1
|
Chen G, Chen Z, Liu H, Meng C, Wang K, Lu H, Yang F. Discovery of novel XPO1 PROTAC degraders for the treatment of acute myeloid leukemia. Eur J Med Chem 2025; 283:117182. [PMID: 39708768 DOI: 10.1016/j.ejmech.2024.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Targeting XPO1 inhibition has emerged as a promising therapeutic strategy in cancer treatment. Despite the numerous XPO1 inhibitors reported to date, no XPO1 degraders have been disclosed. In this study, we reported the design, synthesis and biological characterization of small-molecule XPO1 degraders based upon the proteolysis targeting chimera (PROTAC), marking the first public disclosure of XPO1 degraders. The potent PROTAC compound 2c was identified, demonstrating effective degradation of XPO1 protein in MV4-11 acute myeloid leukemia (AML) cells, with a DC50 of 23.67 nM. Treatment with 2c resulted in significant antiproliferative effects, with IC50 values of 0.142 ± 0.029 μM in MV4-11 cells and 0.186 ± 0.024 μM in MOLM-13 cells. Additionally, 2c induced apoptosis, inhibited NF-κB activity, and caused G1 phase cell cycle arrest. The study highlights the therapeutic potential of targeting XPO1 degradation in AML treatment and emphasizes the advantages of PROTAC technology in developing novel anticancer strategies. These findings provide a foundation for further exploration of XPO1 degraders in cancer therapy, offering new hope for effective treatment options in hematological malignancies.
Collapse
MESH Headings
- Exportin 1 Protein
- Humans
- Karyopherins/antagonists & inhibitors
- Karyopherins/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Proteolysis/drug effects
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Structure-Activity Relationship
- Drug Discovery
- Molecular Structure
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Cell Line, Tumor
Collapse
Affiliation(s)
- Guangyong Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Huimin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Chen Meng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Kai Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Haibin Lu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| | - Fuwei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
2
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
3
|
González-Cao M, Cai X, Bracht JWP, Han X, Yang Y, Pedraz-Valdunciel C, Morán T, García-Corbacho J, Aguilar A, Bernabé R, De Marchi P, Sussuchi da Silva L, Leal LF, Reis RM, Codony-Servat J, Jantus-Lewintre E, Molina-Vila MA, Cao P, Rosell R. HMGB1 Expression Levels Correlate with Response to Immunotherapy in Non-Small Cell Lung Cancer. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:55-67. [PMID: 38741920 PMCID: PMC11090191 DOI: 10.2147/lctt.s455034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
Purpose High-mobility group box 1 protein (HMGB1) is subject to exportin 1 (XPO1)-dependent nuclear export, and it is involved in functions implicated in resistance to immunotherapy. We investigated whether HMGB1 mRNA expression was associated with response to immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC). Patients and Methods RNA was isolated from pretreatment biopsies of patients with advanced NSCLC treated with ICI. Gene expression analysis of several genes, including HMGB1, was conducted using the NanoString Counter analysis system (PanCancer Immune Profiling Panel). Western blotting analysis and cell viability assays in EGFR and KRAS mutant cell lines were carried out. Evaluation of the antitumoral effect of ICI in combination with XPO1 blocker (selinexor) and trametinib was determined in a murine Lewis lung carcinoma model. Results HMGB1 mRNA levels in NSCLC patients treated with ICI correlated with progression-free survival (PFS) (median PFS 9.0 versus 18.0 months, P=0.008, hazard ratio=0.30 in high versus low HMGB1). After TNF-α stimulation, HMGB1 accumulates in the cytoplasm of PC9 cells, but this accumulation can be prevented by using selinexor or antiretroviral drugs. Erlotinib or osimertinib with selinexor in EGFR-mutant cells and trametinib plus selinexor in KRAS mutant abolish tumor cell proliferation. Selinexor with a PD-1 inhibitor with or without trametinib abrogates the tumor growth in the murine Lewis lung cancer model. Conclusion An in-depth exploration of the functions of HMGB1 mRNA and protein is expected to uncover new potential targets and provide a basis for treating metastatic NSCLC in combination with ICI.
Collapse
Affiliation(s)
- Maria González-Cao
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Xueting Cai
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | | | - Xuan Han
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Yang
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | | | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Javier García-Corbacho
- Medical Oncology Department (Hospital Clinic)/Translational Genomics and Targeted Therapies in Solid Tumors (IDIBAPs), Barcelona, Spain
| | - Andrés Aguilar
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Reyes Bernabé
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Pedro De Marchi
- Molecular Oncology Research Center; Barretos Cancer Hospital, Barretos, Brazil
- Oncoclinicas, Rio de Janeiro, Brazil
| | | | - Leticia Ferro Leal
- Molecular Oncology Research Center; Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center; Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3b’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jordi Codony-Servat
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Eloisa Jantus-Lewintre
- Valencian Community Foundation Principe Felipe Research Center, Laboratory of Molecular Oncology, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Madrid, Spain
- Universitat Politècnica de Valencia, Biotechnology Department, Valencia, Spain
| | | | - Peng Cao
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Rafael Rosell
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
- Laboratory of Molecular Biology, Germans Trias i Pujol Health Sciences Institute and Hospital (IGTP), Badalona, Spain
| |
Collapse
|
4
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
5
|
Zhang J, Zhang Y, Chen Q, Qi Y, Zhang X. The XPO1 inhibitor selinexor ameliorates bleomycin-induced pulmonary fibrosis in mice via GBP5/NLRP3 inflammasome signaling. Int Immunopharmacol 2024; 130:111734. [PMID: 38422768 DOI: 10.1016/j.intimp.2024.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Pulmonary fibrosis is an irreversible and progressive lung disease with limited treatments available. Selinexor (Sel), an orally available, small-molecule, selective inhibitor of XPO1, exhibits notable antitumor, anti-inflammatory and antiviral activities. However, its potential role in treating pulmonary fibrosis is unknown. C57BL/6J mice were used to establish a pulmonary fibrosis model by intratracheal administration of bleomycin (BLM). Subsequently, Sel was administered intraperitoneally. Our data demonstrated that Sel administration ameliorated BLM-induced pulmonary fibrosis by increasing mouse body weights; reducing H&E staining, Masson staining scores, and shadows in mouse lung computed tomography (CT) images, decreasing the total cell and neutrophil counts in the lung and bronchoalveolar lavage fluid (BALF); and decreasing the levels of TGF-β1. We next confirmed that Sel reduced the deposition of extracellular matrix (ECM) components in the lungs of BLM-induced pulmonary fibrosis mice. We showed that collagen I, alpha-smooth muscle actin (α-SMA), and hydroxyproline levels and the mRNA levels of Col1a1, Eln, Fn1, Ctgf, and Fgf2 were reduced. Mechanistically, tandem mass tags (TMT)- based quantitative proteomics analysis revealed a significant increase in GBP5 in the lungs of BLM mice but a decrease in that of BLM + Sel mice; this phenomenon was confirmed by western blotting and RT-qPCR. NLRP3 inflammasome signaling was significantly enriched in both the BLM group and BLM + Sel group based on GO and KEGG analyses of differentially expressed proteins between the groups. Furthermore, Sel reduced the expression of NLRP3, cleaved caspase 1, and ASC in vivo and in vitro, and decreased the levels of IL-1β, IL-18, and IFN-r in lung tissue and BALF. SiRNA-GBP5 inhibited NLRP3 signaling in vitro, and overexpression of GBP5 inhibited the protective effect of Sel against BLM-induced cellular injury. Taken together, our findings indicate that Sel ameliorates BLM-induced pulmonary fibrosis by targeting GBP5 via NLRP3 inflammasome signaling. Thus, the XPO1 inhibitor - Sel might be a potential therapeutic agent for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003 Zhengzhou, Henan, China
| | - Yihua Zhang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003 Zhengzhou, Henan, China; Xinxiang Medical University, 453003 Xinxiang, Henan, China
| | - Qi Chen
- Henan University People's Hospital, 450003 Zhengzhou, Henan, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003 Zhengzhou, Henan, China; Henan University People's Hospital, 450003 Zhengzhou, Henan, China.
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003 Zhengzhou, Henan, China; Xinxiang Medical University, 453003 Xinxiang, Henan, China.
| |
Collapse
|
6
|
Altan M, Tu J, Milton DR, Yilmaz B, Tian Y, Fossella FV, Mott FE, Blumenschein GR, Stephen B, Karp DD, Meric-Bernstam F, Heymach JV, Naing A. Safety, tolerability, and clinical activity of selinexor in combination with pembrolizumab in treatment of metastatic non-small cell lung cancer. Cancer 2023; 129:2685-2693. [PMID: 37129197 DOI: 10.1002/cncr.34820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In lung cancer, overexpression of nuclear export proteins can result in inactivation of critical tumor suppressor proteins and cell-cycle regulators. Selective suppression of nuclear export proteins has immunomodulatory activities. Here, clinical safety and early efficacy data are presented on the combination of pembrolizumab and an oral selective nuclear export inhibitor, selinexor, for the treatment of metastatic non-small cell lung cancer (mNSCLC). METHODS The primary objective of this prospective investigator-initiated study was to determine the safety and tolerability of selinexor in combination with pembrolizumab in patients with mNSCLC. Secondary objectives included determination of objective tumor response rate, disease control rate, and progression-free survival duration. RESULTS A total of 17 patients were included in the final analysis. Fifteen (88%) received more than two lines of prior systemic therapy and 10 (59%) had prior exposure to anti-PD-1/programmed death-ligand 1 (PD-L1) therapy. The median age was 67.5 years. Ten patients had grade ≥3 adverse events related to selinexor treatment. Responses to treatment occurred in patients who did and did not undergo previous anti-PD-1/PD-L1 therapy and in patients with activating driver mutations. The median overall survival and progression-free survival were 11.4 months (95% CI, 3.4-19.8 months) and 3.0 months (95% CI, 1.7-5.7 months), respectively. The overall response rate was 18% and the 6-month disease control rate was 24%. CONCLUSIONS Selinexor in combination with pembrolizumab demonstrated promising antitumor activity in patients with mNSCLC, including those who had previously received anti-PD-1/PD-L1 therapy. The therapy-related toxic effects were consistent with the prior safety data for both drugs, and no overlapping toxic effects were observed. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02419495. PLAIN LANGUAGE SUMMARY New strategies to prevent or reverse resistance to immune checkpoint inhibitors are under investigation. Selective inhibitors of nuclear export proteins, such as selinexor, can induce restoration of tumor-suppressing pathways and induce potent immunomodulatory activities. This article contains the clinical safety and early efficacy data on the combination of pembrolizumab and selinexor in treatment of metastatic non-small cell lung cancer.
Collapse
Affiliation(s)
- Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Janet Tu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bulent Yilmaz
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanyan Tian
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frank V Fossella
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frank E Mott
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bettzy Stephen
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel D Karp
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Funda Meric-Bernstam
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Xu J, Wu S, Li G. Selective nuclear export inhibitor KPT‑330 enhances the radiosensitivity of esophageal carcinoma cells. Exp Ther Med 2023; 26:326. [PMID: 37346402 PMCID: PMC10280315 DOI: 10.3892/etm.2023.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/17/2023] [Indexed: 06/23/2023] Open
Abstract
Although the concurrent application of definitive chemoradiation has improved the prognosis of patients with esophageal cancer, resistance to therapy poses a major threat to treatment. The present study aimed to investigate whether the use of KPT-330, a selective inhibitor of nuclear export (SINE), enhances the radiosensitivity of esophageal cancer cells. Immunohistochemical staining assays were employed to evaluate the expression and prognostic significance of chromosome maintenance protein-1 (CRM1) in 111 esophageal carcinoma (ESCA) tissues collected from patients with esophageal squamous cell carcinoma. The data showed that the expression of CRM1 in the ESCA tissues was significantly upregulated compared with that in the normal adjacent tissues. Furthermore, patients with higher CRM1 expression had significantly decreased overall survival compared with those with lower CRM1 expression. The effects of KPT-330 and/or radiation on ECA109 human ESCA cells were also evaluated. KPT-330 suppressed the viability of the ECA109 cells. A colony formation assay demonstrated that a combination of KPT-330 and radiation significantly decreased ECA109 cell proliferation. Flow cytometric analysis showed that KPT-330 increased the arrest of the ECA109 cells at the G2/M phase and induced apoptosis. In addition, western blotting revealed that the inhibitory effect of KPT-330 on cell viability was associated with the increased expression of p53 and promotion of the nuclear accumulation of the p53 protein. In conclusion, the present study demonstrated that CRM1 expression is associated with the prognosis of patients with ESCA following radiotherapy. The inhibition of CRM1 expression by the SINE inhibitor KPT-330 increases radiosensitivity and is potentially useful in a combination treatment strategy for esophageal cancers.
