1
|
Brown GW. The cytidine deaminase APOBEC3C has unique sequence and genome feature preferences. Genetics 2024; 227:iyae092. [PMID: 38946641 DOI: 10.1093/genetics/iyae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.
Collapse
Affiliation(s)
- Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
2
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Dillon MT, Guevara J, Mohammed K, Patin EC, Smith SA, Dean E, Jones GN, Willis SE, Petrone M, Silva C, Thway K, Bunce C, Roxanis I, Nenclares P, Wilkins A, McLaughlin M, Jayme-Laiche A, Benafif S, Nintos G, Kwatra V, Grove L, Mansfield D, Proszek P, Martin P, Moore L, Swales KE, Banerji U, Saunders MP, Spicer J, Forster MD, Harrington KJ. Durable responses to ATR inhibition with ceralasertib in tumors with genomic defects and high inflammation. J Clin Invest 2024; 134:e175369. [PMID: 37934611 PMCID: PMC10786692 DOI: 10.1172/jci175369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUNDPhase 1 study of ATRinhibition alone or with radiation therapy (PATRIOT) was a first-in-human phase I study of the oral ATR (ataxia telangiectasia and Rad3-related) inhibitor ceralasertib (AZD6738) in advanced solid tumors.METHODSThe primary objective was safety. Secondary objectives included assessment of antitumor responses and pharmacokinetic (PK) and pharmacodynamic (PD) studies. Sixty-seven patients received 20-240 mg ceralasertib BD continuously or intermittently (14 of a 28-day cycle).RESULTSIntermittent dosing was better tolerated than continuous, which was associated with dose-limiting hematological toxicity. The recommended phase 2 dose of ceralasertib was 160 mg twice daily for 2 weeks in a 4-weekly cycle. Modulation of target and increased DNA damage were identified in tumor and surrogate PD. There were 5 (8%) confirmed partial responses (PRs) (40-240 mg BD), 34 (52%) stable disease (SD), including 1 unconfirmed PR, and 27 (41%) progressive disease. Durable responses were seen in tumors with loss of AT-rich interactive domain-containing protein 1A (ARID1A) and DNA damage-response defects. Treatment-modulated tumor and systemic immune markers and responding tumors were more immune inflamed than nonresponding.CONCLUSIONCeralasertib monotherapy was tolerated at 160 mg BD intermittently and associated with antitumor activity.TRIAL REGISTRATIONClinicaltrials.gov: NCT02223923, EudraCT: 2013-003994-84.FUNDINGCancer Research UK, AstraZeneca, UK Department of Health (National Institute for Health Research), Rosetrees Trust, Experimental Cancer Medicine Centre.
Collapse
Affiliation(s)
- Magnus T. Dillon
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jeane Guevara
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Kabir Mohammed
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Marcella Petrone
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Carlos Silva
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Khin Thway
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Catey Bunce
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Anna Wilkins
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Adoracion Jayme-Laiche
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Sarah Benafif
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Georgios Nintos
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Vineet Kwatra
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Lorna Grove
- The Institute of Cancer Research, London, United Kingdom
| | | | - Paula Proszek
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Philip Martin
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Luiza Moore
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Udai Banerji
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - James Spicer
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Martin D. Forster
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Kevin J. Harrington
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Caswell DR, Gui P, Mayekar MK, Law EK, Pich O, Bailey C, Boumelha J, Kerr DL, Blakely CM, Manabe T, Martinez-Ruiz C, Bakker B, De Dios Palomino Villcas J, I Vokes N, Dietzen M, Angelova M, Gini B, Tamaki W, Allegakoen P, Wu W, Humpton TJ, Hill W, Tomaschko M, Lu WT, Haderk F, Al Bakir M, Nagano A, Gimeno-Valiente F, de Carné Trécesson S, Vendramin R, Barbè V, Mugabo M, Weeden CE, Rowan A, McCoach CE, Almeida B, Green M, Gomez C, Nanjo S, Barbosa D, Moore C, Przewrocka J, Black JRM, Grönroos E, Suarez-Bonnet A, Priestnall SL, Zverev C, Lighterness S, Cormack J, Olivas V, Cech L, Andrews T, Rule B, Jiao Y, Zhang X, Ashford P, Durfee C, Venkatesan S, Temiz NA, Tan L, Larson LK, Argyris PP, Brown WL, Yu EA, Rotow JK, Guha U, Roper N, Yu J, Vogel RI, Thomas NJ, Marra A, Selenica P, Yu H, Bakhoum SF, Chew SK, Reis-Filho JS, Jamal-Hanjani M, Vousden KH, McGranahan N, Van Allen EM, Kanu N, Harris RS, Downward J, Bivona TG, Swanton C. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat Genet 2024; 56:60-73. [PMID: 38049664 PMCID: PMC10786726 DOI: 10.1038/s41588-023-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.
