1
|
Fleckner M, Döhmen NK, Salz K, Christophers T, Windolf J, Suschek CV, Oezel L. Exposure of Primary Human Skin Fibroblasts to Carbon Dioxide-Containing Solution Significantly Reduces TGF-β-Induced Myofibroblast Differentiation In Vitro. Int J Mol Sci 2024; 25:13013. [PMID: 39684728 DOI: 10.3390/ijms252313013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Wound healing as a result of a skin injury involves a series of dynamic physiological processes, leading to wound closure, re-epithelialization, and the remodeling of the extracellular matrix (ECM). The primary scar formed by the new ECM never fully regains the original tissue's strength or flexibility. Moreover, in some cases, due to dysregulated fibroblast activity, proliferation, and differentiation, the normal scarring can be replaced by pathological fibrotic tissue, leading to hypertrophic scars or keloids. These disorders can cause significant physical impairment and psychological stress and represent significant challenges in medical management in the wound-healing process. The present study aimed to investigate the therapeutic effects of exogenously applied carbon dioxide (CO2) on fibroblast behavior, focusing on viability, proliferation, migration, and differentiation to myofibroblasts. We found that CO2 exposure for up to 60 min did not significantly affect fibroblast viability, apoptosis rate, or proliferation and migration capacities. However, a notable finding was the significant reduction in α-smooth muscle actin (α-SMA) protein expression, indicative of myofibroblast differentiation inhibition, following CO2 exposure. This effect was specific to CO2 and concentration as well as time-dependent, with longer exposure durations leading to greater reductions in α-SMA expression. Furthermore, the inhibition of myofibroblast differentiation correlated with a statistically significantly reduced glycolytic and mitochondrial energy metabolism, and as a result, with a reduced ATP synthesis rate. This very noticeable decrease in cellular energy levels seemed to be specific to CO2 exposure and could not be observed in the control cultures using nitrogen (N2)-saturated solutions, indicating a unique and hypoxia-independent effect of CO2 on fibroblast metabolism. These findings suggest that exogenously applied CO2 may possess fibroblast differentiation-reducing properties by modulating fibroblast's energy metabolism and could offer new therapeutic options in the prevention of scar and keloid development.
Collapse
Affiliation(s)
- Maxine Fleckner
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Niklas K Döhmen
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Katharina Salz
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Till Christophers
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Christoph V Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Lisa Oezel
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
2
|
Ebrahimi S, Khaleghi Ghadiri M, Stummer W, Gorji A. Enhancing 5-ALA-PDT efficacy against resistant tumor cells: Strategies and advances. Life Sci 2024; 351:122808. [PMID: 38852796 DOI: 10.1016/j.lfs.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
As a precursor of protoporphyrin IX (PpIX), an endogenous pro-apoptotic and fluorescent molecule, 5-Aminolevulinic acid (5-ALA) has gained substantial attention for its potential in fluorescence-guided surgery as well as photodynamic therapy (PDT). Moreover, 5-ALA-PDT has been suggested as a promising chemo-radio sensitization therapy for various cancers. However, insufficient 5-ALA-induced PpIX fluorescence and the induction of multiple resistance mechanisms may hinder the 5-ALA-PDT clinical outcome. Reduced efficacy and resistance to 5-ALA-PDT can result from genomic alterations, tumor heterogeneity, hypoxia, activation of pathways related to cell surveillance, production of nitric oxide, and most importantly, deregulated 5-ALA transporter proteins and heme biosynthesis enzymes. Understanding the resistance regulatory mechanisms of 5-ALA-PDT may allow the development of effective personalized cancer therapy. Here, we described the mechanisms underlying resistance to 5-ALA-PTD across various tumor types and explored potential strategies to overcome this resistance. Furthermore, we discussed future approaches that may enhance the efficacy of treatments using 5-ALA-PDT.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Münster University, 48149 Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran.
| |
Collapse
|
3
|
Song W, Yang H, Wang Y, Chen S, Zhong W, Wang Q, Ding W, Xu G, Meng C, Liang Y, Chen Z, Cao S, Wei L, Li F. Glutathione-Sensitive Photosensitizer-Drug Conjugates Target the Mitochondria to Overcome Multi-Drug Resistance in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307765. [PMID: 38898730 PMCID: PMC11321625 DOI: 10.1002/advs.202307765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/11/2024] [Indexed: 06/21/2024]
Abstract
Multi-drug resistance (MDR) is a major cause of cancer therapy failure. Photodynamic therapy (PDT) is a promising modality that can circumvent MDR and synergize with chemotherapies, based on the generation of reactive oxygen species (ROS) by photosensitizers. However, overproduction of glutathione (GSH) by cancer cells scavenges ROS and restricts the efficacy of PDT. Additionally, side effects on normal tissues are unavoidable after PDT treatment. Here, to develop organic systems that deliver effective anticancer PDT and chemotherapy simultaneously with very little side effects, three GSH-sensitive photosensitizer-drug conjugates (CyR-SS-L) are designed and synthesized. CyR-SS-L localized in the mitochondria then is cleaved into CyR-SG and SG-L parts by reacting with and consuming high levels of intracellular GSH. Notably, CyR-SG generates high levels of ROS in tumor cells instead of normal cells and be exploited for PDT and the SG-L part is used for chemotherapy. CyR-SS-L inhibits better MDR cancer tumor inhibitory activity than indocyanine green, a photosensitizer (PS) used for PDT in clinical applications. The results appear to be the first to show that CyR-SS-L may be used as an alternative PDT agent to be more effective against MDR cancers without obvious damaging normal cells by the combination of PDT, GSH depletion, and chemotherapy.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Medicinal ChemistrySchool of PharmacyShandong UniversityJinan250012China
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Hekai Yang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Ying Wang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Shuzhen Chen
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Wenda Zhong
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Qian Wang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Wenshuo Ding
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Guangzhao Xu
- Weifang Synovtech New Material Technology CO., LTD.Weifang262700China
- Harway Pharma Co., Ltd.Dongying254753China
| | - Chen Meng
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Ying Liang
- Department of General PracticeThe First Affiliated Hospital of Shandong First Medical UniversityJinan250013China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Shuhua Cao
- College of ChemistryChemical and Environmental EngineeringWeifang UniversityWeifang261061China
| | - Liuya Wei
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Fahui Li
- School of PharmacyWeifang Medical UniversityWeifang261053China
| |
Collapse
|
4
|
Mickevicius T, Holtmann C, Draganov J, Prues-Hoelscher J, Geerling G, Borrelli M. Lagophthalmos-induced corneal perforation in a patient with congenital erythropoietic porphyria. Orbit 2024; 43:392-398. [PMID: 36734461 DOI: 10.1080/01676830.2023.2169718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder in which the activity of uroporphyrinogen III synthase (UROS) is decreased. This results in the accumulation of photoreactive porphyrinogens, primarily in the skin and bone marrow. We describe a case of a patient with CEP who initially presented with scarring and shortening of the anterior and posterior lid lamella, which led to the development of lagophthalmos. Vascularized hyperkeratotic plaques in both corneas were also present. Despite treatment with topical ocular surface lubricants, corneal perforation with iris and uvea prolapse developed and evisceration of the right eye under local anesthesia was performed. The presented case suggests that despite topical therapy, ocular complications may exacerbate requiring surgical intervention, especially in the presence of lagophthalmos.
Collapse
Affiliation(s)
- Tomas Mickevicius
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Christoph Holtmann
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Jutta Draganov
- Department of Anesthesiology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | | | - Gerd Geerling
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Maria Borrelli
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Huang Y, Wang P, Fan T, Zhang N, Zhao L, Zhong R, Sun G. Energy Blocker Lonidamine Reverses Nimustine Resistance in Human Glioblastoma Cells through Energy Blockade, Redox Homeostasis Disruption, and O6-Methylguanine-DNA Methyltransferase Downregulation: In Vitro and In Vivo Validation. ACS Pharmacol Transl Sci 2024; 7:1518-1532. [PMID: 38751635 PMCID: PMC11092191 DOI: 10.1021/acsptsci.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Tumor resistance seriously hinders the clinical application of chloroethylnitrosoureas (CENUs), such as O6-methylguanine-DNA methylguanine (MGMT), which can repair O6-alkyl lesions, thereby inhibiting the formation of cytotoxic DNA interstrand cross-links (ICLs). Metabolic differences between tumor and normal cells provide a biochemical basis for novel therapeutic strategies aimed at selectively inhibiting tumor energy metabolism. In this study, the energy blocker lonidamine (LND) was selected as a chemo-sensitizer of nimustine (ACNU) to explore its potential effects and underlying mechanisms in human glioblastoma in vitro and in vivo. A series of cell-level studies showed that LND significantly increased the cytotoxic effects of ACNU on glioblastoma cells. Furthermore, LND plus ACNU enhanced the energy deficiency by inhibiting glycolysis and mitochondrial function. Notably, LND almost completely downregulated MGMT expression by inducing intracellular acidification. The number of lethal DNA ICLs produced by ACNU increased after the LND pretreatment. The combination of LND and ACNU aggravated cellular oxidative stress. In resistant SF763 mouse tumor xenografts, LND plus ACNU significantly inhibited tumor growth with fewer side effects than ACNU alone. Finally, we proposed a new "HMAGOMR" chemo-sensitizing mechanism through which LND may act as a potential chemo-sensitizer to reverse ACNU resistance in glioblastoma: moderate inhibition of hexokinase (HK) activity (H); mitochondrial dysfunction (M); suppressing adenosine triphosphate (ATP)-dependent drug efflux (A); changing redox homeostasis to inhibit GSH-mediated drug inactivation (G) and increasing intracellular oxidative stress (O); downregulating MGMT expression through intracellular acidification (M); and partial inhibition of energy-dependent DNA repair (R).
