Findings We summarized the somatic and germline variants and the differences in terms of clinicopathological features and prognosis between gene-related MPM (GR-MPM) and asbestos-related MPM (AR-MPM). We also discussed the indications for screening, genetic testing, and surveillance of patients with BAP1 germline variants. Conclusions In this narrative review, we have emphasized that the BAP1 gene's harmful germline variations are inherited in an autosomal dominant manner in familial cases. MPMs in individuals with these variations are less severe, and their medical care necessitates a collaborative effort. Additionally, we have outlined the current therapeutic prospects for MPM, including the possibility of gene-specific therapy, which is currently promising but still requires clinical validation.
Collapse
Affiliation(s)
| | - Elizabeth Casey West
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC, USA
| | - Jessica Evangelista
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
- Catholic University of Sacred Heart, Rome, Italy
| | - Aubrey Anne Mattingly
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC, USA
| | - Giuseppe Calabrese
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Carolina Sassorossi
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Adriana Nocera
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Marco Chiappetta
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Sara Flamini
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, “Magna Græcia” University, Catanzaro, Italy
| | - Stefano Margaritora
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
- Catholic University of Sacred Heart, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC, USA
| | - Filippo Lococo
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| |
Collapse
|
5
|
Wang Q, Xu C, Wang W, Zhang Y, Li Z, Song Z, Wang J, Yu J, Liu J, Zhang S, Cai X, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Li J, Liu B, Yuan J, Jiang Z, Lin G, Chen X, Pu X, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Hu X, Zhou J, Zhu Z, Chen X, Pan W, Pang F, Zhang W, Jian Q, Wang K, Wang L, Zhu Y, Yang G, Lin X, Cai J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Wang X, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yu J, Kang J, Zhang J, Zhang C, Wu L, Shi L, Ye L, Wang G, Wang Y, Gao F, Huang J, Wang G, Wei J, Huang L, Li B, Zhang Z, Li Z, Liu Y, Li Y, Liu Z, Yang N, Wu L, Wang Q, Huang W, Hong Z, Wang G, Qu F, Fang M, Fang Y, Zhu X, Du K, Ji J, Shen Y, Chen J, Zhang Y, Ma S, Lu Y, Song Y, Liu A, Zhong W, Fang W. Chinese expert consensus on the diagnosis and treatment of malignant pleural mesothelioma. Thorac Cancer 2023; 14:2715-2731. [PMID: 37461124 PMCID: PMC10493492 DOI: 10.1111/1759-7714.15022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignant tumor originating from the pleura, and its incidence has been increasing in recent years. Due to the insidious onset and strong local invasiveness of MPM, most patients are diagnosed in the late stage and early screening and treatment for high-risk populations are crucial. The treatment of MPM mainly includes surgery, chemotherapy, and radiotherapy. Immunotherapy and electric field therapy have also been applied, leading to further improvements in patient survival. The Mesothelioma Group of the Yangtze River Delta Lung Cancer Cooperation Group (East China LUng caNcer Group, ECLUNG; Youth Committee) developed a national consensus on the clinical diagnosis and treatment of MPM based on existing clinical research evidence and the opinions of national experts. This consensus aims to promote the homogenization and standardization of MPM diagnosis and treatment in China, covering epidemiology, diagnosis, treatment, and follow-up.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory MedicineAffiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese MedicineNanjingChina
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Wenxian Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Zhengbo Song
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Jiandong Wang
- Department of PathologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics CoreTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Jingjing Liu
- Department of Thoracic CancerJilin Cancer HospitalChangchunChina
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yet‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer CenterZhejiang UniversityHangzhouChina
| | - Ping Zhan
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Hongbing Liu
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Tangfeng Lv
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Lingfeng Min
- Department of Respiratory MedicineClinical Medical School of Yangzhou University, Subei People's Hospital of Jiangsu ProvinceYangzhouChina
| | - Jiancheng Li
- Department of Radiation OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Baogang Liu
- Department of OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Jingping Yuan
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhansheng Jiang
- Department of Integrative OncologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Gen Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Xiaohui Chen
- Department of Thoracic SurgeryFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Xingxiang Pu
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Dongqing Lv
- Department of Pulmonary MedicineTaizhou Hospital of Wenzhou Medical UniversityTaizhouChina
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900th Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital)Fujian Medical UniversityFuzhouChina
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chuanhao Tang
- Department of Medical OncologyPeking University International HospitalBeijingChina
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University(The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Junping Zhang
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of MedicineXiamen UniversityXiamenChina
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and TechnologyChengduChina
| | - Zhengfei Zhu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofeng Chen
- Department of OncologyJiangsu Province Hospital and Nanjing Medical University First Affiliated HospitalNanjingChina
| | - Weiwei Pan
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Fei Pang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Wenpan Zhang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Qijie Jian
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Kai Wang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Liping Wang
- Department of OncologyBaotou Cancer HospitalBaotouChina
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Guocai Yang
- Department of Thoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanChina
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University(The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Jing Cai
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huijing Feng
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Lin Wang
- Department of PathologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wang Yao
- Department of Interventional OncologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Dongmei Yuan
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yanwen Yao
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jianhui Huang
- Department of OncologyLishui Municipal Central HospitalLishuiChina
| | - Xiaomin Wang
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Yinbin Zhang
- Department of Oncologythe Second Affiliated Hospital of Medical College, Xi'an Jiaotong UniversityXi'anChina
| | - Pingli Sun
- Department of PathologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Hong Wang
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Mingxiang Ye
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Dong Wang
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Zhaofeng Wang
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yue Hao
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Zhen Wang
- Department of Radiation OncologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Bing Wan
- Department of Respiratory MedicineThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
| | - Donglai Lv
- Department of Clinical OncologyThe 901 Hospital of Joint Logistics Support Force of People Liberation ArmyHefeiChina
| | - Jianwei Yu
- Department of Respiratory MedicineAffiliated Hospital of Jiangxi University of Chinese Medicine, Jiangxi Province Hospital of Chinese MedicineNanchangChina
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Lixin Wu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Lin Shi
- Department of Respiratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Leiguang Ye
- Department of OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Gaoming Wang
- Department of Thoracic Surgery, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Feng Gao
- Department of Thoracic SurgeryThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jianfei Huang
- Department of Clinical BiobankAffiliated Hospital of Nantong UniversityNantongChina
| | - Guifang Wang
- Department of Respiratory MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jianguo Wei
- Department of PathologyShaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine)ShaoxingChina
| | - Long Huang
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bihui Li
- Department of OncologyThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of PharmacyJinan UniversityGuangzhouChina
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of PathologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yueping Liu
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhefeng Liu
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Lin Wu
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Qiming Wang
- Department of Internal MedicineThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Wenbin Huang
- Department of Pathologythe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Zhuan Hong
- Department of Medical Oncology, Jiangsu Cancer HospitalNanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinjian HospitalThird Military Medical UniversityChongqingChina
| | - Fengli Qu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
| | - Meiyu Fang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Xixu Zhu
- Department of Radiation OncologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Kaiqi Du
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Jiansong Ji
- Department of RadiologyLishui Municipal Central HospitalLishuiChina
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yiping Zhang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Yuanzhi Lu
- Department of Clinical PathologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yong Song
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Anwen Liu
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
6
|
Borea F, Franczak MA, Garcia M, Perrino M, Cordua N, Smolenski RT, Peters GJ, Dziadziuszko R, Santoro A, Zucali PA, Giovannetti E. Target Therapy in Malignant Pleural Mesothelioma: Hope or Mirage? Int J Mol Sci 2023; 24:ijms24119165. [PMID: 37298116 DOI: 10.3390/ijms24119165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare neoplasm that is typically diagnosed in a locally advanced stage, making it not eligible for radical surgery and requiring systemic treatment. Chemotherapy with platinum compounds and pemetrexed has been the only approved standard of care for approximately 20 years, without any relevant therapeutic advance until the introduction of immune checkpoint inhibitors. Nevertheless, the prognosis remains poor, with an average survival of only 18 months. Thanks to a better understanding of the molecular mechanisms underlying tumor biology, targeted therapy has become an essential therapeutic option in several solid malignancies. Unfortunately, most of the clinical trials evaluating potentially targeted drugs for MPM have failed. This review aims to present the main findings of the most promising targeted therapies in MPM, and to explore possible reasons leading to treatments failures. The ultimate goal is to determine whether there is still a place for continued preclinical/clinical research in this area.
Collapse
Affiliation(s)
- Federica Borea
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marika A Franczak
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Maria Garcia
- Faculty of Experimental Science, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Matteo Perrino
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nadia Cordua
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paolo A Zucali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| |
Collapse
|
7
|
Zucali PA, De Vincenzo F, Perrino M, Digiacomo N, Cordua N, D'Antonio F, Borea F, Fazio R, Pirozzi A, Santoro A. Advances in Drug Treatments for Mesothelioma. Expert Opin Pharmacother 2022; 23:929-946. [PMID: 35508368 DOI: 10.1080/14656566.2022.2072211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The paucity of the therapeutic armamentarium currently available for patients with malignant mesothelioma clearly represents a huge unmet need. Over the last years, based on new advances in understanding the biology of mesothelioma, new therapeutic approaches have been investigated. AREAS COVERED In this manuscript, the literature data regarding the advances in drug treatment for patients with mesothelioma are critically reviewed, focusing particularly on immunotherapy and targeted therapy. EXPERT OPINION The latest findings on immunotherapy and targeted therapy are changing the therapeutic armamentarium for mesothelioma. However, mesothelioma comprises of genomically different subtypes and the phenotypic diversity combined with the rarity of this disease represents a major criticality in developing new effective therapies. Although the first clinical data are encouraging, the treatment's stratification by molecular characteristics for mesothelioma is only at the beginning. Luckily, the rapid improvement of understanding the biology of mesothelioma is producing new opportunities in discovering new therapeutic targets to test in pre-clinical settings and to transfer in the clinical setting. In this evolving scenario, the future perspectives for mesothelioma patients seem really promising.
