1
|
Belényesi SK, Patmore S, O'Driscoll L. Extracellular vesicles and the tumour microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189275. [PMID: 39900204 DOI: 10.1016/j.bbcan.2025.189275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/18/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Extracellular vesicles (EVs), tiny packages of information released by cells, are well established as being involved in unwanted cell-to-cell communication in cancer. EVs from cancer cells have been associated with the spread of drug resistance, immune suppression, and metastasis. Additional to cancer cells, the tumour microenvironment (TME) involves many cell types -including immune cells, fibroblasts, and endothelial cells, each of which has a potential role in how tumours grow, spread, and respond (or otherwise) to therapy. This review collates and distils research developments regarding the role of EVs in multi-way communication between cells in the TME. Further research including tailored clinical studies are now warranted to determine how best to prevent this extensive adverse communication occurring and/or how best to exploit it for biomarker discovery and as a therapeutic approach, in the interest of patients and also for economic benefit.
Collapse
Affiliation(s)
- Szilárd-Krisztián Belényesi
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Sean Patmore
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
2
|
Jia H, Chen X, Zhang L, Chen M. Cancer associated fibroblasts in cancer development and therapy. J Hematol Oncol 2025; 18:36. [PMID: 40156055 PMCID: PMC11954198 DOI: 10.1186/s13045-025-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key players in cancer development and therapy, and they exhibit multifaceted roles in the tumor microenvironment (TME). From their diverse cellular origins, CAFs undergo phenotypic and functional transformation upon interacting with tumor cells and their presence can adversely influence treatment outcomes and the severity of the cancer. Emerging evidence from single-cell RNA sequencing (scRNA-seq) studies have highlighted the heterogeneity and plasticity of CAFs, with subtypes identifiable through distinct gene expression profiles and functional properties. CAFs influence cancer development through multiple mechanisms, including regulation of extracellular matrix (ECM) remodeling, direct promotion of tumor growth through provision of metabolic support, promoting epithelial-mesenchymal transition (EMT) to enhance cancer invasiveness and growth, as well as stimulating cancer stem cell properties within the tumor. Moreover, CAFs can induce an immunosuppressive TME and contribute to therapeutic resistance. In this review, we summarize the fundamental knowledge and recent advances regarding CAFs, focusing on their sophisticated roles in cancer development and potential as therapeutic targets. We discuss various strategies to target CAFs, including ECM modulation, direct elimination, interruption of CAF-TME crosstalk, and CAF normalization, as approaches to developing more effective treatments. An improved understanding of the complex interplay between CAFs and TME is crucial for developing new and effective targeted therapies for cancer.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingmin Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| | - Meihua Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Bayat M, Nahand JS. Battlegrounds of treatment resistance: decoding the tumor microenvironment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04055-5. [PMID: 40131387 DOI: 10.1007/s00210-025-04055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
The tumor microenvironment (TME) emerges as a formidable actor in the cancer treatment landscape, wielding the power to thwart therapeutic efficacy across various modalities, including chemotherapy, radiotherapy, immunotherapy, targeted therapy, and hormonal therapy. This intricate ecosystem comprising diverse cellular constituents, signaling molecules, and the extracellular matrix fosters a dynamic interplay that profoundly influences tumor behavior and treatment outcomes. This review explores the mechanisms through which the TME drives resistance to standard therapies, emphasizing key factors such as hypoxia, immune evasion, and metabolic reprogramming. Furthermore, we illuminate innovative strategies aimed at reprogramming this hostile environment, including the application of therapeutic vaccines, CAR T cell therapy, and combination immunotherapies designed to enhance anti-tumor responses. By advocating for multidimensional approaches that dismantle the TME's barriers to effective treatment, this review calls for a transformative shift in cancer treatment paradigms. By bridging the gap between the TME's complexities and targeted therapeutic strategies, we pave the way for targeted interventions that promise to enhance clinical outcomes and improve patient prognosis in the relentless battle against cancer.
Collapse
Affiliation(s)
- Mobina Bayat
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Zheng D, Qin L, Lv J, Che M, He B, Zheng Y, Lin S, Qi Y, Li M, Tang Z, Wang BC, Wu YL, Weinkove R, Carson G, Yao Y, Wong N, Lau J, Thiery JP, Qin D, Pan B, Xu K, Zhang Z, Li P. CD4 + anti-TGF-β CAR T cells and CD8 + conventional CAR T cells exhibit synergistic antitumor effects. Cell Rep Med 2025; 6:102020. [PMID: 40107245 DOI: 10.1016/j.xcrm.2025.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/02/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Transforming growth factor (TGF)-β1 restricts the expansion, survival, and function of CD4+ T cells. Here, we demonstrate that CD4+ but not CD8+ anti-TGF-β CAR T cells (T28zT2 T cells) can suppress tumor growth partly through secreting Granzyme B and interferon (IFN)-γ. TGF-β1-treated CD4+ T28zT2 T cells persist well in peripheral blood and tumors, maintain their mitochondrial form and function, and do not cause in vivo toxicity. They also improve the expansion and persistence of untransduced CD8+ T cells in vivo. Tumor-infiltrating CD4+ T28zT2 T cells are enriched with TCF-1+IL7R+ memory-like T cells, express NKG2D, and downregulate T cell exhaustion markers, including PD-1 and LAG3. Importantly, a combination of CD4+ T28zT2 T cells and CD8+ anti-glypican-3 (GPC3) or anti-mesothelin (MSLN) CAR T cells exhibits augmented antitumor effects in xenografts. These findings suggest that rewiring TGF-β signaling with T28zT2 in CD4+ T cells is a promising strategy for eradicating solid tumors.
Collapse
Affiliation(s)
- Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Meihui Che
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bingjia He
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongfang Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shouheng Lin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuekun Qi
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ming Li
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Georgia Carson
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nathalie Wong
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - James Lau
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Dajiang Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Pan
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
5
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
6
|
Zhang R, Jiang WJ, Zhao S, Kang LJ, Wang QS, Feng YM. FOXF2 expression triggered by endocrine therapy orchestrates therapeutic resistance through reorganization of chromatin architecture in breast cancer. Cancer Lett 2025; 612:217463. [PMID: 39828125 DOI: 10.1016/j.canlet.2025.217463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/27/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Patients with estrogen receptor-positive (ER+) breast cancer require long-term endocrine therapy. However, endocrine resistance remains a critical issue to be addressed. Herein, we show that ERα repressed FOXF2 transcription in ER+ breast cancer through facilitating H3K27me3 deposition around its genomic locus, therefore endocrine therapy triggered FOXF2 transcription via loss of H3K27me3. FOXF2 transactivation orchestrated endocrine resistance and bone metastasis. Mechanistically, FOXF2 acted as a pioneer factor to globally activate enhancers of genes involved in epithelial-mesenchymal transition/epithelial-osteogenic transition, as well as super-enhancers of NCOA3 (a coactivator of FOXF2) and SP1 (an upstream transactivator of FOXF2) by recruitingSMARCC1 that mediates the reorganization of chromatin architecture. Additionally, FOXF2 expression levels in the tumors of ER+ breast cancer predicted response to endocrine therapeutic drugs and the outcome of patients. Targeting BRD4, an essential transcriptional coactivator of FOXF2, significantly inhibited FOXF2-orchestrated endocrine resistance and bone metastasis. Our findings uncover a crucial mechanism underlying endocrine resistance and provide a promising strategy for managing endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin, 300060, China
| | - Wen-Jing Jiang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Shuai Zhao
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Li-Juan Kang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Qing-Shan Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin, 300060, China
| | - Yu-Mei Feng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
7
|
Shin SH, Lee YE, Yoon HN, Yuk CM, An JY, Seo M, Yoon S, Oh MS, Shin SC, Kim JH, Kim YJ, Kim JC, Kim SC, Jang M. An innovative strategy harnessing self-activating CAR-NK cells to mitigate TGF-β1-driven immune suppression. Biomaterials 2025; 314:122888. [PMID: 39423512 DOI: 10.1016/j.biomaterials.2024.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The dysfunction of natural killer (NK) cells, mediated by transforming growth factor β1 (TGFβ1) within the tumor microenvironment, impedes antitumor therapy and contributes to poor clinical outcomes. Our study introduces self-activating chimeric antigen receptor (CAR)-NK cells that block TGFβ1 signaling by releasing a specifically designed peptide, P6, which targets mesothelin in pancreatic tumors. P6 originates from the interaction sites between TGFβ1 and TGFβ receptor 1 and effectively disrupts TGFβ1's inhibitory signaling in NK cells. Our analysis demonstrates that P6 treatment interrupts the SMAD2/3 pathway in NK cells, mitigating TGFβ1-mediated suppression of NK cell activity, thereby enhancing their metabolic function and cytotoxic response against pancreatic tumors. These CAR-NK cells exhibit potent antitumor capabilities, as evidenced in spheroid cultures with cancer-associated fibroblasts and in vivo mouse models. Our approach marks a substantial advancement in overcoming TGFβ1-mediated immune evasion, offering a promising avenue for revolutionizing cancer immunotherapy.