Collapse
Affiliation(s)
- Jing Xu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shan Wu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Varma G, Goldstein J, Advani RH. Novel agents in relapsed/refractory diffuse large B-cell lymphoma. Hematol Oncol 2023; 41 Suppl 1:92-106. [PMID: 37294966 DOI: 10.1002/hon.3143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
Patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL), ineligible for or relapsing after autologous stem-cell transplant or chimeric antigen-receptor T-cell therapies have poor outcomes. Several novel agents, polatuzumab vedotin, tafasitamab, loncastuximab tesirine, and selinexor, have been approved and offer new opportunities for this difficult to treat population. Studies are evaluating combination of these agents with chemotherapy and other emerging therapies. Additionally, advances in our understanding of DLBCL biology, genetics, and immune microenvironment have allowed for the identification of new therapeutic targets like Ikaros and Aiolos, IRAK4, MALT1, and CD47 with several agents in ongoing clinical trials. In this chapter we review updated data supporting the use of the approved agents and discuss other emerging novel therapies for patients with R/R DLBCL.
Collapse
Affiliation(s)
- Gaurav Varma
- Division of Hematology and Medical Oncology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Jordan Goldstein
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA
| | - Ranjana H Advani
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Wen T, Geng M, Bai E, Wang X, Miao H, Chen Z, Zhou H, Wang J, Shi J, Zhang Y, Lei M, Zhu Y. KPT-330 and Y219 exert a synergistic antitumor effect in triple-negative breast cancer through inhibiting NF-κB signaling. FEBS Open Bio 2023; 13:751-762. [PMID: 36847599 PMCID: PMC10068319 DOI: 10.1002/2211-5463.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, which has poor prognosis due to the lack of effective targeted drugs. KPT-330, an inhibitor of the nuclear export protein CRM-1, has been widely used in clinical medicine. Y219, a novel proteasome inhibitor designed by our group, shows superior efficacy, reduced toxicity, and reduced off-target effects as compared to the proteasome inhibitor bortezomib. In this study, we investigated the synergistic effect of KPT-330 and Y219 against TNBC cells, as well as the underlying mechanisms. We report that combination treatment with KPT-330 and Y219 synergistically inhibited the viability of TNBC cells in vitro and in vivo. Further analysis revealed that the combined use of KPT-330 and Y219 induced G2-M phase arrest and apoptosis in TNBC cells, and attenuated nuclear factor kappa B (NF-κB) signaling by facilitating nuclear localization of IκB-α. Collectively, these results suggest that the combined use of KPT-330 and Y219 may be an effective therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Tiantian Wen
- College of Life Science, Nanjing Normal University, China
| | - Mengzhu Geng
- College of Life Science, Nanjing Normal University, China
| | - Enhe Bai
- College of Life Science, Nanjing Normal University, China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, China
| | - Hang Miao
- College of Science, Nanjing Forestry University, China
| | - Zhimeng Chen
- College of Science, Nanjing Forestry University, China
| | - Hui Zhou
- College of Life Science, Nanjing Normal University, China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Jingmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Yin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| | - Meng Lei
- College of Science, Nanjing Forestry University, China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, China
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| |
Collapse
|
10
|
Coutinho DF, Mundi PS, Marks LJ, Burke C, Ortiz MV, Diolaiti D, Bird L, Vallance KL, Ibáñez G, You D, Long M, Rosales N, Grunn A, Ndengu A, Siddiquee A, Gaviria ES, Rainey AR, Fazlollahi L, Hosoi H, Califano A, Kung AL, Dela Cruz FS. Validation of a non-oncogene encoded vulnerability to exportin 1 inhibition in pediatric renal tumors. MED 2022; 3:774-791.e7. [PMID: 36195086 PMCID: PMC9669237 DOI: 10.1016/j.medj.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Malignant rhabdoid tumors (MRTs) and Wilms' tumors (WTs) are rare and aggressive renal tumors of infants and young children comprising ∼5% of all pediatric cancers. MRTs are among the most genomically stable cancers, and although WTs are genomically heterogeneous, both generally lack therapeutically targetable genetic mutations. METHODS Comparative protein activity analysis of MRTs (n = 68) and WTs (n = 132) across TCGA and TARGET cohorts, using metaVIPER, revealed elevated exportin 1 (XPO1) inferred activity. In vitro studies were performed on a panel of MRT and WT cell lines to evaluate effects on proliferation and cell-cycle progression following treatment with the selective XPO1 inhibitor selinexor. In vivo anti-tumor activity was assessed in patient-derived xenograft (PDX) models of MRTs and WTs. FINDINGS metaVIPER analysis identified markedly aberrant activation of XPO1 in MRTs and WTs compared with other tumor types. All MRT and most WT cell lines demonstrated baseline, aberrant XPO1 activity with in vitro sensitivity to selinexor via cell-cycle arrest and induction of apoptosis. In vivo, XPO1 inhibitors significantly abrogated tumor growth in PDX models, inducing effective disease control with sustained treatment. Corroborating human relevance, we present a case report of a child with multiply relapsed WTs with prolonged disease control on selinexor. CONCLUSIONS We report on a novel systems-biology-based comparative framework to identify non-genetically encoded vulnerabilities in genomically quiescent pediatric cancers. These results have provided preclinical rationale for investigation of XPO1 inhibitors in an upcoming investigator-initiated clinical trial of selinexor in children with MRTs and WTs and offer opportunities for exploration of inferred XPO1 activity as a potential predictive biomarker for response. FUNDING This work was funded by CureSearch for Children's Cancer, Alan B. Slifka Foundation, NIH (U01 CA217858, S10 OD012351, and S10 OD021764), Michael's Miracle Cure, Hyundai Hope on Wheels, Cannonball Kids Cancer, Conquer Cancer the ASCO Foundation, Cycle for Survival, Paulie Strong Foundation, and the Grayson Fund.
Collapse
Affiliation(s)
- Diego F Coutinho
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prabhjot S Mundi
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Lianna J Marks
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chelsey Burke
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Diolaiti
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lauren Bird
- Cook Children's Hematology and Oncology, Fort Worth, TX 76104, USA
| | - Kelly L Vallance
- Cook Children's Hematology and Oncology, Fort Worth, TX 76104, USA
| | - Glorymar Ibáñez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Long
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nestor Rosales
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adina Grunn
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Andoyo Ndengu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Armaan Siddiquee
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ervin S Gaviria
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Allison R Rainey
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
11
|
The efficacy of selinexor (KPT-330), an XPO1 inhibitor, on non-hematologic cancers: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2139-2155. [PMID: 35941226 DOI: 10.1007/s00432-022-04247-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Selinexor is a novel XPO1 inhibitor which inhibits the export of tumor suppressor proteins and oncoprotein mRNAs, leading to cell-cycle arrest and apoptosis in cancer cells. While selinexor is currently FDA approved to treat multiple myeloma, compelling preclinical and early clinical studies reveal selinexor's efficacy in treating hematologic and non-hematologic malignancies, including sarcoma, gastric, bladder, prostate, breast, ovarian, skin, lung, and brain cancers. Current reviews of selinexor primarily highlight its use in hematologic malignancies; however, this review seeks to summarize the recent evidence of selinexor treatment in solid tumors. METHODS Pertinent literature searches in PubMed and the Karyopharm Therapeutics website for selinexor and non-hematologic malignancies preclinical and clinical trials. RESULTS This review provides evidence that selinexor is a promising agent used alone or in combination with other anticancer medications in non-hematologic malignancies. CONCLUSION Further clinical investigation of selinexor treatment for solid malignancies is warranted.
Collapse
|
12
|
Enhancement of MDM2 Inhibitory Effects through Blocking Nuclear Export Mechanisms in Ovarian Cancer Cells. Cancer Genet 2022; 266-267:57-68. [DOI: 10.1016/j.cancergen.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
|
13
|
Guo Y, Liu Z, Duan L, Shen H, Ding K, Fu R. Selinexor synergizes with azacitidine to eliminate myelodysplastic syndrome cells through p53 nuclear accumulation. Invest New Drugs 2022; 40:738-746. [PMID: 35576022 DOI: 10.1007/s10637-022-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal malignancies of multipotent hematopoietic stem cells, characterized by ineffective hematopoiesis leading to cytopenia. Hypomethylating agents, including azacitidine, have been used for treating MDS with some success; however, the overall survival rate remains poor and, therefore, finding new therapies is necessary. Selinexor, which exerts anticancer effects against some hematologic tumors, is a nuclear export protein inhibitor that blocks cell proliferation and induces apoptosis in various cancer cell lines. We investigated the effects of combined selinexor and azacitidine administration on two MDS cell lines, namely SKM-1 and MUTZ-1. Cells were subjected to a proliferation assay, and the effects of each drug alone, and in combination, were compared. Changes in apoptosis and the cell cycle between groups were also analyzed. Western blotting was conducted to identify the underlying mechanism of action of combined selinexor and azacitidine therapy. The results revealed that the combination of selinexor and azacitidine synergistically inhibited MDS cell proliferation and arrested the cell cycle at the G2/M phase. This combination also promoted MDS cell apoptosis and enhanced p53 accumulation in the nucleus, thereby allowing p53 to be activated and to function as a tumor suppressor. Overall, our results indicate that the combination of selinexor and azacitidine may be a promising approach for treating MDS.
Collapse
Affiliation(s)
- Yixuan Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lixiang Duan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Hematology, Yuncheng Central Hospital, Shanxi, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
14
|
Khan HY, Nagasaka M, Li Y, Aboukameel A, Uddin MH, Sexton R, Bannoura S, Mzannar Y, Al-Hallak MN, Kim S, Beydoun R, Landesman Y, Mamdani H, Uprety D, Philip PA, Mohammad RM, Shields AF, Azmi AS. Inhibitor of the Nuclear Transport Protein XPO1 Enhances the Anticancer Efficacy of KRAS G12C Inhibitors in Preclinical Models of KRAS G12C-Mutant Cancers. CANCER RESEARCH COMMUNICATIONS 2022; 2:342-352. [PMID: 35573474 PMCID: PMC9105196 DOI: 10.1158/2767-9764.crc-21-0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The identification of molecules that can bind covalently to KRAS G12C and lock it in an inactive GDP-bound conformation has opened the door to targeting KRAS G12C selectively. These agents have shown promise in preclinical tumor models and clinical trials. FDA has recently granted approval to sotorasib for KRAS G12C mutated non-small cell lung cancer (NSCLC). However, patients receiving these agents as monotherapy generally develop drug resistance over time. This necessitates the development of multi-targeted approaches that can potentially sensitize tumors to KRAS inhibitors. We generated KRAS G12C inhibitor-resistant cell lines and observed that they exhibit sensitivity toward selinexor, a selective inhibitor of nuclear export protein exportin1 (XPO1), as a single agent. KRAS G12C inhibitors in combination with selinexor suppressed the proliferation of KRAS G12C mutant cancer cell lines in a synergistic manner. Moreover, combined treatment of selinexor with KRAS G12C inhibitors resulted in enhanced spheroid disintegration, reduction in the number and size of colonies formed by G12C mutant cancer cells. Mechanistically, the combination of selinexor with KRAS G12C inhibitors suppressed cell growth signaling and downregulated the expression of cell cycle markers, KRAS and NF-kB as well as increased nuclear accumulation of tumor suppressor protein Rb. In an in vivo KRAS G12C cell-derived xenograft model, oral administration of a combination of selinexor and sotorasib was demonstrated to reduce tumor burden and enhance survival. In conclusion, we have shown that the nuclear transport protein XPO1 inhibitor can enhance the anticancer activity of KRAS G12C inhibitors in preclinical cancer models. Significance In this study, combining nuclear transport inhibitor selinexor with KRAS G12C inhibitors has resulted in potent antitumor effects in preclinical cancer models. This can be an effective combination therapy for cancer patients that do not respond or develop resistance to KRAS G12C inhibitor treatment.
