1
|
Papp H, Tóth E, Bóvári-Biri J, Bánfai K, Juhász P, Mahdi M, Russo LC, Bajusz D, Sipos A, Petri L, Szalai TV, Kemény Á, Madai M, Kuczmog A, Batta G, Mózner O, Vaskó D, Hirsch E, Bohus P, Méhes G, Tőzsér J, Curtin NJ, Helyes Z, Tóth A, Hoch NC, Jakab F, Keserű GM, Pongrácz JE, Bai P. The PARP inhibitor rucaparib blocks SARS-CoV-2 virus binding to cells and the immune reaction in models of COVID-19. Br J Pharmacol 2024; 181:4782-4803. [PMID: 39191429 DOI: 10.1111/bph.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND AND PURPOSE To date, there are limited options for severe Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 virus. As ADP-ribosylation events are involved in regulating the life cycle of coronaviruses and the inflammatory reactions of the host; we have, here, assessed the repurposing of registered PARP inhibitors for the treatment of COVID-19. EXPERIMENTAL APPROACH The effects of PARP inhibitors on virus uptake were assessed in cell-based experiments using multiple variants of SARS-CoV-2. The binding of rucaparib to spike protein was tested by molecular modelling and microcalorimetry. The anti-inflammatory properties of rucaparib were demonstrated in cell-based models upon challenging with recombinant spike protein or SARS-CoV-2 RNA vaccine. KEY RESULTS We detected high levels of oxidative stress and strong PARylation in all cell types in the lungs of COVID-19 patients, both of which negatively correlated with lymphocytopaenia. Interestingly, rucaparib, unlike other tested PARP inhibitors, reduced the SARS-CoV-2 infection rate through binding to the conserved 493-498 amino acid region located in the spike-ACE2 interface in the spike protein and prevented viruses from binding to ACE2. In addition, the spike protein and viral RNA-induced overexpression of cytokines was down-regulated by the inhibition of PARP1 by rucaparib at pharmacologically relevant concentrations. CONCLUSION AND IMPLICATIONS These results point towards repurposing rucaparib for treating inflammatory responses in COVID-19.
Collapse
Affiliation(s)
- Henrietta Papp
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Judit Bóvári-Biri
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Krisztina Bánfai
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Péter Juhász
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lilian Cristina Russo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tibor Viktor Szalai
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ágnes Kemény
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Medical Biology, Medical School, Pécs, Hungary
| | - Mónika Madai
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Orsolya Mózner
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dorottya Vaskó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Attila Tóth
- Section of Clinical Physiology, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Nicolas C Hoch
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit E Pongrácz
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Péter Bai
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Hu H, Serra C, Zhang W, Scrivo A, Fernández-Carasa I, Consiglio A, Aytes A, Pujana MA, Llebaria A, Antolin AA. Identification of differential biological activity and synergy between the PARP inhibitor rucaparib and its major metabolite. Cell Chem Biol 2024; 31:973-988.e4. [PMID: 38335967 DOI: 10.1016/j.chembiol.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/16/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
The (poly)pharmacology of drug metabolites is seldom comprehensively characterized in drug discovery. However, some drug metabolites can reach high plasma concentrations and display in vivo activity. Here, we use computational and experimental methods to comprehensively characterize the kinase polypharmacology of M324, the major metabolite of the PARP1 inhibitor rucaparib. We demonstrate that M324 displays unique PLK2 inhibition at clinical concentrations. This kinase activity could have implications for the efficacy and safety of rucaparib and therefore warrants further clinical investigation. Importantly, we identify synergy between the drug and the metabolite in prostate cancer models and a complete reduction of α-synuclein accumulation in Parkinson's disease models. These activities could be harnessed in the clinic or open new drug discovery opportunities. The study reported here highlights the importance of characterizing the activity of drug metabolites to comprehensively understand drug response in the clinic and exploit our current drug arsenal in precision medicine.
Collapse
Affiliation(s)
- Huabin Hu
- Center for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Carme Serra
- Medicinal Chemistry and Synthesis (MCS) Laboratory, Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain; Synthesis of High Added Value Molecules (SIMChem), Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - Wenjie Zhang
- ProCURE, Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Catalonia, Spain
| | - Aurora Scrivo
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alvaro Aytes
- ProCURE, Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Catalonia, Spain
| | - Miguel Angel Pujana
- ProCURE, Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Catalonia, Spain
| | - Amadeu Llebaria
- Medicinal Chemistry and Synthesis (MCS) Laboratory, Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain; Synthesis of High Added Value Molecules (SIMChem), Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain.
| | - Albert A Antolin
- Center for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK; ProCURE, Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Jiang S, Ren J, Zhang Q, Liu W, Liu H, Xu Q, Tian X, Zhang CY. Construction of a Dendritic Nanoassembly-Based Fluorescent Biosensor for Electrostatic Interaction-Independent and Label-Free Measurement of Human Poly(ADP-ribose) Polymerase 1 in Lung Tissues. Anal Chem 2023; 95:11815-11822. [PMID: 37489894 DOI: 10.1021/acs.analchem.3c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is responsible for catalyzing the creation of poly(ADP-ribose) polymer and involved in DNA replication and repair. Sensitive measurement of PARP-1 is critical for clinical diagnosis. However, the conventional electrostatic attraction-based PAPR-1 assays usually involve laborious procedures, poor sensitivity, and false positives. Herein, we demonstrate the construction of a dendritic nanoassembly-based fluorescent biosensor for electrostatic interaction-independent and label-free measurement of human PARP-1 in lung tumor tissues. When PARP-1 is present, the specific double-stranded DNA (dsDNA)-activated PARP-1 transfers the ADP-ribosyl group from nicotinamide adenine dinucleotide (NAD+)/biotinylated NAD+ to the PARP-1 itself, resulting in the formation of biotinylated dsDNA-PARP-1-PAR polymer bioconjugates that can be captured by magnetic beads. Upon the addition of TdT, APE1, and NH2-modified T-rich probe, the captured dsDNAs with dual 3'-OH termini initiate TdT-activated APE1-mediated hyperbranched amplification to produce abundant dendritic DNA nanoassemblies that can be stained by SYBR Green I to generate a high fluorescence signal. This biosensor is characterized by a template-free, electrostatic interaction-independent, high sensitivity, and label-free assay. It enables rapid (less than 3 h) measurement of PARP-1 with a limit of detection of 4.37 × 10-8 U/μL and accurate measurement of cellular PARP-1 activity with single-cell sensitivity. Moreover, it is capable of screening potential inhibitors and discriminating the PARP-1 level in normal person tissues and lung cancer patient tissues, with great potential in PARP-1-related clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jingyi Ren
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Wenjing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Plummer R. Evolution of the Development of PARP Inhibitors. Cancer Treat Res 2023; 186:1-11. [PMID: 37978127 DOI: 10.1007/978-3-031-30065-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PARP inhibitors first entered the clinic in 2003 in combination with DNA damaging agents in an attempt to overcome treatment resistance to established agents. A brief overview of ADP-ribosylator enzyme biology and the early preclinical development of the class is discussed, illustrating the multiple biological activities of these enzymes and potential wider clinical applicability. The chapter then documents those early years of clinical development and the evolution of the field and eventual registration of PARP inhibitors as active anticancer agents in their own right-in genetically vulnerable tumours.