Collapse
Affiliation(s)
- Seung Hun Shin
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Young Eun Lee
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Han-Na Yoon
- Rare & Pediatric Cancer Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Chae Min Yuk
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jun Yop An
- Corporate Research & Development Center, UCI Therapeutics, Seoul, Republic of Korea
| | - Minkoo Seo
- Corporate Research & Development Center, UCI Therapeutics, Seoul, Republic of Korea
| | - Sangwon Yoon
- Corporate Research & Development Center, UCI Therapeutics, Seoul, Republic of Korea
| | - Min-Suk Oh
- Corporate Research & Development Center, UCI Therapeutics, Seoul, Republic of Korea
| | - Sang Chul Shin
- Technological Convergence Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Wang Q, Li D, Ma H, Li Z, Wu J, Qiao J, Liu J, Zhao J, Ma R, Tian L, Zhang L, Yang J, Wang J, Qin S, Su Z. Tumor cell-derived EMP1 is essential for cancer-associated fibroblast infiltration in tumor microenvironment of triple-negative breast cancer. Cell Death Dis 2025; 16:143. [PMID: 40016223 PMCID: PMC11868485 DOI: 10.1038/s41419-025-07464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
The role of epithelial membrane protein 1 (EMP1) in tumor microenvironment (TME) remodeling has not yet been elucidated. In addition, the biological function of EMP1 in triple-negative breast cancer (TNBC) is largely unclear. In this study, we examined the infiltration landscape of cell types in the TME of breast cancer, and found that EMP1 expression was positively correlated with stromal and microenvironmental scores. Infiltration analysis and immunohistochemical (IHC) staining of serial sections confirmed the critical role of EMP1 in cancer-associated fibroblast (CAF) infiltration. Cell co-culture assays, xenograft tumor experiments, loss-of-function, gain-of-function, RNA sequencing studies, and rescue assays were performed to confirm the role of EMP1 in CAF infiltration in vitro and in vivo. These findings revealed that EMP1 depletion in TNBC cells resulted in considerable inhibition of CAF infiltration in vivo and in vitro. Mechanistically, EMP1 knockdown induced a substantial decrease in IL6 secretion from TNBC through the NF-κB signaling pathway, hindering CAF proliferation and subsequently inhibiting TNBC progression and metastasis. These cumulative results indicate that EMP1 functions as an oncogene in TNBC by mediating the cell communication of TNBC and CAFs. Targeted inhibition of EMP1 by suppressing CAF infiltration is a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dandan Li
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Shiyan Key Laboratory of Comprehensive Prevention and Treatment of Oral Cancer, Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haixiu Ma
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Zengyan Li
- Experimental Animal Center & Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wu
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Jinwan Qiao
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Jun Liu
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Jing Zhao
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Ronghua Ma
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Lin Tian
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Zhang
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jianye Yang
- Experimental Animal Center & Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jianing Wang
- Experimental Animal Center & Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Shanshan Qin
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Shiyan Key Laboratory of Comprehensive Prevention and Treatment of Oral Cancer, Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Zhanhai Su
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
9
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
10
|
Jiang WJ, Zhou TH, Huang HJ, Li LS, Tan H, Zhang R, Wang QS, Feng YM. Breast Cancer Subtype-Specific Organotropism Is Dictated by FOXF2-Regulated Metastatic Dormancy and Recovery. Cancer Res 2025; 85:644-659. [PMID: 39589789 DOI: 10.1158/0008-5472.can-24-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/18/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Breast cancer subtypes display different metastatic organotropism. Identification of the mechanisms underlying subtype-specific organotropism could help uncover potential approaches to prevent and treat metastasis. In this study, we found that forkhead box F2 (FOXF2) promoted the seeding and proliferative recovery from dormancy of luminal breast cancer (LumBC) and basal-like breast cancer (BLBC) cells in the bone by activating the NF-κB and BMP signaling pathways. FOXF2 promoted LumBC cell seeding but not proliferative recovery in the lung by activating the BMP signaling pathway. Conversely, FOXF2 suppressed the seeding and proliferative recovery of BLBC cells in the lung by repressing the TGFβ signaling pathway. FOXF2 directly upregulated RelA/p65 transcription and expression in LumBC and BLBC cells by binding to the RELA proximal promoter region and RelA/p65 bound to the FOXF2 proximal promoter region to upregulate expression, forming a positive feedback loop. Targeting the NF-κB pathway efficiently prevented the metastasis of FOXF2-overexpressing breast cancer cells to the bone, whereas inhibiting TGFβ signaling blocked the metastasis of BLBC with low FOXF2 expression to the lung. These findings uncover critical mechanisms of breast cancer subtype-specific organotropism and provide insights into precision assessment and treatment strategies. Significance: FOXF2 regulates signaling pathways in a subtype-specific manner to coordinate the fate of disseminated breast cancer cells in distant organs, suggesting that FOXF2 functions could be harnessed to prevent organ-specific metastasis. See related commentary by Bado, p. 639.
Collapse
Affiliation(s)
- Wen-Jing Jiang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Tian-Hao Zhou
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Huan-Jing Huang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Lin-Sen Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Hao Tan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Rui Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qing-Shan Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yu-Mei Feng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
11
|
Barbeau MC, Brown BA, Adair SJ, Bauer TW, Lazzara MJ. ERK plays a conserved dominant role in pancreas cancer cell EMT heterogeneity driven by diverse growth factors and chemotherapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637251. [PMID: 39975093 PMCID: PMC11839075 DOI: 10.1101/2025.02.08.637251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Epithelial-mesenchymal transition (EMT) occurs heterogeneously among malignant carcinoma cells to promote chemoresistance. Identifying the signaling pathways involved will nominate drug combinations to promote chemoresponse, but cell population-level studies are inherently fraught, and single-cell transcriptomics are limited to indirect ontology-based inferences. To understand EMT heterogeneity at a signaling protein level, we combined iterative indirect immunofluorescence imaging of pancreas cancer cells and tumors and mutual information (MI) modeling. Focusing first on MAP kinase pathways, MI predicted that cell-to-cell variation in ERK activity surprisingly dominated control of EMT heterogeneity in response to diverse growth factors and chemotherapeutics, but that JNK compensated when MEK was inhibited. Population-level models could not capture these experimentally validated MI predictions. The dominant role of ERK was predicted by MI even when analyzing seven potential EMT-regulating signaling nodes. More generally, this work provides an approach for studying highly multivariate signaling/phenotype relationships based on protein measurements in any setting.
Collapse
|
12
|
Morita S, Lei PJ, Shigeta K, Ando T, Kobayashi T, Kikuchi H, Matsui A, Huang P, Pittet MJ, Duda DG. Combination CXCR4 and PD-1 Blockade Enhances Intratumoral Dendritic Cell Activation and Immune Responses Against Hepatocellular Carcinoma. Cancer Immunol Res 2025; 13:162-170. [PMID: 39514263 PMCID: PMC11788650 DOI: 10.1158/2326-6066.cir-24-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Immune checkpoint inhibitors have revolutionized the treatment of unresectable hepatocellular carcinoma (HCC), but their impressive efficacy is seen in just a fraction of patients. One key mechanism of immunotherapy resistance is the paucity of dendritic cells (DC) in liver malignancies. In this study, we tested combination blockade of PD-1 and CXCR4, a receptor for CXCL12, a pleiotropic factor that mediates immunosuppression in tumors. Using orthotopic grafted and autochthonous HCC models with underlying liver damage, we evaluated treatment feasibility and efficacy. In addition, we examined the effects of treatment using immunofluorescence, flow cytometric analysis of DCs in vivo and in vitro, and RNA sequencing. The combination anti-CXCR4 and anti-PD-1 therapy was safe and significantly inhibited tumor growth and prolonged survival in all murine preclinical models of HCC tested. The combination treatment successfully reprogrammed antigen-presenting cells, revealing the potential role of conventional type 1 DCs (cDC1) in the HCC microenvironment. Moreover, DC reprogramming enhanced anticancer immunity by facilitating CD8+ T-cell accumulation and activation in the HCC tissue. The effectiveness of anti-CXCR4/PD-1 therapy was compromised entirely in Batf3 knockout mice deficient in cDC1s. Thus, combined CXCR4/PD-1 blockade can reprogram intratumoral cDC1s and holds the potential to potentiate antitumor immune response against HCC.
Collapse
Affiliation(s)
- Satoru Morita
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kohei Shigeta
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Ando
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Kobayashi
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hiroto Kikuchi
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Aya Matsui
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Kanazawa University Institute of Medical, Pharmaceutical and Health Sciences Faculty of Medicine, Kanazawa, Japan
| | - Peigen Huang
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mikael J. Pittet
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Dan G. Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Hong W, Tang H, Wang D, Qian D, Xu Y, Zheng Y, Li S, Zheng Q, Meng X, Liu X. Xihuang pill suppresses breast cancer malignancy by inhibiting TGF-β signaling and acquires chemotherapy benefits. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119000. [PMID: 39490714 DOI: 10.1016/j.jep.2024.119000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Breast cancer (BC) has an extremely high global incidence rate. The Xihuang pill (XHP), a traditional Chinese formula, originates from Hongxu Wang's "Life-Saving Manual of Diagnosis and Treatment of External Diseases" written during the Qing Dynasty. In this book, XHP, was first suggested as an anticancer treatment for BC. However, the regulatory mechanism of XHP on BC requires further investigated. AIM OF THE STUDY To assess the effects of XHP on BC and elucidate the underlying associated signaling network. MATERIALS AND METHODS The influence of XHP on cellular viability, proliferation, and apoptosis of MDA-MB-231 and BT-549 cells were examined. The ability to metastasize was evaluated using Transwell invasion and wound healing tests. Western blotting was used to examine the epithelial-mesenchymal transition (EMT) markers expression. RNA sequencing and bioinformatic analysis were utilized to investigate the regulation mechanism of XHP. A subcutaneous tumor model was developed to study the tumor-inhibitory effects of XHP or/and Doxorubicin (Dox) on BALB/c nude mice, and the EMT marker levels in tumor tissues were determined using immunohistochemical labeling. RESULTS XHP demonstrated anticancer effects on BC cells by suppressing cell proliferation, inducing cellular apoptosis, and inhibiting EMT progression. XHP may regulate the EMT via the TGF-β axis, as shown by RNA sequencing and Western blotting analysis. Furthermore, the combination of XHP and Dox had a stronger therapeutic effect on BC cell proliferation, apoptosis, and metastasis in both cellular and animal models. CONCLUSIONS We were the first to reveal that XHP abrogated EMT progression via modulating the TGF-β axis. Furthermore, the combination therapy of XHP and Dox presents a promising novel therapeutic candidate for BC patients.
Collapse
Affiliation(s)
- Weimin Hong
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Hongchao Tang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Danhong Wang
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China
| | - Yadan Xu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Yiwen Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Shujin Li
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Qinghui Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China.
| | - Xiaozhen Liu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
14
|
Hu J, Xue C, Chi KX, Wei J, Su Z, Chen Q, Ou Z, Chen S, Huang Z, Xu Y, Wei H, Liu Y, Shum PP, Chen GJ. Raman Spectral Feature Enhancement Framework for Complex Multiclassification Tasks. Anal Chem 2025; 97:130-139. [PMID: 39704531 DOI: 10.1021/acs.analchem.4c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Raman spectroscopy enables label-free clinical diagnosis in a single step. However, identifying an individual carrying a specific disease from people with a multi-disease background is challenging. To address this, we developed a Raman spectral implicit feature augmentation with a Raman Intersection, Union, and Subtraction augmentation strategy (RIUS). RIUS expands the data set without requiring additional labeled data by leveraging set operations at the feature level, significantly enhancing model performance across various applications. On a challenging 30-class bacterial classification task, RIUS demonstrated a substantial improvement, increasing the accuracy of ResNet by 2.1% and that of SE-ResNet by 1.4%, achieving accuracies of 85.7% and 87.1%, respectively, on the Bacteria-ID-4 Data set, where RIUS improved ResNet and SE-ResNet accuracies by 13.6% and 14.5%, respectively, with only ten samples per category. When the sample size was reduced, accuracy gains increased to 31.7% and 38.3%, demonstrating the method's robustness across different sample volumes. Compared to basic augmentation, our method exhibited superior performance across various sample volumes and demonstrated exceptional adaptability to different levels of complexity. RIUS exhibited superior performance, particularly in complex settings. Moreover, cluster analysis validated the effectiveness of the implicit feature augmentation module and the consistency between theoretical design and experimental results. We further validated our approach using clinical serum samples from 70 breast cancer patients and 70 controls, achieving an AUC of 0.94 and a sensitivity of 92.9%. Our approach enhances the potential for precisely identifying diseases in complex settings and offers plug-and-play enhancement for existing classification models.