Collapse
Affiliation(s)
- Husain Yar Khan
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Orange CA 92868, USA; Chao Family Comprehensive Cancer Center, Orange, CA 92868, USA.,Division of Neurology, Department of Internal Medicine, St. Marianna University, Kawasaki, Japan
| | - Yiwei Li
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Amro Aboukameel
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Md Hafiz Uddin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Rachel Sexton
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Sahar Bannoura
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Yousef Mzannar
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Steve Kim
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Rafic Beydoun
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | | | - Hirva Mamdani
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Dipesh Uprety
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Philip A Philip
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Ramzi M Mohammad
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Anthony F Shields
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Asfar S Azmi
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201, USA
| |
Collapse
|
15
|
Ho J, Heong V, Peng Yong W, Soo R, Ean Chee C, Wong A, Sundar R, Liang Thian Y, Gopinathan A, Yan Pang M, Koe P, Nathan Jeraj S, Pyar Soe P, Yar Soe M, Tang T, Ng MC, Tai DW, Tan TJ, Xu H, Chang H, Landesman Y, Shah J, Shacham S, Chin Lee S, Tan DS, Cher Goh B, Tan DS. A phase 1 study of the safety, pharmacokinetics and pharmacodynamics of escalating doses followed by dose expansion of the selective inhibitor of nuclear export (SINE) selinexor in Asian patients with advanced or metastatic malignancies. Ther Adv Med Oncol 2022; 14:17588359221087555. [PMID: 35432603 PMCID: PMC9008867 DOI: 10.1177/17588359221087555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose: This phase 1 study aims to evaluate the tolerability and the recommended
phase 2 dose of selinexor in Asian patients with advanced or metastatic
malignancies. Experimental Design: A total of 105 patients with advanced malignancies were enrolled from two
sites in Singapore (National University Hospital and the National Cancer
Centre, Singapore) from 24 February 2014 to 14 January 2019. We investigated
four dosing schedules of selinexor in a 3 + 3 dose escalation design with an
additional Phase 1b expansion cohort. Adverse events were graded with the
NCI Common Terminology Criteria for Adverse Events v 4.03. Pharmacodynamic
assessments included nuclear cytoplasmic localization of p27, XPO1 cargo
proteins pre and post selinexor dosing and pharmacokinetic assessments were
conducted at doses between 40 and 60 mg/m2. Results: In our Asian patient cohort, dosing at 40 mg/m2 given 2 out of
3 weeks, was the most tolerable for our patients. At this dose level, grade
3 adverse events included fatigue (8%), hyponatremia (23%), vomiting (5%),
thrombocytopenia (5%), and anaemia (2%). Selinexor had a rapid oral
absorption with median Tmax of 2 h and no PK accumulation after
multiple doses of tested regimens. Complete responses were seen in two
lymphoma patients. Partial responses were noted in three diffuse large B
cell lymphomas, one Hodgkin’s lymphoma and thymic carcinoma patient,
respectively. Conclusion: Selinexor is tolerated by Asian patients at 40 mg/m2 twice a week
given 2 out of 3 weeks. A 1-week drug holiday was needed as our patients
could not tolerate the current approved continuous dosing regimens because
of persistent grade 3 fatigue, anorexia and hyponatremia.
Collapse
Affiliation(s)
- Jingshan Ho
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Valerie Heong
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore
| | - Wei Peng Yong
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Ross Soo
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Cheng Ean Chee
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Andrea Wong
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Raghav Sundar
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Yee Liang Thian
- Department of Radiology, National University Hospital, Singapore
| | - Anil Gopinathan
- Department of Radiology, National University Hospital, Singapore
| | - Mei Yan Pang
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Priscillia Koe
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Santhiay Nathan Jeraj
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Phyu Pyar Soe
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Mu Yar Soe
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Tiffany Tang
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Matthew C.H. Ng
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - David W.M. Tai
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Tira J.Y. Tan
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Hongmei Xu
- Karyopharm Therapeutics, Newton, MA, USA
| | - Hua Chang
- Karyopharm Therapeutics, Newton, MA, USA
| | | | - Jatin Shah
- Karyopharm Therapeutics, Newton, MA, USA
| | | | - Soo Chin Lee
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daniel S.W. Tan
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Boon Cher Goh
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - David S.P. Tan
- Department of Haematology and Oncology, National University Cancer Institute, NUHS Tower Block, Level 7, 1E Kent Ridge Road, Singapore 119228
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
16
|
Liu S, Qiao W, Sun Q, Luo Y. Chromosome Region Maintenance 1 (XPO1/CRM1) as an Anticancer Target and Discovery of Its Inhibitor. J Med Chem 2021; 64:15534-15548. [PMID: 34669417 DOI: 10.1021/acs.jmedchem.1c01145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor protein and contributes to cell homeostasis by mediating the transport of cargo from the nucleus to the cytoplasm. CRM1 is a therapeutic target comprised of several tumor types, including osteosarcoma, multiple myeloma, gliomas, and pancreatic cancer. In the past decade, dozens of CRM1 inhibitors have been discovered and developed, including KPT-330, which received FDA approval for multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) in 2019 and 2020, respectively. This review summarizes the biological functions of CRM1, the current understanding of the role CRM1 plays in cancer, the discovery of CRM1 small-molecule inhibitors, preclinical and clinical studies on KPT-330, and other recently developed inhibitors. A new CRM1 inhibition mechanism and structural dynamics are discussed. Through this review, we hope to guide the future design and optimization of CRM1 inhibitors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Rosen JC, Weiss J, Pham NA, Li Q, Martins-Filho SN, Wang Y, Tsao MS, Moghal N. Antitumor efficacy of XPO1 inhibitor Selinexor in KRAS-mutant lung adenocarcinoma patient-derived xenografts. Transl Oncol 2021; 14:101179. [PMID: 34284202 PMCID: PMC8313753 DOI: 10.1016/j.tranon.2021.101179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022] Open
Abstract
Gain-of-function Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations occur in 25% of lung adenocarcinomas, and these tumors are challenging to treat. Some preclinical work, largely based on cell lines, suggested KRASmut lung cancers are especially dependent on the nuclear export protein exportin-1 (XPO1), while other work supports XPO1 being a broader cancer dependency. To investigate the sensitivity of KRASmut lung cancers to XPO1 inhibition in models that more closely match clinical tumors, we treated 10 independently established lung cancer patient-derived tumor xenografts (PDXs) with the clinical XPO1 inhibitor, Selinexor. Monotherapy with Selinexor reduced tumor growth in all KRASmut PDXs, which included 4 different codon mutations, and was more effective than the clinical MEK1/2 inhibitor, Trametinib. Selinexor was equally effective in KRASG12C and KRASG12D tumors, with TP53 mutations being a biomarker for a weaker drug response. By mining genome-wide dropout datasets, we identified XPO1 as a universal cancer cell dependency and confirmed this functionally in two KRASWT PDX models harboring kinase drivers. However, targeted kinase inhibitors were more effective than Selinexor in these models. Our findings support continued investigation of XPO1 inhibitors in KRASmut lung adenocarcinoma, regardless of the codon alteration.
Collapse
Affiliation(s)
- Joshua C Rosen
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jessica Weiss
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5T 3M7, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Sebastiao N Martins-Filho
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yuhui Wang
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
18
|
Nagasaka M, Asad MFB, Al Hallak MN, Uddin MH, Sukari A, Baca Y, Xiu J, Magee D, Mamdani H, Uprety D, Kim C, Xia B, Liu SV, Nieva JJ, Lopes G, Bepler G, Borghaei H, Demeure MJ, Raez LE, Ma PC, Puri S, Korn WM, Azmi AS. Impact of XPO1 mutations on survival outcomes in metastatic non-small cell lung cancer (NSCLC). Lung Cancer 2021; 160:92-98. [PMID: 34482103 PMCID: PMC8853639 DOI: 10.1016/j.lungcan.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/08/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nuclear protein transport is essential in guiding the traffic of important proteins and RNAs between the nucleus and cytoplasm. Export of proteins from the nucleus is mostly regulated by Exportin 1 (XPO1). In cancer, XPO1 is almost universally hyperactive and can promote the export of important tumor suppressors to the cytoplasm. Currently, there are no studies evaluating XPO1 amplifications and mutations in NSCLC and the impact on outcomes. METHODS Tumor samples were analyzed using next-generation sequencing (NGS) (NextSeq, 592 Genes), immunohistochemistry (IHC), and whole transcriptome sequencing (WTS, NovaSeq) (Caris Life Sciences, Phoenix, AZ). Survival was extracted from insurance claims data and calculated from time of tissue collection to last contact using Kaplan-Meier estimate. RESULTS Among 18,218 NSCLC tumors sequenced, 26 harbored XPO1 mutations and 24 had amplifications. XPO1 mutant tumors were more likely to have high TMB (79% vs. 52%, p = 0.007) and less likely to have high PD-L1 (32% vs. 68%, p = 0.03). KRAS co-mutations were seen in 19% (n = 5) and EGFR co-mutations were rare (n = 2). Among the 17,449 NSCLC tumors with clinical data, there were 24 XPO1 mutant. Comparison of survival between XPO1 mutant and WT showed a negative association with a hazard ratio (HR) of 1.932 (95% CI: 1.144-3.264 p = 0.012). XPO1 amplification was not associated with survival. CONCLUSIONS XPO1 pathogenic mutations were associated with a poor survival in NSCLC. Although XPO1 mutations are rare in NSCLC, further studies to assess its associations with treatment responses are warranted.
Collapse
Affiliation(s)
- Misako Nagasaka
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA; Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
| | - Mohammad Fahad B Asad
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Md Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | | | | | - Dan Magee
- Caris Life Sciences, Phoenix, AZ, USA
| | - Hirva Mamdani
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Dipesh Uprety
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Chul Kim
- Georgetown University, Washington, DC, USA
| | - Bing Xia
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Jorge J Nieva
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Gilberto Lopes
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gerold Bepler
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | | | - Michael J Demeure
- Hoag Family Cancer Institute, Newport Beach, CA, USA; Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Luis E Raez
- Memorial Cancer Institute/Florida International University, Miami, FL, USA
| | - Patrick C Ma
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sonam Puri
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | | | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
19
|
Marretta AL, Di Lorenzo G, Ribera D, Cannella L, von Arx C, Bracigliano A, Clemente O, Tafuto R, Pizzolorusso A, Tafuto S. Selinexor and the Selective Inhibition of Nuclear Export: A New Perspective on the Treatment of Sarcomas and Other Solid and Non-Solid Tumors. Pharmaceutics 2021; 13:pharmaceutics13091522. [PMID: 34575598 PMCID: PMC8466603 DOI: 10.3390/pharmaceutics13091522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/05/2022] Open
Abstract
Nucleocytoplasmic transport has been found dysregulated in many types of cancer and is often described as a poor prognostic factor. Specifically, Exportin-1 (XPO1) has been found overexpressed in many tumors and has become an attractive target in molecular oncology and therapeutics development. The selective inhibitor of nuclear export, Selinexor, is one of the most scientifically interesting drugs that targets XPO1 in clinical development. In this review, we summarized the most relevant preclinical and clinical results achieved for non-solid tumors, sarcomas, and other kind of solid tumors.
Collapse
Affiliation(s)
- Antonella Lucia Marretta
- Department of Clinical and Surgery Oncology Unit, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Giuseppe Di Lorenzo
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori—IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy; (G.D.L.); (L.C.); (O.C.); (A.P.); (S.T.)
| | - Dario Ribera
- Department of Clinical and Surgery Oncology Unit, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
- Correspondence:
| | - Lucia Cannella
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori—IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy; (G.D.L.); (L.C.); (O.C.); (A.P.); (S.T.)
| | - Claudia von Arx
- Department of Breast and Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy;
| | - Alessandra Bracigliano
- Nuclear Medicine Unit, Istituto Nazionale Tumori—IRCCS, Fondazione “G. Pascale”, Via M. Semmola 53, 80131 Naples, Italy;
| | - Ottavia Clemente
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori—IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy; (G.D.L.); (L.C.); (O.C.); (A.P.); (S.T.)
| | - Roberto Tafuto
- Division of Neurosurgery, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Antonio Pizzolorusso
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori—IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy; (G.D.L.); (L.C.); (O.C.); (A.P.); (S.T.)