Collapse
Affiliation(s)
- Paolo Andrea Zucali
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Fabio De Vincenzo
- Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Matteo Perrino
- Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Nunzio Digiacomo
- Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Nadia Cordua
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Federica Borea
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberta Fazio
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Angelo Pirozzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
8
|
Mathilakathu A, Wessolly M, Mairinger E, Uebner H, Kreidt D, Brcic L, Steinborn J, Greimelmaier K, Wohlschlaeger J, Schmid KW, Mairinger FD, Borchert S. Cancer-Associated Fibroblasts Regulate Kinase Activity in Mesothelioma Cell Lines via Paracrine Signaling and Thereby Dictate Cell Faith and Behavior. Int J Mol Sci 2022; 23:ijms23063278. [PMID: 35328699 PMCID: PMC8949651 DOI: 10.3390/ijms23063278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) has an infaust prognosis due to resistance to systemic treatment with platin-analoga. MPM cells modulate the immune response to their benefit. They release proinflammatory cytokines, such as TGF-ß, awakening resting fibrocytes that switch their phenotype into activated fibroblasts. Signaling interactions between cancer cells and cancer-associated fibroblasts (CAFs) play an integral part in tumor progression. This study aimed to investigate the role CAFs play in MPM progression, analyzing the impact this complex, symbiotic interaction has on kinase-related cell signaling in vitro. METHODS We simulated paracrine signaling in vitro by treating MPM cell lines with conditioned medium (CM) from fibroblasts (FB) and vice versa. NCI-H2052, MSTO-211H, and NCI-H2452 cell lines representing the three mayor MPM subtypes, while embryonal myofibroblast cell lines, IMR-90 and MRC-5, provide a CAFs-like phenotype. Subsequently, differences in proliferation rates, migratory behavior, apoptosis, necrosis, and viability were used as covariates for data analysis. Kinase activity of treated samples and corresponding controls were then analyzed using the PamStation12 platform (PamGene); Results: Treatment with myofibroblast-derived CM revealed significant changes in phosphorylation patterns in MPM cell lines. The observed effect differs strongly between the analyzed MPM cell lines and depends on the origin of CM. Overall, a much stronger effect was observed using CM derived from IMR-90 than MRC-5. The phosphorylation changes mainly affected the MAPK signaling pathway.; Conclusions: The factors secreted by myofibroblasts in fibroblasts CM significantly influence the phosphorylation of kinases, mainly affecting the MAPK signaling cascade in tested MPM cell lines. Our in vitro results indicate promising therapeutic effects by the use of MEK or ERK inhibitors and might have synergistic effects in combination with cisplatin-based treatment, improving clinical outcomes for MPM patients.
Collapse
Affiliation(s)
- Alexander Mathilakathu
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Hendrik Uebner
- Department of Pulmonary Medicine, University Hospital Essen—Ruhrlandklinik, University of Duisburg Essen, 45147 Essen, Germany;
| | - Daniel Kreidt
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria;
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Kristina Greimelmaier
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany; (K.G.); (J.W.)
| | - Jeremias Wohlschlaeger
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany; (K.G.); (J.W.)
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Fabian D. Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (M.W.); (E.M.); (D.K.); (J.S.); (K.W.S.); (F.D.M.)
- Correspondence:
| |
Collapse
|
9
|
Dudnik E, Reinhorn D, Holtzman L. Novel and Promising Systemic Treatment Approaches in Mesothelioma. Curr Treat Options Oncol 2021; 22:89. [PMID: 34424409 DOI: 10.1007/s11864-021-00883-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT There was limited progress in the development of novel systemic approaches in the treatment of advanced malignant mesothelioma for years following the publication of the pivotal phase III trial of Vogelzang et al. that established the cisplatin/pemetrexed regimen as a standard 1st-line systemic therapy. Since then, over the last several years, a significant step forward has been made, with incorporation of immune checkpoint inhibitors and anti-angiogenic agents. In addition, better appreciation of mesothelioma biology has allowed detection of novelmolecular therapeutic targets. All the above-mentioned strategies, along with the additional promising approaches represented by adoptive T cell therapy, dendritic cell therapy, cancer vaccines, oncoviral therapy, and agents targeting mesothelin are discussed in this review. The clinical research to identify effective biologic targets and treatment combinations in malignant mesothelioma is ongoing.
Collapse
Affiliation(s)
- Elizabeth Dudnik
- Thoracic Cancer Service, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, 49100, Petah Tikva, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, POB 39040 Ramat Aviv, 69978, Tel Aviv, Israel.
| | - Daniel Reinhorn
- Thoracic Cancer Service, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, 49100, Petah Tikva, Israel
| | - Liran Holtzman
- Sackler Faculty of Medicine, Tel Aviv University, POB 39040 Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
10
|
Cui W, Popat S. Pleural mesothelioma (PM) - The status of systemic therapy. Cancer Treat Rev 2021; 100:102265. [PMID: 34399145 DOI: 10.1016/j.ctrv.2021.102265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Pleural mesothelioma (PM) remains a malignancy with poor prognosis. Despite initial disappointing response rates to single-agent chemotherapy, upfront platinum and anti-folate-based combination chemotherapy has remained the backbone of treatment for PM for the last three decades. The role of maintenance chemotherapy remains unclear; switch-maintenance gemcitabine has shown improvements in progression-free but not overall survival. The addition of antiangiogenic agents to chemotherapy yielded modest improvements in survival, both upfront in combination with platinum-pemetrexed, and in the relapsed setting. Immunotherapy, particularly PD-(L)1 inhibitors, has shown important but variable effectiveness in relapsed PM when used as monotherapy, and is an important salvage treatment after first-line chemotherapy. Furthermore, the randomized phase 3 trial of ipilimumab-nivolumab versus platinum-pemetrexed chemotherapy demonstrated improved overall survival favouring ipilimumab-nivolumab (HR 0.74, 96.6% CI 0.60-0.91; p = 0.0020), establishing this regimen as the new standard first-line treatment for PM, particularly in those with non-epithelioid histology. Increased interest in PM genomics has led to development of novel personalized therapeutics, such as those targeting DNA repair and EZH2 pathways, however with variable outcomes in trials. Targeting the membrane glycoprotein mesothelin and arginine deprivation are other important strategies under ongoing investigation. The field of PM is changing and new treatments bring hope to a largely lethal and poor prognostic malignancy. Despite these developments, current challenges include understanding the role of combination and multimodality treatments, drivers of resistance to treatment, and establishing predictive biomarkers to improve patient selection and treatment sequencing.
Collapse
Affiliation(s)
- Wanyuan Cui
- Lung Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sanjay Popat
- Lung Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom; Thoracic Oncology, Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
11
|
Opitz I, Scherpereel A, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell DA, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Putora PM, Cardillo G. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur J Cardiothorac Surg 2021; 58:1-24. [PMID: 32448904 DOI: 10.1093/ejcts/ezaa158] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pretherapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasize that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic Oncology, French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France.,Department of Pulmonary and Thoracic Oncology, University Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Department of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean A Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- Department of Biopathology, National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Marseille, France
| | - Mir Ali Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- University Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hospital Vercelli/Gruppo Italiano, Vercelli, Italy
| | - Jean-Claude Pairon
- INSERM U955, GEIC2O, Université Paris-Est Créteil, Service de Pathologies professionnelles et de l'Environnement, Institut Santé -Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Paul Martin Putora
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Radiation Oncology, University of Bern, Bern, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| |
Collapse
|
12
|
Meta-Analysis of Survival and Development of a Prognostic Nomogram for Malignant Pleural Mesothelioma Treated with Systemic Chemotherapy. Cancers (Basel) 2021; 13:cancers13092186. [PMID: 34063225 PMCID: PMC8124134 DOI: 10.3390/cancers13092186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
(1) Purpose: Malignant pleural mesothelioma (MPM) is a rare cancer with an aggressive course. For patients who are medically inoperable or surgically unresectable, multi-agent systemic chemotherapy remains an accepted standard-of-care. The purpose of this meta-analysis is to provide baseline summative survival estimates as well as evaluate the influence of prognostic variables to provide comparative estimates for future trial designs. (2) Methods: Using PRISMA guidelines, a systematic review and meta-analysis was performed of MPM studies published from 2002-2019 obtained from the Medline database evaluating systemic therapy combinations for locally advanced or metastatic disease. Weighted random effects models were used to calculate survival estimates. The influence of proportions of known prognostic factors on overall survival (OS) were evaluated in the creation of a prognostic nomogram to estimate survival. The performance of this model was evaluated against data generated from one positive phase II study and two positive randomized trials. (3) Results: Twenty-four phase II studies and five phase III trials met the eligibility criteria; 2534 patients were treated on the included clinical studies. Ten trials included a platinum-pemetrexed-based treatment regimen, resulting in a pooled estimate of progression-free survival (PFS) of 6.7 months (95% CI: 6.2-7.2 months) and OS of 14.2 months (95% CI: 12.7-15.9 months). Fifteen experimental chemotherapy regimens have been tested in phase II or III studies, with a pooled median survival estimate of 13.5 months (95% CI: 12.6-14.6 months). Meta-regression analysis was used to estimate OS with platinum-pemetrexed using a variety of features, such as pathology (biphasic vs. epithelioid), disease extent (locally advanced vs. metastatic), ECOG performance status, age, and gender. The nomogram-predicted estimates and corresponding 95% CIs performed well when applied to recent randomized studies. (4) Conclusions: Given the rarity of MPM and the aggressive nature of the disease, innovative clinical trial designs with significantly greater randomization to experimental regimens can be performed using robust survival estimates from prior studies. This study provides baseline comparative values and also allows for accounting for differing proportions of known prognostic variables.
Collapse
|
13
|
Nadal E, Bosch-Barrera J, Cedrés S, Coves J, García-Campelo R, Guirado M, López-Castro R, Ortega AL, Vicente D, de Castro-Carpeño J. SEOM clinical guidelines for the treatment of malignant pleural mesothelioma (2020). Clin Transl Oncol 2021; 23:980-987. [PMID: 33538989 PMCID: PMC8057959 DOI: 10.1007/s12094-020-02532-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/25/2022]
Abstract
Mesothelioma is a rare and aggressive tumour with dismal prognosis arising in the pleura and associated with asbestos exposure. Its incidence is on the rise worldwide. In selected patients with early-stage MPM, a maximal surgical cytoreduction in combination with additional antitumour treatment may be considered in selected patients assessed by a multidisciplinary tumor board. In patients with unresectable or advanced MPM, chemotherapy with platinum plus pemetrexed is the standard of care. Currently, no standard salvage therapy has been approved yet, but second-line chemotherapy with vinorelbine or gemcitabine is commonly used. Novel therapeutic approaches based on dual immunotherapy or chemotherapy plus immunotherapy demonstrated promising survival benefit and will probably be incorporated in the future.