Collapse
Affiliation(s)
- Jiaqi Hu
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenlong Xue
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ken Xiaokeng Chi
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350009, China
- Department of Nephrology, Chaozhou People's Hospital, Chaozhou 521011, China
| | - Junyu Wei
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhicheng Su
- Department of Nephrology, Chaozhou People's Hospital, Chaozhou 521011, China
- Medical College, Shantou University, Shantou 515000, China
| | - Qiuyue Chen
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China
- The Medical Laboratory, The People's Hospital of Baoan, Shenzhen 518000, China
| | - Ziyu Ou
- Department of Clinical Medicine, Medical College, Shantou University, Shantou 515041, China
- Transfusion Department, Shenzhen Second People's Hospital, Shenzhen 518000, China
| | - Shuxin Chen
- Department of Nephrology, Chaozhou People's Hospital, Chaozhou 521011, China
| | - Zhe Huang
- Department of Medical Laboratory, Chaozhou People's Hospital, Chaozhou 521011, China
| | - Yilin Xu
- The Clinical Medical College, Jining Medical University, Jining, Shandong 272067, China
| | - Haoyun Wei
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yanjun Liu
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Perry Ping Shum
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gina Jinna Chen
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
16
|
Seyfoori A, Liu K, Caruncho HJ, Walter PB, Akbari M. Tumoroid-On-a-Plate (ToP): Physiologically Relevant Cancer Model Generation and Therapeutic Screening. Adv Healthc Mater 2025; 14:e2402060. [PMID: 39538973 DOI: 10.1002/adhm.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Employing three-dimensional (3D) in vitro models, including tumor organoids and spheroids, stands pivotal in enhancing cancer therapy. These models bridge the gap between two-dimensional (2D) cell cultures and complex in vivo environments and offer versatile tools for comprehensive studies into cancer progression, drug responses, and tailored therapies. This study introduces the Tumoroid-on-a-Plate (ToP) device, an innovative ope-surface microfluidic platform designed to create predictive 3D models of solid tumors. The ToP device combines tumor mass, stromal cells, and extracellular matrix (ECM) components, to closely replicate the microenvironment of glioblastoma (GBM) and pancreatic adenocarcinoma (PDAC). Using the advanced ToP model and testing various GBM ECM compositions such as collagen and Rreelin within the model, we can assess how specific elements affect GBM invasiveness. The ToP in vitro model also enables screening chemotherapeutics such as temozolomide and iron-chelators in a single and binary treatment setting on the complex ECM-embedded tumoroids to evaluate their toxicity on GBM and PDAC models viability and apoptosis. Furthermore, co-culturing PDAC tumoroids with human-derived fibroblasts reveals the pro-invasive influence of stromal elements on tumor growth and drug response. This research underscores the value of advanced 3D models like ToP in advancing the understanding of cancer complexity and therapy responses.
Collapse
Affiliation(s)
- Amir Seyfoori
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Apricell Biotechnology Inc., Victoria, BC, V8P 1T5, Canada
| | - Kaiwen Liu
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Apricell Biotechnology Inc., Victoria, BC, V8P 1T5, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C4, Canada
| | - Patrick B Walter
- Department of Biology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
17
|
Tian H, Wang W, Liang S, Ding J, Hua D. From darkness to light: Targeting CAFs as a new potential strategy for cancer treatment. Int Immunopharmacol 2024; 143:113482. [PMID: 39476569 DOI: 10.1016/j.intimp.2024.113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Cancer-associated fibroblasts (CAFs), which are the most frequent stromal cells in the tumor microenvironment (TME), play a key role in the metastasis of tumor cells. Generally speaking, CAFs in cooperation with tumor cells can secrete various cytokines, proteins, growth factors, and metabolites to promote angiogenesis, mediate immune escape of tumor cells, enhance endothelial-to-mesenchymal transition, stimulate extracellular matrix remodeling, and preserve tumor cell stemness. These activities of CAFs provide a favorable exogenous pathway for tumor progression and metastasis, and a microenvironment that allows rapid growth of tumor cells, which always lead to poor prognosis for patients. More importantly, it seems that targeting CAFs is also a potential precision therapeutic strategy in clinical practice. Hence, this review outlines the origin of CAFs, the relationship between CAFs and cancer metastasis, and targeting CAFs as a potential strategy for cancer patients, which could give some inspirations for cancer treatment in clinic.
Collapse
Affiliation(s)
- Haixia Tian
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Weijing Wang
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shuai Liang
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Junli Ding
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Dong Hua
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
18
|
Raaijmakers KTPM, Adema GJ, Bussink J, Ansems M. Cancer-associated fibroblasts, tumor and radiotherapy: interactions in the tumor micro-environment. J Exp Clin Cancer Res 2024; 43:323. [PMID: 39696386 DOI: 10.1186/s13046-024-03251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) represent a group of genotypically non-malignant stromal cells in the tumor micro-environment (TME) of solid tumors that encompasses up to 80% of the tumor volume. Even though the phenotypic diversity and plasticity of CAFs complicates research, it is well-established that CAFs can affect many aspects of tumor progression, including growth, invasion and therapy resistance. Although anti-tumorigenic properties of CAFs have been reported, the majority of research demonstrates a pro-tumorigenic role for CAFs via (in)direct signaling to cancer cells, immunomodulation and extracellular matrix (ECM) remodeling. Following harsh therapeutic approaches such as radio- and/or chemotherapy, CAFs do not die but rather become senescent. Upon conversion towards senescence, many pro-tumorigenic characteristics of CAFs are preserved or even amplified. Senescent CAFs continue to promote tumor cell therapy resistance, modulate the ECM, stimulate epithelial-to-mesenchymal transition (EMT) and induce immunosuppression. Consequently, CAFs play a significant role in tumor cell survival, relapse and potentially malignant transformation of surviving cancer cells following therapy. Modulating CAF functioning in the TME therefore is a critical area of research. Proposed strategies to enhance therapeutic efficacy include reverting senescent CAFs towards a quiescent phenotype or selectively targeting (non-)senescent CAFs. In this review, we discuss CAF functioning in the TME before and during therapy, with a strong focus on radiotherapy. In the future, CAF functioning in the therapeutic TME should be taken into account when designing treatment plans and new therapeutic approaches.
Collapse
Affiliation(s)
- Kris T P M Raaijmakers
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Muhammad FA, Altalbawy FMA, Mandaliya V, Saraswat SK, Rekha MM, Aulakh D, Chahar M, Mahdi MS, Jaber MA, Alhadrawi M. Targeting breast tumor extracellular matrix and stroma utilizing nanoparticles. Clin Transl Oncol 2024:10.1007/s12094-024-03793-x. [PMID: 39692807 DOI: 10.1007/s12094-024-03793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
Breast cancer is a complicated malignancy and is known as the most common cancer in women. Considerable experiments have been devoted to explore the basic impacts of the tumor stroma, particularly the extracellular matrix (ECM) and stromal components, on tumor growth and resistance to treatment. ECM is made up of an intricate system of proteins, glycosaminoglycans, and proteoglycans, and maintains structural support and controls key signaling pathways involved in breast tumors. ECM can block different drugs such as chemotherapy and immunotherapy drugs from entering the tumor stroma. Furthermore, the stromal elements, such as cancer-associated fibroblasts (CAFs), immune cells, and blood vessels, have crucial impacts on tumor development and therapeutic resistance. Recently, promising outcomes have been achieved in using nanotechnology for delivering drugs to tumor stroma and crossing ECM in breast malignancies. Nanoparticles have various benefits for targeting the breast tumor stroma, such as improved permeability and retention, extended circulation time, and the ability to actively target the area. This review covers the latest developments in nanoparticle therapies that focus on breast tumor ECM and stroma. We will explore different approaches using nanoparticles to target the delivery of anticancer drugs like chemotherapy, small molecule drugs, various antitumor products, and other specific synthetic therapeutic agents to the breast tumor stroma. Furthermore, we will investigate the utilization of nanoparticles in altering the stromal elements, such as reprogramming CAFs and immune cells, and also remodeling ECM.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | - Viralkumar Mandaliya
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Damanjeet Aulakh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology Chitkara University, Rajpura, Punjab, 140401, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering and Technology, NIMS University Rajasthan, Jaipur, India
| | | | | | - Merwa Alhadrawi
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
20
|
Saadh MJ, Allela OQB, Kareem RA, Chandra M, Malathi H, Nathiya D, Kapila I, Sameer HN, Hamad AK, Athab ZH, Adil M. Exosomal signaling in gynecologic cancer development: The role of cancer-associated fibroblasts. Pathol Res Pract 2024; 266:155766. [PMID: 39689399 DOI: 10.1016/j.prp.2024.155766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Gynecologic cancer, a prevalent and debilitating disease affecting women worldwide, is characterized by the uncontrolled proliferation of cells in the reproductive organs. The complex etiology of gynecologic cancer encompasses multiple subtypes, including cervical, ovarian, uterine, vaginal, and vulvar cancers. Despite optimal treatment strategies, which typically involve cytoreductive surgery and platinum-based chemotherapy, gynecologic cancer frequently exhibits recalcitrant relapse and poor prognosis. Recent studies have underscored the significance of the tumor microenvironment in ovarian carcinogenesis, particularly with regards to the discovery of aberrant genomic, transcriptomic, and proteomic profiles. Within this context, cancer-associated fibroblasts (CAFs) emerge as a crucial component of the stromal cell population, playing a pivotal role in oncogenesis and cancer progression. CAF-derived exosomes, small extracellular vesicles capable of conveying biological information between cells, have been implicated in a range of tumor-related processes, including tumorigenesis, cell proliferation, metastasis, drug resistance, and immune responses. Furthermore, aberrant expression of CAF-derived exosomal noncoding RNAs and proteins has been found to strongly correlate with clinical and pathological characteristics of gynecologic cancer patients. Our review provides a novel perspective on the role of CAF-derived exosomes in gynecologic cancer, highlighting their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ish Kapila
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
21
|