Collapse
Affiliation(s)
- Ruth Plummer
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
5
|
Differences in Durability of PARP Inhibition by Clinically Approved PARP Inhibitors: Implications for Combinations and Scheduling. Cancers (Basel) 2022; 14:cancers14225559. [PMID: 36428653 PMCID: PMC9688250 DOI: 10.3390/cancers14225559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Six PARP inhibitors (PARPi) are approved for cancer therapy as monotherapy agents in daily or twice-daily continuous dosing schedules to maintain the necessary continuous suppression of PARP activity. Continuous PARP inhibition is required for single-agent anticancer activity. To investigate if such intense schedules are necessary, we determined the durability of PARP inhibition up to 72 h after a 1 h pulse of 1 µM of five of the approved PARPi, rucaparib, olaparib, niraparib, talazoparib and pamiparib, in IGROV-1 and ES-2 (human ovarian cancer) cells. Rucaparib caused the most persistent inhibition of PARP activity when maintained at ≥75% at 72 h after drug withdrawal in both IGROV-1 and ES-2 cells, but inhibition was more rapidly lost with the other PARPi. PARPi are also under clinical investigation with ATR inhibitors, and thus, we evaluated the implications for scheduling with an ATR inhibitor (VE-821). Rucaparib enhanced VE-821 cytotoxicity in co-exposure, sequential and delayed (24 h drug-free) schedules in IGROV-1 and ES-2 cells. Olaparib and niraparib enhanced VE-821 cytotoxicity only in co-exposed cells and not in sequential exposures. These data have clinical implications for the scheduling of PARPi as a monotherapy and in combination with ATR inhibitors and other cytotoxic drugs.
Collapse
|
6
|
Jiang L, Liu Y, Su X, Wang J, Zhao Y, Tumbath S, Kilgore JA, Williams NS, Chen Y, Wang X, Mendonca MS, Lu T, Fu YX, Huang X. KP372-1-Induced AKT Hyperactivation Blocks DNA Repair to Synergize With PARP Inhibitor Rucaparib via Inhibiting FOXO3a/GADD45α Pathway. Front Oncol 2022; 12:976292. [PMID: 36203459 PMCID: PMC9530825 DOI: 10.3389/fonc.2022.976292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have exhibited great promise in the treatment of tumors with homologous recombination (HR) deficiency, however, PARPi resistance, which ultimately recovers DNA repair and cell progress, has become an enormous clinical challenge. Recently, KP372-1 was identified as a novel potential anticancer agent that targeted the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce extensive reactive oxygen species (ROS) generation that amplified DNA damage, leading to cancer cell death. To overcome PARPi resistance and expand its therapeutic utility, we investigated whether a combination therapy of a sublethal dose of KP372-1 with a nontoxic dose of PARPi rucaparib would synergize and enhance lethality in NQO1 over-expressing cancers. We reported that the combination treatment of KP372-1 and rucaparib induced a transient and dramatic AKT hyperactivation that inhibited DNA repair by regulating FOXO3a/GADD45α pathway, which enhanced PARPi lethality and overcame PARPi resistance. We further found that PARP inhibition blocked KP372-1-induced PARP1 hyperactivation to reverse NAD+/ATP loss that promoted Ca2+-dependent autophagy and apoptosis. Moreover, pretreatment of cells with BAPTA-AM, a cytosolic Ca2+ chelator, dramatically rescued KP372-1- or combination treatment-induced lethality and significantly suppressed PAR formation and γH2AX activation. Finally, we demonstrated that this combination therapy enhanced accumulation of both agents in mouse tumor tissues and synergistically suppressed tumor growth in orthotopic pancreatic and non-small-cell lung cancer xenograft models. Together, our study provides novel preclinical evidence for new combination therapy in NQO1+ solid tumors that may broaden the clinical utility of PARPi.
Collapse
Affiliation(s)
- Lingxiang Jiang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yingchun Liu
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Xiaolin Su
- Departments of Biochemistry and Molecular Biology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jiangwei Wang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ye Zhao
- Departments of Biochemistry and Molecular Biology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Soumya Tumbath
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jessica A. Kilgore
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Noelle S. Williams
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Yaomin Chen
- Indiana University Health Pathology Laboratory, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Marc S. Mendonca
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Xiumei Huang,
| |
Collapse
|
7
|
Chan CY, Chen Z, Destro G, Veal M, Lau D, O’Neill E, Dias G, Mosley M, Kersemans V, Guibbal F, Gouverneur V, Cornelissen B. Imaging PARP with [ 18F]rucaparib in pancreatic cancer models. Eur J Nucl Med Mol Imaging 2022; 49:3668-3678. [PMID: 35614267 PMCID: PMC9399069 DOI: 10.1007/s00259-022-05835-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/08/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Rucaparib, an FDA-approved PARP inhibitor, is used as a single agent in maintenance therapy to provide promising treatment efficacy with an acceptable safety profile in various types of BRCA-mutated cancers. However, not all patients receive the same benefit from rucaparib-maintenance therapy. A predictive biomarker to help with patient selection for rucaparib treatment and predict clinical benefit is therefore warranted. With this aim, we developed [18F]rucaparib, an 18F-labelled isotopologue of rucaparib, and employed it as a PARP-targeting agent for cancer imaging with PET. Here, we report the in vitro and in vivo evaluation of [18F]rucaparib in human pancreatic cancer models. METHOD We incorporated the positron-emitting 18F isotope into rucaparib, enabling its use as a PET imaging agent. [18F]rucaparib binds to the DNA damage repair enzyme, PARP, allowing direct visualisation and measurement of PARP in cancerous models before and after PARP inhibition or other genotoxic cancer therapies, providing critical information for cancer diagnosis and therapy. Proof-of-concept evaluations were determined in pancreatic cancer models. RESULTS Uptake of [18F]rucaparib was found to be mainly dependent on PARP1 expression. Induction of DNA damage increased PARP expression, thereby increasing uptake of [18F]rucaparib. In vivo studies revealed relatively fast blood clearance of [18F]rucaparib in PSN1 tumour-bearing mice, with a tumour uptake of 5.5 ± 0.5%ID/g (1 h after i.v. administration). In vitro and in vivo studies showed significant reduction of [18F]rucaparib uptake by addition of different PARP inhibitors, indicating PARP-selective binding. CONCLUSION Taken together, we demonstrate the potential of [18F]rucaparib as a non-invasive PARP-targeting imaging agent for pancreatic cancers.