Collapse
Affiliation(s)
- Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| | - Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manasi K Mayekar
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tadashi Manabe
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Martinez-Ruiz
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Natalie I Vokes
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Dietzen
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Beatrice Gini
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Whitney Tamaki
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy J Humpton
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
- CRUK Beatson Institute, Glasgow, UK
- Glasgow Caledonian University, Glasgow, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ai Nagano
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Roberto Vendramin
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Vittorio Barbè
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Miriam Mugabo
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Bruna Almeida
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Carlos Gomez
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shigeki Nanjo
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dora Barbosa
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chris Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Joanna Przewrocka
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - James R M Black
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Simon L Priestnall
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Caroline Zverev
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Scott Lighterness
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - James Cormack
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Cech
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Trisha Andrews
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Paul Ashford
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lisa Tan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lindsay K Larson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- School of Dentistry, University of Minnesota, Minneapolis, MN, USA
- College of Dentistry, Ohio State University, Columbus, OH, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Sutter Health Palo Alto Medical Foundation, Department of Pulmonary and Critical Care, Mountain View, CA, USA
| | - Julia K Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, NCI, NIH, Bethesda, MD, USA
- NextCure Inc., Beltsville, MD, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Johnny Yu
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel I Vogel
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Thomas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Helena Yu
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell College of Medicine, New York City, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Karen H Vousden
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Trever G Bivona
- Departments of Medicine and Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| |
Collapse
|
5
|
Carpenter MA, Temiz NA, Ibrahim MA, Jarvis MC, Brown MR, Argyris PP, Brown WL, Starrett GJ, Yee D, Harris RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet 2023; 19:e1011043. [PMID: 38033156 PMCID: PMC10715669 DOI: 10.1371/journal.pgen.1011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Collapse
Affiliation(s)
- Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Matthew C. Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gabriel J. Starrett
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
6
|
Durfee C, Temiz NA, Levin-Klein R, Argyris PP, Alsøe L, Carracedo S, Alonso de la Vega A, Proehl J, Holzhauer AM, Seeman ZJ, Liu X, Lin YHT, Vogel RI, Sotillo R, Nilsen H, Harris RS. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep Med 2023; 4:101211. [PMID: 37797615 PMCID: PMC10591044 DOI: 10.1016/j.xcrm.2023.101211] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many cancers. However, despite years of work, a causal relationship has yet to be established in vivo. Here, we report a murine model that expresses tumor-like levels of human APOBEC3B. Animals expressing full-body APOBEC3B appear to develop normally. However, adult males manifest infertility, and older animals of both sexes show accelerated rates of carcinogenesis, visual and molecular tumor heterogeneity, and metastasis. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Enrichment for APOBEC3B-attributable single base substitution mutations also associates with elevated levels of insertion-deletion mutations and structural variations. APOBEC3B catalytic activity is required for all of these phenotypes. Together, these studies provide a cause-and-effect demonstration that human APOBEC3B is capable of driving both tumor initiation and evolution in vivo.
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Lene Alsøe
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Sergio Carracedo
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Anna M Holzhauer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J Seeman
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xingyu Liu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yu-Hsiu T Lin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Hilde Nilsen
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Fanunza E, Cheng AZ, Auerbach AA, Stefanovska B, Moraes SN, Lokensgard JR, Biolatti M, Dell'Oste V, Bierle CJ, Bresnahan WA, Harris RS. Human cytomegalovirus mediates APOBEC3B relocalization early during infection through a ribonucleotide reductase-independent mechanism. J Virol 2023; 97:e0078123. [PMID: 37565748 PMCID: PMC10506462 DOI: 10.1128/jvi.00781-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagilari, Italy
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashley A. Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Bojana Stefanovska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - James R. Lokensgard
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Craig J. Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wade A. Bresnahan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Zong C, Zhang Z, Gao L, He J, Wang Y, Li Q, Liu X, Yang J, Chen D, Huang R, Zheng G, Jin X, Wei W, Jia R, Shen J. APOBEC3B coordinates R-loop to promote replication stress and sensitize cancer cells to ATR/Chk1 inhibitors. Cell Death Dis 2023; 14:348. [PMID: 37270643 DOI: 10.1038/s41419-023-05867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
The cytidine deaminase, Apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B, herein termed A3B), is a critical mutation driver that induces genomic instability in cancer by catalyzing cytosine-to-thymine (C-to-T) conversion and promoting replication stress (RS). However, the detailed function of A3B in RS is not fully determined and it is not known whether the mechanism of A3B action can be exploited for cancer therapy. Here, we conducted an immunoprecipitation-mass spectrometry (IP-MS) study and identified A3B to be a novel binding component of R-loops, which are RNA:DNA hybrid structures. Mechanistically, overexpression of A3B exacerbated RS by promoting R-loop formation and altering the distribution of R-loops in the genome. This was rescued by the R-loop gatekeeper, Ribonuclease H1 (RNASEH1, herein termed RNH1). In addition, a high level of A3B conferred sensitivity to ATR/Chk1 inhibitors (ATRi/Chk1i) in melanoma cells, which was dependent on R-loop status. Together, our results provide novel insights into the mechanistic link between A3B and R-loops in the promotion of RS in cancer. This will inform the development of markers to predict the response of patients to ATRi/Chk1i.
Collapse
Affiliation(s)
- Chunyan Zong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiran Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoting Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Di Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guopei Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Lingang Laboratory, Shanghai, 200031, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Butler K, Banday AR. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J Hematol Oncol 2023; 16:31. [PMID: 36978147 PMCID: PMC10044795 DOI: 10.1186/s13045-023-01425-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBECs) are cytosine deaminases involved in innate and adaptive immunity. However, some APOBEC family members can also deaminate host genomes to generate oncogenic mutations. The resulting mutations, primarily signatures 2 and 13, occur in many tumor types and are among the most common mutational signatures in cancer. This review summarizes the current evidence implicating APOBEC3s as major mutators and outlines the exogenous and endogenous triggers of APOBEC3 expression and mutational activity. The review also discusses how APOBEC3-mediated mutagenesis impacts tumor evolution through both mutagenic and non-mutagenic pathways, including by inducing driver mutations and modulating the tumor immune microenvironment. Moving from molecular biology to clinical outcomes, the review concludes by summarizing the divergent prognostic significance of APOBEC3s across cancer types and their therapeutic potential in the current and future clinical landscapes.