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori—IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy; (G.D.L.); (L.C.); (O.C.); (A.P.); (S.T.)
| |
Collapse
|
20
|
Pan L, Cheng C, Duan P, Chen K, Wu Y, Wu Z. XPO1/CRM1 is a promising prognostic indicator for neuroblastoma and represented a therapeutic target by selective inhibitor verdinexor. J Exp Clin Cancer Res 2021; 40:255. [PMID: 34384466 PMCID: PMC8359549 DOI: 10.1186/s13046-021-02044-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND High-risk neuroblastoma patients have a 5-year survival rate of less than 50%. It's an urgent need to identify new therapeutic targets and the appropriate drugs. Exportin-1 (XPO1), also known as chromosomal region maintenance 1, plays important roles in the progression of tumorigenesis. However, the prognostic and therapeutic values of XPO1 in neuroblastoma have not been reported. METHODS Correlations between XPO1 expression level and clinical characteristics were analyzed using the Neuroblastoma Research Consortium (NRC) dataset and tissue microarray analysis. Cell proliferation assays, colony formation assays, apoptosis assays, cell cycle analysis were performed to analyze the anti-tumor effects of verdinexor (KPT-335) in vitro. Western blot and mRNA sequencing were performed to explore underlying mechanism. In vivo anti-tumor effects of verdinexor were studied in a neuroblastoma xenograft model. RESULTS Higher XPO1 levels were associated with advanced stage and poor prognosis in neuroblastoma patients. The specific inhibitor of XPO1 verdinexor suppressed the neuroblastoma cell growth both in vitro and in vivo. Specifically, inhibition of XPO1 suppressed the neuroblastoma cell proliferation and induced cell apoptosis by nuclear accumulation of FOXO1 and RB1 in the neuroblastoma due to the inhibition of the PI3K/AKT pathway, and induced G0/G1 phase cell cycle arrest by activation of P53 function. CONCLUSIONS XPO1 is a promising prognostic indicator for neuroblastoma and a novel target for antitumor treatment with selective inhibitor verdinexor.
Collapse
Affiliation(s)
- Lijia Pan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Peiwen Duan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China.
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China.
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China.
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China.
| |
Collapse
|
21
|
Fares B, Berger L, Bangiev-Girsh E, Kakun RR, Ghannam-Shahbari D, Tabach Y, Zohar Y, Gottlieb E, Perets R. PAX8 plays an essential antiapoptotic role in uterine serous papillary cancer. Oncogene 2021; 40:5275-5285. [PMID: 34244607 DOI: 10.1038/s41388-021-01925-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Endometrial carcinoma (EC) is the fourth-most common cancer in women in the United States, and generally carries a favorable prognosis. However, about 10% of EC patients have a rare and aggressive form, uterine serous papillary carcinoma (USPC), which carries a much higher mortality rate. The developmental transcription factor PAX8 is expressed in nearly 100% of USPCs. We show that PAX8 plays a critical antiapoptotic role in USPC and this role is established via transcriptional activation of two aberrant signaling pathways. First, PAX8 positively regulates mutated p53, and missense p53 mutations have an oncogenic gain of function effect. Second, PAX8 directly transcriptionally regulates p21, in a p53-independent manner, and p21 acquires a growth promoting role that is mediated via cytoplasmic localization of the protein. We propose that mutated p53 and cytoplasmic p21 can independently mediate the pro-proliferative role of PAX8 in USPC. In addition, we performed a genome-wide transcriptome analysis to detect pathways that are regulated by PAX8, and propose that metabolism and HIF-1alpha -related pathways are potential candidates for mediating the role of PAX8 in USPC. Taken together our findings demonstrate for the first time that PAX8 is an essential lineage marker in USPC, and suggest its mechanism of action.
Collapse
MESH Headings
- PAX8 Transcription Factor/genetics
- PAX8 Transcription Factor/metabolism
- Humans
- Female
- Uterine Neoplasms/genetics
- Uterine Neoplasms/pathology
- Uterine Neoplasms/metabolism
- Apoptosis/genetics
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Gene Expression Regulation, Neoplastic
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Signal Transduction/genetics
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/metabolism
Collapse
Affiliation(s)
- Basem Fares
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Liron Berger
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Einav Bangiev-Girsh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Reli Rachel Kakun
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Dima Ghannam-Shahbari
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Yuval Tabach
- Department of Developmental Biology & Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Perets
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
22
|
Suraweera A, Duijf PHG, Jekimovs C, Schrobback K, Liu C, Adams MN, O’Byrne KJ, Richard DJ. COMMD1, from the Repair of DNA Double Strand Breaks, to a Novel Anti-Cancer Therapeutic Target. Cancers (Basel) 2021; 13:830. [PMID: 33669398 PMCID: PMC7920454 DOI: 10.3390/cancers13040830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has the highest incidence and mortality among all cancers, with non-small cell lung cancer (NSCLC) accounting for 85-90% of all lung cancers. Here we investigated the function of COMMD1 in the repair of DNA double strand breaks (DSBs) and as a prognostic and therapeutic target in NSCLC. COMMD1 function in DSB repair was investigated using reporter assays in COMMD1-siRNA-depleted cells. The role of COMMD1 in NSCLC was investigated using bioinformatic analysis, qRT-PCR and immunoblotting of control and NSCLC cells, tissue microarrays, cell viability and cell cycle experiments. DNA repair assays demonstrated that COMMD1 is required for the efficient repair of DSBs and reporter assays showed that COMMD1 functions in both non-homologous-end-joining and homologous recombination. Bioinformatic analysis showed that COMMD1 is upregulated in NSCLC, with high levels of COMMD1 associated with poor patient prognosis. COMMD1 mRNA and protein were upregulated across a panel of NSCLC cell lines and siRNA-mediated depletion of COMMD1 decreased cell proliferation and reduced cell viability of NSCLC, with enhanced death after exposure to DNA damaging-agents. Bioinformatic analyses demonstrated that COMMD1 levels positively correlate with the gene ontology DNA repair gene set enrichment signature in NSCLC. Taken together, COMMD1 functions in DSB repair, is a prognostic maker in NSCLC and is potentially a novel anti-cancer therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Pascal H. G. Duijf
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Centre for Data Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Christian Jekimovs
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Karsten Schrobback
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Cheng Liu
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia;
- Envoi Specialist Pathologists, 5/38 Bishop Street, Kelvin Grove, QLD 4059, Australia
| | - Mark N. Adams
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Kenneth J. O’Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Derek J. Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
23
|
Turner JG, Cui Y, Bauer AA, Dawson JL, Gomez JA, Kim J, Cubitt CL, Nishihori T, Dalton WS, Sullivan DM. Melphalan and Exportin 1 Inhibitors Exert Synergistic Antitumor Effects in Preclinical Models of Human Multiple Myeloma. Cancer Res 2020; 80:5344-5354. [PMID: 33023948 PMCID: PMC7718436 DOI: 10.1158/0008-5472.can-19-0677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023]
Abstract
High-dose chemotherapy with melphalan followed by autologous transplantation is a first-line treatment for multiple myeloma. Here, we present preclinical evidence that this treatment may be significantly improved by the addition of exportin 1 inhibitors (XPO1i). The XPO1i selinexor, eltanexor, and KOS-2464 sensitized human multiple myeloma cells to melphalan. Human 8226 and U266 multiple myeloma cell lines and melphalan-resistant cell lines (8226-LR5 and U266-LR6) were highly sensitized to melphalan by XPO1i. Multiple myeloma cells from newly diagnosed and relapsed/refractory multiple myeloma patients were also sensitized by XPO1i to melphalan. In NOD/SCIDγ mice challenged with either parental 8226 or U266 multiple myeloma and melphalan-resistant multiple myeloma tumors, XPO1i/melphalan combination treatments demonstrated stronger synergistic antitumor effects than single-agent melphalan with minimal toxicity. Synergistic cell death resulted from increased XPO1i/melphalan-induced DNA damage in a dose-dependent manner and decreased DNA repair. In addition, repair of melphalan-induced DNA damage was inhibited by selinexor, which decreased melphalan-induced monoubiquitination of FANCD2 in multiple myeloma cells. Knockdown of FANCD2 was found to replicate the effect of selinexor when used with melphalan, increasing DNA damage (γH2AX) by inhibiting DNA repair. Thus, combination therapies that include selinexor or eltanexor with melphalan may have the potential to improve treatment outcomes of multiple myeloma in melphalan-resistant and newly diagnosed patients. The combination of selinexor and melphalan is currently being investigated in the context of high-dose chemotherapy and autologous transplant (NCT02780609). SIGNIFICANCE: Inhibition of exportin 1 with selinexor synergistically sensitizes human multiple myeloma to melphalan by inhibiting Fanconi anemia pathway-mediated DNA repair.
Collapse
Affiliation(s)
- Joel G Turner
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Yan Cui
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Alexis A Bauer
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jana L Dawson
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Juan A Gomez
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christopher L Cubitt
- Translational Research Core, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Taiga Nishihori
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - William S Dalton
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Daniel M Sullivan
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
24
|
Wei N, Song Y, Zhang F, Sun Z, Zhang X. Transcriptome Profiling of Acquired Gefitinib Resistant Lung Cancer Cells Reveals Dramatically Changed Transcription Programs and New Treatment Targets. Front Oncol 2020; 10:1424. [PMID: 32923394 PMCID: PMC7456826 DOI: 10.3389/fonc.2020.01424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Targeted therapy for lung cancer with epidermal growth factor receptor (EGFR) mutations with tyrosine kinase inhibitors (TKIs) represents one of the major breakthroughs in lung cancer management. However, gradually developed resistance to these drugs prevents sustained clinical benefits and calls for resistant mechanism research and identification of new therapeutic targets. Acquired T790M mutation accounts for the majority of resistance cases, yet transcriptome changes in these cells are less characterized, and it is not known if new treatment targets exist by available drugs. Methods: Transcriptome profiling was performed for lung cancer cell line PC9 and its resistant line PC9GR after long-term exposure to gefitinib through RNA sequencing. Differentially expressed genes and changed pathways were identified along with existing drugs targeting these upregulated genes. Using 144 lung cancer cell lines with both gene expression and drug response data from the cancer cell line encyclopedia (CCLE) and Cancer Therapeutics Response Portal (CTRP), we screened 549 drugs whose response was correlated with these upregulated genes in PC9GR cells, and top drugs were evaluated for their response in both PC9 and PC9GR cells. Results: In addition to the acquired T790M mutation, the resistant PC9GR cells had very different transcription programs from the sensitive PC9 cells. Multiple pathways were changed with the top ones including TNFA signaling, androgen/estrogen response, P53 pathway, MTORC1 signaling, hypoxia, and epithelial mesenchymal transition. Thirty-two upregulated genes had available drugs that can potentially be effective in treating the resistant cells. From the response profiles of CCLE, we found 17 drugs whose responses were associated with at least four of these upregulated genes. Among the four drugs evaluated (dasatinib, KPT-185, trametinib, and pluripotin), all except trametinib demonstrated strong inhibitory effects on the resistant PC9GR cells, among which KPT185 was the most potent. KPT-185 suppressed growth, caused apoptosis, and inhibited migration of the PC9GR cells at similar (or better) rates as the sensitive PC9 cells in a dose-dependent manner. Conclusions: Acquired TKI-resistant lung cancer cells (PC9GR) have dramatically changed transcription and pathway regulation, which expose new treatment targets. Existing drugs may be repurposed to treat those patients with developed resistance to TKIs.
Collapse
Affiliation(s)
- Nan Wei
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yong'an Song
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Fan Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhifu Sun
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Walker JS, Garzon R, Lapalombella R. Selinexor for advanced hematologic malignancies. Leuk Lymphoma 2020; 61:2335-2350. [DOI: 10.1080/10428194.2020.1775210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Janek S. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Azizian NG, Li Y. XPO1-dependent nuclear export as a target for cancer therapy. J Hematol Oncol 2020; 13:61. [PMID: 32487143 PMCID: PMC7268335 DOI: 10.1186/s13045-020-00903-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular homeostasis requires the proper nuclear-cytoplasmic partitioning of large molecules, which is often deregulated in cancer. XPO1 is an export receptor responsible for the nuclear-cytoplasmic transport of hundreds of proteins and multiple RNA species. XPO1 is frequently overexpressed and/or mutated in human cancers and functions as an oncogenic driver. Suppression of XPO1-mediated nuclear export, therefore, presents a unique therapeutic strategy. In this review, we summarize the physiological functions of XPO1 as well as the development of various XPO1 inhibitors and provide an update on the recent clinical trials of the SINE compounds. We also discuss potential future research directions on the molecular function of XPO1 and the clinical application of XPO1 inhibitors.