Collapse
Affiliation(s)
- E. Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, Avda Gran Via 199-203, l’Hospitalet de Llobregat, Barcelona, Spain
| | - J. Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Hospital Josep Trueta, Girona, Spain
| | - S. Cedrés
- Department of Medical Oncology, Vall d’Hebron Institute of Oncology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - J. Coves
- Department of Medical Oncology, Hospital Son Llatzer, Palma de Mallorca, Spain
| | - R. García-Campelo
- Department of Medical Oncology, Complejo Hospitalario Universitario A Coruña, Coruña, Spain
| | - M. Guirado
- Department of Medical Oncology, Hospital General Universitario de Elche, Elche, Spain
| | - R. López-Castro
- Department of Medical Oncology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - A. L. Ortega
- Department of Medical Oncology, Complejo Hospitalario de Jaén, Jaén, Spain
| | - D. Vicente
- Department of Clinical Oncology, Hospital Universitario Virgen de Macarena, Sevilla, Spain
| | | |
Collapse
|
14
|
Schumann SO, Kocher G, Minervini F. Epidemiology, diagnosis and treatment of the malignant pleural mesothelioma, a narrative review of literature. J Thorac Dis 2021; 13:2510-2523. [PMID: 34012597 PMCID: PMC8107529 DOI: 10.21037/jtd-20-2761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The malignant pleural mesothelioma is a very aggressive tumor which is arising from mesothelial cells and is associated with asbestos exposure. It is a heterogeneous cancer that shows a complex pattern of molecular changes, including genetic, chromosomic, and epigenetic abnormalities. The malignant pleural mesothelioma is characterized by a silent and slow clinical progression with an average period of 20–40 years from the asbestos exposure phase to the start of the symptoms. Unfortunately, to date, the therapeutic options are very limited, especially if the tumor is detected late. This narrative review provides an extended overview of the present evidence in the literature regarding the epidemiology, diagnostic pathways and treatment approaches of the malignant pleural mesothelioma. The treatment of mesothelioma has evolved slowly over the last 20 years not only from a surgical point of view but also radiotherapy, chemotherapy and immunotherapy play nowadays a key role. Several surgical strategies are available ranging from extrapleural pneumonectomy to cytoreductive surgery but a multidisciplinary approach seems to be mandatory because a single approach has not proved to date to be resolutive. New non-surgical treatment options appear to be promising but the results have to be taken in account with caution because clear evidence with high-quality studies is still lacking
Collapse
Affiliation(s)
| | - Gregor Kocher
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fabrizio Minervini
- Department of Thoracic Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland
| |
Collapse
|
15
|
Borrelli EP, McGladrigan CG. A Review of Pharmacologic Management in the Treatment of Mesothelioma. Curr Treat Options Oncol 2021; 22:14. [PMID: 33438079 DOI: 10.1007/s11864-020-00807-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Mesothelioma is a rare and severe form of cancer that is associated with asbestos exposure. Approximately 2500 Americans die annually from this condition with a median survival of 1 year. The latency period of this disease ranges anywhere from 20 to 70 years, with shorter latency periods associated with a higher exposure intensity to asbestos. Therefore, cases of mesothelioma are expected in the coming decades. This highlights the need for clinicians to understand the pharmacologic regimens available for treating this rare, yet serious malignancy. With multiple treatment regimens available in the treatment of this condition, clinicians should take an evidence-based approach and consider the totality of evidence and safety information while considering the best patient-centered approach for treatment. This article provides a review of current pharmacologic treatment options available for mesothelioma and goes into detail about the recommended medication regimens and dosages and the available evidence of efficacy, effectiveness, and/or safety and estimates the annual cost of treatment for these medications on the U.S. healthcare system per patient. A brief introduction is provided for several promising agents currently under investigation for mesothelioma as well.
Collapse
Affiliation(s)
- Eric P Borrelli
- University of Rhode Island College of Pharmacy, 7 Greenhouse Rd, Kingston, RI, 02881, USA.
| | | |
Collapse
|
16
|
Lauk O, Bruestle K, Neuer T, Battilana B, Nguyen TDL, Frauenfelder T, Stahel R, Weder W, Curioni-Fontecedro A, Opitz I. The Impact on Outcome by Adding Bevacizumab to Standard Induction Chemotherapy Prior to Mesothelioma Surgery: A Retrospective Single Center Analysis. Front Oncol 2020; 10:588563. [PMID: 33304848 PMCID: PMC7693632 DOI: 10.3389/fonc.2020.588563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022] Open
Abstract
Objectives Adding bevacizumab, an anti-Vascular Endothelial Growth Factor (VEGF), to platinum-based chemotherapy/pemetrexed in 1st line treatment of advanced malignant pleural mesothelioma (MPM), significantly improved overall survival. However, increased high grade bleeding after operation was reported in patients with colorectal cancer who previously received bevacizumab. In the present analysis, we assessed for the first time the impact of adding bevacizumab to induction chemotherapy prior to surgery for mesothelioma patients. Methods Two hundred twenty-seven MPM patients, intended to be treated with induction chemotherapy followed by surgery at the University Hospital of Zurich between 2002 and December 2018, were included in the present analysis. After propensity score matching for gender, histology and age (1:3 ratio), data from 88 patients were analyzed. Sixty-six patients underwent induction chemotherapy (with cis-/carboplatin and pemetrexed: control group) alone and 22 patients underwent induction chemotherapy with the addition of bevacizumab (bevacizumab group) prior macroscopic complete resection (MCR). Perioperative and long-term outcome variables were analyzed. Results Patients undergoing combination treatment with bevacizumab had a significantly better response than with chemotherapy alone as assessed by modified RECIST (p=0.046). Intraoperative complications in the bevacizumab group (one patient), or in the control group (three patients) were not related to intraoperative bleeding. Postoperative transfusion of blood products occurred in a larger amount in the control group than in the bevacizumab group (p=0.047). Overall survival was not statistically different between both groups. Conclusion These initial data demonstrate that MCR can be performed safely after triple induction chemotherapy with bevacizumab without increased intra- and postoperative bleeding complications. Response rates were significantly improved by the addition of bevacizumab.
Collapse
Affiliation(s)
- Olivia Lauk
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Karina Bruestle
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Neuer
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Bianca Battilana
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Thi Dan Linh Nguyen
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Rolf Stahel
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Signorelli D, Proto C, Botta L, Trama A, Tiseo M, Pasello G, Lo Russo G, Fabbri A, Imbimbo M, Busico A, Prelaj A, Ferrara R, Galli G, De Toma A, Tamborini E, Pastorino U, de Braud F, Gatta G, Garassino MC, Ganzinelli M. SMO mutations confer poor prognosis in malignant pleural mesothelioma. Transl Lung Cancer Res 2020; 9:1940-1951. [PMID: 33209614 PMCID: PMC7653142 DOI: 10.21037/tlcr-19-425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Malignant pleural mesothelioma (MPM) is an aggressive tumor but approximately 12% of patients survive more than 3 years. The biological differences underlying better outcomes are not known. Several targeted agents and immunotherapy have been ineffective. Hedgehog (Hh) is one emerging pathway. We compared the biological profiles of patients with different survival, investigating the most frequently altered genes, including the Hh pathway. Methods We analyzed 56 MPM. A 36-month overall survival (OS) cut-off divided patients into 32 normo (NS) and 24 long (LS) survivors. We used next generation sequencing to test 21 genes, immunohistochemistry to evaluate SMO expression. Mutation differences between NS and LS and their associations with clinical features were analysed by Fisher’s test, OS with the Kaplan-Meier method and its association with mutations by univariate and multivariate Cox proportional hazard models. Results Clinical features were similar in both groups. Eighteen out of 56 patients (32%) were wild-type for the genes analysed. At least five had mutations in BAP1, NF2, TP53, SMO and PTCH1 with no significant differences between the groups except for SMO. SMO, a member of the Hh pathway, was mutated only in NS (15.6%) and only SMO mutations were significantly associated with poor prognosis at univariate (HR =4.36, 95% CI: 2.32–8.18, P<0.0001) and multivariate (HR =9.2, 95% CI: 3.0–28.4, P=0.0001) analysis. All SMO mutated patients expressed high protein levels. Conclusions SMO mutations were clearly associated with worse prognosis. SMO may be a therapeutic target but this needs to be confirmed in a prospective trial.
Collapse
Affiliation(s)
- Diego Signorelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Proto
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Botta
- Department of Research, Evaluative Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annalisa Trama
- Department of Research, Evaluative Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giulia Pasello
- Department of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padua, Italy
| | - Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Fabbri
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Martina Imbimbo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adele Busico
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arsela Prelaj
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Milan, Italy
| | - Roberto Ferrara
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro De Toma
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Tamborini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ugo Pastorino
- Department of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Medical Oncology & Hematology, University of Milan, Milan, Italy
| | - Gemma Gatta
- Department of Research, Evaluative Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ganzinelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
18
|
Arrieta O, Cardona AF, Lara-Mejía L, Heredia D, Barrón F, Zatarain-Barrón ZL, Lozano F, de Lima VC, Maldonado F, Corona-Cruz F, Ramos M, Cabrera L, Martin C, Corrales L, Cuello M, Arroyo-Hernández M, Aman E, Bacon L, Baez R, Benitez S, Botero A, Burotto M, Caglevic C, Ferraris G, Freitas H, Kaen DL, Lamot S, Lyons G, Mas L, Mata A, Mathias C, Muñoz A, Patane AK, Oblitas G, Pino L, Raez LE, Remon J, Rojas L, Rolfo C, Ruiz-Patiño A, Samtani S, Viola L, Viteri S, Rosell R. Recommendations for detection, prioritization, and treatment of thoracic oncology patients during the COVID-19 pandemic: the THOCOoP cooperative group. Crit Rev Oncol Hematol 2020; 153:103033. [PMID: 32650215 PMCID: PMC7305738 DOI: 10.1016/j.critrevonc.2020.103033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022] Open
Abstract
The world currently faces a pandemic due to SARS-CoV-2. Relevant information has emerged regarding the higher risk of poor outcomes in lung cancer patients. As such, lung cancer patients must be prioritized in terms of prevention, detection and treatment. On May 7th, 45 experts in thoracic cancers from 11 different countries were invited to participate. A core panel of experts regarding thoracic oncology care amidst the pandemic gathered virtually, and a total of 60 initial recommendations were drafted based on available evidence, 2 questions were deleted due to conflicting evidence. By May 16th, 44 experts had agreed to participate, and voted on each of the 58 recommendation using a Delphi panel on a live voting event. Consensus was reached regarding the recommendations (>66 % strongly agree/agree) for 56 questions. Strong consensus (>80 % strongly agree/agree) was reached for 44 questions. Patients with lung cancer represent a particularly vulnerable population during this time. Special care must be taken to maintain treatment while avoiding exposure.