Collapse
Affiliation(s)
- Kelly Butler
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Fanunza E, Cheng AZ, Auerbach AA, Stefanovska B, Moraes SN, Lokensgard JR, Biolatti M, Dell’Oste V, Bierle CJ, Bresnahan WA, Harris RS. Human cytomegalovirus mediates APOBEC3B relocalization early during infection through a ribonucleotide reductase-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526383. [PMID: 36778493 PMCID: PMC9915650 DOI: 10.1101/2023.01.30.526383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses EBV and KSHV and the alpha-herpesviruses HSV-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting involvement of an immediate early or early (IE-E) viral protein. In support of this mechanism, cycloheximide treatment of HCMV-infected cells prevents the expression of viral proteins and simultaneously blocks APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which is a viral DNA synthesis inhibitor affecting late protein expression, still permits A3B relocalization. These results combine to show that the beta-herpesvirus HCMV uses a fundamentally different, RNR-independent molecular mechanism to antagonize APOBEC3B. Importance Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses in order to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashley A. Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Bojana Stefanovska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - James R. Lokensgard
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, 10126, Italy
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, 10126, Italy
| | - Craig J. Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wade A. Bresnahan
- Department of Microbiology and Immunology, University of Minnesota, MN 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Matsuno Y, Kusumoto-Matsuo R, Manaka Y, Asai H, Yoshioka KI. Echoed induction of nucleotide variants and chromosomal structural variants in cancer cells. Sci Rep 2022; 12:20964. [PMID: 36470958 PMCID: PMC9723101 DOI: 10.1038/s41598-022-25479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Generally, the number of single-nucleotide variants (SNVs) in somatic cells increases with age, which is expected for replication errors. The number of SNVs in cancer cells, however, is often much higher than that in somatic cells, raising the question of whether cancer cells possess SNV induction pathways. The present study shows that the number of SNVs in cancer cells correlates with the number of chromosomal structural variants (SVs). While Kataegis, localized hypermutations typically arising near SV sites, revealed multiple SNVs within 1 kb, SV-associated SNVs were generally observed within 0.1-1 Mb of SV sites, irrespective of Kataegis status. SNVs enriched within 1 Mb of SV regions were associated with deficiency of DNA damage repair, including HR deficiency-associated single base substitution 3 (SBS3) and exogenous damage-associated SBS7 and SBS36 signatures. We also observed a similar correlation between SVs and SNVs in cells that had undergone clonal evolution in association with genomic instability, implying an association between genomic instability and SV-associated induction of SNVs.
Collapse
Affiliation(s)
- Yusuke Matsuno
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Rika Kusumoto-Matsuo
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yuya Manaka
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Haruka Asai
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Ken-ichi Yoshioka
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| |
Collapse
|
12
|
Verret B, Bottosso M, Hervais S, Pistilli B. The Molecular Predictive and Prognostic Biomarkers in Metastatic Breast Cancer: The Contribution of Molecular Profiling. Cancers (Basel) 2022; 14:4203. [PMID: 36077738 PMCID: PMC9454488 DOI: 10.3390/cancers14174203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022] Open
Abstract
The past decade was marked by several important studies deciphering the molecular landscape of metastatic breast cancer. Although the initial goal of these studies was to find driver oncogenic events to explain cancer progression and metastatic spreading, they have also permitted the identification of several molecular alterations associated with treatment response or resistance. Herein, we review validated (PI3KCA, ESR1, MSI, NTRK translocation) and emergent molecular biomarkers (ERBB2, AKT, PTEN, HRR gene, CD274 amplification RB1, NF1, mutational process) in metastatic breast cancer, on the bases of the largest molecular profiling studies. These biomarkers will be classed according the level of evidence and, if possible, the ESCAT (ESMO) classification. Finally, we will provide some perspective on development in clinical practice for the main biomarkers.
Collapse
Affiliation(s)
- Benjamin Verret
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
- INSERM Unit U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Michele Bottosso
- INSERM Unit U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Sofia Hervais
- INSERM Unit U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Barbara Pistilli
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| |
Collapse
|
13
|
The Role of ATR Inhibitors in Ovarian Cancer: Investigating Predictive Biomarkers of Response. Cells 2022; 11:cells11152361. [PMID: 35954206 PMCID: PMC9367423 DOI: 10.3390/cells11152361] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/05/2023] Open
Abstract
Ataxia telangiectasia and Rad-3 related kinase (ATR) signals DNA lesions and replication stress (RS) to the S and G2/M checkpoints and DNA repair pathways making it a promising target to exploit the dysregulated DNA damage response in cancer. ATR inhibitors (ATRi) are under clinical investigation as monotherapy and in combination with other anticancer agents. Molecular determinants of sensitivity to ATRi are common in ovarian cancer, suggesting the therapeutic potential of ATRi. We investigated the cytotoxicity of the ATRi, VE-821, in a panel of human ovarian cancer cell lines. High grade serous (HGS) cell lines were significantly more sensitive to VE-821 than non-HGS (p ≤ 0.0001) but previously identified determinants of sensitivity (TP53, ATM and BRCA1) were not predictive. Only low RAD51 (p = 0.041), TopBP1 (p = 0.026) and APOBEC3B (p = 0.015) protein expression were associated with increased VE-821 sensitivity. HGS cells had increased levels of RS (pRPASer4/8 and γH2AX nuclear immunofluorescence), and elevated RS predicted sensitivity to VE-821 independently of the cell line subtype. These data suggest that functional assessment of RS biomarkers may be a better predictive biomarker of ATRi response than any single aberrant gene in ovarian cancer and potentially other cancers.