Yuan J, Yang L, Zhang H, Beeraka NM, Zhang D, Wang Q, Wang M, Pr HV, Sethi G, Wang G. Decoding tumor microenvironment: EMT modulation in breast cancer metastasis and therapeutic resistance, and implications of novel immune checkpoint blockers. Biomed Pharmacother 2024; 181:117714. [PMID: 39615165 DOI: 10.1016/j.biopha.2024.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) play crucial roles in the initiation and progression of tumors. TME is composed of various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as non-cellular components like extracellular matrix (ECM) proteins and soluble factors. These elements interact with tumor cells through a complex network of signaling pathways involving cytokines, growth factors, metabolites, and non-coding RNA-carrying exosomes. Hypoxic conditions within the TME further modulate these interactions, collectively influencing tumor growth, metastatic potential, and response to therapy. EMT represents a dynamic and reversible process where epithelial cells undergo phenotypic changes to adopt mesenchymal characteristics in several cancers, including breast cancers. This transformation enhances cell motility and imparts stem cell-like properties, which are closely associated with increased metastatic capability and resistance to conventional cancer treatments. Thus, understanding the crosstalk between the TME and EMT is essential for unraveling the underlying mechanisms of breast cancer metastasis and therapeutic resistance. This review uniquely examines the intricate interplay between the tumor TME and epithelial-mesenchymal transition EMT in driving breast cancer metastasis and treatment resistance. It explores the therapeutic potential of targeting the TME-EMT axis, specifically through CD73-TGF-β dual-blockade, to improve outcomes in triple-negative breast cancer. Additionally, it underscores new strategies to enhance immune checkpoint blockade (ICB) responses by modulating EMT, thereby offering innovative insights for more effective cancer treatment.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India; Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Danfeng Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
22
|
Chen YI, Tien SC, Ko YL, Chang CC, Hsu MF, Chien HJ, Peng HY, Jeng YM, Tien YW, Chang YT, Chang MC, Hu CM. SEMA7A-mediated juxtacrine stimulation of IGFBP-3 upregulates IL-17RB at pancreatic cancer invasive front. Cancer Gene Ther 2024; 31:1840-1855. [PMID: 39448803 PMCID: PMC11645274 DOI: 10.1038/s41417-024-00849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Tumor invasion is the hallmark of tumor malignancy. The invasive infiltration pattern of tumor cells located at the leading edge is highly correlated with metastasis and unfavorable patient outcomes. However, the regulatory mechanisms governing tumor malignancy at the invasive margin remain unclear. The IL-17B/IL-17RB pathway is known to promote pancreatic cancer invasion and metastasis, yet the specific mechanisms underlying IL-17RB upregulation during invasion are poorly understood. In this study, we unveiled a multistep process for IL-17RB upregulation at the invasive margin, which occurs through direct communication between tumor cells and fibroblasts. Tumor ATP1A1 facilitates plasma membrane expression of SEMA7A, which binds to and induces IGFBP-3 secretion from fibroblasts. The resulting gradient of IGFBP-3 influences the direction and enhances IL-17RB expression to regulate SNAI2 in invasion. These findings highlight the importance of local tumor-fibroblast interactions in promoting cancer cell invasiveness, potentially leading to the development of new therapeutic strategies targeting this communication.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Min-Fen Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung Jen Chien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Peng
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Wen Tien
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Taiwan University Hospital Hsin-Chu Branch, Hsinchu County, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
23
|
Rab SO, Roopashree R, Altalbawy FMA, Kumar MR, Chahar M, Singh M, Kubaev A, Alamir HTA, Mohammed F, Kadhim AJ, Alhadrawi M. Phytochemicals and Their Nanoformulations for Targeting Hepatocellular Carcinoma: Exploring Potential and Targeting Strategies. Cell Biochem Funct 2024; 42:e70013. [PMID: 39521962 DOI: 10.1002/cbf.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) continues to pose a global health concern, necessitating the exploration of innovative therapeutic approaches. In the recent decade, targeting tumor stroma consisting of extracellular matrix (ECM), immune cells, vascular system, hypoxia, and also suppressive mechanisms in HCC has attracted interest in repressing tumor growth and metastasis. Phytochemicals have attained considerable attention because of their manifold biological effects and high capacity for anticancer activities. These chemical agents have shown the capability to modulate different cells and secretions within the stroma of malignancies. In recent years, the development of nanoformulations has further enhanced the therapeutic potential of phytochemicals by improving their solubility, bioavailability, and targeted delivery to tumor tissues. This review aims to provide an encyclopedic overview of the potential of phytochemicals and their nanoformulations as promising therapeutic strategies for targeting HCC. The review initially highlights the broad array of phytochemicals exhibiting potent anticancer properties, including flavonoids, alkaloids, terpenoids, and phenolic compounds, among others. Then, the nanoformulations and modification of these agents will be reviewed. Finally, we will review the latest experiments that have examined the modulation of HCC using adjuvant phytochemicals and their nanoformulations.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Amarah, Maysan, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
24
|
Lee SH, Lee D, Choi J, Oh HJ, Ham IH, Ryu D, Lee SY, Han DJ, Kim S, Moon Y, Song IH, Song KY, Lee H, Lee S, Hur H, Kim TM. Spatial dissection of tumour microenvironments in gastric cancers reveals the immunosuppressive crosstalk between CCL2+ fibroblasts and STAT3-activated macrophages. Gut 2024:gutjnl-2024-332901. [PMID: 39580151 DOI: 10.1136/gutjnl-2024-332901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND A spatially resolved, niche-level analysis of tumour microenvironments (TME) can provide insights into cellular interactions and their functional impacts in gastric cancers (GC). OBJECTIVE Our goal was to translate the spatial organisation of GC ecosystems into a functional landscape of cellular interactions involving malignant, stromal and immune cells. DESIGN We performed spatial transcriptomics on nine primary GC samples using the Visium platform to delineate the transcriptional landscape and dynamics of malignant, stromal and immune cells within the GC tissue architecture, highlighting cellular crosstalks and their functional consequences in the TME. RESULTS GC spatial transcriptomes with substantial cellular heterogeneity were delineated into six regional compartments. Specifically, the fibroblast-enriched TME upregulates epithelial-to-mesenchymal transformation and immunosuppressive response in malignant and TME cells, respectively. Cell type-specific transcriptional dynamics revealed that malignant and endothelial cells promote the cellular proliferations of TME cells, whereas the fibroblasts and immune cells are associated with procancer and anticancer immunity, respectively. Ligand-receptor analysis revealed that CCL2-expressing fibroblasts promote the tumour progression via JAK-STAT3 signalling and inflammatory response in tumour-infiltrated macrophages. CCL2+ fibroblasts and STAT3-activated macrophages are co-localised and their co-abundance was associated with unfavourable prognosis. We experimentally validated that CCL2+ fibroblasts recruit myeloid cells and stimulate STAT3 activation in recruited macrophages. The development of immunosuppressive TME by CCL2+ fibroblasts were also validated in syngeneic mouse models. CONCLUSION GC spatial transcriptomes revealed functional cellular crosstalk involving multiple cell types among which the interaction between CCL2+ fibroblasts and STAT3-activated macrophages plays roles in establishing immune-suppressive GC TME with potential clinical relevance.
Collapse
Affiliation(s)
- Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary's Hostpital, Collage of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Junyong Choi
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
- Cancer Biology Graduate Program, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Daeun Ryu
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Seo-Yeong Lee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Dong-Jin Han
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Sunmin Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Youngbeen Moon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - In-Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, The Republic of Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Hyeseong Lee
- Department of Hospital Pathology, Seoul St. Mary's Hostpital, Collage of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Seungho Lee
- Department of Surgery, Yonsei University, Seoul, The Republic of Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
- Cancer Biology Graduate Program, Ajou University School of Medicine, Suwon, The Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- CMC Institute for Basic Medical Science, the Catholic Medical Center of The Catholic University of Korea, Seoul, The Republic of Korea
| |
Collapse
|
25
|
Pang N, Yang Z, Zhang W, Du Y, Zhang L, Li X, Peng Y, Qi X. Cancer-associated fibroblasts barrier breaking via TGF-β blockade paved way for docetaxel micelles delivery to treat pancreatic cancer. Int J Pharm 2024; 665:124706. [PMID: 39277152 DOI: 10.1016/j.ijpharm.2024.124706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
TGF-β is a crucial regulator in tumor microenvironment (TME), especially for myofibroblastic cancer-associated fibroblasts (myCAFs). The myCAFs can be motivated by TGF-β signaling to erect pro-tumor TME, meanwhile, myCAFs overexpress TGF-β to mediate the crosstalk between tumor and stromal cells. The blockade of TGF-β can break cancer-associated fibroblasts barrier, consequently opening the access for drugs into tumor. The TGF-β is a promising target in anti-tumor therapy. Herein, we introduced a two-stage combination therapy (TC-Therapy), including TGF-β receptor I inhibitor SB525334 (SB) and cytotoxicity agent docetaxel micelle (DTX-M). We found that SB and DTX-M synergistically inhibited myCAFs proliferation and elevated p53 protein expression in BxPC-3/3T3 mixed cells. Gene and protein tests demonstrated that SB cut off TGF-β signaling via receptor blockade and it did not arouse TGF-β legend compensated internal autocrine. On the contrary, two agents combined decreased TGF-β secretion and inhibited myCAFs viability marked by α-SMA and FAPα. TC-Therapy was applied in BxPc-3/3T3 mixed tumor-bearing mice model. After TC-Therapy, the α-SMA+/ FAPα+ myCAFs faded increasingly and collagenous fibers mainly secreted by myCAFs decreased dramatically as well. More than that, the myCAFs barrier breaking helped to normalize micro-vessels and paved way for micelle penetration. The TGF-β protein level of TC-Therapy in TME was much lower than that of simplex DTX-M, which might account for TME restoration. In conclusion, TGF-β inhibitor acted as the pioneer before nano chemotherapeutic agents. The TC-Therapy of TGF-β signaling inhibition and anti-tumor agent DTX-M is a promising regimen without arising metastasis risk to treat pancreatic cancer. The therapeutic regimen focused on TGF-β related myCAFs reminds clinicians to have a comprehensive understanding of pancreatic cancer.