Collapse
Affiliation(s)
- Oscar Arrieta
- Instituto Nacional de Cancerología, Mexico City, Mexico.
| | - Andrés F Cardona
- Thoracic Oncology Clinic, Clínica del Country, Bogotá, Colombia; Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia
| | | | - David Heredia
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | | | | | | | - Maritza Ramos
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Luis Cabrera
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Claudio Martin
- Thoracic Oncology Unit, Alexander Fleming Institute, Buenos Aires, Argentina; Hospital Maria Ferrer, Buenos Aires, Argentina
| | - Luis Corrales
- Oncology Department, Hospital San Juan de Dios, San José Costa Rica, Costa Rica; Oncología Médica, Centro de Investigación y Manejo del Cáncer (CIMCA), San José, Costa Rica
| | - Mauricio Cuello
- Department of Oncology, Hospital de Clínicas, Universidad de la República - UDELAR, Montevideo, Uruguay
| | | | - Enrique Aman
- Clinical Oncology Unit, Swiss Medical Group, Buenos Aires, Argentina
| | - Ludwing Bacon
- Centro de Oncología, Hospital Vivián Pellas, Nicaragua
| | - Renata Baez
- National Institute for Respiratory Diseases, Mexico City, Mexico
| | - Sergio Benitez
- Coordinador de la sección Oncología, asociación Argentina de Medicina Respiratoria, Argentina
| | | | - Mauricio Burotto
- Clínica Universidad de los Andes, Centro de Estudios Clínicos Bradford Hill, Chile
| | - Christian Caglevic
- Departamento de Investigación del Cáncer- Fundación Arturo López Pérez, Santiago, Chile
| | - Gustavo Ferraris
- Centro Médico Dean Funes, Radioterapia Oncológica, Córdoba, Argentina
| | - Helano Freitas
- Departamento de Oncologia Clínica - A C Camargo Cancer Center, São Paulo, Brazil
| | | | - Sebastián Lamot
- CONCIENCIA, Instituto Oncohematológico de la Patagonia, Chile
| | - Gustavo Lyons
- Department of Thoracic Surgery, Hospital Británico, Buenos Aires, Argentina
| | - Luis Mas
- Medical Oncology Department, National Institute for Neoplastic Diseases - INEN, Lima, Peru
| | - Andrea Mata
- Hospital La Católica Goicoechea, San José, Costa Rica
| | | | | | - Ana Karina Patane
- Hospital de Rehabilitacion Respiratoria María Ferrer, Buenos Aires, Argentina
| | | | - Luis Pino
- Medical Oncology Group, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Luis E Raez
- Thoracic Oncology Program Memorial Cancer Institute, Memorial Healthcare System, Pembroke Pines, FL, United States
| | - Jordi Remon
- Medical Oncology Department, Centro Integral Oncología Clara Campal Bacelona, HM-Delfos, Barcelona, Spain
| | - Leonardo Rojas
- Medical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | | | - Suraj Samtani
- Medical Oncology Department, Clínica Bradford Hill, Santiago, Chile
| | - Lucia Viola
- Fundación neumológica colombiana, Bogotá, Colombia
| | - Santiago Viteri
- Instituto Oncológico Dr. Rosell. Centro Médico Teknon. Grupo QuironSalud. Barcelona, España
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| |
Collapse
|
19
|
Scherpereel A, Opitz I, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell D, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Cardillo G, Putora PM. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur Respir J 2020; 55:13993003.00953-2019. [PMID: 32451346 DOI: 10.1183/13993003.00953-2019] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pre-therapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasise that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Arnaud Scherpereel
- Pulmonary and Thoracic Oncology, Univ. Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France .,French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France
| | - Isabelle Opitz
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Dept of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Dept of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Dept of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Dept of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, The Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Dept of Biopathology, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Dept of Multidisciplinary Oncology and Therapeutic Innovations, Marseille, France
| | - Mir Ali Hoda
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hosp. Vercelli/Gruppo Italiano Mesotelioma, Italy
| | - Jean-Claude Pairon
- INSERM U955, Equipe 4, Université Paris-Est Créteil, and Service de Pathologies professionnelles et de l'Environnement, Institut Santé-Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Dept Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Paul Martin Putora
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland.,Dept of Radiation Oncology, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Nowak AK, Brosseau S, Cook A, Zalcman G. Antiangiogeneic Strategies in Mesothelioma. Front Oncol 2020; 10:126. [PMID: 32133285 PMCID: PMC7040194 DOI: 10.3389/fonc.2020.00126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
There is a strong rationale for inhibiting angiogenesis in mesothelioma. Vascular endothelial growth factor (VEGF) is an autocrine growth factor in mesothelioma and a potent mitogen for mesothelial cells. Further, the abnormal tumor vasculature promotes raised interstitial pressure and hypoxia, which may be detrimental to both penetration and efficacy of anticancer agents. Antiangiogenic agents have been trialed in mesothelioma for close to two decades, with early phase clinical trials testing vascular targeting agents, the VEGF-A targeting monoclonal antibody bevacizumab, and numerous tyrosine kinase inhibitors, many with multiple targets. None of these have shown efficacy which has warranted further development as single agents in any line of therapy. Whilst a randomized phase II trial combining the multitargeted tyrosine kinase inhibitor nintedanib with platinum/pemetrexed chemotherapy was positive, these results were not confirmed in a subsequent phase III study. The combination of cisplatin and pemetrexed with bevacizumab, in appropriately selected patients, remains the only anti-angiogenic combination showing efficacy in mesothelioma. Extensive efforts to identify biomarkers of response have not yet been successful.
Collapse
Affiliation(s)
- Anna K Nowak
- National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, University of Western Australia, Crawley, WA, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Solenn Brosseau
- Thoracic Oncology Department & CIC1425-CLIP2 Early Phase Cancer Clinical Trials Unit, University Hospital Bichat-Claude Bernard, Medical Faculty, University Paris-Diderot, Paris, France.,U830 INSERM "Cancer Heterogeneity, Plasticity", Institute Curie Research Centre, Paris, France
| | - Alistair Cook
- National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, University of Western Australia, Crawley, WA, Australia
| | - Gérard Zalcman
- Thoracic Oncology Department & CIC1425-CLIP2 Early Phase Cancer Clinical Trials Unit, University Hospital Bichat-Claude Bernard, Medical Faculty, University Paris-Diderot, Paris, France.,U830 INSERM "Cancer Heterogeneity, Plasticity", Institute Curie Research Centre, Paris, France
| |
Collapse
|
21
|
Screening of Pleural Mesothelioma Cell Lines for Kinase Activity May Identify New Mechanisms of Therapy Resistance in Patients Receiving Platin-Based Chemotherapy. JOURNAL OF ONCOLOGY 2019; 2019:2902985. [PMID: 31929796 PMCID: PMC6942867 DOI: 10.1155/2019/2902985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
Background Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related and biologically highly aggressive tumor associated with a dismal prognosis. Multimodal therapy consisting of platinum-based chemotherapy is the treatment of choice. The reasons underlying the rather poor efficacy of platinum compounds remain largely unknown. Kinase activity might influence cellular response to these regimens. Materials and Methods For this exploratory study, we screened MPM cell lines (NCI-H2452, NCI-H2052, and MSTO-211H) differing in response to cisplatin and benign control fibroblasts (MRC-5) for overall phosphorylation patterns as well as kinase activity with respect to cellular response to cisplatin-based therapeutics. We analysed the cell lines for cellular kinases in a high-throughput manner using the highly innovative technique PamGene. Cell state analysis including apoptosis, necrosis, and cell viability was performed by using enzyme activity and fluorescent-based assays. Results Cisplatin alters cellular phosphorylation patterns affecting cell cycle, migration, adhesion, signal transduction, immune modulation, and apoptosis. In cisplatin-responsive cell lines, phosphorylation of AKT1 and GSK3B was decreased but could not be influenced in cisplatin-resistant NCI-H2452 cells. Cisplatin-responsive cell lines showed increased phosphorylation levels of JNK1/2/3 but decreased phosphorylation in cisplatin-resistant NCI-H2452 cells. Conclusion Kinase phosphorylation and activity might play a crucial role in cellular response to cytostatic agents. Cisplatin influences phosphorylation patterns with distinct features in cisplatin-resistant cells. These alterations exert a significant impact on cell cycle, migration, adhesion, signal transduction, immune modulation, and apoptosis of the respective tumor cells. Based on our results, the induction of p38 or JNK1/3, or inhibition of AKT1 by, for example, BIA-6, might offer a positive synergistic effect by induction of an apoptotic response to cisplatin-based treatment, thus potentially enhancing the clinical outcome of MPM patients.
Collapse
|
22
|
Ceresoli GL, Rossi A. Approved and emerging treatments of malignant pleural mesothelioma in elderly patients. Expert Rev Respir Med 2019; 13:1179-1188. [PMID: 31596154 DOI: 10.1080/17476348.2019.1678386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Malignant pleural mesothelioma (MPM) is a rare neoplasm with asbestos exposure as the dominant etiologic agent. Owing to the long latent period following exposure, MPM is often diagnosed late in life. Despite this, elderly patients are under-represented in clinical trials. To date, data regarding the tolerability and efficacy of anticancer treatments for elderly patients affected by MPM are still lacking.Areas covered: The current state-of-the-art of approved treatments employed in the treatment of MPM elderly patients is reviewed and discussed, with a look to emerging therapies. A structured search of bibliographic databases for peer-reviewed research literature and of main meeting abstracts using a focused review question was undertaken.Expert opinion: Even though the median age of MPM patients enrolled in the most recent experimental trials is increasing, no specific analysis has been reported so far in the elderly. Moreover, no data are available for the 'oldest of the elderly' (>75 years). Treatment of elderly patients with MPM is one of the major challenges to the clinician. There is a clear need of large, well-conducted retrospective studies and above all of prospective investigations in this patient population, both in the first-and in the second-line setting.
Collapse
Affiliation(s)
- Giovanni Luca Ceresoli
- Division of Medical Oncology, Thoracic and Urologic Oncology Unit, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Antonio Rossi
- Division of Medical Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
23
|
Cinausero M, Rihawi K, Cortiula F, Follador A, Fasola G, Ardizzoni A. Emerging therapies in malignant pleural mesothelioma. Crit Rev Oncol Hematol 2019; 144:102815. [PMID: 31670225 DOI: 10.1016/j.critrevonc.2019.102815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 06/22/2019] [Accepted: 09/24/2019] [Indexed: 01/29/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer of the pleural surfaces frequently related to asbestos exposure. It is characterized by a poor prognosis even for patients treated with trimodality therapy, including surgery, chemotherapy and radiotherapy. Moreover, the majority of patients are not candidates for surgery due to disease advanced stage or medical comorbidities. For these patients, the survival rate is even lower and few therapeutic options are currently available. Nevertheless, many interesting novel approaches are under investigation, among which immunotherapy represents one of the most promising emerging strategies. In this review, we will discuss the role of new therapeutic options, particularly immunotherapy, and present the results of the most important and promising clinical trials.
Collapse
Affiliation(s)
- Marika Cinausero
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy.
| | - Karim Rihawi
- Department of Oncology, University Hospital of Udine, Italy; Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Francesco Cortiula
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy
| | | | | | - Andrea Ardizzoni
- Department of Oncology, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Baverel P, Roskos L, Tatipalli M, Lee N, Stockman P, Taboada M, Vicini P, Horgan K, Narwal R. Exposure-Response Analysis of Overall Survival for Tremelimumab in Unresectable Malignant Mesothelioma: The Confounding Effect of Disease Status. Clin Transl Sci 2019; 12:450-458. [PMID: 30883000 PMCID: PMC6742946 DOI: 10.1111/cts.12633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Tremelimumab, an anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody that enhances T-cell activation, was evaluated in a randomized, double-blind, placebo-controlled, phase IIb study (NCT01843374) in patients with unresectable malignant mesothelioma. The study demonstrated no clinically meaningful differences in overall survival (OS). The objective of this analysis was to evaluate the relationship of exposure with OS. A population pharmacokinetic (PK) model adequately described the PK data. Three factors (sex, C-reactive protein, and baseline tumor size) were identified as statistically significant PK predictors (P < 0.05 on clearance). A positive association between exposure and OS was observed. However, an association between key baseline factors with OS (regardless of treatment) and imbalances in prognostic factors favoring patients with higher exposure (upper vs. lower PK quartile) was seen. Taken together, these results suggest that the exposure OS relationship observed for tremelimumab in mesothelioma is likely spurious rather than a true association of exposure with efficacy.