Collapse
Affiliation(s)
- Chung Ying Chan
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Gianluca Destro
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Mathew Veal
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Doreen Lau
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Edward O’Neill
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Gemma Dias
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Michael Mosley
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Veerle Kersemans
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Florian Guibbal
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Bart Cornelissen
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Kadagathur M, Sujat Shaikh A, Panda B, George J, Phanindranath R, Kumar Sigalapalli D, Bhale NA, Godugu C, Nagesh N, Shankaraiah N, Tangellamudi ND. Synthesis of indolo/pyrroloazepinone-oxindoles as potential cytotoxic, DNA-intercalating and Topo I inhibitors. Bioorg Chem 2022; 122:105706. [DOI: 10.1016/j.bioorg.2022.105706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
|
9
|
Ahsan MJ. 1,3,4-Oxadiazole Containing Compounds As Therapeutic Targets For Cancer Therapy. Mini Rev Med Chem 2021; 22:164-197. [PMID: 33634756 DOI: 10.2174/1389557521666210226145837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is the first or second leading cause of premature death in 134 of 183 countries in the world. 1,3,4-Oxadiazoles are five memebered heterocyclic rings containing two nitrogen (two atoms) and oxygen (one atom). They show better thermal stability, metabolic stability, aqueous solubility and lower lipophilicity than the other isomeric oxadiazoles. They are important class of heterocycles present in many drug structures like Raltegravir, Furamizole Tidazosin, Nesapidil, Setileuton (MK-0633) and Zibotentan. Presence of this nucleus in the therapeutics has made them an indispensable anchor for drug design and development. Several 1,3,4-oxadiazoles are prepared and reported as anticancer agents by numerous scientists worldwide. OBJECTIVES The present review discusses the anticancer potentials together with the molecular targets of 1,3,4-oxadiazoles reported since 2010. The structure activity relationship (SAR) and molecular docking simulation on different targets have also been discussed herein. Some of the important cancer targets have also been explored. METHODS The most potent 1,3,4-oxadiazoles reported in literature was highlighted in the manuscript. The anticancer activity was reported in terms of growth percent (GP), percent growth inhibition (%GI), GI50, IC50, and LC50 and TGI. RESULTS 1,3,4-Oxadiazoles are an important heterocyclic scaffolds with broad spectrum biological activities. They may be either mono substituted or disubstituted and act as an indispensable anchor for drug design and discovery due to their thermal stability together with low lipophilicity. They exhibited anticancer potentials and showed the inhibitions of various cancer targets. CONCLUSION The discussion outlined herein will proved to be a helpful and vital tool for medicinal chemists investigating and working with 1,3,4-oxadiazoles and anticancer research programs.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan 302 039. India
| |
Collapse
|
10
|
Kasherman L, Madariaga A, Rouzbahman M, Murphy K, Shultz D, Stockley T, Oza AM. Across barriers: poly ADP-ribose polymerase inhibitors beyond progression in high grade serous ovarian cancer with brain metastases. Int J Gynecol Cancer 2020; 31:139-143. [PMID: 32998861 DOI: 10.1136/ijgc-2020-001849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 11/03/2022] Open
Affiliation(s)
- Lawrence Kasherman
- Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Ainhoa Madariaga
- Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kieran Murphy
- Joint Department of Medical Imaging, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - David Shultz
- Radiation Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | | | - Amit M Oza
- Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Choi PJ, Park TI, Cooper E, Dragunow M, Denny WA, Jose J. Heptamethine Cyanine Dye Mediated Drug Delivery: Hype or Hope. Bioconjug Chem 2020; 31:1724-1739. [DOI: 10.1021/acs.bioconjchem.0c00302] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I−H. Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Choi PJ, Cooper E, Schweder P, Mee E, Turner C, Faull R, Denny WA, Dragunow M, Park TIH, Jose J. PARP inhibitor cyanine dye conjugate with enhanced cytotoxic and antiproliferative activity in patient derived glioblastoma cell lines. Bioorg Med Chem Lett 2020; 30:127252. [PMID: 32527552 DOI: 10.1016/j.bmcl.2020.127252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/30/2023]
Abstract
We describe the synthesis and in vitro activity of drug-dye conjugate 1, which is a combination of the PARP inhibitor rucaparib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed strong cytotoxic activity with nanomolar potency (EC50: 128 nM), which was a 780 fold improvement over rucaparib itself. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug for treatment for glioblastoma even though these cell lines were resistant to TMZ treatment. We envisage such conjugates to be worth exploring for their utility in the treatment of various brain cancers.
Collapse
Affiliation(s)
- Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Patrick Schweder
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, 2 Park Road, Auckland, New Zealand
| | - Richard Faull
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
13
|
The Development of Rucaparib/Rubraca®: A Story of the Synergy Between Science and Serendipity. Cancers (Basel) 2020; 12:cancers12030564. [PMID: 32121331 PMCID: PMC7139537 DOI: 10.3390/cancers12030564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/23/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) inhibitor, Rubraca®, was given its first accelerated approval for BRCA-mutated ovarian cancer by the FDA at the end of 2016, and further approval by the FDA, EMA and NICE followed. Scientists at Newcastle University initiated the early stages, and several collaborations with scientists in academia and the pharmaceutical industry enabled its final development to the approval stage. Although originally considered as a chemo- or radiosensitiser, its current application is as a single agent exploiting tumour-specific defects in DNA repair. As well as involving intellectual and physical effort, there have been a series of fortuitous occurrences and coincidences of timing that ensured its success. This review describes the history of the relationship between science and serendipity that brought us to the current position.
Collapse
|
14
|
Abstract
Rucaparib (Rubraca®) is a small molecule poly(ADP-ribose) polymerase (PARP) inhibitor with potent activity against PARP-1, -2 and -3. It is approved in the USA and the EU for the treatment of adult patients with BRCA-mutated ovarian cancer who have been treated with two or more lines of chemotherapy. Rucaparib is also approved in the USA and the EU for use as maintenance therapy in adult patients with recurrent or relapsed ovarian cancer who are in a complete or partial response to platinum-based chemotherapy. Based on an analysis of patients across two phase II clinical trials, rucaparib displayed clinical activity as third- (or later-) line treatment of BRCA-mutated ovarian cancer, with rucaparib-treated patients having a confirmed objective response rate of 54%. Furthermore, as demonstrated in the randomized, placebo-controlled, phase III ARIEL3 trial, rucaparib significantly improved progression-free survival when used as maintenance treatment in patients with platinum-sensitive ovarian cancer. Rucaparib had an acceptable tolerability profile in clinical trials in women with ovarian cancer. Common adverse events were generally manageable with dose modification and/or supportive care. Thus, currently available data indicate that rucaparib is a useful addition to the options available to clinicians for the treatment of advanced ovarian cancer, in both the treatment and maintenance therapy settings.
Collapse
|
15
|
Willoughby CE, Jiang Y, Thomas HD, Willmore E, Kyle S, Wittner A, Phillips N, Zhao Y, Tudhope SJ, Prendergast L, Junge G, Lourenco LM, Finlay MRV, Turner P, Munck JM, Griffin RJ, Rennison T, Pickles J, Cano C, Newell DR, Reeves HL, Ryan AJ, Wedge SR. Selective DNA-PKcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy. J Clin Invest 2020; 130:258-271. [PMID: 31581151 PMCID: PMC6934184 DOI: 10.1172/jci127483] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/25/2019] [Indexed: 11/23/2022] Open
Abstract
Potentiating radiotherapy and chemotherapy by inhibiting DNA damage repair is proposed as a therapeutic strategy to improve outcomes for patients with solid tumors. However, this approach risks enhancing normal tissue toxicity as much as tumor toxicity, thereby limiting its translational impact. Using NU5455, a newly identified highly selective oral inhibitor of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity, we found that it was indeed possible to preferentially augment the effect of targeted radiotherapy on human orthotopic lung tumors without influencing acute DNA damage or a late radiation-induced toxicity (fibrosis) to normal mouse lung. Furthermore, while NU5455 administration increased both the efficacy and the toxicity of a parenterally administered topoisomerase inhibitor, it enhanced the activity of doxorubicin released locally in liver tumor xenografts without inducing any adverse effect. This strategy is particularly relevant to hepatocellular cancer, which is treated clinically with localized drug-eluting beads and for which DNA-PKcs activity is reported to confer resistance to treatment. We conclude that transient pharmacological inhibition of DNA-PKcs activity is effective and tolerable when combined with localized DNA-damaging therapies and thus has promising clinical potential.