Collapse
Affiliation(s)
- Yaxing Huang
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| | - Peng Wang
- Department
of Neurosurgery, The First Medical Center
of Chinese PLA General Hospital, Beijing 100853, China
| | - Tengjiao Fan
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
- Department
of Medical Technology, Beijing Pharmaceutical
University of Staff and Workers, Beijing 100079, China
| | - Na Zhang
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| |
Collapse
|
6
|
Li W, Yang Y, Wang J, Ge T, Wan S, Gui L, Tao Y, Song P, Yang L, Ge F, Zhang W. Establishment of bone-targeted nano-platform and the study of its combination with 2-deoxy-d-glucose enhanced photodynamic therapy to inhibit bone metastasis. J Mech Behav Biomed Mater 2024; 150:106306. [PMID: 38091923 DOI: 10.1016/j.jmbbm.2023.106306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024]
Abstract
At present, simple anti-tumor drugs are ineffective at targeting bone tissue and are not purposed to treat patients with bone metastasis. In this study, zoledronic acid (ZOL) demonstrated excellent bone-targeting properties as a bone-targeting ligand. The metal-organic framework (MOF) known as ZIF-90 was modified with ZOL to construct a bone-targeting-based drug delivery system. Chlorin e6 (Ce6) was loaded in the bone-targeted drug delivery system and combined with 2-deoxy-D-glucose (2-DG), which successfully treated bone tumors when enhanced photodynamic therapy was applied. The Ce6@ZIF-PEG-ZOL (Ce6@ZPZ) nanoparticles were observed to have uniform morphology, a particle size of approximately 210 nm, and a potential of approximately -30.4 mV. The results of the bone-targeting experiments showed that Ce6@ZPZ exhibited a superior bone-targeted effect when compared to Ce6@ZIF-90-PEG. The Ce6@ZPZ solution was subjected to 660 nm irradiation and the resulting production of reactive oxygen species increased over time, which could be further increased when Ce6@ZPZ was used in combination with 2-DG. Their combination had a stronger inhibitory capacity against tumor cells than either 2-DG or Ce6@ZPZ alone, increasing the rate of tumor cell apoptosis. The apoptosis rate caused by HGC-27 was 61.56% when 2-DG was combined with Ce6@ZPZ. In vivo results also showed that Ce6@ZPZ combined with 2-DG maximally inhibited tumor growth and prolonged mice survival compared to the other experimental groups. Therefore, the combination of PDT and glycolytic inhibitors serves as a potential option for the treatment of cancer.
Collapse
Affiliation(s)
- Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Yongqi Yang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ting Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Shuixia Wan
- Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, 241002, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Liangjun Yang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| |
Collapse
|
7
|
La Salvia A, Lens-Pardo A, López-López A, Carretero-Puche C, Capdevila J, Benavent M, Jiménez-Fonseca P, Castellano D, Alonso T, Teule A, Custodio A, Tafuto S, La Casta A, Spada F, Lopez-Gonzalvez A, Gil-Calderon B, Espinosa-Olarte P, Barbas C, Garcia-Carbonero R, Soldevilla B. Metabolomic profile of neuroendocrine tumors identifies methionine, porphyrin, and tryptophan metabolisms as key dysregulated pathways associated with patient survival. Eur J Endocrinol 2024; 190:62-74. [PMID: 38033321 DOI: 10.1093/ejendo/lvad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Metabolic profiling is a valuable tool to characterize tumor biology but remains largely unexplored in neuroendocrine tumors (NETs). Our aim was to comprehensively assess the metabolomic profile of NETs and identify novel prognostic biomarkers and dysregulated molecular pathways. DESIGN AND METHODS Multiplatform untargeted metabolomic profiling (GC-MS, CE-MS, and LC-MS) was performed in plasma from 77 patients with G1-2 extra-pancreatic NETs enrolled in the AXINET trial (NCT01744249) (study cohort) and from 68 non-cancer individuals (control). The prognostic value of each differential metabolite (n = 155) in NET patients (P < .05) was analyzed by univariate and multivariate analyses adjusted for multiple testing and other confounding factors. Related pathways were explored by Metabolite Set Enrichment Analysis (MSEA) and Metabolite Pathway Analysis (MPA). RESULTS Thirty-four metabolites were significantly associated with progression-free survival (PFS) (n = 16) and/or overall survival (OS) (n = 27). Thirteen metabolites remained significant independent prognostic factors in multivariate analysis, 3 of them with a significant impact on both PFS and OS. Unsupervised clustering of these 3 metabolites stratified patients in 3 distinct prognostic groups (1-year PFS of 71.1%, 47.7%, and 15.4% (P = .012); 5-year OS of 69.7%, 32.5%, and 27.7% (P = .003), respectively). The MSEA and MPA of the 13-metablolite signature identified methionine, porphyrin, and tryptophan metabolisms as the 3 most relevant dysregulated pathways associated with the prognosis of NETs. CONCLUSIONS We identified a metabolomic signature that improves prognostic stratification of NET patients beyond classical prognostic factors for clinical decisions. The enriched metabolic pathways identified reveal novel tumor vulnerabilities that may foster the development of new therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Anna La Salvia
- Center of Experimental Oncology, Gastrointestinal and Neuroendrocrine Tumors Research Group, Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Oncology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), 00161 Rome, Italy
| | - Alberto Lens-Pardo
- Center of Experimental Oncology, Gastrointestinal and Neuroendrocrine Tumors Research Group, Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Angel López-López
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28925 Madrid, Spain
| | - Carlos Carretero-Puche
- Center of Experimental Oncology, Gastrointestinal and Neuroendrocrine Tumors Research Group, Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Jaume Capdevila
- Vall Hebron University Hospital and Vall Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Marta Benavent
- Medical Oncology Department, Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Seville, Spain
| | - Paula Jiménez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, ISPA, 33011 Oviedo, Spain
| | - Daniel Castellano
- Oncology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Teresa Alonso
- Medical Oncology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Alexandre Teule
- Institut Català d'Oncologia (ICO)-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet del Llobregat, Barcelona, Spain
| | - Ana Custodio
- Department of Medical Oncology, Hospital Universitario La Paz, CIBERONC CB16/12/00398, 28046 Madrid, Spain
| | - Salvatore Tafuto
- Sarcomas and Rare Tumours Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Adelaida La Casta
- Department of Medical Oncology, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastián, Spain
| | - Francesca Spada
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Angeles Lopez-Gonzalvez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28925 Madrid, Spain
| | - Beatriz Gil-Calderon
- Center of Experimental Oncology, Gastrointestinal and Neuroendrocrine Tumors Research Group, Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Paula Espinosa-Olarte
- Center of Experimental Oncology, Gastrointestinal and Neuroendrocrine Tumors Research Group, Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Oncology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Coral Barbas
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28925 Madrid, Spain
| | - Rocio Garcia-Carbonero
- Center of Experimental Oncology, Gastrointestinal and Neuroendrocrine Tumors Research Group, Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Oncology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
- Medicine Department, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Beatriz Soldevilla
- Center of Experimental Oncology, Gastrointestinal and Neuroendrocrine Tumors Research Group, Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
- Genetics, Physiology and Microbiology Department, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
8
|
Wu C, Wang M, Sun J, Jia Y, Zhu X, Liu G, Zhu Y, Guan Y, Zhang Z, Pang X. Peptide-drug co-assembling: A potent armament against cancer. Theranostics 2023; 13:5322-5347. [PMID: 37908727 PMCID: PMC10614680 DOI: 10.7150/thno.87356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is still one of the major problems threatening human health and the therapeutical efficacies of available treatment choices are often rather low. Due to their favorable biocompatibility, simplicity of modification, and improved therapeutic efficacy, peptide-based self-assembled delivery systems have undergone significant evolution. Physical encapsulation and covalent conjugation are two common approaches to load drugs for peptide assembly-based delivery, which are always associated with drug leaks in the blood circulation system or changed pharmacological activities, respectively. To overcome these difficulties, a more elegant peptide-based assembly strategy is desired. Notably, peptide-mediated co-assembly with drug molecules provides a new method for constructing nanomaterials with improved versatility and structural stability. The co-assembly strategy can be used to design various nanostructures for cancer therapy, such as nanotubes, nanofibrils, hydrogels, and nanovesicles. Recently, these co-assembled nanostructures have gained tremendous attention for their unique superiorities in tumor therapy. This article describes the classification of assembled peptides, driving forces for co-assembly, and specifically, the design methodologies for various drug molecules in co-assembly. It also highlights recent research on peptide-mediated co-assembled delivery systems for cancer therapy. Finally, it summarizes the pros and cons of co-assembly in cancer therapy and offers some suggestions for conquering the challenges in this field.
Collapse
Affiliation(s)
- Can Wu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Manman Wang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Jinpan Sun
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Yongyan Jia
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xiali Zhu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Gaizhi Liu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Yanhui Zhu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Yanbin Guan
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medicine Science, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xin Pang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
9
|
Farhadi P, Irani S, Gholami M, Mansouri K. A metabolism targeting three-pronged attack significantly attenuates breast cancer stem cell related markers toward therapeutic application. Biomed Pharmacother 2023; 161:114496. [PMID: 36948136 DOI: 10.1016/j.biopha.2023.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Tumor metabolism has provided researchers with a promising window to cancer therapy. The metabolic pathways adopted by cancer cells are different from those of normal cells. Thus, metabolism can be considered a linchpin in targeted cancer therapy. Glycolysis, pentose phosphate pathway, and mitochondria represent three critical metabolic spots with important roles in cancer cell survival and proliferation. In the present study, we aimed to target these pathways using three different inhibitors: 2-deoxyglucose, 6-aminonicotinamide, and doxycycline, separately and in combination. Accordingly, cell viability, lactate production, cell cycle profile, apoptotic profile, and expression of surface and molecular markers of MCF-7 and MDA-MB-231 breast cancer cell lines were investigated under adherent and sphere conditions. Our results from our set conditions indicated various inhibitory effects of these compounds on the breast cancer cell lines. Based on this all-around attack, the combination of drugs demonstrated the most effective inhibitory action compared to separate usage. This study suggests the combined application of these drugs in future investigations and more experimental settings in order to introduce this therapeutic strategy as an efficient anti-cancer treatment.