Collapse
|
25
|
Sakurai Y, Kato A, Hida Y, Hamada J, Maishi N, Hida K, Harashima H. Synergistic Enhancement of Cellular Uptake With CD44-Expressing Malignant Pleural Mesothelioma by Combining Cationic Liposome and Hyaluronic Acid-Lipid Conjugate. J Pharm Sci 2019; 108:3218-3224. [PMID: 31229434 DOI: 10.1016/j.xphs.2019.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive form of cancer, with a median survival of less than 1 year. It is well known that the hyaluronan (HA) receptor CD44 is highly expressed by MPM cells and is reported to be correlated with a poor prognosis. We herein report on the development of a new type if drug delivery system against CD44 that involves the use of lipid nanoparticles (LNPs) equipped with a new type of HA derivative. In this study, we evaluated HA-lipid conjugation (HAL) via the end of the HA molecule through reductive amination, a process that allowed the carboxylate group to remain intact. As a result, the HAL-modified LNP appears to be a potent nanoparticle for dealing with MPM. Surprisingly, the use of a combination of a cationic lipid and HAL had a synergistic effect on cellular uptake in MPM and consequently permitted an anti-cancer drug such as cis-diamminedichloro-platinum(II) (CDDP). Intrapleural injection of CDDP-loaded HAL-LNP (1.5 mg/kg as CDDP) per week significantly suppressed the progression of this type of cancer in an MPM orthotopic model. These results suggest that HAL-modified LNP represents a potent delivery system for MPM cells that express high levels of CD44.
Collapse
Affiliation(s)
- Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akari Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Hamada
- Health Sciences University of Hokkaido, School of Nursing and Social Services, Tobetsu-cho, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
26
|
Tsao A, Nakano T, Nowak AK, Popat S, Scagliotti GV, Heymach J. Targeting angiogenesis for patients with unresectable malignant pleural mesothelioma. Semin Oncol 2019; 46:145-154. [PMID: 31280996 DOI: 10.1053/j.seminoncol.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a global health issue, the principal cause of which is exposure to asbestos. The prevalence is anticipated to rise over the next 2 decades, particularly in developing countries, due to the 30-50-year latency period between exposure to asbestos and carcinogenic development. Unresectable MPM has a poor prognosis and limited treatment options and, as such, there is a broad range of therapeutic targets of interest, including angiogenesis, immune checkpoints, mesothelin, as well as chemotherapeutic agents. Recently, the results of several randomized trials in the first-line setting combining antiangiogenic agents with chemotherapy have been reported. This review examines the scientific rationale for targeting angiogenesis in the treatment of unresectable MPM and analyzes recent clinical results with antiangiogenic agents in development (bevacizumab, nintedanib, and cediranib) for the management of MPM.
Collapse
Affiliation(s)
- Anne Tsao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Takashi Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Otemae Hospital, Osaka, Japan
| | - Anna K Nowak
- School of Medicine, Faculty of Health and Medical Science, University of Western Australia, Crawley, Western Australia, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Sanjay Popat
- Royal Marsden Hospital NHS Foundation Trust, London and Surrey, United Kingdom
| | | | - John Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
27
|
Scherpereel A, Wallyn F, Albelda SM, Munck C. Novel therapies for malignant pleural mesothelioma. Lancet Oncol 2019; 19:e161-e172. [PMID: 29508763 DOI: 10.1016/s1470-2045(18)30100-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/03/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022]
Abstract
Malignant pleural mesothelioma is a rare cancer that is typically associated with exposure to asbestos. Patients with malignant pleural mesothelioma have poor outcomes with suboptimal therapeutic options and currently no treatment is curative. The standard frontline treatment, cisplatin plus pemetrexed chemotherapy, has only short and insufficient efficacy, and no validated treatment beyond first-line therapy is available. New therapeutic strategies are therefore needed. The addition of bevacizumab (an anti-VEGF antibody) combined with cisplatin plus pemetrexed has shown some promise. However, immunotherapy, especially immune checkpoint inhibitors, has generated a lot of excitement because of data suggesting the potential value of immune checkpoint inhibitors for patients who have failed chemotherapy. In this Review, we describe immune checkpoint inhibitors, other immunotherapies, targeted therapies, or combinations of novel drugs being investigated in malignant pleural mesothelioma, as well as the issues surrounding the selection of the best candidates for these treatments.
Collapse
Affiliation(s)
- Arnaud Scherpereel
- Pulmonary and Thoracic Oncology Department, University of Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Lille, France; French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (MESOCLIN), Lille, France.
| | - Frederic Wallyn
- Pulmonary and Thoracic Oncology Department, University of Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Lille, France
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camille Munck
- Pulmonary and Thoracic Oncology Department, University of Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
28
|
Imbimbo M, Maury JM, Garassino M, Girard N, Hackl M, Eycken EV, Henau K, Dimitrova N, Sekerija M, Dušek L, Mägi M, Malila N, Leinonen M, Velten M, Troussard X, Bouvier V, Guizard AV, Bouvier AM, Arveux P, Maynadié M, Woronoff AS, Robaszkiewicz M, Baldi I, Monnereau A, Tretarre B, Colonna M, Molinié F, Bara S, Schvartz C, Lapôtre-Ledoux B, Grosclaude P, Stabenow R, Luttmann S, Nennecke A, Engel J, Schubert-Fritschle G, Heidrich J, Holleczek B, Jónasson JG, Clough-Gorr K, Comber H, Mazzoleni G, Giacomin A, Sardo AS, Barchielli A, Serraino D, De Angelis R, Mallone S, Tavilla A, Pierannunzio D, Rossi S, Santaquilani M, Knijn A, Pannozzo F, Gennaro V, Benfatto L, Ricci P, Autelitano M, Spagnoli G, Fusco M, Usala M, Vitale F, Michiara M, Tumino R, Mangone L, Falcini F, Ferretti S, Angela Filiberti R, Marani E, Iannelli A, Sensi F, Piffer S, Gentilini M, Madeddu A, Ziino A, Maspero S, Candela P, Stracci F, Tagliabue G, Rugge M, Trama A, Gatta G, Botta L, Capocaccia R, Pildava S, Smailyte G, Calleja N, Johannesen TB, Rachtan J, Góźdź S, Błaszczyk J, Kępska K, de Lacerda GF, Bento MJ, Miranda A, Diba CS, Almar E, Larrañaga N, de Munain AL, Torrella-Ramos A, Díaz García JM, Marcos-Gragera R, Sanchez MJ, Navarro C, Salmeron D, Moreno-Iribas C, Galceran J, Carulla M, Mousavi M, Bouchardy C, Ess SM, Bordoni A, Konzelmann I, Rashbass J, Gavin A, Brewster DH, Huws DW, Visser O, Bielska-Lasota M, Primic-Zakelj M, Kunkler I, Benhamou E. Mesothelioma and thymic tumors: Treatment challenges in (outside) a network setting. Eur J Surg Oncol 2019; 45:75-80. [DOI: 10.1016/j.ejso.2018.01.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 10/18/2022] Open
|
29
|
Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Noncoding RNA Res 2018; 3:161-173. [PMID: 30809599 PMCID: PMC6260483 DOI: 10.1016/j.ncrna.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.
Collapse
Key Words
- ABC, ATP-binding cassette
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- AKI, acute kidney injury
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- CAF, cancer-associated fibroblast
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- MRP1, multidrug resistance protein 1
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TNBC, triple-negative breast cancer
- TSA, trichostatin A
Collapse
|
30
|
Biersack B. Interplay of non-coding RNAs and approved antimetabolites such as gemcitabine and pemetrexed in mesothelioma. Noncoding RNA Res 2018; 3:213-225. [PMID: 30809600 PMCID: PMC6257890 DOI: 10.1016/j.ncrna.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
Gemcitabine and pemetrexed are clinically approved antimetabolites for the therapy of mesothelioma diseases. These drugs are often applied in combination with platinum complexes and other drugs. The activity of antimetabolites depended on the expression levels of certain non-coding RNAs, in particular, of small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The development of tumor resistance towards antimetabolites was regulated by non-coding RNAs. An overview of the interplay between gemcitabine/pemetrexed antimetabolites and non-coding RNAs in mesothelioma is provided. Further to this, various non-coding RNA-modulating agents are discussed which displayed positive effects on gemcitabine or pemetrexed treatment of mesothelioma diseases. A detailed knowledge of the connections of non-coding RNAs with antimetabolites will be constructive for the design of improved therapies in future.
Collapse
Key Words
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3‘-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- Gemcitabine
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- Pemetrexed
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TSA, trichostatin A
Collapse
|
31
|
de Gooijer CJ, Baas P, Burgers JA. Current chemotherapy strategies in malignant pleural mesothelioma. Transl Lung Cancer Res 2018; 7:574-583. [PMID: 30450296 DOI: 10.21037/tlcr.2018.04.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a 5-year survival rate of ~10%. Since most patients present with irresectable disease, the vast majority is treated with chemotherapy. The only registered therapy for MPM is platinum-pemetrexed doublet therapy, although only up to half of patients have clinical benefit from this palliative treatment. Of the anti-angiogenesis agents, only bevacizumab and nintedanib have shown activity with platinum-pemetrexed doublet therapy. Other anti-angiogenesis agents like thalidomide did not prolong (progression free) survival or response rate. Eventually, all patients will get a recurrence and no active second line therapy has been identified to date. The clinical benefit of (switch) maintenance therapy after first line treatment and combination strategies of different chemotherapies with angiogenesis inhibitors are currently under investigation. The major challenges are finding optimal treatment combinations and to select the adequate treatment for an individual patient. This review focusses on the current standard of chemotherapy and new systemic therapy strategies under investigation.
Collapse
Affiliation(s)
| | - Paul Baas
- Department of Thorax Oncology, Netherland Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
32
|
Inhibition of MDM2 via Nutlin-3A: A Potential Therapeutic Approach for Pleural Mesotheliomas with MDM2-Induced Inactivation of Wild-Type P53. JOURNAL OF ONCOLOGY 2018; 2018:1986982. [PMID: 30112000 PMCID: PMC6077509 DOI: 10.1155/2018/1986982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Previously, our group demonstrated that nuclear expression of E3 ubiquitin ligase (MDM2) in malignant pleural mesothelioma (MPM) is significantly associated with decreased overall survival. A possible explanation may be that overexpression of MDM2 leads to a proteasomal degradation of TP53 that eventually results in a loss of TP53-induced apoptosis and senescence. It is well known from other tumor entities that restoration of TP53 activity, e.g., by MDM2 inhibition, results in an instant TP53-induced stress and/or DNA damage response of cancer cells. Nutlin-3A (a cis-imidazoline analogue) has been described as a potent and selective MDM2 inhibitor preventing MDM2-TP53-interaction by specific binding to the hydrophobic TP53-binding pocket of MDM2. In the present study, the effects of MDM2 inhibition in MPM via Nutlin-3A and standard platinum based chemotherapeutic agents were comparatively tested in three MPM cell lines (NCI-H2052, MSTO-211H, and NCI-H2452) showing different expression profiles of TP53, MDM2, and its physiological inhibitor of MDM2—P14/ARF. Our in vitro experiments on MPM cell lines revealed that Nutlin-3A in combination with cisplatin resulted in up to 9.75 times higher induction of senescence (p=0.0050) and up to 5 times higher apoptosis rate (p=0.0067) compared to the commonly applied cisplatin and pemetrexed regimens. Thus Nutlin-3A, a potent inhibitor of MDM2, is associated with a significant induction of senescence and apoptosis in MPM cell lines, making Nutlin-3A a promising substance for a targeted therapy in the subgroup of MPM showing MDM2 overexpression.