Collapse
Affiliation(s)
- Nancy G Azizian
- Center for Immunotherapy Research, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Yulin Li
- Center for Immunotherapy Research, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
27
|
Podar K, Shah J, Chari A, Richardson PG, Jagannath S. Selinexor for the treatment of multiple myeloma. Expert Opin Pharmacother 2020; 21:399-408. [PMID: 31957504 DOI: 10.1080/14656566.2019.1707184] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Despite unprecedented advances in the treatment of multiple myeloma (MM), almost all patients develop a disease that is resistant to the five most commonly used and active anti-MM agents. The prognosis for this patient population is particularly poor resulting in an unmet need for additional therapeutic options. Exportin-1 (XPO-1) is a major nuclear export protein of macromolecular cargo frequently overexpressed in MM. Selinexor is a first-in-class, oral Selective-Inhibitor-of-Nuclear-Export (SINE) compound that impedes XPO-1. Based on results of the STORM-trial, selinexor in combination with dexamethasone was granted accelerated FDA approval for patients with penta-refractory MM in July 2019.Areas covered: This article summarizes our up-to-date knowledge on the pathophysiologic role of XPO-1 in MM. Furthermore, it reviews the most recent clinical data on selinexor in combination with dexamethasone and other anti-MM agents; and discusses its safety profile, management strategies; and potential future developments.Expert opinion: Selinexor represents a next-generation-novel agent with an innovative mechanism of action that marks a significant advance in the treatment of heavily pretreated MM patients. Ongoing studies investigate its therapeutic potential also in earlier lines of therapy. Additional data is needed to confirm that selinexor and other SINE compounds are a valuable addition to our current therapeutic armamentarium.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Internal Medicine, Karl Landsteiner University of Health Sciences, University Hospital, Krems, Austria
| | - Jatin Shah
- Karyopharm Therapeutics, Newton, MA, USA
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul G Richardson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
28
|
DNA-Methylation-Caused Downregulation of miR-30 Contributes to the High Expression of XPO1 and the Aggressive Growth of Tumors in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11081101. [PMID: 31382411 PMCID: PMC6721494 DOI: 10.3390/cancers11081101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive cancers, with high mortality in the United States. One of the important signal transduction proteins involved in the regulation of pancreatic cancer's aggressive progression is the nuclear export protein (XPO1). High expression of XPO1 has been found in pancreatic, lung, breast and other cancers and lymphomas with a poor prognosis of patients with tumors and high proliferative activity of cancer cells. Because XPO1 exports multiple tumor suppressor proteins simultaneously from the nucleus, the inhibition of XPO1 may retain multiple tumor suppressors in the nucleus, resulting in the suppression of cell proliferation and the induction of apoptosis in tumors. In this study, we found that the high expression of XPO1 in pancreatic cancer cells could be, in part, due to the methylation of the miR-30 gene, leading to the low expression level of the miR-30 family. By co-transfection of the XPO1 3'-UTR-Luc target vector with miR-30 mimic, we found that XPO1 is a direct target of the miR-30 family. We also observed that the enforced expression of the miR-30 family inhibited the expression of XPO1, resulting in the suppression of pancreatic cancer growth both in vitro and in vivo. These findings could help to design a novel therapeutic strategy for the treatment of pancreatic cancer by introducing miR-30 into cancer cells.
Collapse
|
29
|
Pal I, Safari M, Jovanovic M, Bates SE, Deng C. Targeting Translation of mRNA as a Therapeutic Strategy in Cancer. Curr Hematol Malig Rep 2019; 14:219-227. [DOI: 10.1007/s11899-019-00530-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Birnbaum DJ, Finetti P, Birnbaum D, Mamessier E, Bertucci F. XPO1 Expression Is a Poor-Prognosis Marker in Pancreatic Adenocarcinoma. J Clin Med 2019; 8:E596. [PMID: 31052304 PMCID: PMC6572621 DOI: 10.3390/jcm8050596] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic adenocarcinoma (PAC) is one of the most aggressive human cancers and new systemic therapies are urgently needed. Exportin-1 (XPO1), which is a member of the importin-β superfamily of karyopherins, is the major exporter of many tumor suppressor proteins that are involved in the progression of PAC. Promising pre-clinical data using XPO1 inhibitors have been reported in PAC, but very few data are available regarding XPO1 expression in clinical samples. Retrospectively, we analyzed XPO1 mRNA expression in 741 pancreatic samples, including 95 normal, 73 metastatic and 573 primary cancers samples, and searched for correlations with clinicopathological and molecular data, including overall survival. XPO1 expression was heterogeneous across the samples, higher in metastatic samples than in the primary tumors, and higher in primaries than in the normal samples. "XPO1-high" tumors were associated with positive pathological lymph node status and aggressive molecular subtypes. They were also associated with shorter overall survival in both uni- and multivariate analyses. Supervised analysis between the "XPO1-high" and "XPO1-low" tumors identified a robust 268-gene signature, whereby ontology analysis suggested increased XPO1 activity in the "XPO1-high" tumors. XPO1 expression refines the prognostication in PAC and higher expression exists in secondary versus primary tumors, which supports the development of XPO1 inhibitors in this so-lethal disease.
Collapse
Affiliation(s)
- David Jérémie Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, F-13273 Marseille, France.
- Département de Chirurgie Générale et Viscérale, AP-HM, F-13000 Marseille, France.
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
| | - Emilie Mamessier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
| | - François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, F-13273 Marseille, France.
| |
Collapse
|
31
|
Wang AY, Liu H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig 2019; 6:6. [PMID: 30976603 DOI: 10.21037/sci.2019.02.03] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/11/2018] [Indexed: 12/31/2022]
Abstract
Therapies targeted at inhibiting nucleo-cytoplasmic transport have found broad applications in the field of oncology. Chromosome region maintenance 1 (CRM1), better known as exportin 1 (XPO1), is the protein transporter responsible for the nucleo-cytoplasmic shuttling of most of the tumor suppressor proteins (TSP) and growth regulatory factors. XPO1 is also upregulated in many malignancies and associated with a poor prognosis. Its inhibition has been a target of therapy, and hence, the selective inhibitors of nuclear transport (SINE) compounds were developed as a novel class of anti-cancer agents. The most well-known SINE agent is selinexor (KPT-330) and has been widely tested in phase I and II clinical trials in both solid tumors and hematologic malignancies. This review discusses how dysregulation of XPO1 promotes tumorigenesis, the historical considerations in the development of SINE compounds, and their role in current clinical therapies.
Collapse
Affiliation(s)
- Amy Y Wang
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Hongtao Liu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
32
|
Yan D, Pomicter AD, Tantravahi S, Mason CC, Senina AV, Ahmann JM, Wang Q, Than H, Patel AB, Heaton WL, Eiring AM, Clair PM, Gantz KC, Redwine HM, Swierczek SI, Halverson BJ, Baloglu E, Shacham S, Khorashad JS, Kelley TW, Salama ME, Miles RR, Boucher KM, Prchal JT, O'Hare T, Deininger MW. Nuclear-Cytoplasmic Transport Is a Therapeutic Target in Myelofibrosis. Clin Cancer Res 2018; 25:2323-2335. [PMID: 30563936 DOI: 10.1158/1078-0432.ccr-18-0959] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/31/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Myelofibrosis is a hematopoietic stem cell neoplasm characterized by bone marrow reticulin fibrosis, extramedullary hematopoiesis, and frequent transformation to acute myeloid leukemia. Constitutive activation of JAK/STAT signaling through mutations in JAK2, CALR, or MPL is central to myelofibrosis pathogenesis. JAK inhibitors such as ruxolitinib reduce symptoms and improve quality of life, but are not curative and do not prevent leukemic transformation, defining a need to identify better therapeutic targets in myelofibrosis. EXPERIMENTAL DESIGN A short hairpin RNA library screening was performed on JAK2V617F-mutant HEL cells. Nuclear-cytoplasmic transport (NCT) genes including RAN and RANBP2 were among top candidates. JAK2V617F-mutant cell lines, human primary myelofibrosis CD34+ cells, and a retroviral JAK2V617F-driven myeloproliferative neoplasms mouse model were used to determine the effects of inhibiting NCT with selective inhibitors of nuclear export compounds KPT-330 (selinexor) or KPT-8602 (eltanexor). RESULTS JAK2V617F-mutant HEL, SET-2, and HEL cells resistant to JAK inhibition are exquisitely sensitive to RAN knockdown or pharmacologic inhibition by KPT-330 or KPT-8602. Inhibition of NCT selectively decreased viable cells and colony formation by myelofibrosis compared with cord blood CD34+ cells and enhanced ruxolitinib-mediated growth inhibition and apoptosis, both in newly diagnosed and ruxolitinib-exposed myelofibrosis cells. Inhibition of NCT in myelofibrosis CD34+ cells led to nuclear accumulation of p53. KPT-330 in combination with ruxolitinib-normalized white blood cells, hematocrit, spleen size, and architecture, and selectively reduced JAK2V617F-mutant cells in vivo. CONCLUSIONS Our data implicate NCT as a potential therapeutic target in myelofibrosis and provide a rationale for clinical evaluation in ruxolitinib-exposed patients with myelofibrosis.
Collapse
Affiliation(s)
- Dongqing Yan
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah
| | | | - Srinivas Tantravahi
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah.,Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, Utah
| | - Clinton C Mason
- Department of Pediatrics, The University of Utah, Salt Lake City, Utah
| | - Anna V Senina
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah
| | - Jonathan M Ahmann
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah
| | - Qiang Wang
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah.,Department of Hematology, Nanfang Hospital, Southern Medical University
| | - Hein Than
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah.,Department of Haematology, Singapore General Hospital, Singapore
| | - Ami B Patel
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah.,Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, Utah
| | - William L Heaton
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah
| | - Anna M Eiring
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah
| | - Phillip M Clair
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah
| | - Kevin C Gantz
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah
| | - Hannah M Redwine
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah
| | - Sabina I Swierczek
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, Utah
| | | | | | | | - Jamshid S Khorashad
- Department of Cellular Pathology, Hammersmith Hospital, Imperial College Health Care NHS Trust, London, United Kingdom
| | - Todd W Kelley
- Department of Pathology, The University of Utah, Salt Lake City, Utah
| | - Mohamed E Salama
- Department of Pathology, The University of Utah, Salt Lake City, Utah
| | - Rodney R Miles
- Department of Pathology, The University of Utah, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah
| | - Josef T Prchal
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, Utah
| | - Thomas O'Hare
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah.,Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, Utah
| | - Michael W Deininger
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah. .,Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
33
|
Baek HB, Lombard AP, Libertini SJ, Fernandez-Rubio A, Vinall R, Gandour-Edwards R, Nakagawa R, Vidallo K, Nishida K, Siddiqui S, Wettersten H, Landesman Y, Weiss RH, Ghosh PM, Mudryj M. XPO1 inhibition by selinexor induces potent cytotoxicity against high grade bladder malignancies. Oncotarget 2018; 9:34567-34581. [PMID: 30349650 PMCID: PMC6195388 DOI: 10.18632/oncotarget.26179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/15/2018] [Indexed: 12/28/2022] Open
Abstract
Treatment options for high grade urothelial cancers are limited and have remained largely unchanged for several decades. Selinexor (KPT-330), a first in class small molecule that inhibits the nuclear export protein XPO1, has shown efficacy as a single agent treatment for numerous different malignancies, but its efficacy in limiting bladder malignancies has not been tested. In this study we assessed selinexor-dependent cytotoxicity in several bladder tumor cells and report that selinexor effectively reduced XPO1 expression and limited cell viability in a dose dependent manner. The decrease in cell viability was due to an induction of apoptosis and cell cycle arrest. These results were recapitulated in in vivo studies where selinexor decreased tumor growth. Tumors treated with selinexor expressed lower levels of XPO1, cyclin A, cyclin B, and CDK2 and increased levels of RB and CDK inhibitor p27, a result that is consistent with growth arrest. Cells expressing wildtype RB, a potent tumor suppressor that promotes growth arrest and apoptosis, were most susceptible to selinexor. Cell fractionation and immunofluorescence studies showed that selinexor treatment increased nuclear RB levels and mechanistic studies revealed that RB ablation curtailed the response to the drug. Conversely, limiting CDK4/6 dependent RB phosphorylation by palbociclib was additive with selinexor in reducing bladder tumor cell viability, confirming that RB activity has a role in the response to XPO1 inhibition. These results provide a rationale for XPO1 inhibition as a novel strategy for the treatment of bladder malignancies.