Collapse
Affiliation(s)
- Pegah Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Gholami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Al-Shafie TA, Mahrous EA, Shukry M, Alshahrani MY, Ibrahim SF, Fericean L, Abdelkader A, Ali MA. A Proposed Association between Improving Energy Metabolism of HepG2 Cells by Plant Extracts and Increasing Their Sensitivity to Doxorubicin. TOXICS 2023; 11:182. [PMID: 36851057 PMCID: PMC9967676 DOI: 10.3390/toxics11020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Increasing cancer cell sensitivity to chemotherapy by amending aberrant metabolism using plant extracts represents a promising strategy to lower chemotherapy doses while retaining the same therapeutic outcome. Here, we incubated HepG2 cells with four plant extracts that were selected based on an earlier assessment of their cytotoxicity, viz asparagus, green tea, rue, and avocado, separately, before treatment with doxorubicin. MTT assays elucidated a significant decrease in doxorubicin-IC50 following HepG2 incubation with each extract, albeit to a variable extent. The investigated extract's ultra-performance liquid chromatography and gas chromatography coupled with mass spectrometry (UPLC/MS and GC/MS) revealed several constituents with anticancer activity. Biochemical investigation displayed several favorable effects, including the inhibition of hypoxia-inducible factor1α (HIF1α), c-Myc, pyruvate kinase-M2 (PKM2), lactate dehydrogenase-A (LDH-A), glucose-6-phosphate dehydrogenase (G6PD), and glutaminase by asparagus and rue extracts. To less extent, HIF1α, c-Myc, PKM2, and LDH-A were partially inhibited by green tea extract, and HIF1α and glutaminase activity was inhibited by avocado oil. Undesirably, green tea extract increased glutaminase; avocado oil rose c-Myc, and both increased G6PD. In conclusion, our study confirms the potential cytotoxic effects of these plant extracts. It highlights a strong association between the ability of asparagus, green tea, rue, and avocado to sensitize HepG2 cells to doxorubicin and their power to amend cell metabolism, suggesting their use as add-on agents that might aid in clinically lowering the doxorubicin dose.
Collapse
Affiliation(s)
- Tamer A. Al-Shafie
- Faculty of Dentistry, Biochemistry Department, Pharos University in Alexandria, Alexandria 21532, Egypt
| | - Engy A. Mahrous
- Faculty of Pharmacy, Pharmacognosy Department, Cairo University, Cairo 11435, Egypt
| | - Mustafa Shukry
- Faculty of Veterinary Medicine, Department of Physiology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohammad Y. Alshahrani
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Liana Fericean
- Faculty of Agriculture, Department of Biology and Plant Protection, University of Life Sciences “King Michael I” from Timișoara, Calea Aradului 119, CUI 3487181, 300645 Timisoara, Romania
| | - Afaf Abdelkader
- Faculty of Medicine, Department of Forensic Medicine and Clinical Toxicology, Benha University, Benha 13518, Egypt
| | - Mennatallah A. Ali
- Faculty of Pharmacy, Pharmacology and Therapeutics Department, Pharos University in Alexandria, Alexandria 21532, Egypt
| |
Collapse
|
11
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
12
|
Wu C, Jiao Q, Wang C, Zheng Y, Pan X, Zhong W, Xu K. Nanofibrillar peptide hydrogels for self-delivery of lonidamine and synergistic photodynamic therapy. Acta Biomater 2023; 155:139-153. [PMID: 36371006 DOI: 10.1016/j.actbio.2022.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
The use of lonidamine (LND) in photodynamic therapy (PDT) provides a viable approach to develop low-dose PDT modules with high efficacy, for LND potentiates cytotoxicity of photosensitizers through dysregulation of mitochondrial function. Yet, the efficacy of LND is restricted by its low accumulation in cancer cells, especially in the mitochondrial compartments. To address the problem, we design an LND-derived self-assembling peptide molecule (LND-K) that dually targets integrin receptors and mitochondria of cancer cells. The targeted cellular delivery of LND-K gives higher efficacy in ablation of mitochondrial function in melanoma cells A375, as compared to free LND or the control molecule that lacks mitochondria-targeting moieties. To integrate LND-K in a typical PDT module, we develop a nanofibrillar hydrogel system through co-assembly of LND-K and TPPS4, an anionic photosensitizer that forms tight electrostatic interactions with cationic residues of LND-K. Notably, hydrogel formulation of LND-K/TPPS4 facilitates slow release of TPPS4 over 14 days in vitro, and displays a longer retention time than aqueous solution of TPPS4in vivo. By integrating a mitochondria-targeted molecule (LND-K) in a typical PDT module, we achieve synergistic killing of A375 cells with dual drugs, where LND-K not only serves as a chemotherapeutic drug, but also potentiates the cytotoxicities of TPPS4 toward A375 cells in vitro and in vivo. The peptide-based drug self-delivery system promises the development of efficacious combination treatments against cancer, that integrate cell sensitization with existing anticancer modules (e.g., chemotherapy and PDT) for enhanced therapeutic efficacy. STATEMENT OF SIGNIFICANCE: This study reports the design and synthesis of a lonidamine (LND)-derived self-assembling peptide (LND-K) that dually targets integrin receptors and mitochondria of cancer cells. Under the precision guidance of a mitochondria-targeting sequence, LND-K-containing nanofibers target mitochondria and ablate mitochondrial functions. On one hand, the targeted delivery of LND-K reduces cell viabilities through a chemotherapy route; on the other hand, LND-K sensitizes cancer cells for subsequent PDT treatment with enhanced efficacy, which is mediated by induction of ROS, loss of mitochondrial membrane potential, and decrease of cellular ATP level. We believe that the design of mitochondria-targeted drug delivery systems with a self-assembling molecule provides a new approach to potentiate cytotoxicity of photosensitizers in a low-dose PDT module.
Collapse
Affiliation(s)
- Can Wu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qishu Jiao
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chunlu Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yaxin Zheng
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaohui Pan
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Mendes MIP, Arnaut LG. Redaporfin Development for Photodynamic Therapy and its Combination with Glycolysis Inhibitors. Photochem Photobiol 2022; 99:769-776. [PMID: 36564949 DOI: 10.1111/php.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Photodynamic therapy (PDT) remains an underutilized treatment modality in oncology. Many efforts have been dedicated to the development of better photosensitizers, better formulations and delivery methods, rigorous planning of light dose distribution in tissues, mechanistic insight, improvement of treatment protocols and combinations with other therapeutic agents. Hopefully, progress in all these fields will eventually expand the use of PDT. Here we offer a brief review of our own contribution to the development of a photosensitizer for PDT - redaporfin - currently in Phase II clinical trials, and present data on its combination with two glycolysis inhibitors: 2-deoxyglucose and 3-bromopyruvate. We show that 3-bromopyruvate is more cytotoxic to a carcinoma cell line (CT26) than to a normal fibroblast (3T3) cell line, and that this selectivity is maintained in the in vitro combination with redaporfin-PDT. This combination was investigated in BALB/c mice with large subcutaneous CT26 tumors and it is shown that the cure rate in the combination is higher (33% cures) than in PDT (11% cures) or in 3-bromopyruvate (no cures) alone. The combination of redaporfin-PDT with 3-bromopyruvate illustrates the potential of combination therapies and how PDT benefits can be enhanced by systemic drugs with complementary targets.
Collapse
Affiliation(s)
| | - Luis G Arnaut
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Hong T, Shen X, Syeda MZ, Zhang Y, Sheng H, Zhou Y, Xu J, Zhu C, Li H, Gu Z, Tang L. Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. NANO RESEARCH 2022; 16:2660-2671. [PMID: 36405982 PMCID: PMC9664041 DOI: 10.1007/s12274-022-5002-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/29/2023]
Abstract
A bioresponsive polymeric nanocarrier for drug delivery is able to alter its physical and physicochemical properties in response to a variety of biological signals and pathological changes, and can exert its therapeutic efficacy within a confined space. These nanosystems can optimize the biodistribution and subcellular location of therapeutics by exploiting the differences in biochemical properties between tumors and normal tissues. Moreover, bioresponsive polymer-based nanosystems could be rationally designed as precision therapeutic platforms by optimizing the combination of responsive elements and therapeutic components according to the patient-specific disease type and stage. In this review, recent advances in smart bioresponsive polymeric nanosystems for cancer chemotherapy and immunotherapy will be summarized. We mainly discuss three categories, including acidity-sensitive, redox-responsive, and enzyme-triggered polymeric nanosystems. The important issues regarding clinical translation such as reproducibility, manufacture, and probable toxicity, are also commented.