Collapse
|
33
|
van Meerbeeck JP, Jansen G, Giovannetti E, Peters GJ. Aminopeptidase antibodies in mesothelioma: new wine deserves new sacks. Eur Respir J 2018; 51:51/5/1800817. [PMID: 29794125 DOI: 10.1183/13993003.00817-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 11/05/2022]
|
34
|
Folic acid phenotype (FAP) is a superior biomarker predicting response to pemetrexed-based chemotherapy in malignant pleural mesothelioma. Oncotarget 2018; 8:37502-37510. [PMID: 28415584 PMCID: PMC5514925 DOI: 10.18632/oncotarget.16398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare tumor linked to a dismal prognosis. Even the most effective chemotherapeutical regime of pemetrexed combined with cisplatin leads to a remission-rate of only about 40%. The reasons for the rather poor efficacy remain largely unknown. RESULTS Phenotypes were significantly associated with progression (p=0.0279) and remission (p=0.0262). Cox-regression revealed significant associations between SLC19A1/TYMS-ratio (p=0.0076) as well as FPGS/TYMS-ratio (p=0.0026) and OS. For differentiation by risk-groups, COXPH identified a strong correlation (p=0.0008). METHODS 56 MPM specimens from patients treated with pemetrexed were used for qPCR analysis. Phenotypes and risk groups were defined by their expression levels of members of the folic acid metabolism and correlated to survival and objective response. CONCLUSION Our results indicate that the balance between folic acid uptake, activation and metabolism plays a crucial role in response to pemetrexed-based chemotherapy and the prognosis of MPM patients. Implementing this marker profile in MPM stratification may help to individualize MPM-therapy more efficiently.
Collapse
|
35
|
Kindler HL, Ismaila N, Armato SG, Bueno R, Hesdorffer M, Jahan T, Jones CM, Miettinen M, Pass H, Rimner A, Rusch V, Sterman D, Thomas A, Hassan R. Treatment of Malignant Pleural Mesothelioma: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2018; 36:1343-1373. [PMID: 29346042 DOI: 10.1200/jco.2017.76.6394] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To provide evidence-based recommendations to practicing physicians and others on the management of malignant pleural mesothelioma. Methods ASCO convened an Expert Panel of medical oncology, thoracic surgery, radiation oncology, pulmonary, pathology, imaging, and advocacy experts to conduct a literature search, which included systematic reviews, meta-analyses, randomized controlled trials, and prospective and retrospective comparative observational studies published from 1990 through 2017. Outcomes of interest included survival, disease-free or recurrence-free survival, and quality of life. Expert Panel members used available evidence and informal consensus to develop evidence-based guideline recommendations. Results The literature search identified 222 relevant studies to inform the evidence base for this guideline. Recommendations Evidence-based recommendations were developed for diagnosis, staging, chemotherapy, surgical cytoreduction, radiation therapy, and multimodality therapy in patients with malignant pleural mesothelioma. Additional information is available at www.asco.org/thoracic-cancer-guidelines and www.asco.org/guidelineswiki .
Collapse
Affiliation(s)
- Hedy L Kindler
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nofisat Ismaila
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samuel G Armato
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raphael Bueno
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mary Hesdorffer
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Thierry Jahan
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Clyde Michael Jones
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Markku Miettinen
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Harvey Pass
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andreas Rimner
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Valerie Rusch
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Sterman
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anish Thomas
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raffit Hassan
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
36
|
Zucali PA. Target therapy: new drugs or new combinations of drugs in malignant pleural mesothelioma. J Thorac Dis 2018; 10:S311-S321. [PMID: 29507801 PMCID: PMC5830552 DOI: 10.21037/jtd.2017.10.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a disease with a poor prognosis due to its aggressive nature. The management of patients with MPM is controversial. Considering that the contribution of surgery and radiation therapy in the management of this disease is not yet established, systemic treatments are predominantly considered during the course of MPM. Unfortunately, the currently therapeutic armamentarium is scarce and its outcomes still appear modest. New treatment strategies are needed. In preclinical setting, cell cycle regulation, apoptosis, growth factor pathways, and angiogenesis pathways involved in the development of MPM have been identified. However, in clinical setting, several drugs targeting these pathways resulted without a significant activity. A deeper knowledge of the biology and pathogenesis of this disease is required to develop more effective tools for diagnosis, therapy and prevention. This paper reviews therapeutic advances in MPM, with a particular focus on new drugs and new association of drugs of target therapy.
Collapse
Affiliation(s)
- Paolo A Zucali
- Department of Oncology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
37
|
Pulford E, McEvoy J, Hocking A, Prabhakaran S, Griggs K, Klebe S. The Effect of Aquaporin 1-Inhibition on Vasculogenic Mimicry in Malignant Mesothelioma. Int J Mol Sci 2017; 18:ijms18112293. [PMID: 29104239 PMCID: PMC5713263 DOI: 10.3390/ijms18112293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 11/22/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive malignancy of the serosal membranes, with poor overall survival and quality of life. Limited targeted treatment strategies exist due to restricted knowledge of pathogenic pathways. Vasculogenic mimicry (VM) is a newly described phenomenon associated with increased aggressiveness in other malignancies, and has been characterized in MM. Normal mesothelium expresses aquaporin 1 (AQP1) and retained expression has been associated with improved survival in MM. AQP1 is expressed by normal vascular endothelium and is involved in mediating MM cell motility and proliferation. We investigated the role of AQP1 in VM, and its interaction with the pro-angiogenic factor vascular endothelial growth factor A (VEGFA), which is variably expressed in MM. Matrigel VM assays were performed using NCI-H226 and NCI-H28 MM cell lines and primary cells in hypoxia and normoxia. The synthetic blocker AqB050 and siRNA were used to inhibit AQP1, and bevacizumab was used to inhibit VEGF. Inhibition of AQP1 resulted in increased VEGFA secretion by MM cells and reduced VM in MM cell lines in hypoxia but not normoxia. No change in VM was seen in MM primary cells. Combined inhibition of AQP1 and VEGF had no effect on VM in normoxia. In a heterotopic xenograft mouse model, AqB050 treatment did not alter vessel formation. AQP1 may interact with VEGFA and play a role in VM, especially under hypoxic conditions, but the heterogeneity of MM cells may result in different dominant pathways between patients.
Collapse
Affiliation(s)
- Emily Pulford
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
| | - James McEvoy
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
| | - Ashleigh Hocking
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
| | - Sarita Prabhakaran
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide 5001, SA, Australia.
| | - Kim Griggs
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University, Adelaide 5000, SA, Australia.
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide 5001, SA, Australia.
| |
Collapse
|
38
|
Brosseau S, Assoun S, Naltet C, Steinmetz C, Gounant V, Zalcman G. A review of bevacizumab in the treatment of malignant pleural mesothelioma. Future Oncol 2017; 13:2537-2546. [PMID: 29086616 DOI: 10.2217/fon-2017-0307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with poor prognosis. Systemic chemotherapy is the primary treatment modality for the majority of patients. VEGF plays a key mitogen for MPM cells physiopathology. Bevacizumab, a monoclonal anti-VEGF antibody, was a rational approach to be tested in MPM. Based on the results of the Phase III IFCT-0701 mesothelioma avastin cisplatin pemetrexed study, cisplatin-pemetrexed-bevacizumab is now the accepted standard in France. The National Comprehensive Cancer Network guidelines have also included this combination as an option for standard front-line therapy. This review summarized the efficacy and safety data of bevacizumab in the treatment of patients with MPM.
Collapse
Affiliation(s)
- Solenn Brosseau
- Department of Thoracic Oncology & CIC 1425/CLIP2 Paris-Nord, Bichat-Claude Bernard Hospital, APHP, Paris, France.,University Paris-Diderot, Paris, France
| | - Sandra Assoun
- Department of Thoracic Oncology & CIC 1425/CLIP2 Paris-Nord, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Charles Naltet
- Department of Thoracic Oncology & CIC 1425/CLIP2 Paris-Nord, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Christelle Steinmetz
- Pharmacy Department, Bichat-Claude Bernard Hospital, APHP, Paris, 46, rue Henri Huchard, 75877 Paris Cedex 18, France
| | - Valérie Gounant
- Department of Thoracic Oncology & CIC 1425/CLIP2 Paris-Nord, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Gérard Zalcman
- Department of Thoracic Oncology & CIC 1425/CLIP2 Paris-Nord, Bichat-Claude Bernard Hospital, APHP, Paris, France.,University Paris-Diderot, Paris, France
| |
Collapse
|
39
|
Tsao AS, Moon J, Wistuba II, Vogelzang NJ, Kalemkerian GP, Redman MW, Gandara DR, Kelly K. Phase I Trial of Cediranib in Combination with Cisplatin and Pemetrexed in Chemonaive Patients with Unresectable Malignant Pleural Mesothelioma (SWOG S0905). J Thorac Oncol 2017; 12:1299-1308. [PMID: 28599887 PMCID: PMC5690479 DOI: 10.1016/j.jtho.2017.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In malignant pleural mesothelioma, targeting angiogenesis with cediranib, a vascular endothelial growth factor receptor and platelet-derived growth factor receptor inhibitor, may have therapeutic potential. METHODS S0905 phase I combined cediranib (two dose cohorts [30 mg and 20 mg daily]) with cisplatin-pemetrexed for six cycles followed by maintenance cediranib in unresectable chemonaive patients with malignant pleural mesothelioma of any histologic subtype. The primary end point established the maximum tolerated dose in combination with cisplatin-pemetrexed in a dose deescalation scheme. RESULTS A total of 20 patients were enrolled (seven to the 30-mg cohort and 13 to the 20-mag cohort). In the cediranib 30-mg cohort, two of the initial six patients reported dose-limiting toxicities and the dose was deemed too toxic to continue. In the next cohort, two patients experienced dose-limiting toxicities, and thus, the maximum tolerated dose of cediranib was established as 20 mg. During the six cycles of cisplatin-pemetrexed-cediranib, 20 mg, there were grade 3 toxicities (neutropenia and gastrointestinal) and grade 4 thrombocytopenia. No patients had any significant episodes of bleeding. According to the Response Evaluation Criteria in Solid Tumors (n = 17 evaluable patients), the median progression-free survival was 12.8 months (95% confidence interval [CI]: 6.9-17.2); according to the Modified Response Evaluation Criteria in Solid Tumors (n = 19 evaluable patients), the median progression-free survival was 8.6 months (95% CI: 6.1-10.9). For all patients, the disease control rate at 6 weeks was 90% and median overall survival time was 16.2 months (95% CI: 10.5-28.7). CONCLUSIONS Cediranib combined with cisplatin-pemetrexed has a reasonable toxicity profile and preliminary promising efficacy. The phase II S0905 trial will evaluate the efficacy of the triplet regimen compared with the current standard of care, cisplatin-pemetrexed.