Collapse
Affiliation(s)
- Catherine E. Willoughby
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yanyan Jiang
- Cancer Research UK and UK Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Huw D. Thomas
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elaine Willmore
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suzanne Kyle
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anita Wittner
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicole Phillips
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yan Zhao
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan J. Tudhope
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lisa Prendergast
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gesa Junge
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luiza Madia Lourenco
- Cancer Research UK and UK Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - M. Raymond V. Finlay
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Paul Turner
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | | | - Roger J. Griffin
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tommy Rennison
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James Pickles
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Celine Cano
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David R. Newell
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen L. Reeves
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anderson J. Ryan
- Cancer Research UK and UK Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stephen R. Wedge
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Stasenko M, Cybulska P, Feit N, Makker V, Konner J, O'Cearbhaill RE, Alektiar KM, Beal K, Gardner GJ, Long Roche KC, Sonoda Y, Chi DS, Zivanovic O, Leitao MM, Cadoo KA, Tew WP. Brain metastasis in epithelial ovarian cancer by BRCA1/2 mutation status. Gynecol Oncol 2019; 154:144-149. [PMID: 31113680 DOI: 10.1016/j.ygyno.2019.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To evaluate clinical outcomes of patients with BRCA-associated ovarian cancer who developed brain metastases (BM). METHODS Patients with epithelial ovarian, fallopian tube, and primary peritoneal cancer (EOC) and BM, treated at a single institution from 1/1/2008-7/1/2018, were identified from two institutional databases. Charts and medical records were retrospectively reviewed for clinical characteristics and germline BRCA mutation status. Appropriate statistics were used. RESULTS Of 3649 patients with EOC, 91 had BM (2.5%). Germline mutation status was available for 63 (69%) cases; 21 (35%) of these harbored a BRCA1/2 mutation (15 BRCA1, 6 BRCA2). Clinical characteristics were similar between groups. BM were diagnosed at a median of 31 months (95% CI, 22.6-39.4) in BRCA-mutated (mBRCA) and 32 months (95% CI, 23.7-40.3) in wild-type BRCA (wtBRCA) (p = 0.78) patients. Brain metastases were the only evidence of disease at time of BM diagnoses in 48% (n = 10) mBRCA and 19% (n = 8) wtBRCA (p = 0.02) patients. There was no difference in treatment of BM by mutation status (p = 0.84). Survival from time of BM diagnosis was 29 months (95%CI, 15.5-42.5) in mBRCA and 9 months (95% CI, 5.5-12.5) in wtBRCA patients, with an adjusted hazard ratio (HR) of 0.53, p = 0.09; 95% CI, 0.25-1.11. HR was adjusted for presence of systemic disease at time of BM diagnosis. CONCLUSION This is the largest study to date comparing outcomes in patients with EOC and BM by mutation status. mBRCA patients were more likely to have isolated BM, which may be a factor in their long survival. This supports the pursuit of aggressive treatment for mBRCA EOC patients with BM. Additional studies examining the correlation of BRCA mutational status with BM are warranted.
Collapse
Affiliation(s)
- Marina Stasenko
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paulina Cybulska
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Noah Feit
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Vicky Makker
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason Konner
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roisin E O'Cearbhaill
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kaled M Alektiar
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn Beal
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ginger J Gardner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Kara C Long Roche
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Yukio Sonoda
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Dennis S Chi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Oliver Zivanovic
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Mario M Leitao
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Karen A Cadoo
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William P Tew
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
17
|
PARP Inhibitors as a Therapeutic Agent for Homologous Recombination Deficiency in Breast Cancers. J Clin Med 2019; 8:jcm8040435. [PMID: 30934991 PMCID: PMC6517993 DOI: 10.3390/jcm8040435] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/16/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) play an important role in various cellular processes, such as replication, recombination, chromatin remodeling, and DNA repair. Emphasizing PARP's role in facilitating DNA repair, the PARP pathway has been a target for cancer researchers in developing compounds which selectively target cancer cells and increase sensitivity of cancer cells to other anticancer agents, but which also leave normal cells unaffected. Since certain tumors (BRCA1/2 mutants) have deficient homologous recombination repair pathways, they depend on PARP-mediated base excision repair for survival. Thus, inhibition of PARP is a promising strategy to selectively kill cancer cells by inactivating complementary DNA repair pathways. Although PARP inhibitor therapy has predominantly targeted BRCA-mutated cancers, this review also highlights the growing conversation around PARP inhibitor treatment for non-BRCA-mutant tumors, those which exhibit BRCAness and homologous recombination deficiency. We provide an update on the field's progress by considering PARP inhibitor mechanisms, predictive biomarkers, and clinical trials of PARP inhibitors in development. Bringing light to these findings would provide a basis for expanding the use of PARP inhibitors beyond BRCA-mutant breast tumors.
Collapse
|
18
|
Gentles L, Goranov B, Matheson E, Herriott A, Kaufmann A, Hall S, Mukhopadhyay A, Drew Y, Curtin NJ, O'Donnell RL. Exploring the Frequency of Homologous Recombination DNA Repair Dysfunction in Multiple Cancer Types. Cancers (Basel) 2019; 11:cancers11030354. [PMID: 30871186 PMCID: PMC6468835 DOI: 10.3390/cancers11030354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Dysfunctional homologous recombination DNA repair (HRR), frequently due to BRCA mutations, is a determinant of sensitivity to platinum chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi). In cultures of ovarian cancer cells, we have previously shown that HRR function, based upon RAD51 foci quantification, correlated with growth inhibition ex vivo induced by rucaparib (a PARPi) and 12-month survival following platinum chemotherapy. The aim of this study was to determine the feasibility of measuring HRR dysfunction (HRD) in other tumours, in order to estimate the frequency and hence wider potential of PARPi. A total of 24 cultures were established from ascites sampled from 27 patients with colorectal, upper gastrointestinal, pancreatic, hepatobiliary, breast, mesothelioma, and non-epithelial ovarian cancers; 8 were HRD. Cell growth following continuous exposure to 10 μM of rucaparib was lower in HRD cultures compared to HRR-competent (HRC) cultures. Overall survival in the 10 patients who received platinum-based therapy was marginally higher in the 3 with HRD ascites (median overall survival of 17 months, range 10 to 90) compared to the 7 patients with HRC ascites (nine months, range 1 to 55). HRR functional assessment in primary cultures, from several tumour types, revealed that a third are HRD, justifying the further exploration of PARPi therapy in a broader range of tumours.
Collapse
Affiliation(s)
- Lucy Gentles
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Bojidar Goranov
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Elizabeth Matheson
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ashleigh Herriott
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Angelika Kaufmann
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Gynecological Oncology Centre, Queen Elizabeth Hospital, Sherriff Hill, Gateshead NE9 6SX, UK.
| | - Sally Hall
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Asima Mukhopadhyay
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata 700 160, India.
| | - Yvette Drew
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Rachel L O'Donnell
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. rachel.o'
- Northern Gynecological Oncology Centre, Queen Elizabeth Hospital, Sherriff Hill, Gateshead NE9 6SX, UK. rachel.o'
| |
Collapse
|
19
|
Ngo G, Hyatt S, Grimstead J, Jones R, Hendrickson E, Pepper C, Baird D. PARP inhibition prevents escape from a telomere-driven crisis and inhibits cell immortalisation. Oncotarget 2018; 9:37549-37563. [PMID: 30680069 PMCID: PMC6331021 DOI: 10.18632/oncotarget.26499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
Telomeric crisis is the final replicative barrier to cell immortalisation; it is characterised by genome instability and cell death and is triggered when telomeres become critically short and are subjected to fusion. Pre-cancerous lesions, or early stage cancers, often show signs of a telomere crisis, suggesting that escape from telomere crisis is a prerequisite for disease progression. Telomeric crisis therefore represents an attractive, and as yet unexplored, opportunity for therapeutic intervention. Here, we show that two clinically approved PARP inhibitors, selectively eliminate human cells undergoing a telomere-driven crisis. Clonal populations of a colorectal cancer cell line (HCT116), or the plasma cell leukaemia cell line (JJN-3), expressing a dominant-negative telomerase, entered a telomere-driven crisis at defined population doubling points and telomere lengths. The addition of the PARP inhibitors, olaparib or rucaparib prevented these cells from escaping crisis. PARP inhibition did not alter cellular proliferation prior to crisis, rates of telomere erosion or the telomere length at which crisis was initiated, but affected repair of eroded telomeres, resulting in an increased in intra-chromosomal telomere fusion. This was accompanied by enhanced DNA damage checkpoint activation and elevated levels of apoptosis. We propose that PARP inhibitors impair the repair of dysfunctional telomeres and/or induce replicative stress at telomeres to inhibit escape from a telomere crisis. This is the first demonstration that a drug can selectively kill cells experiencing telomeric crisis. We propose that this type of drug, which we term 'crisolytic', has the potential to eliminate pre-cancerous lesions and tumours exhibiting short dysfunctional telomeres.