Collapse
|
14
|
Jakobsdottir GM, Brewer DS, Cooper C, Green C, Wedge DC. APOBEC3 mutational signatures are associated with extensive and diverse genomic instability across multiple tumour types. BMC Biol 2022; 20:117. [PMID: 35597990 PMCID: PMC9124393 DOI: 10.1186/s12915-022-01316-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide 3) family of cytidine deaminases is responsible for two mutational signatures (SBS2 and SBS13) found in cancer genomes. APOBEC3 enzymes are activated in response to viral infection, and have been associated with increased mutation burden and TP53 mutation. In addition to this, it has been suggested that APOBEC3 activity may be responsible for mutations that do not fall into the classical APOBEC3 signatures (SBS2 and SBS13), through generation of double strand breaks.Previous work has mainly focused on the effects of APOBEC3 within individual tumour types using exome sequencing data. Here, we use whole genome sequencing data from 2451 primary tumours from 39 different tumour types in the Pan-Cancer Analysis of Whole Genomes (PCAWG) data set to investigate the relationship between APOBEC3 and genomic instability (GI). RESULTS AND CONCLUSIONS We found that the number of classical APOBEC3 signature mutations correlates with increased mutation burden across different tumour types. In addition, the number of APOBEC3 mutations is a significant predictor for six different measures of GI. Two GI measures (INDELs attributed to INDEL signatures ID6 and ID8) strongly suggest the occurrence and error prone repair of double strand breaks, and the relationship between APOBEC3 mutations and GI remains when SNVs attributed to kataegis are excluded.We provide evidence that supports a model of cancer genome evolution in which APOBEC3 acts as a causative factor in the development of diverse and widespread genomic instability through the generation of double strand breaks. This has important implications for treatment approaches for cancers that carry APOBEC3 mutations, and challenges the view that APOBECs only act opportunistically at sites of single stranded DNA.
Collapse
Affiliation(s)
- G Maria Jakobsdottir
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Daniel S Brewer
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Colin Cooper
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Catherine Green
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - David C Wedge
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.
- Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, OX4 2PG, UK.
| |
Collapse
|
15
|
Wilson Z, Odedra R, Wallez Y, Wijnhoven PW, Hughes AM, Gerrard J, Jones GN, Bargh-Dawson H, Brown E, Young LA, O'Connor MJ, Lau A. ATR Inhibitor AZD6738 (Ceralasertib) Exerts Antitumor Activity as a Monotherapy and in Combination with Chemotherapy and the PARP Inhibitor Olaparib. Cancer Res 2022; 82:1140-1152. [PMID: 35078817 PMCID: PMC9359726 DOI: 10.1158/0008-5472.can-21-2997] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
AZD6738 (ceralasertib) is a potent and selective orally bioavailable inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. ATR is activated in response to stalled DNA replication forks to promote G2-M cell-cycle checkpoints and fork restart. Here, we found AZD6738 modulated CHK1 phosphorylation and induced ATM-dependent signaling (pRAD50) and the DNA damage marker γH2AX. AZD6738 inhibited break-induced replication and homologous recombination repair. In vitro sensitivity to AZD6738 was elevated in, but not exclusive to, cells with defects in the ATM pathway or that harbor putative drivers of replication stress such as CCNE1 amplification. This translated to in vivo antitumor activity, with tumor control requiring continuous dosing and free plasma exposures, which correlated with induction of pCHK1, pRAD50, and γH2AX. AZD6738 showed combinatorial efficacy with agents associated with replication fork stalling and collapse such as carboplatin and irinotecan and the PARP inhibitor olaparib. These combinations required optimization of dose and schedules in vivo and showed superior antitumor activity at lower doses compared with that required for monotherapy. Tumor regressions required at least 2 days of daily dosing of AZD6738 concurrent with carboplatin, while twice daily dosing was required following irinotecan. In a BRCA2-mutant patient-derived triple-negative breast cancer (TNBC) xenograft model, complete tumor regression was achieved with 3 to5 days of daily AZD6738 per week concurrent with olaparib. Increasing olaparib dosage or AZD6738 dosing to twice daily allowed complete tumor regression even in a BRCA wild-type TNBC xenograft model. These preclinical data provide rationale for clinical evaluation of AZD6738 as a monotherapy or combinatorial agent. SIGNIFICANCE This detailed preclinical investigation, including pharmacokinetics/pharmacodynamics and dose-schedule optimizations, of AZD6738/ceralasertib alone and in combination with chemotherapy or PARP inhibitors can inform ongoing clinical efforts to treat cancer with ATR inhibitors.