Collapse
Affiliation(s)
- Tu Hong
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Madiha Zahra Syeda
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Yang Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Haonan Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yipeng Zhou
- Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - JinMing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 China
| | - Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Longguang Tang
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| |
Collapse
|
15
|
5 ALA Is a Potent Lactate Dehydrogenase Inhibitor But Not a Substrate: Implications for Cell Glycolysis and New Avenues in 5 ALA-Mediated Anticancer Action. Cancers (Basel) 2022; 14:cancers14164003. [PMID: 36010996 PMCID: PMC9406570 DOI: 10.3390/cancers14164003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary In the present work, we found that 5-ALA, a natural precursor of heme, can hinder cell glycolysis, which is the main path of energy production for most cancer cells. More specifically, we found that 5-ALA can block an enzyme involved in glycolysis, called lactate dehydrogenase (LDH). We found that 5-ALA has a potency of LDH inhibition comparable to other established LDH inhibitors, such as oxamate or tartronic acid. Nevertheless, 5-ALA has a high accumulation rate in cancers and specifically in the incurable brain cancer glioblastoma multiforme (GBM), which is an important advantage. In fact, because of its high specificity to GBM, 5-ALA is used in the clinic to accurately guide the resection of the tumours, through the light emission of its photoactive product protoporphyrin IX (PpIX). PpIX is the penultimate step in the heme production. Importantly, we show here that continuous administration of 5-ALA killed GBM cells according to their dependence on glycolysis. We additionally found that 20% of externally administered 5-ALA is engaged in the inhibition of LDH, as when LDH was pre-loaded by another inhibitor, tartronic acid, then the cell production of PpIX from 5-ALA was increased by 20%. Since PpIX is an important drug for photodynamic therapy of cancer (excitation by light of PpIX produces oxygen by-products that can kill cancer cells), we additionally discovered that preloading LDH with its inhibitor tartronic acid before performing 5-ALA PDT increases the cancer cell death by 15%. Abstract In a course of metabolic experiments, we determined that the addition of δ-aminolevulinic acid (5-ALA) to a panel of glioblastoma multiforme (GBM) cells caused a steep reduction in their glycolytic activity. This reduction was accompanied by a decrease in adenosine triphosphate (ATP) production from glycolysis. These results suggested that 5-ALA is an inhibitor of glycolysis; due to the structural similarity of 5-ALA to the established lactate dehydrogenase (LDH) inhibitors oxamate (OXM) and tartronate (TART), we initially investigated LDH inhibition by 5-ALA in silico. The modelling revealed that 5-ALA could indeed be a competitive inhibitor of LDH but not a substrate. These theoretical findings were corroborated by enzymatic and cell lysate assays in which 5-ALA was found to confer a potent LDH inhibition comparable to that of OXM and TART. We subsequently evaluated the effect of 5-ALA-induced glycolysis inhibition on the viability of GBM cells with diverse metabolic phenotypes. In the Warburg-type cell lines Ln18 and U87, incubation with 5-ALA elicited profound and irreversible cell death (90–98%) at 10 mM after merely 24 h. In T98G, however, which exhibited both high respiratory and glycolytic rates, LD95 was achieved after 72 h of incubation with 20 mM 5-ALA. We additionally examined the production of the 5-ALA photosensitive metadrug protoporphyrin IX (PpIX), with and without prior LDH inhibition by TART. These studies revealed that ~20% of the 5-ALA taken up by the cells was engaged in LDH inhibition. We subsequently performed 5-ALA photodynamic therapy (PDT) on Ln18 GBM cells, again with and without prior LDH inhibition with TART, and found a PDT outcome enhancement of ~15% upon LDH pre-inhibition. We expect our findings to have a profound impact on contemporary oncology, particularly for the treatment of otherwise incurable brain cancers such as GBM, where the specific accumulation of 5-ALA is very high compared to the surrounding normal tissue.
Collapse
|
16
|
Montaseri H, Kruger CA, Abrahamse H. Targeted Photodynamic Therapy Using Alloyed Nanoparticle-Conjugated 5-Aminolevulinic Acid for Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13091375. [PMID: 34575450 PMCID: PMC8471498 DOI: 10.3390/pharmaceutics13091375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) has been investigated as an effective, non-invasive, and alternative tumor-ablative therapy that uses photosensitizers (PSs) and safe irradiation light in the presence of oxygen to generate reactive oxygen species (ROS) to kill malignant cancer cells. However, the off-target activation of the PSs can hinder effective PDT. Therefore, an advanced drug delivery system is required to selectively deliver the PS to the therapeutic region only and reduce off-target side effects in cancer treatment. The integration of laser-initiated PDT with nanotechnology has provided new opportunities in cancer therapy. In this study, plasmonic bimetallic nanoparticles (NPs) were prepared for the targeted PDT (TPDT) of in vitro cultured MCF-7 breast cancer cells. The NPs were functionalized with PEG through Au–thiol linkage to enhance their biocompatibility and subsequently attached to the PS precursor 5-aminolevulinic acid via electrostatic interactions. In order to enhance specific targeting, anti-HER-2 antibodies (Ab) were decorated onto the surface of the nanoconjugate (NC) to fabricate a 5-ALA/Au–Ag-PEG-Ab NC. In vitro studies showed that the synthesized NC can enter MCF-7 cells and localize in the cytoplasm to metabolize 5-ALA to protoporphyrin IX (PpIX). Upon light irradiation, PpIX can efficiently produce ROS for the PDT treatment of MCF-7. Cellular viability studies showed a decrease from 49.8% ± 5.6 ** to 13.8% ± 2.0 *** for free 5-ALA versus the NC, respectively, under equivalent concentrations of the PS (0.5 mM, IC50). These results suggest that the active targeted NC platform has an improved PDT effect on MCF-7 breast cancer cells.
Collapse
|
17
|
Targeting Cancer Metabolism and Current Anti-Cancer Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:15-48. [PMID: 33725343 DOI: 10.1007/978-3-030-55035-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies have exploited the metabolic hallmarks that distinguish between normal and cancer cells, aiming at identifying specific targets of anti-cancer drugs. It has become apparent that metabolic flexibility allows cancer cells to survive during high anabolic demand or the depletion of nutrients and oxygen. Cancers can reprogram their metabolism to the microenvironments by increasing aerobic glycolysis to maximize ATP production, increasing glutaminolysis and anabolic pathways to support bioenergetic and biosynthetic demand during rapid proliferation. The increased key regulatory enzymes that support the relevant pathways allow us to design small molecules which can specifically block activities of these enzymes, preventing growth and metastasis of tumors. In this review, we discuss metabolic adaptation in cancers and highlight the crucial metabolic enzymes involved, specifically those involved in aerobic glycolysis, glutaminolysis, de novo fatty acid synthesis, and bioenergetic pathways. Furthermore, we also review the success and the pitfalls of the current anti-cancer drugs which have been applied in pre-clinical and clinical studies.
Collapse
|
18
|
Ozkan E, Bakar-Ates F. Potentiation of the Effect of Lonidamine by Quercetin in MCF-7 human breast cancer cells through downregulation of MMP-2/9 mRNA Expression. AN ACAD BRAS CIENC 2020; 92:e20200548. [PMID: 33237147 DOI: 10.1590/0001-3765202020200548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Combination therapies are becoming increasingly important to develop an effective treatment in cancer. Lonidamine is frequently used in cancer treatment, but it's often preferred to be used in combination with other drugs because of its side effects. In the present study, the efficacy of the combination of lonidamine with quercetin, a flavonoid of natural origin, on human MCF-7 breast cancer cells was evaluated. The results showed that the combined use of the compounds significantly increased cytotoxicity compared to administration alone (p<0.0001). In addition, while lonidamine induced a cell cycle arrest in the G2/M phase, administration of quercetin and its combination with lonidamine arrested the cell division at S point, indicating the synergistic strength of quercetin on cytotoxicity. The combination of quercetin and lonidamine significantly induced apoptosis of MCF-7 cells (p<0.0001) and increased caspase levels (p<0.0001). In this study, the combination of quercetin and lonidamine has been evaluated for the first time and the combination treatment decreased MMP-2/-9 mRNA expression more potently than the effects of the compounds alone. The results showed that lonidamine was more effective when combined with quercetin, and their combination may be a candidate for a novel strategy of treatment for breast cancer.
Collapse
Affiliation(s)
- Erva Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Dogol Street, 06560, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Dogol Street, 06560, Ankara, Turkey
| |
Collapse
|
19
|
The Potential of Lonidamine in Combination with Chemotherapy and Physical Therapy in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12113332. [PMID: 33187214 PMCID: PMC7696079 DOI: 10.3390/cancers12113332] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The unique characteristics of tumor energy metabolism (highly dependent on aerobic glycolysis, namely, the Warburg effect) make it an interesting and attractive target for drug discovery. Radio- and chemoresistance are closely associated with the Warburg effect. Lonidamine (LND), as a glycolytic inhibitor, although having low anticancer activity when used alone, exhibits selectivity to various tumors, and its adverse effects do not overlap when combined with other chemotherapeutic drugs. Therefore, LND may be very promising as a sensitizer of tumors to chemotherapeutic agents and physical therapies. This review summarizes the advance of LND in combination with chemotherapy and physical therapy over the past several decades, as well as the promising LND derivative adjudin (ADD). The underlying sensitizing mechanisms were also analyzed and discussed, which may contribute to an improved therapeutic effect in future clinical cancer treatment. Abstract Lonidamine (LND) has the ability to resist spermatogenesis and was first used as an anti-spermatogenic agent. Later, it was found that LND has a degree of anticancer activity. Currently, LND is known to target energy metabolism, mainly involving the inhibition of monocarboxylate transporter (MCT), mitochondrial pyruvate carrier (MPC), respiratory chain complex I/II, mitochondrial permeability transition (PT) pore, and hexokinase II (HK-II). However, phase II clinical studies showed that LND alone had a weak therapeutic effect, and the effect was short and reversible. Interestingly, LND does not have the common side effects of traditional chemotherapeutic drugs, such as alopecia and myelosuppression. In addition, LND has selective activity toward various tumors, and its toxic and side effects do not overlap when combined with other chemotherapeutic drugs. Therefore, LND is commonly used as a chemosensitizer to enhance the antitumor effects of chemotherapeutic drugs based on its disruption of energy metabolism relating to chemo- or radioresistance. In this review, we summarized the combination treatments of LND with several typical chemotherapeutic drugs and several common physical therapies, such as radiotherapy (RT), hyperthermia (HT), and photodynamic therapy (PDT), and discussed the underlying mechanisms of action. Meanwhile, the development of novel formulations of LND in recent years and the research progress of LND derivative adjudin (ADD) as an anticancer drug were also discussed.
Collapse
|
20
|
Gan J, Li S, Meng Y, Liao Y, Jiang M, Qi L, Li Y, Bai Y. The influence of photodynamic therapy on the Warburg effect in esophageal cancer cells. Lasers Med Sci 2020; 35:1741-1750. [PMID: 32034563 DOI: 10.1007/s10103-020-02966-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
To investigate whether the Warburg effect is a key modulator on the resistance mechanism of photodynamic therapy (PDT). Glycolysis was examined by the test of lactate product and glucose uptake at different post-PDT time points. Cell viability was detected by the CCK-8 assay and cell proliferation was detected by colony formation assay. The expression of glycolysis and related proteins were examined by western blotting. Target gene was silenced by RNAi. In the present study, we assessed the effect of PDT on cancer cell glycolysis. Our team has demonstrated that pyruvate kinase M2 (PKM2), a key speed-limiting enzyme of glycolysis, was significantly overexpressed in patients with esophageal cancer. Our results in the present study showed that PKM2 was downregulated, and lactate product and glucose uptake were inhibited in cells exposed to 5-aminolevulinic acid (5-ALA)-mediated PDT at 4 h after treatment. However, at 24 h after PDT, we observed a substantial increase in PKM2 expression, lactate product, and glucose uptake. Moreover, silencing of PKM2 gene abrogated the upregulatory effect of PDT on glycolysis at late post-PDT period. 2-Deoxy-D-glucose (2-DG) is a recognized chemical inhibitor of glycolysis. The combined treatment of 2-DG and PDT significantly inhibited tumor growth in vitro at 24 h. These results demonstrate that PDT drives the Warburg effect in a time-dependent manner, and PKM2 plays an important role in this progress, which indicated that PKM2 may be a potential molecular target to increase the sensitivity of esophageal cancer cells to PDT.