Collapse
Affiliation(s)
- Greg Ngo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Sam Hyatt
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Julia Grimstead
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Rhiannon Jones
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Eric Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Chris Pepper
- University of Sussex, Brighton and Sussex Medical School, Brighton, UK
| | - Duncan Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| |
Collapse
|
20
|
Vormoor B, Schlosser YT, Blair H, Sharma A, Wilkinson S, Newell DR, Curtin N. Sensitizing Ewing sarcoma to chemo- and radiotherapy by inhibition of the DNA-repair enzymes DNA protein kinase (DNA-PK) and poly-ADP-ribose polymerase (PARP) 1/2. Oncotarget 2017; 8:113418-113430. [PMID: 29371919 PMCID: PMC5768336 DOI: 10.18632/oncotarget.21300] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/16/2017] [Indexed: 11/25/2022] Open
Abstract
Background DNA-PK and PARP inhibitors sensitize cancer cells to chemo- and radiotherapy. ETS transcription factors (EWS-FLI1) have been described as biomarkers for PARP-inhibitor sensitivity. Sensitivity to single agent PARP inhibitors has so far been limited to homologous recombination repair (HRR) deficient tumors, exploiting synthetic lethality. Results In clonogenic assays, single agent rucaparib LD50 values for continuously exposed cells were similar to those observed in HRR-defective cells (CAPAN-1 cell line, BRCA2 defective); however, both ES cell lines (TC-71, CADO-ES1) had functional HRR. In vivo rucaparib administration (10 mg/kg daily) showed no responses. In clonogenic assays, rucaparib enhanced temozolomide, camptothecin and radiation cytotoxicity, which was most profound for temozolomide (15–29 fold enhancement). NU7441 increased the cytotoxicity of etoposide, doxorubicin and radiation. Materials and Methods We assessed PARP1/2 (rucaparib) and DNA-PK (NU7441) inhibitors in Ewing sarcoma (ES) cell lines by performing growth inhibition and clonogenic assays. HRR was measured by RAD51 focus formation. Single agent rucaparib was assessed in an in vivo orthotopic model. Conclusions Single agent rucaparib ES sensitivity in vitro was not replicated in vivo. DNA-PK and PARP inhibitors are good chemo-/radiosensitizers in ES. The future of these inhibitors lies in their combination with chemo-/radiotherapy, which needs to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Britta Vormoor
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK.,Department of Paediatric and Adolescent Haematology and Oncology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Yvonne T Schlosser
- German Cancer Research Center, DKFZ, Cell Cycle Control and Carcinogenesis, Heidelberg, Germany
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Abhishek Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Sarah Wilkinson
- Northumbria University, Department of Health and Life Sciences, Newcastle upon Tyne, UK
| | - David R Newell
- Northern Institute for Cancer Research, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne, UK
| | - Nicola Curtin
- Northern Institute for Cancer Research, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Bartelink IH, Prideaux B, Krings G, Wilmes L, Lee PRE, Bo P, Hann B, Coppé JP, Heditsian D, Swigart-Brown L, Jones EF, Magnitsky S, Keizer RJ, de Vries N, Rosing H, Pawlowska N, Thomas S, Dhawan M, Aggarwal R, Munster PN, Esserman LJ, Ruan W, Wu AHB, Yee D, Dartois V, Savic RM, Wolf DM, van ’t Veer L. Heterogeneous drug penetrance of veliparib and carboplatin measured in triple negative breast tumors. Breast Cancer Res 2017; 19:107. [PMID: 28893315 PMCID: PMC5594551 DOI: 10.1186/s13058-017-0896-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase inhibitors (PARPi), coupled to a DNA damaging agent is a promising approach to treating triple negative breast cancer (TNBC). However, not all patients respond; we hypothesize that non-response in some patients may be due to insufficient drug penetration. As a first step to testing this hypothesis, we quantified and visualized veliparib and carboplatin penetration in mouse xenograft TNBCs and patient blood samples. METHODS MDA-MB-231, HCC70 or MDA-MB-436 human TNBC cells were implanted in 41 beige SCID mice. Low dose (20 mg/kg) or high dose (60 mg/kg) veliparib was given three times daily for three days, with carboplatin (60 mg/kg) administered twice. In addition, blood samples were analyzed from 19 patients from a phase 1 study of carboplatin + PARPi talazoparib. Veliparib and carboplatin was quantified using liquid chromatography-mass spectrometry (LC-MS). Veliparib tissue penetration was visualized using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) and platinum adducts (covalent nuclear DNA-binding) were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Pharmacokinetic modeling and Pearson's correlation were used to explore associations between concentrations in plasma, tumor cells and peripheral blood mononuclear cells (PBMCs). RESULTS Veliparib penetration in xenograft tumors was highly heterogeneous between and within tumors. Only 35% (CI 95% 26-44%), 74% (40-97%) and 46% (9-37%) of veliparib observed in plasma penetrated into MDA-MB-231, HCC70 and MDA-MB-436 cell-based xenografts, respectively. Within tumors, penetration heterogeneity was larger with the 60 mg/kg compared to the 20 mg/kg dose (RSD 155% versus 255%, P = 0.001). These tumor concentrations were predicted similar to clinical dosing levels, but predicted tumor concentrations were below half maximal concentration values as threshold of response. Xenograft veliparib concentrations correlated positively with platinum adduct formation (R 2 = 0.657), but no PARPi-platinum interaction was observed in patients' PBMCs. Platinum adduct formation was significantly higher in five gBRCA carriers (ratio of platinum in DNA in PBMCs/plasma 0.64% (IQR 0.60-1.16%) compared to nine non-carriers (ratio 0.29% (IQR 0.21-0.66%, P < 0.0001). CONCLUSIONS PARPi/platinum tumor penetration can be measured by MALDI-MSI and ICP-MS in PBMCs and fresh frozen, OCT embedded core needle biopsies. Large variability in platinum adduct formation and spatial heterogeneity in veliparib distribution may lead to insufficient drug exposure in select cell populations.