Collapse
Affiliation(s)
- Zena Wilson
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Rajesh Odedra
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Yann Wallez
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Adina M. Hughes
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Joe Gerrard
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gemma N. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Hannah Bargh-Dawson
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elaine Brown
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Lucy A. Young
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mark J. O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom.,Corresponding Author: Alan Lau, Bioscience, Oncology R&D, AstraZeneca, Hodgkin Building, C/O Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 OWG, United Kingdom. Phone: 4407-9171-88399; E-mail:
| |
Collapse
|
16
|
Venkatesan S, Angelova M, Bartkova J, Bakhoum SF, Bartek J, Kanu N, Swanton C. APOBEC3 as a driver of genetic intratumor heterogeneity. Mol Cell Oncol 2022; 10:2014734. [PMID: 38116246 PMCID: PMC10730158 DOI: 10.1080/23723556.2021.2014734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2023]
Abstract
Our recent study revealed that APOBEC3B is upregulated during the preinvasive stages of non-small cell lung cancer and breast cancer. In addition to its role in mediating single nucleotide variants, we propose that APOBEC3 promotes copy number intratumor heterogeneity prior to invasion, providing a substrate for cancer evolution.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jirina Bartkova
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Fenton TR. Accumulation of host cell genetic errors following high-risk HPV infection. Curr Opin Virol 2021; 51:1-8. [PMID: 34543805 DOI: 10.1016/j.coviro.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Tim R Fenton
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK; School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
18
|
DiMarco AV, Qin X, McKinney BJ, Garcia NMG, Van Alsten SC, Mendes EA, Force J, Hanks BA, Troester MA, Owzar K, Xie J, Alvarez JV. APOBEC Mutagenesis Inhibits Breast Cancer Growth through Induction of T cell-Mediated Antitumor Immune Responses. Cancer Immunol Res 2021; 10:70-86. [PMID: 34795033 DOI: 10.1158/2326-6066.cir-21-0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/23/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
The APOBEC family of cytidine deaminases is one of the most common endogenous sources of mutations in human cancer. Genomic studies of tumors have found that APOBEC mutational signatures are enriched in the HER2 subtype of breast cancer and are associated with immunotherapy response in diverse cancer types. However, the direct consequences of APOBEC mutagenesis on the tumor immune microenvironment have not been thoroughly investigated. To address this, we developed syngeneic murine mammary tumor models with inducible expression of APOBEC3B. We found that APOBEC activity induced antitumor adaptive immune responses and CD4+ T cell-mediated, antigen-specific tumor growth inhibition. Although polyclonal APOBEC tumors had a moderate growth defect, clonal APOBEC tumors were almost completely rejected, suggesting that APOBEC-mediated genetic heterogeneity limits antitumor adaptive immune responses. Consistent with the observed immune infiltration in APOBEC tumors, APOBEC activity sensitized HER2-driven breast tumors to anti-CTLA-4 checkpoint inhibition and led to a complete response to combination anti-CTLA-4 and anti-HER2 therapy. In human breast cancers, the relationship between APOBEC mutagenesis and immunogenicity varied by breast cancer subtype and the frequency of subclonal mutations. This work provides a mechanistic basis for the sensitivity of APOBEC tumors to checkpoint inhibitors and suggests a rationale for using APOBEC mutational signatures and clonality as biomarkers predicting immunotherapy response in HER2-positive (HER2+) breast cancers.
Collapse
Affiliation(s)
- Ashley V DiMarco
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Xiaodi Qin
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Brock J McKinney
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Nina Marie G Garcia
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Sarah C Van Alsten
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Elizabeth A Mendes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Jeremy Force
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Brent A Hanks
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - James V Alvarez
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
19
|
Asaoka M, Patnaik SK, Ishikawa T, Takabe K. Different members of the APOBEC3 family of DNA mutators have opposing associations with the landscape of breast cancer. Am J Cancer Res 2021; 11:5111-5125. [PMID: 34765315 PMCID: PMC8569370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023] Open
Abstract
APOBEC enzymes are strong mutagenic factors. In breast cancer, expression of APOBEC3B is increased and associated with mutation load and poor outcome. Other APOBEC3s can also mutate DNA but their clinical significance in breast cancer and its underpinnings have not been comprehensively studied. In our examination of 1,091 breast carcinoma cases, high expression of APOBEC3A or APOBEC3B genes was associated with greater tumor burden of mutations and other genomic aberrations. Expression of none of the five APOBEC3C-H genes had any correlation with these features, including T[C-T/G]W mutations, but their high expression levels indicated a robust anti-cancer immune response within tumors, with elevated CD8+ T cell abundance, T cell receptor diversity, and immune cytolytic activity. Concordantly, survival analyses of this and two other cohorts with > 3,000 patients each showed favorable prognostic benefit of high APOBEC3C-H expression for both cancer progression and mortality. A detrimental prognostic value was observed for APOBEC3A and APOBEC3B. Single-cell data revealed cancer epithelial and stromal immune cells as major sources of APOBEC3B and APOBEC3C-H expression in tumors, respectively. These observations on opposing associations with breast cancer of different APOBEC3s highlight the contrasting roles of these enzymes, promoting cancer through mutagenesis while antagonizing it through immune response.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Breast Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York, USA
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York, USA
- Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Surgery, Yokohama City UniversityYokohama, Japan
| |
Collapse
|
20
|
Venkatesan S, Angelova M, Puttick C, Zhai H, Caswell DR, Lu WT, Dietzen M, Galanos P, Evangelou K, Bellelli R, Lim EL, Watkins TB, Rowan A, Teixeira VH, Zhao Y, Chen H, Ngo B, Zalmas LP, Bakir MA, Hobor S, Gronroos E, Pennycuick A, Nigro E, Campbell BB, Brown WL, Akarca AU, Marafioti T, Wu MY, Howell M, Boulton SJ, Bertoli C, Fenton TR, de Bruin RA, Maya-Mendoza A, Santoni-Rugiu E, Hynds RE, Gorgoulis VG, Jamal-Hanjani M, McGranahan N, Harris RS, Janes SM, Bartkova J, Bakhoum SF, Bartek J, Kanu N, Swanton C. Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution. Cancer Discov 2021; 11:2456-2473. [PMID: 33947663 PMCID: PMC8487921 DOI: 10.1158/2159-8290.cd-20-0725] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/08/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Haoran Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Deborah R. Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michelle Dietzen
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Panagiotis Galanos
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Emilia L. Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Thomas B.K. Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Vitor H. Teixeira
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Yue Zhao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bryan Ngo