Collapse
Affiliation(s)
- Anne S Tsao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas.
| | - James Moon
- SWOG Statistical Center, Seattle, Washington
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | | | | | | | - David R Gandara
- University of California Davis Cancer Center, Sacramento, California
| | - Karen Kelly
- University of California Davis Cancer Center, Sacramento, California
| |
Collapse
|
40
|
Calabrò L, Ceresoli GL, D'Incecco A, Scherpereel A, Aerts J, Maio M. Immune checkpoint therapy of mesothelioma: Pre-clinical bases and clinical evidences. Cytokine Growth Factor Rev 2017; 36:25-31. [PMID: 28736182 DOI: 10.1016/j.cytogfr.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022]
Abstract
Treatment with immune-checkpoint blocking monoclonal antibody (mAb) is demonstrating a significant efficacy in different tumor types. Here, we discuss the impact of this promising approach in malignant mesothelioma (MM), a still dreadful disease in which medical treatment has been set on platinum based chemotherapy for decades with unsatisfactory results.
Collapse
Affiliation(s)
- Luana Calabrò
- Medical Oncology and Immunotherapy, Center for Immuno-Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.
| | - Giovanni Luca Ceresoli
- Thoracic & GU Oncology Unit Department of Oncology, Cliniche Humanitas Gavazzeni, Bergamo, Italy
| | - Armida D'Incecco
- Medical Oncology and Immunotherapy, Center for Immuno-Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Arnaud Scherpereel
- Pulmonary and Thoracic Oncology, CHU de Lille, Univ Lille, Mesoclin Network, F59000 Lille, France
| | - Joachim Aerts
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Michele Maio
- Medical Oncology and Immunotherapy, Center for Immuno-Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| |
Collapse
|
41
|
Beddowes E, Spicer J, Chan PY, Khadeir R, Corbacho JG, Repana D, Steele JP, Schmid P, Szyszko T, Cook G, Diaz M, Feng X, Johnston A, Thomson J, Sheaff M, Wu BW, Bomalaski J, Pacey S, Szlosarek PW. Phase 1 Dose-Escalation Study of Pegylated Arginine Deiminase, Cisplatin, and Pemetrexed in Patients With Argininosuccinate Synthetase 1-Deficient Thoracic Cancers. J Clin Oncol 2017; 35:1778-1785. [PMID: 28388291 PMCID: PMC6141244 DOI: 10.1200/jco.2016.71.3230] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Pegylated arginine deiminase (ADI-PEG 20) depletes essential amino acid levels in argininosuccinate synthetase 1 (ASS1) -negative tumors by converting arginine to citrulline and ammonia. The main aim of this study was to determine the recommended dose, safety, and tolerability of ADI-PEG 20, cisplatin, and pemetrexed in patients with ASS1-deficient malignant pleural mesothelioma (MPM) or non-small-cell lung cancer (NSCLC). Patients and Methods Using a 3 + 3 + 3 dose-escalation study, nine chemotherapy-naïve patients (five MPM, four NSCLC) received weekly ADI-PEG 20 doses of 18 mg/m2, 27 mg/m2, or 36 mg/m2, together with pemetrexed 500 mg/m2 and cisplatin 75 mg/m2 which were given every three weeks (maximum of six cycles). Patients achieving stable disease or better could continue ADI-PEG 20 monotherapy until disease progression or withdrawal. Adverse events were assessed by Common Terminology Criteria for Adverse Events version 4.03, and pharmacodynamics and immunogenicity were also evaluated. Tumor response was assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 for NSCLC and by modified RECIST criteria for MPM. Results No dose-limiting toxicities were reported; nine of 38 reported adverse events (all grade 1 or 2) were related to ADI-PEG 20. Circulating arginine concentrations declined rapidly, and citrulline levels increased; both changes persisted at 18 weeks. Partial responses were observed in seven of nine patients (78%), including three with either sarcomatoid or biphasic MPM. Conclusion Target engagement with depletion of arginine was maintained throughout treatment with no dose-limiting toxicities. In this biomarker-selected group of patients with ASS1-deficient cancers, clinical activity was observed in patients with poor-prognosis tumors. Therefore, we recommend a dose for future studies of weekly ADI-PEG 20 36 mg/m2 plus three-weekly cisplatin 75 mg/m2 and pemetrexed 500 mg/m2.
Collapse
Affiliation(s)
- Emma Beddowes
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - James Spicer
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Pui Ying Chan
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Ramsay Khadeir
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Javier Garcia Corbacho
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Dimitra Repana
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Jeremy P. Steele
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Peter Schmid
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Teresa Szyszko
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Gary Cook
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Monica Diaz
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Xiaoxing Feng
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Amanda Johnston
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Jim Thomson
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Michael Sheaff
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Bor-Wen Wu
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - John Bomalaski
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Simon Pacey
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| | - Peter W. Szlosarek
- Emma Beddowes, Javier Garcia Corbacho, and Simon Pacey, University of Cambridge, Cambridge; James Spicer, Dimitra Repana, Teresa Szyszko, and Gary Cook, King's College London; Pui Ying Chan, Jeremy P. Steele, Peter Schmid, Michael Sheaff, and Peter W. Szlosarek, St Bartholomew’s Hospital; Ramsay Khadeir, Peter Schmid, and Peter W. Szlosarek, Queen Mary University of London, London, United Kindgom; and Monica Diaz, Xiaoxing Feng, Amanda Johnston, Jim Thomson, Bor-Wen Wu, and John Bomalaski, Polaris Pharmaceuticals, San Diego, CA
| |
Collapse
|
42
|
Chemotherapy for Malignant Pleural Mesothelioma: Past, Present and Future. CURRENT PULMONOLOGY REPORTS 2017. [DOI: 10.1007/s13665-017-0179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Mairinger FD, Werner R, Flom E, Schmeller J, Borchert S, Wessolly M, Wohlschlaeger J, Hager T, Mairinger T, Kollmeier J, Christoph DC, Schmid KW, Walter RFH. miRNA regulation is important for DNA damage repair and recognition in malignant pleural mesothelioma. Virchows Arch 2017; 470:627-637. [PMID: 28466156 DOI: 10.1007/s00428-017-2133-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 01/06/2023]
Abstract
Platin-containing regimes are currently considered as state-of-the-art therapies in malignant pleural mesotheliomas (MPM) but show dissatisfying response rates ranging from 6 to 16% only. Still, the reasons for the rather poor efficacy remain largely unknown. A clear stratification of patients based on new biomarkers seems to be a promising approach to enhance clinical management, which would be a long-needed improvement for MPM patients but does not seem likely soon unless new biomarkers can be validated. Twenty-four formalin-fixed, paraffin-embedded (FFPE) tumour specimens were subjected to a miRNA expression screening of 800 important miRNAs using digital quantification via the nCounter technique (NanoString). We defined a small subset of miRNAs regulating the key enzymes involved in the repair of platin-associated DNA damage. Particularly, the TP53 pathway network for DNA damage recognition as well as genes related to the term "BRCAness" are the main miRNA targets within this context. The TP53 pathway network for DNA damage recognition as well as genes related to the term "BRCAness" are the main players for risk stratification in patients suffering from this severe disease. Taking the specific molecular profile of the tumour into account can help to enhance the clinical management prospectively and to smooth the way to better response prediction.
Collapse
Affiliation(s)
- Fabian Dominik Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Robert Werner
- Institute of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Elena Flom
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jan Schmeller
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Thomas Mairinger
- Institute of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Jens Kollmeier
- Institute of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Daniel Christian Christoph
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Robert Fred Henry Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.,Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Levin PA, Dowell JE. Spotlight on bevacizumab and its potential in the treatment of malignant pleural mesothelioma: the evidence to date. Onco Targets Ther 2017; 10:2057-2066. [PMID: 28435296 PMCID: PMC5391166 DOI: 10.2147/ott.s113598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, but aggressive cancer. Surgery and radiation offer limited benefit, and systemic chemotherapy remains the primary treatment modality for the majority of patients. Vascular endothelial growth factor (VEGF) and its receptor have been recognized as important players in the biology of this disease. Bevacizumab is a monoclonal antibody that binds VEGF and blocks its interaction with the VEGF receptor. Recent studies have shown benefit with the addition of bevacizumab to the combination of cisplatin and pemetrexed in MPM. This combination is now included in the National Comprehensive Cancer Network guidelines (with a category 2A recommendation) as a possible first-line treatment for unresectable MPM in appropriately selected patients. This review discusses the rationale behind the use of bevacizumab in MPM, as well as summarizes the pharmacology, efficacy, safety, and toxicity of bevacizumab across multiple trials. The use of small-molecule inhibitors of angiogenesis in the treatment of MPM is also discussed.