Collapse
Affiliation(s)
- Imke H. Bartelink
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Brendan Prideaux
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Gregor Krings
- Department of Pathology, University of California, San Francisco, CA USA
| | - Lisa Wilmes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Pei Rong Evelyn Lee
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Pan Bo
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Byron Hann
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Diane Heditsian
- Patient advocate University of California, San Francisco Breast Science Advocacy Core, San Francisco, CA USA
| | - Lamorna Swigart-Brown
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Ella F. Jones
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Sergey Magnitsky
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Ron J Keizer
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Niels de Vries
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Nela Pawlowska
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Scott Thomas
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Mallika Dhawan
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Rahul Aggarwal
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Pamela N. Munster
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Laura J. Esserman
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Weiming Ruan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Alan H. B. Wu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Douglas Yee
- Division of Hematology Oncology, University of Minnesota, Minneapolis, MN USA
| | - Véronique Dartois
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Radojka M. Savic
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Denise M. Wolf
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Laura van ’t Veer
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| |
Collapse
|
22
|
Almeida GS, Bawn CM, Galler M, Wilson I, Thomas HD, Kyle S, Curtin NJ, Newell DR, Maxwell RJ. PARP inhibitor rucaparib induces changes in NAD levels in cells and liver tissues as assessed by MRS. NMR IN BIOMEDICINE 2017; 30:e3736. [PMID: 28543772 DOI: 10.1002/nbm.3736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/26/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Poly(adenosine diphosphate ribose) polymerases (PARPs) are multifunctional proteins which play a role in many cellular processes. Namely, PARP1 and PARP2 have been shown to be involved in DNA repair, and therefore are valid targets in cancer treatment with PARP inhibitors, such as rucaparib, currently in clinical trials. Proton magnetic resonance spectroscopy (1 H-MRS) was used to study the impact of rucaparib in vitro and ex vivo in liver tissue from mice, via quantitative analysis of nicotinamide adenosine diphosphate (NAD+ ) spectra, to assess the potential of MRS as a biomarker of the PARP inhibitor response. SW620 (colorectal) and A2780 (ovarian) cancer cell lines, and PARP1 wild-type (WT) and PARP1 knock-out (KO) mice, were treated with rucaparib, temozolomide (methylating agent) or a combination of both drugs. 1 H-MRS spectra were obtained from perchloric acid extracts of tumour cells and mouse liver. Both cell lines showed an increase in NAD+ levels following PARP inhibitor treatment in comparison with temozolomide treatment. Liver extracts from PARP1 WT mice showed a significant increase in NAD+ levels after rucaparib treatment compared with untreated mouse liver, and a significant decrease in NAD+ levels in the temozolomide-treated group. The combination of rucaparib and temozolomide did not prevent the NAD+ depletion caused by temozolomide treatment. The 1 H-MRS results show that NAD+ levels can be used as a biomarker of PARP inhibitor and methylating agent treatments, and suggest that in vivo measurement of NAD+ would be valuable.
Collapse
Affiliation(s)
- Gilberto S Almeida
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - Carlo M Bawn
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - Martin Galler
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ian Wilson
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - Huw D Thomas
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - Suzanne Kyle
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - David R Newell
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ross J Maxwell
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
23
|
Rajawat J, Shukla N, Mishra DP. Therapeutic Targeting of Poly(ADP-Ribose) Polymerase-1 (PARP1) in Cancer: Current Developments, Therapeutic Strategies, and Future Opportunities. Med Res Rev 2017; 37:1461-1491. [PMID: 28510338 DOI: 10.1002/med.21442] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) plays a central role in numerous cellular processes including DNA repair, replication, and transcription. PARP interacts directly, indirectly or via PARylation with various oncogenic proteins and regulates several transcription factors thereby modulating carcinogenesis. Therapeutic inhibition of PARP is therefore perceived as a promising anticancer strategy and a number of PARP inhibitors (PARPi) are currently under development and clinical evaluation. PARPi inhibit the DNA repair pathway and thus form the concept of synthetic lethality in cancer therapeutics. Preclinical and clinical studies have shown the potential of PARPi as chemopotentiator, radiosensitizer, or as adjuvant therapeutic agents. Recent studies have shown that PARP-1 could be either oncogenic or tumor suppressive in different cancers. PARP inhibitor resistance is also a growing concern in the clinical setting. Recently, changes in the levels of PARP-1 activity or expression in cancer patients have provided the basis for consideration of PARP-1 regulatory proteins as potential biomarkers. This review focuses on the current developments related to the role of PARP in cancer progression, therapeutic strategies targeting PARP-associated oncogenic signaling, and future opportunities in use of PARPi in anticancer therapeutics.
Collapse
Affiliation(s)
- Jyotika Rajawat
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Nidhi Shukla
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| |
Collapse
|
24
|
|
25
|
Knezevic CE, Wright G, Rix LLR, Kim W, Kuenzi BM, Luo Y, Watters JM, Koomen JM, Haura EB, Monteiro AN, Radu C, Lawrence HR, Rix U. Proteome-wide Profiling of Clinical PARP Inhibitors Reveals Compound-Specific Secondary Targets. Cell Chem Biol 2016; 23:1490-1503. [PMID: 27866910 PMCID: PMC5182133 DOI: 10.1016/j.chembiol.2016.10.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/11/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a promising class of targeted cancer drugs, but their individual target profiles beyond the PARP family, which could result in differential clinical use or toxicity, are unknown. Using an unbiased, mass spectrometry-based chemical proteomics approach, we generated a comparative proteome-wide target map of the four clinical PARPi, olaparib, veliparib, niraparib, and rucaparib. PARPi as a class displayed high target selectivity. However, in addition to the canonical targets PARP1, PARP2, and several of their binding partners, we also identified hexose-6-phosphate dehydrogenase (H6PD) and deoxycytidine kinase (DCK) as previously unrecognized targets of rucaparib and niraparib, respectively. Subsequent functional validation suggested that inhibition of DCK by niraparib could have detrimental effects when combined with nucleoside analog pro-drugs. H6PD silencing can cause apoptosis and further sensitize cells to PARPi, suggesting that H6PD may be, in addition to its established role in metabolic disorders, a new anticancer target.
Collapse
Affiliation(s)
- Claire E Knezevic
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Gabriela Wright
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brent M Kuenzi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Yunting Luo
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - January M Watters
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Caius Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harshani R Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
26
|
Huang X, Motea EA, Moore ZR, Yao J, Dong Y, Chakrabarti G, Kilgore JA, Silvers MA, Patidar PL, Cholka A, Fattah F, Cha Y, Anderson GG, Kusko R, Peyton M, Yan J, Xie XJ, Sarode V, Williams NS, Minna JD, Beg M, Gerber DE, Bey EA, Boothman DA. Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors. Cancer Cell 2016; 30:940-952. [PMID: 27960087 PMCID: PMC5161231 DOI: 10.1016/j.ccell.2016.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 06/18/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Therapeutic drugs that block DNA repair, including poly(ADP-ribose) polymerase (PARP) inhibitors, fail due to lack of tumor-selectivity. When PARP inhibitors and β-lapachone are combined, synergistic antitumor activity results from sustained NAD(P)H levels that refuel NQO1-dependent futile redox drug recycling. Significant oxygen-consumption-rate/reactive oxygen species cause dramatic DNA lesion increases that are not repaired due to PARP inhibition. In NQO1+ cancers, such as non-small-cell lung, pancreatic, and breast cancers, cell death mechanism switches from PARP1 hyperactivation-mediated programmed necrosis with β-lapachone monotherapy to synergistic tumor-selective, caspase-dependent apoptosis with PARP inhibitors and β-lapachone. Synergistic antitumor efficacy and prolonged survival were noted in human orthotopic pancreatic and non-small-cell lung xenograft models, expanding use and efficacy of PARP inhibitors for human cancer therapy.