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | | | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sebastijan Hobor
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eva Gronroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Adam Pennycuick
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Ersilia Nigro
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Brittany B. Campbell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - William L. Brown
- Masonic Cancer Center, Minneapolis, USA; Institute for Molecular Virology, Minneapolis, USA; Center for Genome Engineering, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Ayse U. Akarca
- Department of Histopathology, University College London, London, United Kingdom
| | - Teresa Marafioti
- Department of Histopathology, University College London, London, United Kingdom
| | - Mary Y. Wu
- High Throughput Screening Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Simon J. Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Tim R. Fenton
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robertus A.M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Robert E. Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Reuben S. Harris
- Masonic Cancer Center, Minneapolis, USA; Institute for Molecular Virology, Minneapolis, USA; Center for Genome Engineering, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, USA
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Jirina Bartkova
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Lozinski M, Bowden NA, Graves MC, Fay M, Tooney PA. DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets. Cell Oncol (Dordr) 2021; 44:961-981. [PMID: 34057732 DOI: 10.1007/s13402-021-00613-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. CONCLUSIONS In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fay
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Genesis Cancer Care, Gateshead, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
22
|
Xia S, Gu Y, Zhang H, Fei Y, Cao Y, Fang H, Wang J, Lin C, Zhang H, Li H, He H, Xu J, Li R, Liu H, Zhang W. Immune inactivation by APOBEC3B enrichment predicts response to chemotherapy and survival in gastric cancer. Oncoimmunology 2021; 10:1975386. [PMID: 34552824 PMCID: PMC8451457 DOI: 10.1080/2162402x.2021.1975386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Apolipoprotein B mRNA editing enzyme catalytic polypeptide 3B (APOBEC3B) plays an important role in tumor mutagenesis. However, its clinical significance in gastric cancer (GC) remains largely unknown. We enrolled a total of 482 GC patients from Zhongshan Hospital, Fudan University for immunohistochemistry (IHC) staining to evaluate the prognostic and predictive values of APOBEC3B. Genomic and phenotypic datasets from the Cancer Genome Atlas (TCGA) and Asian Cancer Research Group (ACRG) cohort were downloaded for external validation and complementary bioinformatic analysis. Fresh specimens of additional 60 patients from Zhongshan Hospital, Fudan University were collected to detect CD8+ T cell phenotype with flow cytometry (FCM). The high expression of APOBEC3B indicated inferior overall survival (OS, P < .001 and P = .003) and disease-free survival (DFS, P < .001 and P < .001), yet superior therapeutic responsiveness to fluorouracil-based adjuvant chemotherapy (ACT) in TNM stage II patients. The tumor microenvironment (TME) of APOBEC3B-enriched tumors was characterized by reduced infiltration of tumor reactive CD8+ T cells expressing both effector molecules and immune checkpoints. APOBEC3B high CD8+ T cell high GC patients were most likely to benefit from ACT and PD-1 blockade. Our study demonstrates that APOBEC3B was an independent prognostic and predictive factor in GC. The potential interplay between APOBEC3B and CD8+ T cells merited further investigations.
Collapse
Affiliation(s)
- Siyu Xia
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yun Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuchao Fei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yifan Cao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanji Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Kono T, Laimins L. Genomic Instability and DNA Damage Repair Pathways Induced by Human Papillomaviruses. Viruses 2021; 13:1821. [PMID: 34578402 PMCID: PMC8472259 DOI: 10.3390/v13091821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical and other anogenital cancers as well as those of the oropharynx. HPV proteins activate host DNA damage repair factors to promote their viral life cycle in stratified epithelia. Activation of both the ATR pathway and the ATM pathway are essential for viral replication and differentiation-dependent genome amplification. These pathways are also important for maintaining host genomic integrity and their dysregulation or mutation is often seen in human cancers. The APOBEC3 family of cytidine deaminases are innate immune factors that are increased in HPV positive cells leading to the accumulation of TpC mutations in cellular DNAs that contribute to malignant progression. The activation of DNA damage repair factors may corelate with expression of APOBEC3 in HPV positive cells. These pathways may actively drive tumor development implicating/suggesting DNA damage repair factors and APOBEC3 as possible therapeutic targets.
Collapse
Affiliation(s)
- Takeyuki Kono
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Keio University, Tokyo 1608582, Japan
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
24
|
Chen Z, Eggerman TL, Bocharov AV, Baranova IN, Vishnyakova TG, Patterson AP. APOBEC3-induced mutation of the hepatitis virus B DNA genome occurs during its viral RNA reverse transcription into (-)-DNA. J Biol Chem 2021; 297:100889. [PMID: 34181944 PMCID: PMC8321922 DOI: 10.1016/j.jbc.2021.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
APOBEC3s are innate single-stranded DNA cytidine-to-uridine deaminases that catalyze mutations in both pathogen and human genomes with significant roles in human disease. However, how APOBEC3s mutate a single-stranded DNA that is available momentarily during DNA transcription or replication in vivo remains relatively unknown. In this study, utilizing hepatitis B virus (HBV) viral mutations, we evaluated the mutational characteristics of individual APOBEC3s with reference to the HBV replication process through HBV whole single-strand (-)-DNA genome mutation analyses. We found that APOBEC3s induced C-to-T mutations from the HBV reverse transcription start site continuing through the whole (-)-DNA transcript to the termination site with variable efficiency, in an order of A3B >> A3G > A3H-II or A3C. A3B had a 3-fold higher mutation efficiency than A3H-II or A3C with up to 65% of all HBV genomic cytidines being converted into uridines in a single mutation event, consistent with the A3B localized hypermutation signature in cancer, namely, kataegis. On the other hand, A3C expression led to a 3-fold higher number of mutation-positive HBV genome clones, although each individual clone had a lower number of C-to-T mutations. Like A3B, A3C preferred both 5'-TC and 5'-CC sequences, but to a lesser degree. The APOBEC3-induced HBV mutations were predominantly detected in the HBV rcDNA but were not detectable in other intermediates including HBV cccDNA and pgRNA by primer extension of their PCR amplification products. These data demonstrate that APOBEC3-induced HBV genome mutations occur predominantly when the HBV RNA genome was reversely transcribed into (-)-DNA in the viral capsid.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA; Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
25
|
Bader SB, Ma TS, Simpson CJ, Liang J, Maezono S, Olcina M, Buffa F, Hammond E. Replication catastrophe induced by cyclic hypoxia leads to increased APOBEC3B activity. Nucleic Acids Res 2021; 49:7492-7506. [PMID: 34197599 PMCID: PMC8287932 DOI: 10.1093/nar/gkab551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B.