Collapse
Affiliation(s)
- Junqing Gan
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Shumin Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yu Meng
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yuanyu Liao
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Mingxia Jiang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Ling Qi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
21
|
Liu G, Luo Q, Li H, Liu Q, Ju Y, Song G. Increased Oxidative Phosphorylation Is Required for Stemness Maintenance in Liver Cancer Stem Cells from Hepatocellular Carcinoma Cell Line HCCLM3 Cells. Int J Mol Sci 2020; 21:ijms21155276. [PMID: 32722385 PMCID: PMC7432880 DOI: 10.3390/ijms21155276] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are considered to be the main cause of tumor recurrence, metastasis, and an unfavorable prognosis. Energy metabolism is closely associated with cell stemness. However, how the stemness of liver cancer stem cells (LCSCs) is regulated by metabolic/oxidative stress remains poorly understood. In this study, we compare the metabolic differences between LCSCs and the hepatocellular carcinoma cell line HCCLM3, and explore the relationship between metabolism and LCSC stemness. We found that LCSCs from the hepatocellular carcinoma cell HCCLM3 exhibited more robust glucose metabolism than HCCLM3, including glycolysis, oxidative phosphorylation (OXPHOS), and pyruvate produced by glycolysis entering mitochondria for OXPHOS. Moreover, 2-deoxy-D-glucose (2-DG) enhanced the LCSC stemness by upregulating OXPHOS. In contrast, Mdivi-1 reduced the levels of OXPHOS and weakened the stemness by inhibiting mitochondrial fission. Together, our findings clarify the relationship between energy metabolism and LCSC stemness and may provide theoretical guidance and potential therapeutic approaches for liver cancer.
Collapse
Affiliation(s)
- Ge Liu
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Qing Luo
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Hong Li
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Qiuping Liu
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan;
| | - Guanbin Song
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
- Correspondence: ; Tel.: +86-23-65102507
| |
Collapse
|
22
|
Cui X, Zhu J, Wu X, Yang S, Yao X, Zhu W, Xu P, Chen X. Hematoporphyrin monomethyl ether-mediated photodynamic therapy inhibits the growth of keloid graft by promoting fibroblast apoptosis and reducing vessel formation. Photochem Photobiol Sci 2020; 19:114-125. [PMID: 31934700 DOI: 10.1039/c9pp00311h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) has been shown to significantly inhibit fibroblast activity. However, the effect of PDT mediated by the photosensitizer hematoporphyrin monomethyl ether (HMME) on keloids is not known well. The aim of our study was to examine the efficacy of HMME-PDT in cellular and animal models of keloids. Keloid fibroblasts (KFbs) were isolated from human keloid specimens and the proliferation, invasion, and migration of KFbs after HMME-PDT treatment was examined in vitro. Apoptosis in cells was measured by flow cytometry. Cysteinyl aspartate specific proteinase 3 (Caspase3) expression was determined by immunofluorescence staining and western blot. HMME-PDT inhibited KFbs proliferation, invasion, migration, increased apoptosis rate and enhanced caspase3 and cleaved caspase3 expression. The keloid graft transplantation was performed by using nude mice. The growth of the graft was monitored every third day. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) mRNA expression were detected by quantitative real time PCR. It was observed that HMME-PDT attenuated graft growth and reduced vessel density in the keloid grafts. However, HMME-PDT did not alter IL-6 and TNF-α mRNA expression in the keloid grafts. Moreover, HMME-PDT suppressed transforming growth-β1 (TGF-β1) and small phenotype and Drosophila Mothers Against Decapentaplegic 3 (Smad3) expression in both KFbs and keloid grafts. Collectively, the evidence suggests that HMME-PDT inhibits the growth of the keloid graft by promoting the apoptosis of fibroblasts and reducing vessel formation of the keloid graft.
Collapse
Affiliation(s)
- Xiaomei Cui
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jing Zhu
- Department of Dermatology, Wuxi People's Hospital, Wuxi, 214000, China
| | - Xiaoyan Wu
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shengju Yang
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xiaodong Yao
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Wenyan Zhu
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Pan Xu
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xiaodong Chen
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
23
|
Lee N, Jang WJ, Seo JH, Lee S, Jeong CH. 2-Deoxy-d-Glucose-Induced Metabolic Alteration in Human Oral Squamous SCC15 Cells: Involvement of N-Glycosylation of Axl and Met. Metabolites 2019; 9:E188. [PMID: 31533338 PMCID: PMC6780519 DOI: 10.3390/metabo9090188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
One of the most prominent hallmarks of cancer cells is their dependency on the glycolytic pathway for energy production. As a potent inhibitor of glycolysis, 2-deoxy-d-glucose (2DG) has been proposed for cancer treatment and extensively investigated in clinical studies. Moreover, 2DG has been reported to interfere with other biological processes including glycosylation. To further understand the overall effect of and metabolic alteration by 2DG, we performed biochemical and metabolomics analyses on oral squamous cell carcinoma cell lines. In this study, we found that 2DG more effectively reduced glucose consumption and lactate level in SCC15 cells than in SCC4 cells, which are less dependent on glycolysis. Coincidentally, 2DG impaired N-linked glycosylation of the key oncogenic receptors Axl and Met in SCC15 cells, thereby reducing the cell viability and colony formation ability. The impaired processes of glycolysis and N-linked glycosylation were restored by exogenous addition of pyruvate and mannose, respectively. Additionally, our targeted metabolomics analysis revealed significant alterations in the metabolites, including amino acids, biogenic amines, glycerophospholipids, and sphingolipids, caused by the impairment of glycolysis and N-linked glycosylation. These observations suggest that alterations of these metabolites may be responsible for the phenotypic and metabolic changes in SCC15 cells induced by 2DG. Moreover, our data suggest that N-linked glycosylation of Axl and Met may contribute to the maintenance of cancer properties in SCC15 cells. Further studies are needed to elucidate the roles of these altered metabolites to provide novel therapeutic targets for treating human oral cancer.
Collapse
Affiliation(s)
- Naeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Korea.
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu 42601, Korea.
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Korea.
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea.
| |
Collapse
|
24
|
McNicholas K, MacGregor MN, Gleadle JM. In order for the light to shine so brightly, the darkness must be present-why do cancers fluoresce with 5-aminolaevulinic acid? Br J Cancer 2019; 121:631-639. [PMID: 31406300 PMCID: PMC6889380 DOI: 10.1038/s41416-019-0516-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Photodynamic diagnosis and therapy have emerged as a promising tool in oncology. Using the visible fluorescence from photosensitisers excited by light, clinicians can both identify and treat tumour cells in situ. Protoporphyrin IX, produced in the penultimate step of the haem synthesis pathway, is a naturally occurring photosensitiser that visibly fluoresces when exposed to light. This fluorescence is enhanced considerably by the exogenous administration of the substrate 5-aminolaevulinic acid (5-ALA). Significantly, 5-ALA-induced protoporphyrin IX accumulates preferentially in cancer cells, and this enhanced fluorescence has been harnessed for the detection and photodynamic treatment of brain, skin and bladder tumours. However, surprisingly little is known about the mechanistic basis for this phenomenon. This review focuses on alterations in the haem pathway in cancer and considers the unique features of the cancer environment, such as altered glucose metabolism, oncogenic mutations and hypoxia, and their potential effects on the protoporphyrin IX phenomenon. A better understanding of why cancer cells fluoresce with 5-ALA would improve its use in cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Kym McNicholas
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia. .,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Melanie N MacGregor
- Future Industries Institute, School of Engineering, University of South Australia, Adelaide, SA, 5095, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
25
|
Zhao H, Wu S, Li H, Duan Q, Zhang Z, Shen Q, Wang C, Yin T. ROS/KRAS/AMPK Signaling Contributes to Gemcitabine-Induced Stem-like Cell Properties in Pancreatic Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:299-312. [PMID: 31508487 PMCID: PMC6726755 DOI: 10.1016/j.omto.2019.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Poor prognosis in pancreatic cancer (PanCa) is partially due to chemoresistance to gemcitabine (GEM). Glucose metabolism has been revealed to contribute to the therapeutic resistance and pluripotent state of PanCa cells. However, few studies have focused on the effects of GEM on cancer cell metabolism, stemness of tumor cells, and molecular mechanisms that critically influence PanCa treatment. We demonstrate that GEM treatment induces metabolic reprogramming, reducing mitochondrial oxidation and upregulating aerobic glycolysis, and promotes stem-like behaviors in cancer cells. Inhibiting aerobic glycolysis suppresses cancer cell stemness and strengthens GEM's cytotoxicity. GEM-induced metabolic reprogramming is KRAS dependent, as knockdown of KRAS reverses the metabolic shift. GEM-induced metabolic reprogramming also activates AMP-activated protein kinase (AMPK), which promotes glycolytic flux and cancer stemness. In addition, GEM-induced reactive oxygen species (ROS) activate the KRAS/AMPK pathway. This effect was validated by introducing exogenous hydrogen peroxide (H2O2). Taken together, these findings reveal a counterproductive GEM effect during PanCa treatment. Regulating cellular redox, targeting KRAS/AMPK signaling, or reversing metabolic reprogramming might be effective approaches to eliminate cancer stem cells (CSCs) and enhance chemosensitivity to GEM to improve the prognosis of PanCa patients.