Collapse
Affiliation(s)
- Xiumei Huang
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Zachary R Moore
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Jun Yao
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Ying Dong
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Gaurab Chakrabarti
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | | | - Molly A Silvers
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Praveen L Patidar
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Agnieszka Cholka
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Farjana Fattah
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Yoonjeong Cha
- Immuneering Corporation, One Broadway 14th Floor, Cambridge, MA 02142, USA
| | - Glenda G Anderson
- 5Degrees Bio., Inc., 111 North Market Street #300, San Jose, CA 95113, USA
| | - Rebecca Kusko
- Immuneering Corporation, One Broadway 14th Floor, Cambridge, MA 02142, USA
| | - Michael Peyton
- Department of Internal Medicine, Division of Hematology-Oncology, UTSW, Dallas, TX 75390, USA
| | - Jingsheng Yan
- Department of Biostatistics, UTSW, Dallas, TX 75390, USA
| | - Xian-Jin Xie
- Department of Biostatistics, UTSW, Dallas, TX 75390, USA
| | | | | | - John D Minna
- Department of Internal Medicine, Division of Hematology-Oncology, UTSW, Dallas, TX 75390, USA
| | - Muhammad Beg
- Department of Internal Medicine, Division of Hematology-Oncology, UTSW, Dallas, TX 75390, USA
| | - David E Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, UTSW, Dallas, TX 75390, USA
| | - Erik A Bey
- Department of Pharmaceutical Sciences, West Virginia University Cancer Institute, Morgantown, WV 26506, USA.
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center (SCCC), UT Southwestern Medical Center (UTSW), Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Yuan Z, Chen J, Li W, Li D, Chen C, Gao C, Jiang Y. PARP inhibitors as antitumor agents: a patent update (2013-2015). Expert Opin Ther Pat 2016; 27:363-382. [PMID: 27841036 DOI: 10.1080/13543776.2017.1259413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION PARP inhibitors have been extensively explored as antitumor agents and have shown potent efficacy both in vitro and in vivo. They can be used in monotherapy under the synthetic lethality concept or in combination with radiotherapy or chemotherapy, inducing a synergistic effect. Areas covered: This review covers relevant efforts in the development of PARP inhibitors with a particular focus on recently patented PARP inhibitors, combination therapy involving PARP inhibitors, tumor responsiveness to PARP inhibitors as detailed in reports made from 2013 - 2015, and PARP drugs in clinical trials and other novel inhibitors that emerged in 2013 - 2015. Expert opinion: Clinical studies and applications of PARP inhibitors as antitumor agents have gained considerable recognition in the last few years. In addition to FDA-approved olaparib, an increasing number of new inhibitors have been designed and synthesized, some of which are under preclinical or clinical evaluation. Novel inhibitors are still required, especially new scaffold compounds or drugs with improved properties, such as higher selectivity, higher potency and lower toxicity. The development of combination therapies involving PARP inhibitors and the exploration of biomarkers to predict outcomes with PARP inhibitors would expand the applications of these inhibitors, allowing more patients to benefit from this promising class of drugs in the future.
Collapse
Affiliation(s)
- Zigao Yuan
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Jiwei Chen
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Wenlu Li
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Dan Li
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Changjun Chen
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Chunmei Gao
- b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China.,c National & Local United Engineering Lab for Personalized anti-tumor drugs, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Yuyang Jiang
- b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China.,c National & Local United Engineering Lab for Personalized anti-tumor drugs, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China.,d School of Medicine , Tsinghua University , Beijing , P. R. China
| |
Collapse
|
28
|
Drew Y, Ledermann J, Hall G, Rea D, Glasspool R, Highley M, Jayson G, Sludden J, Murray J, Jamieson D, Halford S, Acton G, Backholer Z, Mangano R, Boddy A, Curtin N, Plummer R. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br J Cancer 2016; 114:723-30. [PMID: 27002934 PMCID: PMC4882768 DOI: 10.1038/bjc.2016.41] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/02/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rucaparib is an orally available potent selective small-molecule inhibitor of poly(ADP-ribose) polymerase (PARP) 1 and 2. Rucaparib induces synthetic lethality in cancer cells defective in the homologous recombination repair pathway including BRCA-1/2. We investigated the efficacy and safety of single-agent rucaparib in germline (g) BRCA mutation carriers with advanced breast and ovarian cancers. METHODS Phase II, open-label, multicentre trial of rucaparib in proven BRCA-1/2 mutation carriers with advanced breast and or ovarian cancer, WHO PS 0-1 and normal organ function. Intravenous (i.v.) and subsequently oral rucaparib were assessed, using a range of dosing schedules, to determine the safety, tolerability, dose-limiting toxic effects and pharmacodynamic (PD) and pharmacokinetic (PK) profiles. RESULTS Rucaparib was well tolerated in patients up to doses of 480 mg per day and is a potent inhibitor of PARP, with sustained inhibition ⩾24 h after single doses. The i.v. rucaparib (intermittent dosing schedule) resulted in an objective response rate (ORR) of only 2% but with 41% (18 out of 44) patients achieved stable disease for ⩾12 weeks and 3 patients maintaining disease stabilisation for >52 weeks. The ORR for oral rucaparib (across all six dose levels) was 15%. In the oral cohorts, 81% (22 out of 27) of the patients had ovarian cancer and 12 out of 13, who were dosed continuously, achieved RECIST complete response/partial response (CR/PR) or stable disease (SD) ⩾12 weeks, with a median duration of response of 179 days (range 84-567 days). CONCLUSIONS Rucaparib is well tolerated and results in high levels of PARP inhibition in surrogate tissues even at the lowest dose levels. Rucaparib is active in gBRCA-mutant ovarian cancer and this activity correlates with platinum-free interval. The key lessons learned from this study is that continuous rucaparib dosing is required for optimal response, the recommended phase 2 dose (RP2D) for continuous oral scheduling has not been established and requires further exploration and, thirdly, the use of a PD biomarker to evaluate dose-response has its limitations.
Collapse
Affiliation(s)
- Yvette Drew
- Northern Institute for Cancer Research and the Northern Centre for Cancer Care, Newcastle Freeman Hospital Newcastle, Newcastle 0191 2139386, UK
| | - Jonathan Ledermann
- UCL Cancer Institute, CR-UK and UCL Cancer Trials Centre, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - Geoff Hall
- St James's University Hospital, Cancer Research UK Clinical Cancer Centre in Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Daniel Rea
- University of Birmingham, School of Cancer Sciences, Edgbaston, Birmingham B15 2TT, UK
| | - Ros Glasspool
- Beatson West of Scotland Cancer Centre, Medical Oncology 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Martin Highley
- Derriford Hospital Plymouth Oncology Centre, Plymouth, UK
| | - Gordon Jayson
- University of Manchester, Paterson Institute for Cancer Research, Translational Angiogenesis Group, Wilmslow Road, Manchester, M20 4BX, UK
| | - Julieann Sludden
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle, UK
| | - James Murray
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle, UK
| | - David Jamieson
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle, UK
| | - Sarah Halford
- Cancer Research UK, Drug Development Office, The Angel Building, 407 St John Street, London EC1V 4AD, UK
| | - Gary Acton
- Cancer Research UK, Centre for Drug Development Drug Development, Angel Building, London EC1V 4AD, UK
| | - Zoe Backholer
- Cancer Research UK, Centre for Drug Development Drug Development, Angel Building, London EC1V 4AD, UK
| | - Raffaella Mangano
- Cancer Research UK, Centre for Drug Development Drug Development, Angel Building, London EC1V 4AD, UK
| | - Alan Boddy
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle, UK
| | - Nicola Curtin
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle, UK
| | - Ruth Plummer
- Northern Institute for Cancer Research and the Northern Centre for Cancer Care, Newcastle Freeman Hospital Newcastle, Newcastle 0191 2139386, UK
| |
Collapse
|
29
|
Parrish KE, Cen L, Murray J, Calligaris D, Kizilbash S, Mittapalli RK, Carlson BL, Schroeder MA, Sludden J, Boddy AV, Agar NYR, Curtin NJ, Elmquist WF, Sarkaria JN. Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System. Mol Cancer Ther 2015; 14:2735-43. [PMID: 26438157 DOI: 10.1158/1535-7163.mct-15-0553] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
PARP inhibition can enhance the efficacy of temozolomide and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with temozolomide and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with temozolomide was highly effective in vitro in short-term explant cultures derived from GBM12, and, similarly, the combination of rucaparib and temozolomide (dosed for 5 days every 28 days for 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of temozolomide in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b(-/-)Bcrp1(-/-) knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain is associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared with normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with temozolomide in GBM.