Collapse
Affiliation(s)
- Samuel B Bader
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Tiffany S Ma
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Charlotte J Simpson
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Jiachen Liang
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Sakura Eri B Maezono
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Monica M Olcina
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Francesca M Buffa
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
26
|
Mamrot J, Hall NE, Lindley RA. Predicting clinical outcomes using cancer progression associated signatures. Oncotarget 2021; 12:845-858. [PMID: 33889305 PMCID: PMC8057277 DOI: 10.18632/oncotarget.27934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 12/09/2022] Open
Abstract
Somatic mutation signatures are an informative facet of cancer aetiology, however they are rarely useful for predicting patient outcome. The aim of this study is to evaluate the utility of a panel of 142 mutation-signature–associated metrics (P142) for predicting cancer progression in patients from a ‘TCGA PanCancer Atlas’ cohort. The P142 metrics are comprised of AID/APOBEC and ADAR deaminase associated SNVs analyzed for codon context, strand bias, and transitions/transversions. TCGA tumor-normal mutation data was obtained for 10,437 patients, representing 31 of the most prevalent forms of cancer. Stratified random sampling was used to split patients into training, tuning and validation cohorts for each cancer type. Cancer specific machine learning (XGBoost) models were built using the output from the P142 panel to predict patient Progression Free Survival (PFS) status as either “High PFS” or “Low PFS”. Predictive performance of each model was evaluated using the validation cohort. Models accurately predicted PFS status for several cancer types, including adrenocortical carcinoma, glioma, mesothelioma, and sarcoma. In conclusion, the P142 panel of metrics successfully predicted cancer progression status in patients with some, but not all cancer types analyzed. These results pave the way for future studies on cancer progression associated signatures.
Collapse
Affiliation(s)
- Jared Mamrot
- GMDx Group Ltd, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | | | - Robyn A Lindley
- GMDx Group Ltd, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The Victorian Comprehensive Cancer Centre, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, VIC, Australia
| |
Collapse
|
27
|
Detection of Genomic Uracil Patterns. Int J Mol Sci 2021; 22:ijms22083902. [PMID: 33918885 PMCID: PMC8070346 DOI: 10.3390/ijms22083902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 01/06/2023] Open
Abstract
The appearance of uracil in the deoxyuridine moiety of DNA is among the most frequently occurring genomic modifications. Three different routes can result in genomic uracil, two of which do not require specific enzymes: spontaneous cytosine deamination due to the inherent chemical reactivity of living cells, and thymine-replacing incorporation upon nucleotide pool imbalances. There is also an enzymatic pathway of cytosine deamination with multiple DNA (cytosine) deaminases involved in this process. In order to describe potential roles of genomic uracil, it is of key importance to utilize efficient uracil-DNA detection methods. In this review, we provide a comprehensive and critical assessment of currently available uracil detection methods with special focus on genome-wide mapping solutions. Recent developments in PCR-based and in situ detection as well as the quantitation of genomic uracil are also discussed.
Collapse
|
28
|
Biayna J, Garcia-Cao I, Álvarez MM, Salvadores M, Espinosa-Carrasco J, McCullough M, Supek F, Stracker TH. Loss of the abasic site sensor HMCES is synthetic lethal with the activity of the APOBEC3A cytosine deaminase in cancer cells. PLoS Biol 2021; 19:e3001176. [PMID: 33788831 PMCID: PMC8041192 DOI: 10.1371/journal.pbio.3001176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/12/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Analysis of cancer mutagenic signatures provides information about the origin of mutations and can inform the use of clinical therapies, including immunotherapy. In particular, APOBEC3A (A3A) has emerged as a major driver of mutagenesis in cancer cells, and its expression results in DNA damage and susceptibility to treatment with inhibitors of the ATR and CHK1 checkpoint kinases. Here, we report the implementation of CRISPR/Cas-9 genetic screening to identify susceptibilities of multiple A3A-expressing lung adenocarcinoma (LUAD) cell lines. We identify HMCES, a protein recently linked to the protection of abasic sites, as a central protein for the tolerance of A3A expression. HMCES depletion results in synthetic lethality with A3A expression preferentially in a TP53-mutant background. Analysis of previous screening data reveals a strong association between A3A mutational signatures and sensitivity to HMCES loss and indicates that HMCES is specialized in protecting against a narrow spectrum of DNA damaging agents in addition to A3A. We experimentally show that both HMCES disruption and A3A expression increase susceptibility of cancer cells to ionizing radiation (IR), oxidative stress, and ATR inhibition, strategies that are often applied in tumor therapies. Overall, our results suggest that HMCES is an attractive target for selective treatment of A3A-expressing tumors.
Collapse
Affiliation(s)
- Josep Biayna
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isabel Garcia-Cao
- Genomic Instability and Cancer, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miguel M. Álvarez
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marina Salvadores
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Espinosa-Carrasco
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcel McCullough
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- * E-mail: (FS); (THS)
| | - Travis H. Stracker
- Genomic Instability and Cancer, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, Maryland, United States of America
- * E-mail: (FS); (THS)
| |
Collapse
|
29
|
Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions. Viruses 2021; 13:v13030497. [PMID: 33802945 PMCID: PMC8002816 DOI: 10.3390/v13030497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.