Collapse
Affiliation(s)
- Ning Pang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenjie Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yitian Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lu Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
26
|
Martínez-Espinosa I, Serrato JA, Cabello-Gutiérrez C, Carlos-Reyes Á, Ortiz-Quintero B. Mechanisms of microRNA Regulation of the Epithelial-Mesenchymal Transition (EMT) in Lung Cancer. Life (Basel) 2024; 14:1431. [PMID: 39598229 PMCID: PMC11595801 DOI: 10.3390/life14111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Lung cancer remains the cancer with the highest mortality worldwide, largely due to a limited understanding of the precise molecular mechanisms that drive its progression. microRNAs (miRNAs) have emerged as crucial regulators of lung cancer progression by influencing key cellular processes, notably the epithelial-mesenchymal transition (EMT). EMT is a complex and potentially reversible process where epithelial cells lose their polarity and adhesion, reorganize their cytoskeleton, and transition to a mesenchymal phenotype, enhancing their migratory and invasive capacities. While EMT plays an essential role in normal physiological contexts such as tissue development and wound healing, it is also a critical mechanism underlying the progression and metastasis of lung cancer. This review aims to summarize the latest research findings on the role of endogenous and exosome-derived microRNAs in regulating EMT in lung cancer, focusing on studies conducted over the past five years. It also provides an overview of EMT's essential molecular mechanisms to better understand how miRNAs regulate EMT in lung cancer.
Collapse
Affiliation(s)
- Israel Martínez-Espinosa
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - José A. Serrato
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Carlos Cabello-Gutiérrez
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángeles Carlos-Reyes
- Laboratory of Onco-Immunobiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
27
|
Li T, Xiong Y, Li J, Tang X, Zhong Y, Tang Z, Zhang Q, Luo Y. Mapping and Analysis of Protein and Gene Profile Identification of the Important Role of Transforming Growth Factor Beta in Synovial Invasion in Patients With Pigmented Villonodular Synovitis. Arthritis Rheumatol 2024; 76:1679-1695. [PMID: 38973550 DOI: 10.1002/art.42946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Pigmented villonodular synovitis (PVNS) is a rare benign proliferative disease affecting the soft-tissue lining the synovial joints and tendons. Its etiology is poorly understood, largely limiting the availability of current therapeutic options. Here, we mapped the synovial gene and protein profiles of patients with PVNS, revealed a link between synovial inflammation and invasion, and elucidated the potential molecular mechanism involved. METHODS The expression of synovial genes from 6 control individuals, 7 patients with osteoarthritis (OA), and 19 patients with PVNS was analyzed via RNA sequencing. Protein profiles from 5 control individuals, 10 patients with OA, and 32 patients with PVNS were analyzed using label-free proteomics. Microarray and reverse transcription-polymerase chain reaction analyses and immunohistochemical staining were used to evaluate inflammatory cytokine and target gene expression levels in synovial tissue, epithelial cells, and synovial fibroblasts (FLSs) derived from tissue of patients with PVNS. Various signaling pathway inhibitors, small interfering RNAs, and Western blots were used for molecular mechanism studies. Transwell migration and invasion assays were subsequently performed. RESULTS In total, 522 differentially expressed proteins were identified in the tissues of patients with PVNS. By integrating RNA sequencing and microarray analyses, significant changes in the expression of epithelial-mesenchymal transition (EMT)-related genes, including transforming growth factor TGF-b induced, neural cadherin, epithelial cadherin, SNAIL, and TWIST, were confirmed in the tissue of patients with PVNS compared to the control tissue. In vitro, TGFβ induced EMT and increased epithelial cell migration and invasion. Moreover, TGFβ not only promoted interactions between epithelial cells and FLSs but also directly increased the migration and invasion abilities of FLSs by activating the classical Smad2/3 and nonclassical JNK/AKT signaling pathways. CONCLUSION This study provides overall protein and gene profiles of PVNS and identifies the crucial role of TGFβ in synovial invasion pathology. Exploring the related molecular mechanism may also reveal a new strategy or target for PVNS therapy.
Collapse
Affiliation(s)
- Tao Li
- West China Hospital, Sichuan University, Chengdu, China
| | - Yan Xiong
- West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- West China Hospital, Sichuan University, Chengdu, China
| | - Xin Tang
- West China Hospital, Sichuan University, Chengdu, China
| | - Yutong Zhong
- West China Hospital, Sichuan University, Chengdu, China
| | - Zhigang Tang
- West China Hospital, Sichuan University, Chengdu, China
| | - Qiuping Zhang
- West China Hospital, Sichuan University, Chengdu, China
| | - Yubin Luo
- West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Chen E, Zeng Z, Zhou W. The key role of matrix stiffness in colorectal cancer immunotherapy: mechanisms and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189198. [PMID: 39413857 DOI: 10.1016/j.bbcan.2024.189198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Increased matrix stiffness within the colorectal cancer (CRC) tumor microenvironment (TME) has emerged as a pivotal determinant of immunotherapy outcomes. This review discusses the role of aberrant extracellular matrix (ECM) deposition and cross-linking in augmenting matrix stiffness, a phenomenon that not only scaffolds the tumor architecture but also contributes to tumorigenicity and immunologic evasion. Herein, we critically appraise the influence of matrix stiffness on the immunotherapeutic landscape of CRC, focusing on its capacity to impede therapeutic efficacy by modulating immune cell infiltration, activation, and functional performance. The review explores the molecular dynamics whereby matrix stiffness prompts tumor evolution, highlighting the integral role of integrin signaling, cancer-associated fibroblasts (CAFs), and the process of epithelial-mesenchymal transition (EMT). We bring to the fore the paradoxical impact of an indurated ECM on immune effector cells, chiefly T cells and macrophages, which are indispensable for immune surveillance and the execution of immunotherapeutic strategies, yet are markedly restrained by a fibrotic matrix. Furthermore, we examine how matrix stiffness modulates immune checkpoint molecule expression, thereby exacerbating the immunosuppressive milieu within the TME and attenuating immunotherapeutic potency. Emergent therapeutic regimens targeting matrix stiffness-including matrix modulators, inhibitors of mechanotransduction signaling pathways, and advanced biomaterials that mimic the ECM-proffer novel modalities to potentiate immunotherapy responsiveness. By refining the ECM's biomechanical attributes, the mechanical barriers posed by the tumor stroma can be improved, facilitating robust immune cell penetration and activity, and thereby bolstering the tumor's susceptibility to immunotherapy. Ongoing clinical trials are evaluating these innovative treatments, particularly in combination with immunotherapies, with the aim of enhancing clinical outcomes for CRC patients afflicted by pronounced matrix stiffness.
Collapse
Affiliation(s)
- Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310016, China
| | - Zhiru Zeng
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Wei Zhou
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
30
|
Lai YW, Liu ZW, Lin MH, Yang CC, Chu CY, Chung CH, Lin CW. Melatonin increases Olaparib sensitivity and suppresses cancer-associated fibroblast infiltration via suppressing the LAMB3-CXCL2 axis in TNBC. Pharmacol Res 2024; 209:107429. [PMID: 39306019 DOI: 10.1016/j.phrs.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant breast cancer subtype, characterized with high aggressiveness and a high recurrence rate. Olaparib is the first US Food and Drug Administration-approved poly(ADP ribose) polymerase (PARP) inhibitor (PARPi) to treat breast cancer patients with a germline BRCA1 or BRCA2 mutation. However, resistance to Olaparib treatment restricts the therapeutic effects, and thus novel therapeutics are urgently required. In the present study, we identified that the combination of melatonin and Olaparib synergistically enhanced the sensitivity of TNBC cells. Moreover, melatonin exerted promising antitumor activities in Olaparib-resistant cells, implying the potential for its clinical application. An RNA-sequencing analysis revealed that melatonin treatment downregulated laminin subunit beta 3 (LAMB3) expression. Genetic ablation of LAMB3 significantly increased Olaparib sensitivity, and subsequently suppressed proliferation, epithelial-to-mesenchymal transition (EMT)-related gene expressions, and aggressiveness of breast cancer cells. Accordingly, LAMB3 expression was positively correlated with C-X-C motif chemokine ligand 2 (CXCL2), and they collaboratively promoted cancer-associated fibroblast (CAF) infiltration. An in vivo study demonstrated that combined treatment with melatonin and Olaparib showed enhanced inhibitory efficacy against tumor growth, LAMB3 expression, CXCL2 levels, and CAF infiltration compared to single treatment groups, and combined treatment with melatonin and Olaparib significantly ameliorated the immunosuppressive tumor microenvironment. These findings illustrate a promising therapeutic strategy using melatonin to overcome Olaparib resistance and activate antitumor immunity via attenuating the LAMB3-CXCL2 axis in breast cancer patients.
Collapse
Affiliation(s)
- Yi-Wen Lai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zei-Wei Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan; Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Ying Chu
- CRISPR Gene Targeting Core Lab, Taipei Medical University, Taipei, Taiwan
| | - Chu-Hung Chung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Zhu J, Wang Y, Chang WY, Malewska A, Napolitano F, Gahan JC, Unni N, Zhao M, Yuan R, Wu F, Yue L, Guo L, Zhao Z, Chen DZ, Hannan R, Zhang S, Xiao G, Mu P, Hanker AB, Strand D, Arteaga CL, Desai N, Wang X, Xie Y, Wang T. Mapping cellular interactions from spatially resolved transcriptomics data. Nat Methods 2024; 21:1830-1842. [PMID: 39227721 DOI: 10.1038/s41592-024-02408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Cell-cell communication (CCC) is essential to how life forms and functions. However, accurate, high-throughput mapping of how expression of all genes in one cell affects expression of all genes in another cell is made possible only recently through the introduction of spatially resolved transcriptomics (SRT) technologies, especially those that achieve single-cell resolution. Nevertheless, substantial challenges remain to analyze such highly complex data properly. Here, we introduce a multiple-instance learning framework, Spacia, to detect CCCs from data generated by SRTs, by uniquely exploiting their spatial modality. We highlight Spacia's power to overcome fundamental limitations of popular analytical tools for inference of CCCs, including losing single-cell resolution, limited to ligand-receptor relationships and prior interaction databases, high false positive rates and, most importantly, the lack of consideration of the multiple-sender-to-one-receiver paradigm. We evaluated the fitness of Spacia for three commercialized single-cell resolution SRT technologies: MERSCOPE/Vizgen, CosMx/NanoString and Xenium/10x. Overall, Spacia represents a notable step in advancing quantitative theories of cellular communications.