Collapse
Affiliation(s)
- Hengqiang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shihong Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Hehe Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Qingke Duan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Zhengle Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| |
Collapse
|
26
|
Maitra D, Bragazzi Cunha J, Elenbaas JS, Bonkovsky HL, Shavit JA, Omary MB. Porphyrin-Induced Protein Oxidation and Aggregation as a Mechanism of Porphyria-Associated Cell Injury. Cell Mol Gastroenterol Hepatol 2019; 8:535-548. [PMID: 31233899 PMCID: PMC6820234 DOI: 10.1016/j.jcmgh.2019.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Genetic porphyrias comprise eight diseases caused by defects in the heme biosynthetic pathway that lead to accumulation of heme precursors. Consequences of porphyria include photosensitivity, liver damage and increased risk of hepatocellular carcinoma, and neurovisceral involvement, including seizures. Fluorescent porphyrins that include protoporphyrin-IX, uroporphyrin and coproporphyrin, are photo-reactive; they absorb light energy and are excited to high-energy singlet and triplet states. Decay of the porphyrin excited to ground state releases energy and generates singlet oxygen. Porphyrin-induced oxidative stress is thought to be the major mechanism of porphyrin-mediated tissue damage. Although this explains the acute photosensitivity in most porphyrias, light-induced porphyrin-mediated oxidative stress does not account for the effect of porphyrins on internal organs. Recent findings demonstrate the unique role of fluorescent porphyrins in causing subcellular compartment-selective protein aggregation. Porphyrin-mediated protein aggregation associates with nuclear deformation, cytoplasmic vacuole formation and endoplasmic reticulum dilation. Porphyrin-triggered proteotoxicity is compounded by inhibition of the proteasome due to aggregation of some of its subunits. The ensuing disruption in proteostasis also manifests in cell cycle arrest coupled with aggregation of cell proliferation-related proteins, including PCNA, cdk4 and cyclin B1. Porphyrins bind to native proteins and, in presence of light and oxygen, oxidize several amino acids, particularly methionine. Noncovalent interaction of oxidized proteins with porphyrins leads to formation of protein aggregates. In internal organs, particularly the liver, light-independent porphyrin-mediated protein aggregation occurs after secondary triggers of oxidative stress. Thus, porphyrin-induced protein aggregation provides a novel mechanism for external and internal tissue damage in porphyrias that involve fluorescent porphyrin accumulation.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jared S Elenbaas
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, Missouri
| | - Herbert L Bonkovsky
- Gastroenterology & Hepatology, and Molecular Medicine & Translational Science, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, North Carolina
| | - Jordan A Shavit
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Cell Biology, Faculty of Science and Technology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
27
|
Zhao B, Zhao P, Jin Z, Fan M, Meng J, He Q. Programmed ROS/CO-releasing nanomedicine for synergetic chemodynamic-gas therapy of cancer. J Nanobiotechnology 2019; 17:75. [PMID: 31196217 PMCID: PMC6567615 DOI: 10.1186/s12951-019-0507-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND To improve the outcome of cancer treatment, the combination of multiple therapy models has proved to be effective and promising. Gas therapy (GT) and chemodynamic therapy (CDT), mainly targeting the mitochondrion and nucleus, respectively, are two emerging strategy for anti-cancer. The development of novel nanomedicine for integrating these new therapy models is greatly significant and highly desired. METHODS A new nanomedicine is programmed by successive encapsulation of MnO2 nanoparticles and iron carbonyl (FeCO) into mesoporous silica nanoparticle. By decoding the nanomedicine, acidity in the lysosome drives MnO2 to generate ROS, ·OH among which further triggers the decomposition of FeCO into CO, realizing the effective combination of chemodynamic therapy with gas therapy for the first time. RESULTS Acidity in the TEM drives MnO2 to generate ROS, ∙OH among which further triggers the decomposition of FeCO into CO, realizing the effective combination of CDT and CDGT. The co-released ROS and CO do damage to DNA and mitochondria of various cancer cells, respectively. The mitochondrial damage can effectively cut off the ATP source required for DNA repair, causing a synergetic anti-cancer effect in vitro and in vivo. CONCLUSIONS The combination of CDT and CDGT causing a synergetic anti-cancer effect in vitro and in vivo. The proposed therapy concept and nanomedicine designing strategy might open a new window for engineering high-performance anti-cancer nanomedicine.
Collapse
Affiliation(s)
- Bin Zhao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, Guangdong, China
| | - Penghe Zhao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, Guangdong, China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, Guangdong, China
| | - Mingjian Fan
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, Guangdong, China
| | - Jin Meng
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, Guangdong, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
28
|
Alkarakooly Z, Al-Anbaky QA, Kannan K, Ali N. Metabolic reprogramming by Dichloroacetic acid potentiates photodynamic therapy of human breast adenocarcinoma MCF-7 cells. PLoS One 2018; 13:e0206182. [PMID: 30352078 PMCID: PMC6198976 DOI: 10.1371/journal.pone.0206182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/07/2018] [Indexed: 01/07/2023] Open
Abstract
Aberrant glycolytic metabolism is one of the hallmarks of carcinogenesis and therefore reversal of metabolic transformation is a promising drug target in cancer treatment strategies. Dichloroacetic acid (DCA) is known to target the glycolytic pathway in cancer cells and facilitates reversal of metabolic transformation from aerobic cytosolic accumulation of pyruvic acid, "the Warburg effect", to mitochondrial oxidative phosphorylation. Recently, combination therapy particularly involving photodynamic therapy (PDT) has received considerable attention in oncology. We hypothesized that if DCA and PDT are combined, they might potentiate mitochondrial dysfunction and induce apoptosis by a reactive oxygen species (ROS) dependent pathway. We used MCF-7 cells as our in vitro model and 5-aminolevulinic acid (5-ALA) dependent PDT therapy to test our hypothesis. We found that combinatorial treatment of MCF-7 cells with PDT and DCA not only increased cell growth inhibition, but also affected mitochondrial membrane integrity perhaps via production of ROS, and enhanced apoptosis. Further, our results on ATP release during the combined treatment demonstrate that immunogenic cell death (ICD) is likely to be a potential mechanism by which PDT and DCA induce cancer cell death. Taken together, our study suggests a novel way of sensitizing MCF-7 cells for accelerated induction of apoptosis and ICD in these cells. The findings included in this study might have direct relevance in breast cancer treatment strategies.
Collapse
Affiliation(s)
- Zeiyad Alkarakooly
- Department of Biology, College of Science, University of Diyala, Diyala, Iraq
- Department of Biology, College of Arts, Letters and Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Qudes A. Al-Anbaky
- Department of Biology, College of Science, University of Diyala, Diyala, Iraq
- Department of Biology, College of Arts, Letters and Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Krishnaswamy Kannan
- Department of Biology, College of Arts, Letters and Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Nawab Ali
- Department of Biology, College of Arts, Letters and Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| |
Collapse
|
29
|
Effect of Differences in Metabolic Activity of Melanoma Models on Response to Lonidamine plus Doxorubicin. Sci Rep 2018; 8:14654. [PMID: 30279592 PMCID: PMC6168452 DOI: 10.1038/s41598-018-33019-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022] Open
Abstract
Lonidamine (LND), a metabolic modulator, sensitizes DB-1 human melanoma to doxorubicin (DOX) chemotherapy by acidifying and de-energizing the tumor. This report compares the effects of LND on two human melanoma lines, DB-1 and WM983B, which exhibit different metabolic properties. Using liquid chromatography mass spectrometry and Seahorse analysis, we show that DB-1 was more glycolytic than WM983B in vitro. 31P magnetic resonance spectroscopy (MRS) indicates that LND (100 mg/kg, i.p.) induces similar selective acidification and de-energization of WM983B xenografts in immunosuppressed mice. Over three hours, intracellular pH (pHi) of WM983B decreased from 6.91 ± 0.03 to 6.59 ± 0.10 (p = 0.03), whereas extracellular pH (pHe) of this tumor changed from 7.03 ± 0.05 to 6.89 ± 0.06 (p = 0.19). A decline in bioenergetics (β-NTP/Pi) of 55 ± 5.0% (p = 0.03) accompanied the decline in pHi of WM983B. Using 1H MRS with a selective multiquantum pulse sequence and Hadamard localization, we show that LND induced a significant increase in tumor lactate levels (p < 0.01). LND pre-treatment followed by DOX (10 mg/kg, i.v.) produced a growth delay of 13.7 days in WM983B (p < 0.01 versus control), a growth delay significantly smaller than the 25.4 days that occurred with DB-1 (p = 0.03 versus WM983B). Differences in relative levels of glycolysis may produce differential therapeutic responses of DB-1 and WM983B melanomas.
Collapse
|
30
|
Feng X, Shi Y, Xie L, Zhang K, Wang X, Liu Q, Wang P. 2‐deoxy‐D‐glucose augments photodynamic therapy induced mitochondrial caspase‐independent apoptosis and energy‐mediated autophagy. Lasers Surg Med 2018; 51:352-362. [DOI: 10.1002/lsm.23020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Yin Shi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Lifen Xie
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| |
Collapse
|
31
|
Xie L, Feng X, Shi Y, He M, Wang P, Wang X, Mi Z, Liu Q, Zhang K. Blocking the Glycolytic Pathway Sensitizes Breast Cancer to Sonodynamic Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1233-1243. [PMID: 29555321 DOI: 10.1016/j.ultrasmedbio.2018.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/03/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Inhibition of the increased aerobic glycolysis in cancer cells is a promising methodology for various malignant tumor therapies but is limited by systemic toxicity, at least in part. Recent studies suggest that dual restriction of glycolysis and mitochondrial function may overcome this issue. Sonodynamic therapy (SDT), a prospective therapeutic modality for cancers, has been reported to induce mitochondria-dependent cell damage. Here, we investigated the combined effect of SDT and 2-deoxyglucose (2DG), an anti-glycolytic agent, on breast cancer both in vitro and in vivo. In vitro, we found that, compared with a single treatment, SDT + 2DG co-treatment significantly decreased cell viability and increased cell apoptosis. Moreover, the generation of reactive oxygen species was enhanced and mitochondrial membrane potential (MMP) was reduced after SDT + 2DG co-treatment. Furthermore, the oxidative phosphorylation was also restrained after SDT + 2DG co-treatment, further to cause the blockage of ATP provision. In vivo, SDT + 2DG markedly reduced tumor volume and weight, consistent with the in vitro findings. Furthermore, toxicology tests concurrently indicated that the dosages of sinoporphyrin sodium and 2DG were comparatively tolerable. Generally, these results indicated that SDT + 2DG combination therapy may be an available, promising therapy for highly metastatic breast cancer.