Collapse
Affiliation(s)
- Karen E Parrish
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Ling Cen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - James Murray
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Calligaris
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sani Kizilbash
- Department of Medical Oncology Mayo Clinic, Rochester, Minnesota
| | | | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Alan V Boddy
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Jann N Sarkaria
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
30
|
Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells. Radiother Oncol 2015; 116:358-65. [PMID: 25981132 DOI: 10.1016/j.radonc.2015.03.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE The PARP inhibitor olaparib is currently tested in clinical phase 1 trials to define safe dose levels in combination with RT. However, certain clinically relevant insights are still lacking. Here we test, while comparing to single agent activity, the olaparib dose and genetic background dependence of olaparib-mediated radiosensitization. MATERIALS AND METHODS Long-term growth inhibition and clonogenic assays were used to assess radiosensitization in BRCA2-deficient and BRCA2-complemented cells and in a panel of human head and neck squamous cell carcinoma cell lines. RESULTS The extent of radiosensitization greatly depended on the olaparib dose, the radiation dose and the homologous recombination status of cells. Olaparib concentrations that resulted in radiosensitization prevented PAR induction by irradiation. Seven hours olaparib exposures were sufficient for radiosensitization. Importantly, the radiosensitizing effects can be observed at much lower olaparib doses than the single agent effects. CONCLUSION Extrapolation of these data to the clinic suggests that low olaparib doses are sufficient to cause radiosensitization, underlining the potential of the treatment. Here we show that drug doses achieving radiosensitization can greatly differ from those achieving single agent activities, an important consideration when developing combined radiotherapy strategies with novel targeted agents.
Collapse
|
31
|
Polotskaia A, Xiao G, Reynoso K, Martin C, Qiu WG, Hendrickson RC, Bargonetti J. Proteome-wide analysis of mutant p53 targets in breast cancer identifies new levels of gain-of-function that influence PARP, PCNA, and MCM4. Proc Natl Acad Sci U S A 2015; 112:E1220-9. [PMID: 25733866 PMCID: PMC4371979 DOI: 10.1073/pnas.1416318112] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The gain-of-function mutant p53 (mtp53) transcriptome has been studied, but, to date, no detailed analysis of the mtp53-associated proteome has been described. We coupled cell fractionation with stable isotope labeling with amino acids in cell culture (SILAC) and inducible knockdown of endogenous mtp53 to determine the mtp53-driven proteome. Our fractionation data highlight the underappreciated biology that missense mtp53 proteins R273H, R280K, and L194F are tightly associated with chromatin. Using SILAC coupled to tandem MS, we identified that R273H mtp53 expression in MDA-MB-468 breast cancer cells up- and down-regulated multiple proteins and metabolic pathways. Here we provide the data set obtained from sequencing 73,154 peptide pairs that then corresponded to 3,010 proteins detected under reciprocal labeling conditions. Importantly, the high impact regulated targets included the previously identified transcriptionally regulated mevalonate pathway proteins but also identified two new levels of mtp53 protein regulation for nontranscriptional targets. Interestingly, mtp53 depletion profoundly influenced poly(ADP ribose) polymerase 1 (PARP1) localization, with increased cytoplasmic and decreased chromatin-associated protein. An enzymatic PARP shift occurred with high mtp53 expression, resulting in increased poly-ADP-ribosylated proteins in the nucleus. Mtp53 increased the level of proliferating cell nuclear antigen (PCNA) and minichromosome maintenance 4 (MCM4) proteins without changing the amount of pcna and mcm4 transcripts. Pathway enrichment analysis ranked the DNA replication pathway above the cholesterol biosynthesis pathway as a R273H mtp53 activated proteomic target. Knowledge of the proteome diversity driven by mtp53 suggests that DNA replication and repair pathways are major targets of mtp53 and highlights consideration of combination chemotherapeutic strategies targeting cholesterol biosynthesis and PARP inhibition.
Collapse
Affiliation(s)
- Alla Polotskaia
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Gu Xiao
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Katherine Reynoso
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Che Martin
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Wei-Gang Qiu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Ronald C Hendrickson
- Proteomics Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| |
Collapse
|
32
|
McCrudden CM, O’Rourke MG, Cherry KE, Yuen HF, O’Rourke D, Babur M, Telfer BA, Thomas HD, Keane P, Nambirajan T, Hagan C, O’Sullivan JM, Shaw C, Williams KJ, Curtin NJ, Hirst DG, Robson T. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself. PLoS One 2015; 10:e0118187. [PMID: 25689628 PMCID: PMC4331495 DOI: 10.1371/journal.pone.0118187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023] Open
Abstract
Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib’s activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.
Collapse
Affiliation(s)
- Cian M. McCrudden
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail:
| | | | - Kim E. Cherry
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Hiu-Fung Yuen
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Declan O’Rourke
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Muhammad Babur
- Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom
| | - Brian A. Telfer
- Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom
| | - Huw D. Thomas
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Patrick Keane
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | | | - Chris Hagan
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Joe M. O’Sullivan
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Kaye J. Williams
- Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom
| | - Nicola J. Curtin
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David G. Hirst
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Tracy Robson
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
33
|
Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharm Res 2014; 32:37-46. [PMID: 24962512 DOI: 10.1007/s11095-014-1442-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/10/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Rucaparib is a potent, orally available, small-molecule inhibitor of poly ADP-ribose polymerase (PARP) 1 and 2. Ongoing clinical trials are assessing the efficacy of rucaparib alone or in combination with other cytotoxic drugs, mainly in breast and ovarian cancer patients with mutations in the breast cancer associated (BRCA) genes. PURPOSE We aimed to establish whether the multidrug efflux transporters ABCG2 (BCRP) and ABCB1 (P-gp, MDR1) affect the oral availability and brain penetration of rucaparib in mice. RESULTS In vitro, rucaparib was efficiently transported by both human ABCB1 and ABCG2, and very efficiently by mouse Abcg2. Transport could be inhibited by the small-molecule ABCB1 and ABCG2 inhibitors zosuquidar and Ko143, respectively. In vivo, oral availability (plasma AUC0-1 and AUC0-24) and brain levels of rucaparib at 1 and 24 h were increased by the absence of both Abcg2 and Abcb1a/1b after oral administration of rucaparib at 10 mg/kg. CONCLUSIONS Our data show to our knowledge for the first time that oral availability and brain accumulation of a PARP inhibitor are markedly and additively restricted by Abcg2 and Abcb1a/1b. This may have clinical relevance for improvement of rucaparib therapy in PARP inhibitor-resistant tumors with ABCB1 and/or ABCG2 expression and in patients with brain (micro)metastases positioned behind a functional blood-brain barrier.
Collapse
|