Collapse
Affiliation(s)
- James Zhu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Woo Yong Chang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alicia Malewska
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fabiana Napolitano
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey C Gahan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nisha Unni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Zhao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rongqing Yuan
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren Yue
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuo Zhao
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Raquibul Hannan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Siyuan Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neil Desai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinlei Wang
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, USA.
- Division of Data Science, College of Science, University of Texas at Arlington, Arlington, TX, USA.
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
Arpinati L, Carradori G, Scherz-Shouval R. CAF-induced physical constraints controlling T cell state and localization in solid tumours. Nat Rev Cancer 2024; 24:676-693. [PMID: 39251836 DOI: 10.1038/s41568-024-00740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Solid tumours comprise cancer cells that engage in continuous interactions with non-malignant cells and with acellular components, forming the tumour microenvironment (TME). The TME has crucial and diverse roles in tumour progression and metastasis, and substantial efforts have been dedicated into understanding the functions of different cell types within the TME. These efforts highlighted the importance of non-cell-autonomous signalling in cancer, mediating interactions between the cancer cells, the immune microenvironment and the non-immune stroma. Much of this non-cell-autonomous signalling is mediated through acellular components of the TME, known as the extracellular matrix (ECM), and controlled by the cells that secrete and remodel the ECM - the cancer-associated fibroblasts (CAFs). In this Review, we delve into the complex crosstalk among cancer cells, CAFs and immune cells, highlighting the effects of CAF-induced ECM remodelling on T cell functions and offering insights into the potential of targeting ECM components to improve cancer therapies.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Carradori
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Farahani M, Ghazimoradi MH. Dissecting the roles of exosomal cancer-associated fibroblasts-derived non-coding RNAs in tumor progression: A complete guide. Pathol Res Pract 2024; 262:155576. [PMID: 39232286 DOI: 10.1016/j.prp.2024.155576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.
Collapse
Affiliation(s)
- Mahnaz Farahani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram, General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
34
|
Miripour ZS, Aminifar M, Hoseinpour P, Abbasvandi F, Karimi K, Ghahremani A, Parniani M, Ghaderinia M, Makiyan F, Aghaee P, Akbari ME, Abdolahad M. The presence of cancer-associated fibroblast in breast cavity side margins is in correlation with the expression of oncoproteins by adjacent epithelial cells: a new era in cancerous potential. J Cancer Res Clin Oncol 2024; 150:421. [PMID: 39287633 PMCID: PMC11408549 DOI: 10.1007/s00432-024-05943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Cancer-associated fibroblasts (CAFs) are one of the most critical cells in the tumor environment, with crucial roles in cancer progression and metastasis. Due to Field-Effect phenomena (also called field cancerization), the adjacent cavity side area of the margin is histologically normal, but it has been entered into neoplastic transformation due to MCT4 and MCT1 pathways activated by H2O2/ROS oxidative stress agents secreted by CAF in adjacent tumor bed microenvironment. This paper specifically focused on the role of cancer-associated fibroblast in breast tumor beds and its correlation with the presence of scattered cancer cells or onco-protein-activated cells (may be high risk but not completely transformed cancer cells) in the cavity side margins. METHODS In this study, the glycolytic behavior of non-tumoral cavity side margins was examined using carbon nanotube-based electrochemical biosensors integrated into a cancer diagnostic probe. This method enabled the detection of CAF accumulation sites in non-cancerous neighboring tissues of tumors, with a correlation to CAF concentration. Subsequently, RT-PCR, fluorescent, histopathological, and invasion assays were conducted on hyperglycolytic lesions to explore any correlation between the abundance of CAFs and the electrochemical responses of the non-cancerous tissues surrounding the tumor, as well as their neoplastic potential. RESULTS We observed overexpression of cancer-associated transcriptomes as well as the presence and hyperactivation of CAFs in cavity-side regions in which glycolytic metabolism was recorded, independent of the histopathological state of the lesion. At mean 70.4%, 66.7%, 70.4%, and 44.5% increments were observed in GLUT-1, MMP-2, N-cadherin, and MMP-9 transcriptomes by highly glycolytic but histologically cancer-free expression samples in comparison with negative controls (histologically non-cancer lesions with low glycolytic behavior). CONCLUSION The presence of CAFs is correlated with the presence of high glycolytic metabolism in the cavity margin lesion, high ROS level in the lesion, and finally aggressive cancer-associated proteins (such as MMP2, …) in the margin while these metabolomes, molecules, and proteins are absent in the margins with negatively scored CDP response and low ROS level. So, it seems that when we observe CAFs in glycolytic lesions with high ROS levels, some high-risk epithelial breast cells may exist while no histological trace of cancer cells was observed. Further research on CAFs could provide valuable insights into the local recurrence of malignant breast diseases. Hence, real-time sensors can be used to detect and investigate CAFs in the non-tumoral regions surrounding tumors in cancer patients, potentially aiding in the prevention of cancer recurrence.
Collapse
Affiliation(s)
- Zohreh Sadat Miripour
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
- UT&TUMS Cancer Electronics Research Center, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mina Aminifar
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Parisa Hoseinpour
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
- SEPAS Pathology Lab, P. O. Box 1991945391, Tehran, Iran
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 15179/64311, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 15179/64311, Tehran, Iran
| | - Koosha Karimi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Alireza Ghahremani
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Parniani
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 15179/64311, Tehran, Iran
| | - Mohammadreza Ghaderinia
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Faride Makiyan
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Parisa Aghaee
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 15179/64311, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.
- UT&TUMS Cancer Electronics Research Center, University of Tehran, P.O. Box 14395/515, Tehran, Iran.
- Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, P.O. Box 1419733141, Tehran, Iran.
| |
Collapse
|
35
|
Mansour AMA, Khattab MM, El-Khatib AS, Awaad AK, El-Refaie WM, El-Mezayen NS. Valsartan as a prophylactic treatment against breast cancer development and niche activation: What molecular sequels follow chronic AT-1R blockade? Life Sci 2024; 353:122939. [PMID: 39094905 DOI: 10.1016/j.lfs.2024.122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
AIMS Transactivation of insulin-growth-factor-receptor (IGF-1R) by angiotensin-II-type-1-receptor (AT-1R) was only demonstrated in vascular-smooth-muscle cells and has never been tested in breast-cancer (BC). This investigation addressed the impact of chronic AT-1R blockade by valsartan (Val) on possible concurrent AT-1R/IGF-1R signaling inhibition, regressing BC-tumor-microenvironment (TME) cellular components activation, and hindering BC development. MAIN METHODS The effect of different Val doses (10, 20, 40 & 80 mg/kg/day for 490 days) was tested on dimethylbenz(a)anthracene (DMBA)-induced progesterone-promoted-BC in rats. The influence on intratumoral/circulating angiotensin-II (ANG-II) levels and AT-1R/Mas-R immunofluorescent-expression were assessed. The potential AT-1R/IGF-1R crosstalk within TME-BC-stem-cells (BCSCs) and cancer-associated-fibroblasts (CAFs) was evaluated by fluorescently marking these cells and locating the immunofluorescently-stained AT-1R/IGF-1R in them using confocal-laser-microscopy and further quantified by flow cytometry. In addition, the molecular alterations following blocking AT-1R were inspected including determining Src; crucial for IGF-1R transactivation by AT-1R, Notch-1; IGF-IR transcriptional-regulator, and PI3K/Akt &IL-6/STAT expression. Further, the suppression of CSCs' capabilities to maintain pluripotency, stemness features, epithelial-to-mesenchymal-transition (EMT), and angiogenesis was evaluated by assessing NANOG gene, aldehyde-dehydrogenase (ALDH), N-cadherin and vascular-endothelial-growth-factor (VEGF), respectively. Furthermore, the proliferative marker; Ki-67, was detected by immunostaining, and tumors were histologically graded using Elston-Ellis-modified-Scarff-Bloom-Richardson method. KEY FINDINGS Prophylactic Val significantly reduced tumor size, prolonged latency, reduced tumor histopathologic grade, decreased circulating/intratumoral-ANG-II levels, increased Mas-R, and decreased AT1R expression. AT-1R/IGF-1R were co-expressed with a high correlation coefficient on CAFs/BCSCs. Moreover, Val significantly attenuated IGF-1R transactivation and transcriptional regulation via Src and Notch-1 genes' downregulation and reduced Src/IGF-IR-associated PI3K/Akt and IL-6/STAT3 signaling. Further, Val significantly decreased intratumoral NANOG, ALDH, N-cadherin, VEGF, and Ki-67 levels. SIGNIFICANCE Chronic Val administration carries a potential for repurposing as adjuvant or conjunct therapy for patients at high risk for BC.
Collapse
Affiliation(s)
- Amira M A Mansour
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
36
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
37
|
Naito K, Sangai T, Yamashita K. CAF-Associated Genes in Breast Cancer for Novel Therapeutic Strategies. Biomedicines 2024; 12:1964. [PMID: 39335478 PMCID: PMC11428270 DOI: 10.3390/biomedicines12091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer (BC) is the most common cancer in women, and therapeutic strategies for it are based on the molecular subtypes of luminal BC, HER2 BC, and triple-negative BC (TNBC) because each subtype harbors different unique genetic aberrations. Recently, features of the tumor microenvironment (TME), especially cancer-associated fibroblasts (CAFs), have been demonstrated to play a critical role in BC progression, and we would like to understand the molecular features of BC CAFs for novel therapeutic strategies. In a recent study, 115 CAF-associated genes (CAFGs) were identified in a public database of microdissection and microarray data (GSE35602) from 13 colorectal cancer (CRC) tumors. Using a public database (GSE10797) of 28 BC tumors, a similar analysis was performed. In BC, 59 genes from the 115 CAFGs identified in CRC (CRC CAFGs) were also closely associated with a CAFs marker, SPARC (R = 0.6 or beyond), and POSTN was of particular interest as one of the BC CAFGs with the highest expression levels and a close association with SPARC expression (R = 0.94) in the cancer stroma of BC tumors. In BC stroma, POSTN was followed in expression levels by DKK3, MMP2, PDPN, and ACTA2. Unexpectedly, FAP and VIM were not as highly associated with SPARC expression in the cancer stroma of BC tumors and exhibited low expression. These findings suggested that ACTA2 might be the most relevant conventional CAFs marker in BC, and ACTA2 was actually correlated in expression with many CRC CAFGs, such as SPARC. Surprisingly, the SE ratio values of the BC CAFGs were much lower (average SE = 3.8) than those of the CRC CAFGs (SE = 10 or beyond). We summarized the current understanding of BC CAFs from the literature. Finally, in triple-negative BC (TNBC) (n = 5), SPARC expression uniquely showed a close association with COL11A1 and TAGLN expression, representing a myofibroblast (myCAFs) marker in the cancer stroma of the BC tumors, suggesting that myCAFs may be molecularly characterized by TNBC in contrast to other BC phenotypes. In summary, CAFs could have unique molecular characteristics in BC, and such TME uniqueness could be therapeutically targeted in BC.