Collapse
Affiliation(s)
- Han Bit Baek
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA.,Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Alan P Lombard
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA.,Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group and Biotechnology Program, University of California Davis, Davis, CA, USA
| | - Stephen J Libertini
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA.,Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Aleida Fernandez-Rubio
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Ruth Vinall
- California Northstate College of Pharmacy, Elk Grove, CA, USA
| | - Regina Gandour-Edwards
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Rachel Nakagawa
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Kathleen Vidallo
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Kristine Nishida
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Salma Siddiqui
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA
| | - Hiromi Wettersten
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | | | - Robert H Weiss
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA.,Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA.,Department of Urology, University of California Davis, Sacramento, CA, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA.,Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
34
|
Selinexor reduces the expression of DNA damage repair proteins and sensitizes cancer cells to DNA damaging agents. Oncotarget 2018; 9:30773-30786. [PMID: 30112106 PMCID: PMC6089403 DOI: 10.18632/oncotarget.25637] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction The goal of this study was to examine the effects of selinexor, an inhibitor of exportin-1 mediated nuclear export, on DNA damage repair and to evaluate the cytotoxic effects of selinexor in combination with DNA damaging agents (DDAs) in cancer cells. Results Selinexor reduced the expression of DNA damage repair (DDR) proteins. This did not induce significant DNA damage in tested cell lines. Inhibition of DDR protein expression resulted in enhanced cancer cell death when cells were pretreated with DDAs. In contrast, enhanced cell death was not detected in cells that were pretreated with selinexor then with DDAs. In vivo, single-agent selinexor, docetaxel, or cisplatin treatment resulted in 66.7%, 51.5%, and 26.6% tumor growth inhibition (TGI), respectively, in an MDA-MB-231 xenograft model. Consequently, combination treatment with docetaxel or cisplatin followed by selinexor in vivo resulted in 93.9% and 103.4% TGI, respectively. Immunohistochemical staining and immunoblot analysis of tumor sections confirmed reduced expression of DDR proteins. Conclusion Selinexor treatment inhibited DDR mechanisms in cancer cell lines and therefore potentiated DNA damage-based therapy. The sequential combination of DDAs followed by selinexor increased cancer cell death. This combination is superior to each individual therapy and has a mechanistic rationale as a novel anticancer strategy. Methods Cancer cells treated with selinexor ± DDAs were analyzed using reverse phase protein arrays, immunoblots, quantitative PCR and immunofluorescence. Mice bearing MDA-MB-231 tumors were treated with subtherapeutic doses of selinexor, cisplatin, docetaxel and selinexor in combination with either cisplatin or docetaxel. Tumor growth was evaluated for 25 days.
Collapse
|
35
|
Muqbil I, Azmi AS, Mohammad RM. Nuclear Export Inhibition for Pancreatic Cancer Therapy. Cancers (Basel) 2018; 10:E138. [PMID: 29735942 PMCID: PMC5977111 DOI: 10.3390/cancers10050138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is a deadly disease that is resistant to most available therapeutics. Pancreatic cancer to date has no effective drugs that could enhance the survival of patients once their disease has metastasized. There is a need for the identification of novel actionable drug targets in this unusually recalcitrant cancer. Nuclear protein transport is an important mechanism that regulates the function of several tumor suppressor proteins (TSPs) in a compartmentalization-dependent manner. High expression of the nuclear exporter chromosome maintenance region 1 (CRM1) or exportin 1 (XPO1), a common feature of several cancers including pancreatic cancer, results in excessive export of critical TSPs to the incorrect cellular compartment, leading to their functional inactivation. Small molecule inhibitors of XPO1 can block this export, retaining very important and functional TSPs in the nucleus and leading to the effective killing of the cancer cells. This review highlights the current knowledge on the role of XPO1 in pancreatic cancer and how this serves as a unique and clinically viable target in this devastating and by far incurable cancer.
Collapse
Affiliation(s)
- Irfana Muqbil
- Department of Chemistry, University of Detroit Mercy, Detroit, MI 48221, USA.
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
36
|
Gandhi UH, Senapedis W, Baloglu E, Unger TJ, Chari A, Vogl D, Cornell RF. Clinical Implications of Targeting XPO1-mediated Nuclear Export in Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2018; 18:335-345. [PMID: 29610030 DOI: 10.1016/j.clml.2018.03.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/30/2022]
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells that is typically chronic, and relapse is common. Current therapeutic strategies include combination and sequential treatments with corticosteroids, alkylating agents, proteasomal inhibitors, immunomodulators, and monoclonal antibodies. These drugs prolong survival but ultimately become ineffective. Exportin 1 (XPO1), a nuclear export protein, is overexpressed in MM cells, and knockdown studies have suggested that XPO1 is essential for MM cell survival. Selective inhibitor of nuclear export (SINE) compounds are novel, orally bioavailable class of agents that specifically inhibit XPO1. Selinexor (KPT-330) is the first-in-human SINE compound. Early phase clinical trials have established the safety profile of this agent and have shown promising efficacy in combination with low-dose dexamethasone and other anti-MM agents. The combination of selinexor and dexamethasone has demonstrated activity in "penta-refractory" MM, (ie, MM refractory to the 5 most active anti-MM agents currently used in treatment). We have reviewed the available data on the molecular implications of XPO1 inhibition in MM. We also reviewed the pertinent early phase clinical data with SINE compounds and discuss management strategies for common toxicities encountered with use of selinexor.
Collapse
Affiliation(s)
- Ujjawal H Gandhi
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | - Ajai Chari
- Division of Hematology and Oncology, Mount Sinai Hospital, New York, NY
| | - Dan Vogl
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA
| | - Robert F Cornell
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
37
|
Gupta A, Saltarski JM, White MA, Scaglioni PP, Gerber DE. Therapeutic Targeting of Nuclear Export Inhibition in Lung Cancer. J Thorac Oncol 2017; 12:1446-1450. [PMID: 28647672 PMCID: PMC5572747 DOI: 10.1016/j.jtho.2017.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/03/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Abstract
Intracellular compartmentalization and trafficking of molecules plays a critical role in complex and essential cellular processes. In lung cancer and other malignancies, aberrant nucleocytoplasmic transport of tumor suppressor proteins and cell cycle regulators results in tumorigenesis and inactivation of apoptosis. Pharmacologic agents targeting this process, termed selective inhibitors of nuclear export (SINE), have demonstrated antitumor efficacy in preclinical models and human clinical trials. Exportin-1 (XPO1), which serves as the sole exporter of several tumor suppressor proteins and cell cycle regulators, including retinoblastoma, adenomatous polyposis coli, p53, p73, p21, p27, forkhead box O, signal transducer and activator of transcription 3, inhibitor of κB, topoisomerase II, and protease activated receptor 4-is the principal focus of development of SINE. The most extensively studied of the SINE to date, the exportin-1 inhibitor selinexor (KPT-330 [Karyopharm Therapeutics, Inc., Newton Centre, MA]), has demonstrated single-agent anticancer activity and synergistic effects in combination regimens against multiple cancer types, with principal toxicities of low-grade cytopenias and gastrointestinal effects. SINE may have particular relevance in KRAS-driven tumors, for which this treatment strategy demonstrates significant synthetic lethality. A multicenter phase 1/2 clinical trial of selinexor in previously treated advanced KRAS-mutant NSCLC is under way.
Collapse
Affiliation(s)
- Arjun Gupta
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessica M Saltarski
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael A White
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Pfizer, Inc., New York, New York
| | - Pier P Scaglioni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David E Gerber
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
38
|
Garg M, Kanojia D, Mayakonda A, Ganesan TS, Sadhanandhan B, Suresh S, S S, Nagare RP, Said JW, Doan NB, Ding LW, Baloglu E, Shacham S, Kauffman M, Koeffler HP. Selinexor (KPT-330) has antitumor activity against anaplastic thyroid carcinoma in vitro and in vivo and enhances sensitivity to doxorubicin. Sci Rep 2017; 7:9749. [PMID: 28852098 PMCID: PMC5575339 DOI: 10.1038/s41598-017-10325-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most lethal malignancies having no effective treatment. Exportin-1 (XPO1) is the key mediator of nuclear export of many tumor suppressor proteins and is overexpressed in human cancers. In this study, we examined the therapeutic potential of selinexor (XPO1 inhibitor) against human ATC cells both in vitro and in vivo. Here, we showed that XPO1 is robustly expressed in primary ATC samples and human ATC cell lines. Silencing of XPO1 by either shRNA or selinexor significantly reduced cellular growth and induced cell cycle arrest, apoptosis of ATC cells by altering the protein expression of cancer-related genes. Moreover, selinexor significantly inhibited tumor growth of ATC xenografts. Microarray analysis showed enrichment of DNA replication, cell cycle, cell cycle checkpoint and TNF pathways in selinexor treated ATC cells. Importantly, selinexor decreased AXL and GAS6 levels in CAL62 and HTH83 cells and suppressed the phosphorylation of downstream targets of AXL signaling such as AKT and P70S6K. Finally, a combination of selinexor with doxorubicin demonstrated a synergistic decrease in the cellular proliferation of several ATC cells. These results provide a rationale for investigating the efficacy of combining selinexor and doxorubicin therapy to improve the outcome of ATC patients.
Collapse
Affiliation(s)
- Manoj Garg
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar, Chennai, India.
| | - Deepika Kanojia
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore, Singapore
| | - Anand Mayakonda
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore, Singapore
| | - Trivadi S Ganesan
- Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar, Chennai, India
| | - Bindhya Sadhanandhan
- Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar, Chennai, India
| | - Sidhanth Suresh
- Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar, Chennai, India
| | - Sneha S
- Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar, Chennai, India
| | - Rohit P Nagare
- Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar, Chennai, India
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ngan B Doan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ling-Wen Ding
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | | | - H Phillip Koeffler
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California Los Angeles, School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
39
|
Arango NP, Yuca E, Zhao M, Evans KW, Scott S, Kim C, Gonzalez-Angulo AM, Janku F, Ueno NT, Tripathy D, Akcakanat A, Naing A, Meric-Bernstam F. Selinexor (KPT-330) demonstrates anti-tumor efficacy in preclinical models of triple-negative breast cancer. Breast Cancer Res 2017; 19:93. [PMID: 28810913 PMCID: PMC5557476 DOI: 10.1186/s13058-017-0878-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Selinexor (KPT-330) is an oral agent that has been shown to inhibit the nuclear exporter XPO1. Given the pressing need for novel therapies for triple-negative breast cancer (TNBC), we sought to determine the antitumor effects of selinexor in vitro and in vivo. METHODS Twenty-six breast cancer cell lines of different breast cancer subtypes were treated with selinexor in vitro. Cell proliferation assays were used to measure the half-maximal inhibitory concentration (IC50) and to test the effects in combination with chemotherapy. In vivo efficacy was tested both as a single agent and in combination therapy in TNBC patient-derived xenografts (PDXs). RESULTS Selinexor demonstrated growth inhibition in all 14 TNBC cell lines tested; TNBC cell lines were more sensitive to selinexor (median IC50 44 nM, range 11 to 550 nM) than were estrogen receptor (ER)-positive breast cancer cell lines (median IC50 > 1000 nM, range 40 to >1000 nM; P = 0.017). In multiple TNBC cell lines, selinexor was synergistic with paclitaxel, carboplatin, eribulin, and doxorubicin in vitro. Selinexor as a single agent reduced tumor growth in vivo in four of five different TNBC PDX models, with a median tumor growth inhibition ratio (T/C: treatment/control) of 42% (range 31 to 73%) and demonstrated greater antitumor efficacy in combination with paclitaxel or eribulin (average T/C ratios of 27% and 12%, respectively). CONCLUSIONS Collectively, these findings strongly suggest that selinexor is a promising therapeutic agent for TNBC as a single agent and in combination with standard chemotherapy.