Collapse
Affiliation(s)
- Pavel A Levin
- Division of Hematology/Oncology, University of Texas Southwestern Medical Center
| | - Jonathan E Dowell
- Division of Hematology/Oncology, University of Texas Southwestern Medical Center.,Section of Hematology/Oncology, Veteran Affairs North Texas Health Care System, Dallas, TX, USA
| |
Collapse
|
45
|
Chia PL, Russell PA, Scott AM, John T. Targeting the vasculature: anti-angiogenic agents for malignant mesothelioma. Expert Rev Anticancer Ther 2016; 16:1235-1245. [DOI: 10.1080/14737140.2016.1244008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Puey Ling Chia
- Department of Medical Oncology, Austin Health, Melbourne, Australia
- Olivia-Newton John Cancer Research Institute, Austin Health, Melbourne, Australia
| | - Prudence A. Russell
- Department of Anatomical Pathology, St. Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Andrew M Scott
- Olivia-Newton John Cancer Research Institute, Austin Health, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Thomas John
- Department of Medical Oncology, Austin Health, Melbourne, Australia
- Olivia-Newton John Cancer Research Institute, Austin Health, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| |
Collapse
|
46
|
Walter RFH, Vollbrecht C, Werner R, Mairinger T, Schmeller J, Flom E, Wohlschlaeger J, Barbetakis N, Paliouras D, Chatzinikolaou F, Adamidis V, Tsakiridis K, Zarogoulidis P, Trakada G, Christoph DC, Schmid KW, Mairinger FD. Screening of Pleural Mesotheliomas for DNA-damage Repair Players by Digital Gene Expression Analysis Can Enhance Clinical Management of Patients Receiving Platin-Based Chemotherapy. J Cancer 2016; 7:1915-1925. [PMID: 27698933 PMCID: PMC5039377 DOI: 10.7150/jca.16390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/14/2016] [Indexed: 12/23/2022] Open
Abstract
Background: Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related and biologically highly aggressive tumour leading to a dismal prognosis. Multimodality therapy consisting of platinum-based chemotherapy is the treatment of choice. The reasons for the rather poor efficacy of platinum compounds remain largely unknown. Material and Methods: For this exploratory mRNA study, 24 FFPE tumour specimens were screened by digital gene expression analysis. Based on data from preliminary experiments and recent literature, a total of 366 mRNAs were investigated using a Custom CodeSet from NanoString. All statistical analyses were calculated with the R i386 statistical programming environment. Results: CDC25A and PARP1 gene expression were correlated with lymph node spread, BRCA1 and TP73 expression levels with higher IMIG stage. NTHL1 and XRCC3 expression was associated with TNM stage. CHECK1 as well as XRCC2 expression levels were correlated with tumour progression in the overall cohort of patients. CDKN2A and MLH1 gene expression influenced overall survival in this collective. In the adjuvant treated cohort only, CDKN2A, CHEK1 as well as ERCC1 were significantly associated with overall survival. Furthermore, TP73 expression was associated with progression in this subgroup. Conclusion: DNA-damage response plays a crucial role in response to platin-based chemotherapeutic regimes. In particular, CHEK1, XRCC2 and TP73 are strongly associated with tumour progression. ERCC1, MLH1, CDKN2A and most promising CHEK1 are prognostic markers for OS in MPM. TP73, CDKN2A, CHEK1 and ERCC1 seem to be also predictive markers in adjuvant treated MPMs. After a prospective validation, these markers may improve clinical and pathological practice, finally leading to a patients' benefit by an enhanced clinical management.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;; Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Claudia Vollbrecht
- Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| | - Robert Werner
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin Germany
| | - Thomas Mairinger
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin Germany
| | - Jan Schmeller
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elena Flom
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;; Institute of Pathology, Ev.-Luth. Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - Nikolaos Barbetakis
- Thoracic Surgery Department, Theagenio Cancer Hospital, Thessaloniki, Greece
| | - Dimitrios Paliouras
- Thoracic Surgery Department, Theagenio Cancer Hospital, Thessaloniki, Greece
| | | | - Vasilis Adamidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kosmas Tsakiridis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Trakada
- Division of Pulmonology, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | | | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
47
|
Bonelli MA, Fumarola C, La Monica S, Alfieri R. New therapeutic strategies for malignant pleural mesothelioma. Biochem Pharmacol 2016; 123:8-18. [PMID: 27431778 DOI: 10.1016/j.bcp.2016.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignant disease affecting the mesothelium, commonly associated to asbestos exposure. Therapeutic actions are limited due to the late stage at which most patients are diagnosed and the intrinsic chemo-resistance of the tumor. The recommended systemic therapy for MPM is cisplatin/pemetrexed regimen with a mean overall survival of about 12months and a median progression free survival of less than 6months. Considering that the incidence of this tumor is expected to increase in the next decade and that its prognosis is poor, novel therapeutic approaches are urgently needed. For some tumors, such as lung cancer and breast cancer, druggable oncogenic alterations have been identified and targeted therapy is an important option for these patients. For MPM, clinical guidelines do not recommend biological targeted therapy, mainly because of poor target definition or inappropriate trial design. Further studies are required for a full comprehension of the molecular pathogenesis of MPM and for the development of new target agents. This review updates pre-clinical and clinical data on the efficacy of targeted therapy and immune checkpoint inhibition in the treatment of mesothelioma. Finally, future perspectives in this deadly disease are also discussed.
Collapse
Affiliation(s)
- Mara A Bonelli
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Claudia Fumarola
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Silvia La Monica
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Roberta Alfieri
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| |
Collapse
|
48
|
Maggioni C, Barletta G, Rijavec E, Biello F, Gualco E, Grossi F. Advances in treatment of mesothelioma. Expert Opin Pharmacother 2016; 17:1197-205. [DOI: 10.1080/14656566.2016.1176145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, Molinier O, Corre R, Monnet I, Gounant V, Rivière F, Janicot H, Gervais R, Locher C, Milleron B, Tran Q, Lebitasy MP, Morin F, Creveuil C, Parienti JJ, Scherpereel A. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 2016; 387:1405-1414. [PMID: 26719230 DOI: 10.1016/s0140-6736(15)01238-6] [Citation(s) in RCA: 659] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Malignant pleural mesothelioma is an aggressive cancer with poor prognosis, linked to occupational asbestos exposure. Vascular endothelial growth factor is a key mitogen for malignant pleural mesothelioma cells, therefore targeting of vascular endothelial growth factor might prove effective. We aimed to assess the effect on survival of bevacizumab when added to the present standard of care, cisplatin plus pemetrexed, as first-line treatment of advanced malignant pleural mesothelioma. METHODS In this randomised, controlled, open-label, phase 3 trial, we recruited patients aged 18-75 years with unresectable malignant pleural mesothelioma who had not received previous chemotherapy, had an Eastern Cooperative Oncology Group performance status of 0-2, had no substantial cardiovascular comorbidity, were not amenable to curative surgery, had at least one evaluable (pleural effusion) or measurable (pleural tumour solid thickening) lesion with CT, and a life expectancy of >12 weeks from 73 hospitals in France. Exclusion criteria were presence of central nervous system metastases, use of antiaggregant treatments (aspirin ≥325 mg per day, clopidogrel, ticlopidine, or dipyridamole), anti-vitamin K drugs at a curative dose, treatment with low-molecular-weight heparin at a curative dose, and treatment with non-steroidal anti-inflammatory drugs. We randomly allocated patients (1:1; minimisation method used [random factor of 0·8]; patients stratified by histology [epithelioid vs sarcomatoid or mixed histology subtypes], performance status score [0-1 vs 2], study centre, or smoking status [never smokers vs smokers]) to receive intravenously 500 mg/m(2) pemetrexed plus 75 mg/m(2) cisplatin with (PCB) or without (PC) 15 mg/kg bevacizumab in 21 day cycles for up to six cycles, until progression or toxic effects. The primary outcome was overall survival (OS) in the intention-to treat population. Treatment was open label. This IFCT-GFPC-0701 trial is registered with ClinicalTrials.gov, number NCT00651456. FINDINGS From Feb 13, 2008, to Jan 5, 2014, we randomly assigned 448 patients to treatment (223 [50%] to PCB and 225 [50%] to PC). OS was significantly longer with PCB (median 18·8 months [95% CI 15·9-22·6]) than with PC (16·1 months [14·0-17·9]; hazard ratio 0·77 [0·62-0·95]; p=0·0167). Overall, 158 (71%) of 222 patients given PCB and 139 (62%) of 224 patients given PC had grade 3-4 adverse events. We noted more grade 3 or higher hypertension (51 [23%] of 222 vs 0) and thrombotic events (13 [6%] of 222 vs 2 [1%] of 224) with PCB than with PC. INTERPRETATION Addition of bevacizumab to pemetrexed plus cisplatin significantly improved OS in malignant pleural mesothelioma at the cost of expected manageable toxic effects, therefore it should be considered as a suitable treatment for the disease. FUNDING Intergroupe Francophone de Cancérologie Thoracique (IFCT).
Collapse
Affiliation(s)
- Gérard Zalcman
- Department of Pulmonology and Thoracic Oncology, University of Caen, Centre Hospitalier Universitaire Côte de Nacre, Caen, France; Department of Thoracic Oncology, Centre d'investigation clinique Institut national de la santé et de la recherche médicale 1425, Hospital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris-Diderot University (Paris 7), Paris, France.
| | - Julien Mazieres
- Department of Pulmonology, Larrey Hospital, Toulouse, France
| | | | | | | | - Denis Moro-Sibilot
- Pôle Thorax and Vaisseaux Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Olivier Molinier
- Department of Pulmonology, Centre Hospitalier Le Mans, Le Mans, France
| | - Romain Corre
- Department of Pulmonology, Ponchaillou University Hospital, Rennes, France
| | - Isabelle Monnet
- Department of Pulmonology, Centre Hospitalier Intercommunal Créteil, Créteil, France
| | - Valérie Gounant
- Hôpital Tenon, Assistance Publique Hopitaux du Paris, Paris, France
| | - Frédéric Rivière
- Department of Pulmonology, Hôpital d'instruction des armées Percy, Clamart, France
| | - Henri Janicot
- Department of Pulmonology, Gabriel-Montpied University Hospital, Clermont-Ferrand, France
| | - Radj Gervais
- Centre régional de lutte contre le cancer François Baclesse, Caen, France
| | - Chrystèle Locher
- Department of Pulmonology, Centre Hospitalier Meaux, Meaux, France
| | | | - Quan Tran
- French Cooperative Thoracic Group, Paris, France
| | | | - Franck Morin
- French Cooperative Thoracic Group, Paris, France
| | - Christian Creveuil
- Department of Biostatistics and Clinical Research, Centre Hospitalier Universitaire Côte de Nacre, Caen, France; Equipe d'Accueil 4655, Caen Normandy University, Caen, France
| | - Jean-Jacques Parienti
- Department of Biostatistics and Clinical Research, Centre Hospitalier Universitaire Côte de Nacre, Caen, France; Equipe d'Accueil 4655, Caen Normandy University, Caen, France
| | - Arnaud Scherpereel
- Pulmonary and Thoracic Oncology Department, Centre Hospitalier Universitaire Lille, University of Lille, U1019 Institut national de la santé et de la recherche médicale, Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
50
|
Jing XQ, Zhou L, Sun XD, Yu JM, Meng X. Pemetrexed Maintenance Therapy Following Bevacizumab-Containing First-Line Chemotherapy in Advanced Malignant Pleural Mesothelioma: A Case Report and Literatures Review. Medicine (Baltimore) 2016; 95:e3351. [PMID: 27057918 PMCID: PMC4998834 DOI: 10.1097/md.0000000000003351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal disease with poor prognosis. The combination of cisplatin and pemetrexed has been confirmed as the standard of care for nonoperable MPM. Data have shown that the adoption of pemetrexed maintenance therapy (PMT) following first-line treatment appears extremely promising.We describe a 57-year-old man diagnosed as advanced MPM. We treated this patient with PMT after first-line cisplatin-based bevacizumab-containing chemotherapy and residual tumor disappeared after 6 course of PMT. A perfect response and a long progression-free survival (PFS) were reached with tumor mass disappearing and 14 months duration of PFS.This case suggests that adding bevacizumab to standard first-line chemotherapy is feasible and that PMT could be promising and useful for treating advanced MPM. We further entail a review of the literature on the first-line treatment, continuation maintenance therapy, switch maintenance therapy, and second-line treatment of patients with advanced MPM.
Collapse
Affiliation(s)
- Xu-Quan Jing
- From the Departments of Radiation Oncology (X-QJ, X-DS, J-MY, XM) and Orthopedics (LZ), Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|