Collapse
Affiliation(s)
- Kanako Naito
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| |
Collapse
|
38
|
Osuala KO, Chalasani A, Aggarwal N, Ji K, Moin K. Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts. Cancers (Basel) 2024; 16:2910. [PMID: 39199680 PMCID: PMC11353178 DOI: 10.3390/cancers16162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluated the paracrine signaling between breast carcinoma-associated fibroblasts (CAFs) and breast cancer (BCa) cells. Resolving cell-cell communication in the BCa tumor microenvironment (TME) will aid the development of new therapeutics. Here, we utilized our patented TAME (tissue architecture and microenvironment engineering) 3D culture microphysiological system, which is a suitable pathomimetic avatar for the study of the BCa TME. We cultured in 3D BCa cells and CAFs either alone or together in cocultures and found that when cocultured, CAFs enhanced the invasive characteristics of tumor cells, as shown by increased proliferation and spread of tumor cells into the surrounding matrix. Secretome analysis from 3D cultures revealed a relatively high secretion of IL-6 by CAFs. A marked increase in the secretion of granulocyte macrophage-colony stimulating factor (GM-CSF) when carcinoma cells and CAFs were in coculture was also observed. We theorized that the CAF-secreted IL-6 functions in a paracrine manner to induce GM-CSF expression and secretion from carcinoma cells. This was confirmed by evaluating the activation of STAT3 and gene expression of GM-CSF in carcinoma cells exposed to CAF-conditioned media (CAF-CM). In addition, the treatment of CAFs with BCa cell-CM yielded a brief upregulation of GM-CSF followed by a marked decrease, indicating a tightly regulated control of GM-CSF in CAFs. Secretion of IL-6 from CAFs drives the activation of STAT3 in BCa cells, which in turn drives the expression and secretion of GM-CSF. As a result, CAFs exposed to BCa cell-secreted GM-CSF upregulate inflammation-associated genes such as IL-6, IL-6R and IL-8, thereby forming a positive feedback loop. We propose that the tight regulation of GM-CSF in CAFs may be a novel regulatory pathway to target for disrupting the CAF:BCa cell symbiotic relationship. These data provide yet another piece of the cell-cell communication network governing the BCa TME.
Collapse
Affiliation(s)
- Kingsley O. Osuala
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Twelve Biosciences Research & Development, Kalamazoo, MI 49009, USA
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| | - Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA;
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| |
Collapse
|
39
|
Aydin H, Ozcelikkale A, Acar A. Exploiting Matrix Stiffness to Overcome Drug Resistance. ACS Biomater Sci Eng 2024; 10:4682-4700. [PMID: 38967485 PMCID: PMC11322920 DOI: 10.1021/acsbiomaterials.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Drug resistance is arguably one of the biggest challenges facing cancer research today. Understanding the underlying mechanisms of drug resistance in tumor progression and metastasis are essential in developing better treatment modalities. Given the matrix stiffness affecting the mechanotransduction capabilities of cancer cells, characterization of the related signal transduction pathways can provide a better understanding for developing novel therapeutic strategies. In this review, we aimed to summarize the recent advancements in tumor matrix biology in parallel to therapeutic approaches targeting matrix stiffness and its consequences in cellular processes in tumor progression and metastasis. The cellular processes governed by signal transduction pathways and their aberrant activation may result in activating the epithelial-to-mesenchymal transition, cancer stemness, and autophagy, which can be attributed to drug resistance. Developing therapeutic strategies to target these cellular processes in cancer biology will offer novel therapeutic approaches to tailor better personalized treatment modalities for clinical studies.
Collapse
Affiliation(s)
- Hakan
Berk Aydin
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| | - Altug Ozcelikkale
- Department
of Mechanical Engineering, Middle East Technical
University, 06800, Ankara, Turkey
- Graduate
Program of Biomedical Engineering, Middle
East Technical University, 06800, Ankara, Turkey
| | - Ahmet Acar
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| |
Collapse
|
40
|
Chen CY, Yang SH, Chang PY, Chen SF, Nieh S, Huang WY, Lin YC, Lee OKS. Cancer-Associated-Fibroblast-Mediated Paracrine and Autocrine SDF-1/CXCR4 Signaling Promotes Stemness and Aggressiveness of Colorectal Cancers. Cells 2024; 13:1334. [PMID: 39195225 PMCID: PMC11352219 DOI: 10.3390/cells13161334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, and cancer-associated fibroblasts (CAFs) play a major role in the tumor microenvironment (TME), which facilitates the progression of CRC. It is critical to understand how CAFs promote the progression of CRC for the development of novel therapeutic approaches. The purpose of this study was to understand how CAF-derived stromal-derived factor-1 (SDF-1) and its interactions with the corresponding C-X-C motif chemokine receptor 4 (CXCR4) promote CRC progression. Our study focused on their roles in promoting tumor cell migration and invasion and their effects on the characteristics of cancer stem cells (CSCs), which ultimately impact patient outcomes. Here, using in vivo approaches and clinical histological samples, we analyzed the influence of secreted SDF-1 on CRC progression, especially in terms of tumor cell behavior and stemness. We demonstrated that CAF-secreted SDF-1 significantly enhanced CRC cell migration and invasion through paracrine signaling. In addition, the overexpression of SDF-1 in CRC cell lines HT29 and HCT-116 triggered these cells to generate autocrine SDF-1 signaling, which further enhanced their CSC characteristics, including those of migration, invasion, and spheroid formation. An immunohistochemical study showed a close relationship between SDF-1 and CXCR4 expression in CRC tissue, and this significantly affected patient outcomes. The administration of AMD3100, an inhibitor of CXCR4, reversed the entire phenomenon. Our results strongly suggest that targeting this signaling axis in CRC is a feasible approach to attenuating tumor progression, and it may, therefore, serve as an alternative treatment method to improve the prognosis of patients with CRC, especially those with advanced, recurrent, or metastatic CRC following standard therapy.
Collapse
Affiliation(s)
- Chao-Yang Chen
- Division of Colon and Rectal Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shih-Hsien Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Office of General Affairs and Occupational Safety, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ping-Ying Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 40433, Taiwan;
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11211, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40402, Taiwan
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
41
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
42
|
Yin J, Zhu W, Feng S, Yan P, Qin S. The role of cancer-associated fibroblasts in the invasion and metastasis of colorectal cancer. Front Cell Dev Biol 2024; 12:1375543. [PMID: 39139454 PMCID: PMC11319178 DOI: 10.3389/fcell.2024.1375543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has ranked the third leading cause in cancerassociated death globally. Metastasis is the leading cause of death in colorectal cancer patients. The role of tumor microenvironment (TME) in colorectal cancer metastasis has received increasing attention. As the most abundant cell type in the TME of solid tumors, cancer-associated fibroblasts (CAFs) have been demonstrated to have multiple functions in advancing tumor growth and metastasis. They can remodel the extracellular matrix (ECM) architecture, promote epithelial-mesenchymal transition (EMT), and interact with cancer cells or other stromal cells by secreting growth factors, cytokines, chemokines, and exosomes, facilitating tumor cell invasion into TME and contributing to distant metastasis. This article aims to analyze the sources and heterogeneity of CAFs in CRC, as well as their role in invasion and metastasis, in order to provide new insights into the metastasis mechanism of CRC and its clinical applications.
Collapse
Affiliation(s)
- Jinjin Yin
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Senling Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengke Yan
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shumin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
43
|
Oliveira SM, Carvalho PD, Serra-Roma A, Oliveira P, Ribeiro A, Carvalho J, Martins F, Machado AL, Oliveira MJ, Velho S. Fibroblasts Promote Resistance to KRAS Silencing in Colorectal Cancer Cells. Cancers (Basel) 2024; 16:2595. [PMID: 39061234 PMCID: PMC11274566 DOI: 10.3390/cancers16142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) responses to KRAS-targeted inhibition have been limited due to low response rates, the mechanisms of which remain unknown. Herein, we explored the cancer-associated fibroblasts (CAFs) secretome as a mediator of resistance to KRAS silencing. CRC cell lines HCT15, HCT116, and SW480 were cultured either in recommended media or in conditioned media from a normal colon fibroblast cell line (CCD-18Co) activated with rhTGF-β1 to induce a CAF-like phenotype. The expression of membrane stem cell markers was analyzed by flow cytometry. Stem cell potential was evaluated by a sphere formation assay. RNAseq was performed in KRAS-silenced HCT116 colonospheres treated with either control media or conditioned media from CAFs. Our results demonstrated that KRAS-silencing up-regulated CD24 and down-regulated CD49f and CD104 in the three cell lines, leading to a reduction in sphere-forming efficiency. However, CAF-secreted factors restored stem cell marker expression and increased stemness. RNA sequencing showed that CAF-secreted factors up-regulated genes associated with pro-tumorigenic pathways in KRAS-silenced cells, including KRAS, TGFβ, NOTCH, WNT, MYC, cell cycle progression and exit from quiescence, epithelial-mesenchymal transition, and immune regulation. Overall, our results suggest that resistance to KRAS-targeted inhibition might derive not only from cell-intrinsic causes but also from external elements, such as fibroblast-secreted factors.