Collapse
Affiliation(s)
- Lifen Xie
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yin Shi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zeyuan Mi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
32
|
Dobson J, de Queiroz GF, Golding JP. Photodynamic therapy and diagnosis: Principles and comparative aspects. Vet J 2018; 233:8-18. [DOI: 10.1016/j.tvjl.2017.11.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/22/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
|
33
|
Xie R, Xu T, Zhu J, Wei X, Zhu W, Li L, Wang Y, Han Y, Zhou J, Bai Y. The Combination of Glycolytic Inhibitor 2-Deoxyglucose and Microbubbles Increases the Effect of 5-Aminolevulinic Acid-Sonodynamic Therapy in Liver Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2640-2650. [PMID: 28843620 DOI: 10.1016/j.ultrasmedbio.2017.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Sonodynamic therapy (SDT) overcomes the shortcoming of photodynamic therapy in the treatment of cancer. Previous studies indicated that the glycolysis inhibitor 2-deoxyglucose (2-DG) potentiated photodynamic therapy induced tumor cell death and microbubbles (MBs) improved the SDT performance. We hypothesized that the combination of 2-DG and MBs will increase the effect of 5-aminolevulinic acid (ALA)-SDT in HepG2 liver cancer cells. When cells were treated with 5-min ALA-SDT and 2-mmol/L 2-DG, the cell survival rate decreased to 73.0 ± 7.1% and 75.2 ± 7.9%, respectively. Furthermore, 2 mmol/L 2-DG increased 5-min ALA-SDT induced growth inhibition and augmented ALA-SDT induced cell apoptotic rate from 9.8 ± 0.7% to 17.4 ± 2.2%. In the combination group (2-DG and ALA-SDT group), HepG2 cells possessed typical apoptotic characters. 2-DG also increased ALA-SDT associated intracellular reactive oxygen species generation and loss of mitochondrial membrane potential. Moreover, SonoVue MBs had stimulatory function on cell viability inhibition, apoptosis, reactive oxygen species production and mitochondrial membrane potential loss for combination treatment. This study suggests a promising therapeutic strategy using a combination of 2-DG, MBs and ALA-SDT for treating liver cancer.
Collapse
Affiliation(s)
- Rui Xie
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tongying Xu
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiuxin Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiaoli Wei
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenting Zhu
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Longmin Li
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yufeng Wang
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Han
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianhua Zhou
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxian Bai
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
34
|
Bernier M, Catazaro J, Singh NS, Wnorowski A, Boguszewska-Czubara A, Jozwiak K, Powers R, Wainer IW. GPR55 receptor antagonist decreases glycolytic activity in PANC-1 pancreatic cancer cell line and tumor xenografts. Int J Cancer 2017; 141:2131-2142. [PMID: 28741686 DOI: 10.1002/ijc.30904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 01/09/2023]
Abstract
The Warburg effect is a predominant metabolic pathway in cancer cells characterized by enhanced glucose uptake and its conversion to l-lactate and is associated with upregulated expression of HIF-1α and activation of the EGFR-MEK-ERK, Wnt-β-catenin, and PI3K-AKT signaling pathways. (R,R')-4'-methoxy-1-naphthylfenoterol ((R,R')-MNF) significantly reduces proliferation, survival, and motility of PANC-1 pancreatic cancer cells through inhibition of the GPR55 receptor. We examined (R,R')-MNF's effect on glycolysis in PANC-1 cells and tumors. Global NMR metabolomics was used to elucidate differences in the metabolome between untreated and (R,R')-MNF-treated cells. LC/MS analysis was used to quantify intracellular concentrations of β-hydroxybutyrate, carnitine, and l-lactate. Changes in target protein expression were determined by Western blot analysis. Data was also obtained from mouse PANC-1 tumor xenografts after administration of (R,R')-MNF. Metabolomics data indicate that (R,R')-MNF altered fatty acid metabolism, energy metabolism, and amino acid metabolism and increased intracellular concentrations of β-hydroxybutyrate and carnitine while reducing l-lactate content. The cellular content of phosphoinositide-dependent kinase-1 and hexokinase 2 was reduced consistent with diminished PI3K-AKT signaling and glucose metabolism. The presence of the GLUT8 transporter was established and found to be attenuated by (R,R')-MNF. Mice treated with (R,R')-MNF had significant accumulation of l-lactate in tumor tissue relative to vehicle-treated mice, together with reduced levels of the selective l-lactate transporter MCT4. Lower intratumoral levels of EGFR, pyruvate kinase M2, β-catenin, hexokinase 2, and p-glycoprotein were also observed. The data suggest that (R,R')-MNF reduces glycolysis in PANC-1 cells and tumors through reduced expression and function at multiple controlling sites in the glycolytic pathway.
Collapse
Affiliation(s)
- Michel Bernier
- Translational Gerontology Branch, Intramural Research Program of the National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224
| | - Jonathan Catazaro
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304
| | - Nagendra S Singh
- Laboratory of Clinical Investigation, Intramural Research Program of the National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Lublin, 20-093, Poland
| | | | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, Lublin, 20-093, Poland
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304
| | - Irving W Wainer
- Laboratory of Clinical Investigation, Intramural Research Program of the National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224.,Mitchell Woods Pharmaceuticals, Shelton, CT, 06484
| |
Collapse
|
35
|
Golding JP, Kemp-Symonds JG, Dobson JM. Glycolysis inhibition improves photodynamic therapy response rates for equine sarcoids. Vet Comp Oncol 2017; 15:1543-1552. [PMID: 28127949 DOI: 10.1111/vco.12299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 11/20/2016] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) holds great promise in treating veterinary and human dermatological neoplasms, including equine sarcoids, but is currently hindered by the amount of photosensitiser and light that can be delivered to lesions thicker than around 2 mm, and by the intrinsic antioxidant defences of tumour cells. We have developed a new PDT technique that combines an efficient transdermal penetration enhancer solution, for topical delivery of 5-aminolevulinic acid (ALA) photosensitiser, with acute topical post-PDT application of the glycolysis inhibitor lonidamine. We show that the new PDT combination treatment selectively kills sarcoid cells in vitro, with repeated rounds of treatment increasing sarcoid sensitisation to PDT. In vivo, ALA PDT followed by 600 μM lonidamine substantially improves treatment outcomes for occult, verrucous, nodular and fibroblastic sarcoids after 1 month (93% treatment response in 27 sarcoids), compared with PDT using only ALA (14% treatment response in 7 sarcoids).
Collapse
Affiliation(s)
- J P Golding
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - J G Kemp-Symonds
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
| | - J M Dobson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Targeting hexokinase II as a possible therapy for cholangiocarcinoma. Biochem Biophys Res Commun 2017; 484:409-415. [PMID: 28131825 DOI: 10.1016/j.bbrc.2017.01.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/14/2023]
Abstract
Overexpression of hexokinase 2 (HKII) has been demonstrated in various cancers. A number of in vitro and in vivo studies in several cancers show the significance of HKII in many cellular processes including proliferation, metastasis and apoptosis. However, the role of HKII in Opisthorchis viverrini (Ov) associated cholangiocarcinoma (CCA) is still unknown. In the present study, the expression and roles of HKII were determined in Ov associated CCA. The expression of HKII was investigated in 82 patients with histologically proven CCAs by immunohistochemistry. HKII was distinctively expressed in CCA tissues. It was rarely expressed in normal bile duct epithelium, but was expressed in hyperplastic/dysplastic and in 82% of CCA bile ducts. The observation was confirmed in the Ov associated hamster model. Suppression of HKII expression using siRNA significantly decreased cell proliferation, migration and invasion of CCA cell lines. Similar results were obtained using lonidamine (LND), an inhibitor of HK. LND significantly inhibited growth of 4 CCA cell lines tested in dose and time dependent fashion. Comparison the cytotoxic effects of LND and siRNA-HKII suggests the off target of LND above 100 μM. In addition, LND in non-cytotoxic doses could suppress migration and invasion of CCA cells. These results indicate the association of HKII in cholangiocarcinogenesis and progression and suggest the possibility of HKII as a therapeutic target for CCA.
Collapse
|
37
|
Nath K, Guo L, Nancolas B, Nelson DS, Shestov AA, Lee SC, Roman J, Zhou R, Leeper DB, Halestrap AP, Blair IA, Glickson JD. Mechanism of antineoplastic activity of lonidamine. Biochim Biophys Acta Rev Cancer 2016; 1866:151-162. [PMID: 27497601 DOI: 10.1016/j.bbcan.2016.08.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/19/2022]
Abstract
Lonidamine (LND) was initially introduced as an antispermatogenic agent. It was later found to have anticancer activity sensitizing tumors to chemo-, radio-, and photodynamic-therapy and hyperthermia. Although the mechanism of action remained unclear, LND treatment has been known to target metabolic pathways in cancer cells. It has been reported to alter the bioenergetics of tumor cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggested that it also inhibited l-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Recent studies have demonstrated that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5μM) and cooperatively inhibits l-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill coefficient values of 36-40μM and 1.65-1.85, respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~7μM) than other substrates including glutamate (IC50~20μM). LND inhibits the succinate-ubiquinone reductase activity of respiratory Complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through Complex II and has been reported to promote cell death by suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated l-lactic acid efflux, Complex II and glutamine/glutamate oxidation.