Collapse
Affiliation(s)
- Natalia Paez Arango
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Charissa Kim
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Ana Maria Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA. .,Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA. .,The Sheikh Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1400 Pressler Boulevard, Unit 455, Houston, TX, 77030, USA. .,Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Boulevard, Unit 455, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Azmi AS, Li Y, Muqbil I, Aboukameel A, Senapedis W, Baloglu E, Landesman Y, Shacham S, Kauffman MG, Philip PA, Mohammad RM. Exportin 1 (XPO1) inhibition leads to restoration of tumor suppressor miR-145 and consequent suppression of pancreatic cancer cell proliferation and migration. Oncotarget 2017; 8:82144-82155. [PMID: 29137251 PMCID: PMC5669877 DOI: 10.18632/oncotarget.19285] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/18/2017] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer related deaths in the United States with a majority of these patients dying from aggressively invasive and metastatic disease. There is growing evidence that suggests an important role for microRNAs (miRNAs) in the pathobiology of aggressive PDAC. In this study, we found that the expression of miR-145 was significantly lower in PDAC cells when compared to normal pancreatic duct epithelial cells. Here we show that inhibition of the nuclear exporter protein exportin 1 (XPO1; also known as chromosome maintenance region 1 [CRM1]) by siRNA knockdown or by the Selective Inhibitor of Nuclear Export (SINE) compound (KPT-330; selinexor) increases miR-145 expression in PDAC cells resulting in the decreased cell proliferation and migration capacities. A similar result was obtained with forced expression of miR-145 in PDAC cells. To this end, SINE compound treatment mediated the down-regulation of known miR-145 targets genes including EGFR, MMP1, MT-MMP, c-Myc, Pak4 and Sox-2. In addition, selinexor induced the expression of two important tumor suppressive miRNAs miR-34c and let-7d leading to the up-regulation of p21WAF1. These results are the first to report that targeted inhibition of the nuclear export machinery could restore tumor suppressive miRNAs in PDAC that warrants further clinical investigations.
Collapse
Affiliation(s)
- Asfar S Azmi
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yiwei Li
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Irfana Muqbil
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Amro Aboukameel
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Erkan Baloglu
- Karyopharm Therapeutics Inc., Newton Centre, MA, USA
| | | | | | | | - Philip A Philip
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
41
|
Soung YH, Kashyap T, Nguyen T, Yadav G, Chang H, Landesman Y, Chung J. Selective Inhibitors of Nuclear Export (SINE) compounds block proliferation and migration of triple negative breast cancer cells by restoring expression of ARRDC3. Oncotarget 2017; 8:52935-52947. [PMID: 28881784 PMCID: PMC5581083 DOI: 10.18632/oncotarget.17987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
Arrestin-related domain-containing protein-3 (ARRDC3) is one of 6 mammalian arrestins, which suppresses metastasis by inducing degradation of phosphorylated β2-adrenergic receptor (β2 AR) and integrin β4 (ITG β4). Our previous studies demonstrated that expression of ARRDC3 is epigentically silenced in Triple Negative Breast Cancer (TNBC) cells, and the forced expression of ARRDC3 significantly reduced the invasive potential of TNBC cells. In the current study, we found that Selective Inhibitors of Nuclear Export (SINE) compounds (KPT-185 and selinexor (KPT-330)) restore ARRDC3 expression in TNBC cell lines (MDA-MB-231 and MDA-MB-468) at both the mRNA and protein level in a dose and time course dependent manner. SINE compounds inhibit the proliferation, pro-invasive migration and anchorage independent growth of the TNBC cells by restoring ARRDC3 expression. We found that ARRDC3 expression is lower in TNBC cell lines than those of luminal breast cancer cell lines, and inversely correlated with IC50s of selinexor. Analysis of tissue microarray confirmed that ARRDC3 expression in patient samples is significantly lower in the majority of TNBC tumors relative to normal tissue. In vivo, selinexor inhibited the tumor growth of MDA-MB-231 xenografts by nearly 100% compared with vehicle treated animals. Furthermore, immunohistochemical analysis of TNBC tumors from selinexor treated mice revealed increased ARRDC3 expression versus vehicle treated animals. Our results suggest that restoration of ARRDC3 expression is an important antineoplastic mechanism of SINE compounds in TNBC, and therefore selinexor could be an effective treatment option for breast tumors with down-regulated ARRDC3.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | | | - Thalia Nguyen
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Garima Yadav
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | - Hua Chang
- Karyopharm Therapeutics, Inc. Newton, MA 02459, USA
| | | | - Jun Chung
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
42
|
Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood 2017; 129:3175-3183. [PMID: 28468797 DOI: 10.1182/blood-2016-11-750174] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
Patients with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) have a poor prognosis and limited treatment options. We evaluated selinexor, an orally bioavailable, first-in-class inhibitor of the nuclear export protein XPO1, in this phase 1 trial to assess safety and determine a recommended phase 2 dose (RP2D). Seventy-nine patients with various NHL histologies, including diffuse large B-cell lymphoma, Richter's transformation, mantle cell lymphoma, follicular lymphoma, and chronic lymphocytic leukemia, were enrolled. In the dose-escalation phase, patients received 3 to 80 mg/m2 of selinexor in 3- or 4-week cycles and were assessed for toxicities, pharmacokinetics, and antitumor activity. In the dose-expansion phase, patients were treated with selinexor at 35 or 60 mg/m2 The most common grade 3 to 4 drug-related adverse events were thrombocytopenia (47%), neutropenia (32%), anemia (27%), leukopenia (16%), fatigue (11%), and hyponatremia (10%). Tumor biopsies showed decreases in cell-signaling pathways (Bcl-2, Bcl-6, c-Myc), reduced proliferation (Ki67), nuclear localization of XPO1 cargos (p53, PTEN), and increased apoptosis after treatment. Twenty-two (31%) of the 70 evaluable patients had an objective responses, including 4 complete responses and 18 partial responses, which were observed across a spectrum of NHL subtypes. A dose of 35 mg/m2 (60 mg) was identified as the RP2D. These findings suggest that inhibition of XPO1 with oral selinexor at 35 mg/m2 is a safe therapy with encouraging and durable anticancer activity in patients with R/R NHL. The trial was registered at www.clinicaltrials.gov as #NCT01607892.
Collapse
|
43
|
Sun H, Lin DC, Cao Q, Pang B, Gae DD, Lee VKM, Lim HJ, Doan N, Said JW, Gery S, Chow M, Mayakonda A, Forscher C, Tyner JW, Koeffler HP. Identification of a Novel SYK/c-MYC/MALAT1 Signaling Pathway and Its Potential Therapeutic Value in Ewing Sarcoma. Clin Cancer Res 2017; 23:4376-4387. [DOI: 10.1158/1078-0432.ccr-16-2185] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|
44
|
Chen Y, Camacho SC, Silvers TR, Razak ARA, Gabrail NY, Gerecitano JF, Kalir E, Pereira E, Evans BR, Ramus SJ, Huang F, Priedigkeit N, Rodriguez E, Donovan M, Khan F, Kalir T, Sebra R, Uzilov A, Chen R, Sinha R, Halpert R, Billaud JN, Shacham S, McCauley D, Landesman Y, Rashal T, Kauffman M, Mirza MR, Mau-Sørensen M, Dottino P, Martignetti JA. Inhibition of the Nuclear Export Receptor XPO1 as a Therapeutic Target for Platinum-Resistant Ovarian Cancer. Clin Cancer Res 2017; 23:1552-1563. [PMID: 27649553 DOI: 10.1158/1078-0432.ccr-16-1333] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/10/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022]
Abstract
Purpose: The high fatality-to-case ratio of ovarian cancer is directly related to platinum resistance. Exportin-1 (XPO1) is a nuclear exporter that mediates nuclear export of multiple tumor suppressors. We investigated possible clinicopathologic correlations of XPO1 expression levels and evaluated the efficacy of XPO1 inhibition as a therapeutic strategy in platinum-sensitive and -resistant ovarian cancer.Experimental Design: XPO1 expression levels were analyzed to define clinicopathologic correlates using both TCGA/GEO datasets and tissue microarrays (TMA). The effect of XPO1 inhibition, using the small-molecule inhibitors KPT-185 and KPT-330 (selinexor) alone or in combination with a platinum agent on cell viability, apoptosis, and the transcriptome was tested in immortalized and patient-derived ovarian cancer cell lines (PDCL) and platinum-resistant mice (PDX). Seven patients with late-stage, recurrent, and heavily pretreated ovarian cancer were treated with an oral XPO1 inhibitor.Results: XPO1 RNA overexpression and protein nuclear localization were correlated with decreased survival and platinum resistance in ovarian cancer. Targeted XPO1 inhibition decreased cell viability and synergistically restored platinum sensitivity in both immortalized ovarian cancer cells and PDCL. The XPO1 inhibitor-mediated apoptosis occurred through both p53-dependent and p53-independent signaling pathways. Selinexor treatment, alone and in combination with platinum, markedly decreased tumor growth and prolonged survival in platinum-resistant PDX and mice. In selinexor-treated patients, tumor growth was halted in 3 of 5 patients, including one with a partial response, and was safely tolerated by all.Conclusions: Taken together, these results provide evidence that XPO1 inhibition represents a new therapeutic strategy for overcoming platinum resistance in women with ovarian cancer. Clin Cancer Res; 23(6); 1552-63. ©2016 AACR.
Collapse
Affiliation(s)
- Ying Chen
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Thomas R Silvers
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Albiruni R A Razak
- Drug Development Program, Princess Margaret Cancer Center, Toronto, Canada
| | | | | | - Eva Kalir
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elena Pereira
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brad R Evans
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Susan J Ramus
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Fei Huang
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nolan Priedigkeit
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Estefania Rodriguez
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Faisal Khan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tamara Kalir
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert Sebra
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Uzilov
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rong Chen
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rileen Sinha
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | | | - Tami Rashal
- Karyopharm Therapeutics Inc, Natick, Massachusetts
| | | | | | | | - Peter Dottino
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John A Martignetti
- Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York
- Western Connecticut Health Network, Danbury, Connecticut
| |
Collapse
|
45
|
Garg M, Kanojia D, Mayakonda A, Said JW, Doan NB, Chien W, Ganesan TS, Huey LSC, Venkatachalam N, Baloglu E, Shacham S, Kauffman M, Koeffler HP. Molecular mechanism and therapeutic implications of selinexor (KPT-330) in liposarcoma. Oncotarget 2017; 8:7521-7532. [PMID: 27893412 PMCID: PMC5352339 DOI: 10.18632/oncotarget.13485] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
Exportin-1 mediates nuclear export of multiple tumor suppressor and growth regulatory proteins. Aberrant expression of exportin-1 is noted in human malignancies, resulting in cytoplasmic mislocalization of its target proteins. We investigated the efficacy of selinexor against liposarcoma cells both in vitro and in vivo. Exportin-1 was highly expressed in liposarcoma samples and cell lines as determined by immunohistochemistry, western blot, and immunofluorescence assay. Knockdown of endogenous exportin-1 inhibited proliferation of liposarcoma cells. Selinexor also significantly decreased cell proliferation as well as induced cell cycle arrest and apoptosis of liposarcoma cells. The drug also significantly decreased tumor volumes and weights of liposarcoma xenografts. Importantly, selinexor inhibited insulin-like growth factor 1 (IGF1) activation of IGF-1R/AKT pathway through upregulation of insulin-like growth factor binding protein 5 (IGFBP5). Further, overexpression and knockdown experiments showed that IGFBP5 acts as a tumor suppressor and its expression was restored upon selinexor treatment of liposarcoma cells. Selinexor decreased aurora kinase A and B levels in these cells and inhibitors of these kinases suppressed the growth of the liposarcoma cells. Overall, our study showed that selinexor treatment restored tumor suppressive function of IGFBP5 and inhibited aurora kinase A and B in liposarcoma cells supporting the usefulness of selinexor as a potential therapeutic strategy for the treatment of this cancer.