Collapse
Affiliation(s)
- Susana Mendonça Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Patrícia Dias Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André Serra-Roma
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Patrícia Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Andreia Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Flávia Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Luísa Machado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Maria José Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-177 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
44
|
Boraldi F, Lofaro FD, Bonacorsi S, Mazzilli A, Garcia-Fernandez M, Quaglino D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024; 12:1586. [PMID: 39062158 PMCID: PMC11274439 DOI: 10.3390/biomedicines12071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Francesco Demetrio Lofaro
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Susanna Bonacorsi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Alessia Mazzilli
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Institute of Biomedical Investigation (IBIMA), University of Málaga, 29010 Málaga, Spain;
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| |
Collapse
|
45
|
Taghizadeh-Hesary F. "Reinforcement" by Tumor Microenvironment: The Seventh "R" of Radiobiology. Int J Radiat Oncol Biol Phys 2024; 119:727-733. [PMID: 38032584 DOI: 10.1016/j.ijrobp.2023.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Sun X, Teng X, Liu C, Tian W, Cheng J, Hao S, Jin Y, Hong L, Zheng Y, Dai X, Wu L, Liu L, Teng X, Shi Y, Zhao P, Fang W, Shi Y, Bao X. A Pathologically Friendly Strategy for Determining the Organ-specific Spatial Tumor Microenvironment Topology in Lung Adenocarcinoma Through the Integration of snRandom-seq and Imaging Mass Cytometry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308892. [PMID: 38682485 PMCID: PMC11234426 DOI: 10.1002/advs.202308892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/24/2024] [Indexed: 05/01/2024]
Abstract
Heterogeneous organ-specific responses to immunotherapy exist in lung cancer. Dissecting tumor microenvironment (TME) can provide new insights into the mechanisms of divergent responses, the process of which remains poor, partly due to the challenges associated with single-cell profiling using formalin-fixed paraffin-embedded (FFPE) materials. In this study, single-cell nuclei RNA sequencing and imaging mass cytometry (IMC) are used to dissect organ-specific cellular and spatial TME based on FFPE samples from paired primary lung adenocarcinoma (LUAD) and metastases. Single-cell analyses of 84 294 cells from sequencing and 250 600 cells from IMC reveal divergent organ-specific immune niches. For sites of LUAD responding well to immunotherapy, including primary LUAD and adrenal gland metastases, a significant enrichment of B, plasma, and T cells is detected. Spatially resolved maps reveal cellular neighborhoods recapitulating functional units of the tumor ecosystem and the spatial proximity of B and CD4+ T cells at immunogenic sites. Various organ-specific densities of tertiary lymphoid structures are observed. Immunosuppressive sites, including brain and liver metastases, are deposited with collagen I, and T cells at these sites highly express TIM-3. This study originally deciphers the single-cell landscape of the organ-specific TME at both cellular and spatial levels for LUAD, indicating the necessity for organ-specific treatment approaches.
Collapse
Affiliation(s)
- Xuqi Sun
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiao Teng
- Department of Thoracic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Chuan Liu
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Weihong Tian
- Changzhou Third People's HospitalChangzhou Medical CenterNanjing Medical University140 Hanzhong Rd, GulouNanjingJiangsu210029China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Shuqiang Hao
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Yuzhi Jin
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Libing Hong
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Yongqiang Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaomeng Dai
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Linying Wu
- Department of Respiratory DiseaseThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Lulu Liu
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaodong Teng
- Department of PathologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Yi Shi
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersShanghai Jiao Tong University1954 Huashan RoadShanghai200030China
| | - Peng Zhao
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Weijia Fang
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xuanwen Bao
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| |
Collapse
|
47
|
Wu Y, Chen R, Ni S, Hu K. Biomimetic "nano-spears" for CAFs-targeting: splintered three "shields" with enhanced cisplatin anti-TNBC efficiency. J Control Release 2024; 370:556-569. [PMID: 38697316 DOI: 10.1016/j.jconrel.2024.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
The treatment dilemma of triple-negative breast cancer (TNBC) revolves around drug resistance and metastasis. Cancer-associated fibroblasts (CAFs) contribute to cisplatin (Cis) resistance and further metastasis in TNBC, making TNBC a difficult-to-treat disease. The dense stromal barrier which restricts drug delivery, invasive phenotype of tumor cells, and immunosuppressive tumor microenvironment (TME) induced by CAFs serve as three "shields" for TNBC against Cis therapy. Here, we designed a silybin-loaded biomimetic nanoparticle coated with anisamide-modified red blood cell membrane (ARm@SNP) as a "nanospear" for CAFs-targeting, which could shatter the "shields" and significantly exhibit inhibitory effect on 4T1 cells in combination with Cis both in vitro and in vivo. The ARm@SNP/Cis elicited 4T1 tumor growth arrest and destroyed three "shields" as follows: disintegrating the stromal barrier by inhibiting blood vessels growth and the expression of fibronectin; decreasing 4T1 cell invasion and metastasis by affecting the TGF-β/Twist/EMT pathway which impeded EMT activation; reversing the immunosuppressive microenvironment by increasing the activity and infiltration of immunocompetent cells. Based on CAFs-targeting, ARm@SNP reversed the resistance of Cis, remodeled the TME and inhibited invasion and metastasis while significantly improving the therapeutic effect of Cis on 4T1 tumor-bearing mice, providing a promising approach for treating intractable TNBC.
Collapse
Affiliation(s)
- Yufan Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
48
|
González-Callejo P, García-Astrain C, Herrero-Ruiz A, Henriksen-Lacey M, Seras-Franzoso J, Abasolo I, Liz-Marzán LM. 3D Bioprinted Tumor-Stroma Models of Triple-Negative Breast Cancer Stem Cells for Preclinical Targeted Therapy Evaluation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27151-27163. [PMID: 38764168 PMCID: PMC11145592 DOI: 10.1021/acsami.4c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
Breast cancer stem cells (CSCs) play a pivotal role in therapy resistance and tumor relapse, emphasizing the need for reliable in vitro models that recapitulate the complexity of the CSC tumor microenvironment to accelerate drug discovery. We present a bioprinted breast CSC tumor-stroma model incorporating triple-negative breast CSCs (TNB-CSCs) and stromal cells (human breast fibroblasts), within a breast-derived decellularized extracellular matrix bioink. Comparison of molecular signatures in this model with different clinical subtypes of bioprinted tumor-stroma models unveils a unique molecular profile for artificial CSC tumor models. We additionally demonstrate that the model can recapitulate the invasive potential of TNB-CSC. Surface-enhanced Raman scattering imaging allowed us to monitor the invasive potential of tumor cells in deep z-axis planes, thereby overcoming the depth-imaging limitations of confocal fluorescence microscopy. As a proof-of-concept application, we conducted high-throughput drug testing analysis to assess the efficacy of CSC-targeted therapy in combination with conventional chemotherapeutic compounds. The results highlight the usefulness of tumor-stroma models as a promising drug-screening platform, providing insights into therapeutic efficacy against CSC populations resistant to conventional therapies.
Collapse
Affiliation(s)
| | - Clara García-Astrain
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
| | - Ada Herrero-Ruiz
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
| | - Malou Henriksen-Lacey
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
| | - Joaquín Seras-Franzoso
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d’Hebron
Research Institute (VHIR), Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Department
of Genetics and Microbiology, Universitat
Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Ibane Abasolo
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d’Hebron
Research Institute (VHIR), Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry Service, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
49
|
Dhungel N, Dragoi AM. Exploring the multifaceted role of direct interaction between cancer cells and fibroblasts in cancer progression. Front Mol Biosci 2024; 11:1379971. [PMID: 38863965 PMCID: PMC11165130 DOI: 10.3389/fmolb.2024.1379971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The interaction between the tumor microenvironment (TME) and the cancer cells is a complex and mutually beneficial system that leads to rapid cancer cells proliferation, metastasis, and resistance to therapy. It is now recognized that cancer cells are not isolated, and tumor progression is governed among others, by many components of the TME. The reciprocal cross-talk between cancer cells and their microenvironment can be indirect through the secretion of extracellular matrix (ECM) proteins and paracrine signaling through exosomes, cytokines, and growth factors, or direct by cell-to-cell contact mediated by cell surface receptors and adhesion molecules. Among TME components, cancer-associated fibroblasts (CAFs) are of unique interest. As one of the most abundant components of the TME, CAFs play key roles in the reorganization of the extracellular matrix, facilitating metastasis and chemotherapy evasion. Both direct and indirect roles have been described for CAFs in modulating tumor progression. In this review, we focus on recent advances in understanding the role of direct contact between cancer cells and cancer-associated fibroblasts (CAFs) in driving tumor development and metastasis. We also summarize recent findings on the role of direct contact between cancer cells and CAFs in chemotherapy resistance.
Collapse
Affiliation(s)
- Nilu Dhungel
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, United States
| |
Collapse
|
50
|
Li K, Lin H, Liu A, Qiu C, Rao Z, Wang Z, Chen S, She X, Zhu S, Li P, Liu L, Wu Q, Wang G, Xu F, Li S. SOD1-high fibroblasts derived exosomal miR-3960 promotes cisplatin resistance in triple-negative breast cancer by suppressing BRSK2-mediated phosphorylation of PIMREG. Cancer Lett 2024; 590:216842. [PMID: 38582395 DOI: 10.1016/j.canlet.2024.216842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Platinum-based neoadjuvant therapy represented by cisplatin is widely employed in treating Triple-Negative Breast Cancer (TNBC), a particularly aggressive subtype of breast cancer. Nevertheless, the emergence of cisplatin resistance presents a formidable challenge to clinical chemotherapy efficacy. Herein, we revealed the critical role of tumor microenvironment (TME) derived exosomal miR-3960 and phosphorylation at the S16 site of PIMREG in activating NF-κB signaling pathway and promoting cisplatin resistance of TNBC. Detailed regulatory mechanisms revealed that SOD1-upregulated fibroblasts secrete miR-3960 and are then transported into TNBC cells via exosomes. Within TNBC cells, miR-3960 targets and inhibits the expression of BRSK2, an AMPK protein kinase family member. Furthermore, we emphasized that BRSK2 contributes to ubiquitination degradation of PIMREG and modulates subsequent activation of the NF-κB signaling pathway by mediating PIMREG phosphorylation at the S16 site, ultimately affects the cisplatin resistance of TNBC. In conclusion, our research demonstrated the crucial role of SOD1high fibroblast, exosomal miR-3960 and S16 site phosphorylated PIMREG in regulating the NF-κB signaling pathway and cisplatin resistance of TNBC. These findings provided significant potential as biomarkers for accurately diagnosing cisplatin-resistant TNBC patients and guiding chemotherapy strategy selection.
Collapse
Affiliation(s)
- Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Han Lin
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng Qiu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zejun Rao
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihong Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Siqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowei She
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengyu Zhu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lang Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Xu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shaotang Li
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|