Collapse
Affiliation(s)
- Kavindra Nath
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lili Guo
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bethany Nancolas
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - David S Nelson
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander A Shestov
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Seung-Cheol Lee
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeffrey Roman
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rong Zhou
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dennis B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew P Halestrap
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jerry D Glickson
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Tran Q, Lee H, Park J, Kim SH, Park J. Targeting Cancer Metabolism - Revisiting the Warburg Effects. Toxicol Res 2016; 32:177-93. [PMID: 27437085 PMCID: PMC4946416 DOI: 10.5487/tr.2016.32.3.177] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/21/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022] Open
Abstract
After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism.
Collapse
Affiliation(s)
- Quangdon Tran
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyunji Lee
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jisoo Park
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jongsun Park
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
39
|
Nancolas B, Guo L, Zhou R, Nath K, Nelson DS, Leeper DB, Blair IA, Glickson JD, Halestrap AP. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochem J 2016; 473:929-36. [PMID: 26831515 PMCID: PMC4814305 DOI: 10.1042/bj20151120] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 12/25/2022]
Abstract
Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitizing tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, whereas indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). In the present study, we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki2.5 μM) and co-operatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevisoocytes with K0.5 and Hill coefficient values of 36-40 μM and 1.65-1.85 respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~ 7 μM) than other substrates including glutamate (IC50~ 20 μM). In isolated DB-1 melanoma cells 1-10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output whereas increasing intracellular [L-lactate] > 5-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND onL-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate (CHC).
Collapse
Affiliation(s)
- Bethany Nancolas
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, U.K
| | - Lili Guo
- Penn Superfund Research and Training Program Center, Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Rong Zhou
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania School of Medicine, B6 Blockley Hall, Philadelphia, PA 19104, U.S.A
| | - Kavindra Nath
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania School of Medicine, B6 Blockley Hall, Philadelphia, PA 19104, U.S.A
| | - David S Nelson
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania School of Medicine, B6 Blockley Hall, Philadelphia, PA 19104, U.S.A
| | - Dennis B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, U.S.A
| | - Ian A Blair
- Penn Superfund Research and Training Program Center, Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Jerry D Glickson
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania School of Medicine, B6 Blockley Hall, Philadelphia, PA 19104, U.S.A
| | - Andrew P Halestrap
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, U.K.
| |
Collapse
|
40
|
Kwiatkowska E, Wojtala M, Gajewska A, Soszyński M, Bartosz G, Sadowska-Bartosz I. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. J Bioenerg Biomembr 2015; 48:23-32. [PMID: 26715289 DOI: 10.1007/s10863-015-9637-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/17/2015] [Indexed: 01/12/2023]
Abstract
Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.
Collapse
Affiliation(s)
- Ewa Kwiatkowska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Martyna Wojtala
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Agnieszka Gajewska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Mirosław Soszyński
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza 4, 35-601, Rzeszów, Poland
| | - Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza 4, 35-601, Rzeszów, Poland.
| |
Collapse
|
41
|
Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration. J Bioenerg Biomembr 2015; 47:189-97. [PMID: 25631472 DOI: 10.1007/s10863-015-9604-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/19/2015] [Indexed: 01/06/2023]
Abstract
Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.
Collapse
|
42
|
Muley P, Olinger A, Tummala H. 2-Deoxyglucose induces cell cycle arrest and apoptosisin colorectal cancer cells independent of its glycolysis inhibition. Nutr Cancer 2015; 67:514-22. [PMID: 25751508 DOI: 10.1080/01635581.2015.1002626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
2-Deoxyglucose (2DG) is an anticancer drug with excellent safety profile. Because of its higher dose requirements, its potential is yet to translate into a monotherapy. However, recently, 2DG has been tested as an adjunct in established chemotherapeutic regimens. 2DG enhanced the potency of several chemotherapeutic agents but not all. The rationale selection of known chemotherapeutic agents to use with 2DG is hampered because of the lack of complete understanding of mechanism behind 2DG anticancer effects. Although, 2DG is a well-known glycolytic inhibitor, which inhibits the key glycolytic enzyme hexokinase, its anticancer effects cannot be fully explained by this simplistic mechanism alone. In this article, we have shown for the first time that 2DG induced a transient expression of p21 and a continuous expression of p53 in colorectal cancer cells (SW620). The treatment also caused cell cycle arrest at G0/G1 phase and induced apoptosis through the mitochondrial pathway. The effects of 2DG on p21 and p53 protein levels were totally independent of its inhibitory effect on either hexokinase or ATP levels. Results from this study provides key insights into novel molecular mechanisms of 2DG and directs rational selection of other anticancer drugs to combine with 2DG in colorectal cancer treatment.
Collapse
Affiliation(s)
- Pratik Muley
- a Department of Pharmaceutical Sciences , South Dakota State University , Brookings , South Dakota , USA
| | | | | |
Collapse
|
43
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
44
|
Feng X, Zhang Y, Wang P, Liu Q, Wang X. Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death. Photochem Photobiol Sci 2014; 13:1793-803. [PMID: 25363473 DOI: 10.1039/c4pp00288a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Malignant cells are highly dependent on aerobic glycolysis, which differs significantly from normal cells (the Warburg effect). Interference of this metabolic process has been considered as an innovative method for developing selective cancer therapy. A recent study demonstrated that the glycolysis inhibitor 2-deoxyglucose (2-DG) can potentiate PDT efficacy, whereas the possible mechanisms have not been carefully investigated. This study firstly proved the general potentiation of PDT efficacy by 2-DG and 3-bromopyruvate (3-BP) in human breast cancer MDA-MB-231 cells, and carefully elucidated the underlying mechanism in the process. Our results showed that both 2-DG and 3-BP could significantly promote a PDT-induced cell cytotoxic effect when compared with either monotherapy. Synergistic potentiation of mitochondria- and caspase-dependent cell apoptosis was observed, including a mitochondrial membrane potential (MMP) drop, Bax translocation, and caspase-3 activation. Besides, ROS generation and the expression of oxidative stress related proteins such as P38 MAPK phosphorylation and JNK phosphorylation were notably increased after the combined treatments. Moreover, when pretreated with the ROS scavenger N-acetylcysteine (NAC), the ROS generation, the MMP drop, cell apoptosis and cytotoxicity were differently inhibited, suggesting that ROS was vertical in the pro-apoptotic process induced by 2-DG/3-BP combined with PDT treatment. These results indicate that the combination of glycolytic antagonists and PDT may be a promising therapeutic strategy to effectively kill cancer cells.
Collapse
Affiliation(s)
- Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | | | | | | | | |
Collapse
|
45
|
Zhang D, Li J, Wang F, Hu J, Wang S, Sun Y. 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett 2014; 355:176-83. [PMID: 25218591 DOI: 10.1016/j.canlet.2014.09.003] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/31/2014] [Accepted: 09/04/2014] [Indexed: 12/31/2022]
Abstract
Cancer cells are characterized by altered glucose metabolism known as the Warburg effect in which aerobic glycolysis is increased. Glucose is converted to lactate even under sufficient oxygen tension. Interfering with this process may be a potential effective strategy to cause cancer cell death because these cells rely heavily on glucose metabolism for survival and proliferation. 2-Deoxy-D-glucose (2DG), a glucose analog, targets glucose metabolism to deplete cancer cells of energy. In addition, 2DG increases oxidative stress, inhibits N-linked glycosylation, and induces autophagy. It can efficiently slow cell growth and potently facilitate apoptosis in specific cancer cells. Although 2DG itself has limited therapeutic effect in many types of cancers, it may be combined with other therapeutic agents or radiotherapy to exhibit a synergistic anticancer effect. In this review, we describe the Warburg effect and discuss 2DG and its underlying mechanisms and potential application for cancer treatment.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Juan Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Fengzhen Wang
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210029, Jiangsu, China
| | - Jun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Shuwei Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
46
|
Michalski R, Zielonka J, Gapys E, Marcinek A, Joseph J, Kalyanaraman B. Real-time measurements of amino acid and protein hydroperoxides using coumarin boronic acid. J Biol Chem 2014; 289:22536-53. [PMID: 24928516 DOI: 10.1074/jbc.m114.553727] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7-23 M(-1) s(-1)) were significantly higher than that measured for H2O2 (1.5 M(-1) s(-1)). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1-1.5 × 10(3) M(-1) s(-1). Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems.
Collapse
Affiliation(s)
- Radoslaw Michalski
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and the Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and the Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Ewa Gapys
- the Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- the Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Joy Joseph
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Balaraman Kalyanaraman
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
47
|
Zhou Z, Liu Y, Qin M, Sheng W, Wang X, Li Z, Zhong R. Depletion of PKM2 leads to impaired glycolysis and cell death in 2-demethoxy-2,3-ethylenediamino hypocrellin B-photoinduced A549 cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 134:1-8. [PMID: 24792468 DOI: 10.1016/j.jphotobiol.2014.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/20/2022]
Abstract
2-Demethoxy-2,3-ethylenediamino hypocrellin B (EDAHB) is an efficient photosensitizer that mediates cancer cell apoptosis. In order to better understand the molecular mechanisms involved in its antitumour activity, we used proteomics technology to identify candidate targets in A549 cells using EDAHB-mediated photodynamic therapy (EDAHB-PDT). The protein profile changes between untreated and PDT-treated A549 cells were analysed using two-dimensional polyacrylamide gel electrophoresis (2-DE). Differentially expressed protein spots were identified using matrix-assisted laser desorption-time-of-flight (MALDI-TOF) mass spectrometry; and 15 differentially expressed proteins (over 2-fold, p<0.05) were identified in PDT-treated A549 cells compared with untreated cells. Among them, the expression of pyruvate kinase M2 (PKM2), a key enzyme involved in glycolysis, was found to be significantly decreased in A549 cells following EDAHB-PDT. Transient ectopic over-expression of PKM2 attenuated death of EDAHB-PDT-treated A549 cells, whereas knockdown of PKM2 expression by RNA interference increased the photocytotoxicity of EDAHB. Moreover, a decrease in lactate production was detected in PDT-treated A549 cells. These observations suggest that PKM2 plays an important role in the antitumour action of EDAHB-PDT; thus, it may be a potential molecular target to increase the efficacy of PDT in cancer therapy.
Collapse
Affiliation(s)
- Zhixiang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yanghua Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Mengnan Qin
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Wang Sheng
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Zelin Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|