Collapse
Affiliation(s)
- Manoj Garg
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore
- Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar Chennai, India
| | - Deepika Kanojia
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore
| | - Anand Mayakonda
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ngan B Doan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Wenwen Chien
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore
| | - Trivadi S Ganesan
- Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar Chennai, India
| | | | | | | | | | | | - H. Phillip Koeffler
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California Los Angeles, School of Medicine, Los Angeles, CA, USA
- National University Cancer Institute, National University Hospital, Singapore, Singapore
| |
Collapse
|
46
|
Alexander TB, Lacayo NJ, Choi JK, Ribeiro RC, Pui CH, Rubnitz JE. Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Combination With Fludarabine and Cytarabine, in Pediatric Relapsed or Refractory Acute Leukemia. J Clin Oncol 2016; 34:4094-4101. [PMID: 27507877 DOI: 10.1200/jco.2016.67.5066] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose To characterize the toxicity, pharmacokinetics, and pharmacodynamics of selinexor, a selective inhibitor of nuclear export, when combined with fludarabine and cytarabine, in children with relapsed or refractory leukemia. Patients and Methods Eighteen patients with relapsed or refractory acute leukemia were enrolled in the SELHEM (Selinexor With Fludarabine and Cytarabine for Treatment of Refractory or Relapsed Leukemia or Myelodysplastic Syndrome) clinical trial (NCT02212561). Selinexor, initially at 30 mg/m2 per dose, was given orally on days 1, 3, 8, 10, 22, and 24 and was escalated according to a rolling-six design. Fludarabine 30 mg/m2 and cytarabine 2 g/m2 were administered on days 15 to 19. Pharmacokinetic and pharmacodynamic studies were performed on days 1 and 22. Response evaluations were performed on day 15 and at the completion of course 1. Results Among the 17 patients who were evaluable for toxicity, three were treated at 30 mg/m2, three at 40 mg/m2, six at 55 mg/m2, and five at 70 mg/m2. The most common grade 3 nonhematologic toxicity was asymptomatic hyponatremia. Two patients who were treated at 70 mg/m2 experienced reversible cerebellar toxicity, thereby defining the dose-limiting toxicity. Pharmacokinetic parameters demonstrated that plasma exposure was dose proportional. Fifteen of 16 patients demonstrated at least a twofold increase of XPO1 mRNA, indicating inhibition of the XPO1 protein. In this group of heavily pretreated, relapsed, and refractory patients, seven of 15 evaluable patients (47%) achieved complete response or complete response with incomplete count recovery. Conclusion Selinexor, in combination with fludarabine and cytarabine, is tolerable at doses up to 55 mg/m2 in pediatric patients with relapsed or refractory leukemia. All patients who received selinexor at ≥ 40 mg/m2 demonstrated XPO1 target inhibition. Response rates are promising and will be further explored in a phase II trial.
Collapse
Affiliation(s)
- Thomas B Alexander
- Thomas B. Alexander, John K. Choi, Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, St Jude Children's Research Hospital; Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, University of Tennessee College of Medicine, Memphis, TN; and Norman J. Lacayo, Lucile Packard Children's Hospital Stanford, Stanford, CA
| | - Norman J Lacayo
- Thomas B. Alexander, John K. Choi, Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, St Jude Children's Research Hospital; Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, University of Tennessee College of Medicine, Memphis, TN; and Norman J. Lacayo, Lucile Packard Children's Hospital Stanford, Stanford, CA
| | - John K Choi
- Thomas B. Alexander, John K. Choi, Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, St Jude Children's Research Hospital; Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, University of Tennessee College of Medicine, Memphis, TN; and Norman J. Lacayo, Lucile Packard Children's Hospital Stanford, Stanford, CA
| | - Raul C Ribeiro
- Thomas B. Alexander, John K. Choi, Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, St Jude Children's Research Hospital; Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, University of Tennessee College of Medicine, Memphis, TN; and Norman J. Lacayo, Lucile Packard Children's Hospital Stanford, Stanford, CA
| | - Ching-Hon Pui
- Thomas B. Alexander, John K. Choi, Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, St Jude Children's Research Hospital; Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, University of Tennessee College of Medicine, Memphis, TN; and Norman J. Lacayo, Lucile Packard Children's Hospital Stanford, Stanford, CA
| | - Jeffrey E Rubnitz
- Thomas B. Alexander, John K. Choi, Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, St Jude Children's Research Hospital; Raul C. Ribeiro, Ching-Hon Pui, and Jeffrey E. Rubnitz, University of Tennessee College of Medicine, Memphis, TN; and Norman J. Lacayo, Lucile Packard Children's Hospital Stanford, Stanford, CA
| |
Collapse
|
47
|
Turner JG, Dawson JL, Grant S, Shain KH, Dalton WS, Dai Y, Meads M, Baz R, Kauffman M, Shacham S, Sullivan DM. Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors. J Hematol Oncol 2016; 9:73. [PMID: 27557643 PMCID: PMC4997728 DOI: 10.1186/s13045-016-0304-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Acquired drug resistance is the greatest obstacle to the successful treatment of multiple myeloma (MM). Despite recent advanced treatment options such as liposomal formulations, proteasome inhibitors, immunomodulatory drugs, myeloma-targeted antibodies, and histone deacetylase inhibitors, MM is still considered an incurable disease. METHODS We investigated whether the clinical exportin 1 (XPO1) inhibitor selinexor (KPT-330), when combined with pegylated liposomal doxorubicin (PLD) or doxorubicin hydrochloride, could overcome acquired drug resistance in multidrug-resistant human MM xenograft tumors, four different multidrug-resistant MM cell lines, or ex vivo MM biopsies from relapsed/refractory patients. Mechanistic studies were performed to assess co-localization of topoisomerase II alpha (TOP2A), DNA damage, and siRNA knockdown of drug targets. RESULTS Selinexor was found to restore sensitivity of multidrug-resistant 8226B25, 8226Dox6, 8226Dox40, and U266PSR human MM cells to doxorubicin to levels found in parental myeloma cell lines. NOD/SCID-γ mice challenged with drug-resistant or parental U266 human MM and treated with selinexor/PLD had significantly decreased tumor growth and increased survival with minimal toxicity. Selinexor/doxorubicin treatment selectively induced apoptosis in CD138/light-chain-positive MM cells without affecting non-myeloma cells in ex vivo-treated bone marrow aspirates from newly diagnosed or relapsed/refractory MM patients. Selinexor inhibited XPO1-TOP2A protein complexes (proximity ligation assay), preventing nuclear export of TOP2A in both parental and multidrug-resistant MM cell lines. Selinexor/doxorubicin treatment significantly increased DNA damage (comet assay/γ-H2AX) in both parental and drug-resistant MM cells. TOP2A knockdown reversed both the anti-tumor effect and significantly reduced DNA damage induced by selinexor/doxorubicin treatment. CONCLUSIONS The combination of an XPO1 inhibitor and liposomal doxorubicin was highly effective against acquired drug resistance in in vitro MM models, in in vivo xenograft studies, and in ex vivo samples obtained from patients with relapsed/refractory myeloma. This drug combination synergistically induced TOP2A-mediated DNA damage and subsequent apoptosis. In addition, based on our preclinical data, we have initiated a phase I/II study with the XPO1 inhibitor selinexor and PLD (ClinicalTrials.gov NCT02186834). Initial results from both preclinical and clinical trials have shown significant promise for this drug combination for the treatment of MM.
Collapse
Affiliation(s)
- Joel G. Turner
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - Jana L. Dawson
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA USA
| | - Kenneth H. Shain
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - William S. Dalton
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- M2Gen® Biotechnologies, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - Yun Dai
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA USA
| | - Mark Meads
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - Rachid Baz
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | | | | | - Daniel M. Sullivan
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| |
Collapse
|
48
|
Sun H, Lin DC, Cao Q, Guo X, Marijon H, Zhao Z, Gery S, Xu L, Yang H, Pang B, Lee VKM, Lim HJ, Doan N, Said JW, Chu P, Mayakonda A, Thomas T, Forscher C, Baloglu E, Shacham S, Rajalingam R, Koeffler HP. CRM1 Inhibition Promotes Cytotoxicity in Ewing Sarcoma Cells by Repressing EWS-FLI1-Dependent IGF-1 Signaling. Cancer Res 2016; 76:2687-97. [PMID: 26956669 DOI: 10.1158/0008-5472.can-15-1572] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
Ewing sarcoma (EWS) is an aggressive bone malignancy that mainly affects children and young adults. The mechanisms by which EWS (EWSR1) fusion genes drive the disease are not fully understood. CRM1 (XPO1) traffics proteins from the nucleus, including tumor suppressors and growth factors, and is overexpressed in many cancers. A small-molecule inhibitor of CRM1, KPT-330, has shown therapeutic promise, but has yet to be investigated in the context of EWS. In this study, we demonstrate that CRM1 is also highly expressed in EWS. shRNA-mediated or pharmacologic inhibition of CRM1 in EWS cells dramatically decreased cell growth while inducing apoptosis, cell-cycle arrest, and protein expression alterations to several cancer-related factors. Interestingly, silencing of CRM1 markedly reduced EWS-FLI1 fusion protein expression at the posttranscriptional level and upregulated the expression of the well-established EWS-FLI1 target gene, insulin-like growth factor binding protein 3 (IGFBP3), which inhibits IGF-1. Accordingly, KPT-330 treatment attenuated IGF-1-induced activation of the IGF-1R/AKT pathway. Furthermore, knockdown of IGFBP3 increased cell growth and rescued the inhibitory effects on IGF-1 signaling triggered by CRM1 inhibition. Finally, treatment of EWS cells with a combination of KPT-330 and the IGF-1R inhibitor, linsitinib, synergistically decreased cell proliferation both in vitro and in vivo Taken together, these findings provide a strong rationale for investigating the efficacy of combinatorial inhibition of CRM1 and IGF-1R for the treatment of EWS. Cancer Res; 76(9); 2687-97. ©2016 AACR.
Collapse
Affiliation(s)
- Haibo Sun
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, California. Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California. Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Qi Cao
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiao Guo
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Helene Marijon
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zhiqiang Zhao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Brendan Pang
- Department of Pathology, National University Hospital Singapore, Singapore
| | | | - Huey Jin Lim
- Department of Pathology, National University Hospital Singapore, Singapore
| | - Ngan Doan
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California
| | - Peiguo Chu
- Department of Pathology, City of Hope National Medical Center, Los Angeles, California
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tom Thomas
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Charles Forscher
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, California
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California. Cancer Science Institute of Singapore, National University of Singapore, Singapore. National University Cancer Institute, National University Hospital Singapore, Singapore
| |
Collapse
|
49
|
Nakayama R, Zhang YX, Czaplinski JT, Anatone AJ, Sicinska ET, Fletcher JA, Demetri GD, Wagner AJ. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget 2016; 7:16581-92. [PMID: 26918731 PMCID: PMC4941336 DOI: 10.18632/oncotarget.7667] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
Selinexor is an orally bioavailable selective inhibitor of nuclear export that has been demonstrated to have preclinical activity in various cancer types and that is currently in Phase I and II clinical trials for advanced cancers. In this study, we evaluated the effects of selinexor in several preclinical models of various sarcoma subtypes. The efficacy of selinexor was investigated in vitro and in vivo using 17 cell lines and 9 sarcoma xenograft models including gastrointestinal stromal tumor (GIST), liposarcoma (LPS), leiomyosarcoma, rhabdomyosarcoma, undifferentiated sarcomas, and alveolar soft part sarcoma (ASPS). Most sarcoma cell lines were sensitive to selinexor with IC50s ranging from 28.8 nM to 218.2 nM (median: 66.1 nM). Selinexor suppressed sarcoma tumor xenograft growth, including models of ASPS that were resistant in vitro. In GIST cells with KIT mutations, selinexor induced G1- arrest without attenuation of phosphorylation of KIT, AKT, or MAPK, in contrast to imatinib. In LPS cell lines with MDM2 and CDK4 amplification, selinexor induced G1-arrest and apoptosis irrespective of p53 expression or mutation and irrespective of RB expression. Selinexor increased p53 and p21 expression at the protein but not RNA level, indicating a post-transcriptional effect. These results indicate that selinexor has potent in vitro and in vivo activity against a wide variety of sarcoma models by inducing G1-arrest independent of known molecular mechanisms in GIST and LPS. These studies further justify the exploration of selinexor in clinical trials targeting various sarcoma subtypes.
Collapse
Affiliation(s)
- Robert Nakayama
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yi-Xiang Zhang
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey T. Czaplinski
- Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alex J. Anatone
- Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ewa T. Sicinska
- Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George D. Demetri
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Andrew J. Wagner
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Mechanisms of Nuclear Export in Cancer and Resistance to Chemotherapy. Cancers (Basel) 2016; 8:cancers8030035. [PMID: 26985906 PMCID: PMC4810119 DOI: 10.3390/cancers8030035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 01/14/2023] Open
Abstract
Tumour suppressor proteins, such as p53, BRCA1, and ABC, play key roles in preventing the development of a malignant phenotype, but those that function as transcriptional regulators need to enter the nucleus in order to function. The export of proteins between the nucleus and cytoplasm is complex. It occurs through nuclear pores and exported proteins need a nuclear export signal (NES) to bind to nuclear exportin proteins, including CRM1 (Chromosomal Region Maintenance protein 1), and the energy for this process is provided by the RanGTP/RanGDP gradient. Due to the loss of DNA repair and cell cycle checkpoints, drug resistance is a major problem in cancer treatment, and often an initially successful treatment will fail due to the development of resistance. An important mechanism underlying resistance is nuclear export, and a number of strategies that can prevent nuclear export may reverse resistance. Examples include inhibitors of CRM1, antibodies to the nuclear export signal, and alteration of nuclear pore structure. Each of these are considered in this review.
Collapse
|