Collapse
|
30
|
Yoshioka KI, Matsuno Y. Genomic destabilization and its associated mutagenesis increase with senescence-associated phenotype expression. Cancer Sci 2020; 112:515-522. [PMID: 33222327 PMCID: PMC7893996 DOI: 10.1111/cas.14746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer develops through multiple rounds of clonal evolution of cells with abrogated defense systems. Such clonal evolution is triggered by genomic destabilization with associated mutagenesis. However, what increases the risk of genomic destabilization remains unclear. Genomic instability is usually the result of erroneous repair of DNA double‐strand breaks (DSB); paradoxically, however, most cancers develop with genomic instability but lack mutations in DNA repair systems. In this manuscript, we review current knowledge regarding a cellular state that increases the risk of genomic destabilization, in which cells exhibit phenotypes often observed during senescence. In addition, we explore the pathways that lead to genomic destabilization and its associated mutagenesis, which ultimately result in cancer.
Collapse
Affiliation(s)
- Ken-Ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tokyo, Japan.,Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
31
|
Granadillo Rodríguez M, Flath B, Chelico L. The interesting relationship between APOBEC3 deoxycytidine deaminases and cancer: a long road ahead. Open Biol 2020; 10:200188. [PMID: 33292100 PMCID: PMC7776566 DOI: 10.1098/rsob.200188] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered a group of diseases characterized by uncontrolled growth and spread of abnormal cells and is propelled by somatic mutations. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of enzymes are endogenous sources of somatic mutations found in multiple human cancers. While these enzymes normally act as an intrinsic immune defence against viruses, they can also catalyse 'off-target' cytidine deamination in genomic single-stranded DNA intermediates. The deamination of cytosine forms uracil, which is promutagenic in DNA. Key factors to trigger the APOBEC 'off-target' activity are overexpression in a non-normal cell type, nuclear localization and replication stress. The resulting uracil-induced mutations contribute to genomic variation, which may result in neutral, beneficial or harmful consequences for the cancer. This review summarizes the functional and biochemical basis of the APOBEC3 enzyme activity and highlights their relationship with the most well-studied cancers in this particular context such as breast, lung, bladder, and human papillomavirus-associated cancers. We focus on APOBEC3A, APOBEC3B and APOBEC3H haplotype I because they are the leading candidates as sources of somatic mutations in these and other cancers. Also, we discuss the prognostic value of the APOBEC3 expression in drug resistance and response to therapies.
Collapse
Affiliation(s)
| | | | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
32
|
Xu B, Amallraja A, Swaminathan P, Elsey R, Davis C, Theel S, Viet S, Petersen J, Krie A, Davies G, Williams CB, Ehli E, Meißner T. Case report: 16-yr life history and genomic evolution of an ER + HER2 - breast cancer. Cold Spring Harb Mol Case Stud 2020; 6:a005629. [PMID: 33008833 PMCID: PMC7784492 DOI: 10.1101/mcs.a005629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Metastatic breast cancer is one of the leading causes of cancer-related death in women. Limited studies have been done on the genomic evolution between primary and metastatic breast cancer. We reconstructed the genomic evolution through the 16-yr history of an ER+ HER2- breast cancer patient to investigate molecular mechanisms of disease relapse and treatment resistance after long-term exposure to hormonal therapy. Genomic and transcriptome profiling was performed on primary breast tumor (2002), initial recurrence (2012), and liver metastasis (2015) samples. Cell-free DNA analysis was performed at 11 time points (2015-2017). Mutational analysis revealed a low mutational burden in the primary tumor that doubled at the time of progression, with driver mutations in PI3K-Akt and RAS-RAF signaling pathways. Phylogenetic analysis showed an early branching off between primary tumor and metastasis. Liquid biopsies, although initially negative, started to detect an ESR1 E380Q mutation in 2016 with increasing allele frequency until the end of 2017. Transcriptome analysis revealed 721 (193 up, 528 down) genes to be differentially expressed between primary tumor and first relapse. The most significantly down-regulated genes were TFF1 and PGR, indicating resistance to aromatase inhibitor (AI) therapy. The most up-regulated genes included PTHLH, S100P, and SOX2, promoting tumor growth and metastasis. This phylogenetic reconstruction of the life history of a single patient's cancer as well as monitoring tumor progression through liquid biopsies allowed for uncovering the molecular mechanisms leading to initial relapse, metastatic spread, and treatment resistance.
Collapse
Affiliation(s)
- Bing Xu
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Anu Amallraja
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Padmapriya Swaminathan
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Rachel Elsey
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Christel Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Stephanie Theel
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Sarah Viet
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Jason Petersen
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Amy Krie
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Gareth Davies
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Casey B Williams
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Erik Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Tobias Meißner
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| |
Collapse
|
33
|
Saito Y, Miura H, Takahashi N, Kuwahara Y, Yamamoto Y, Fukumoto M, Yamamoto F. Involvement of APOBEC3B in mutation induction by irradiation. JOURNAL OF RADIATION RESEARCH 2020; 61:819-827. [PMID: 32880638 PMCID: PMC7674755 DOI: 10.1093/jrr/rraa069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/16/2020] [Indexed: 05/14/2023]
Abstract
To better understand the cancer risk posed by radiation and the development of radiation therapy resistant cancer cells, we investigated the involvement of the cancer risk factor, APOBEC3B, in the generation of radiation-induced mutations. Expression of APOBEC3B in response to irradiation was determined in three human cancer cell lines by real-time quantitative PCR. Using the hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutation assay, mutations in the HPRT gene caused by irradiation were compared between APOBEC3B-deficient human hepatocellular carcinoma (HepG2) cells [APOBEC3B knocked out (KO) using CRISPR-Cas9 genome editing] and the parent cell line. Then, HPRT-mutated cells were individually cultured to perform PCR and DNA sequencing of HPRT exons. X-Irradiation induced APOBEC3B expression in HepG2, human cervical cancer epithelial carcinoma (HeLa) and human oral squamous cell carcinoma (SAS) cells. Forced expression of APOBEC3B increased spontaneous mutations. By contrast, APOBEC3B KO not only decreased the spontaneous mutation rate, but also strongly suppressed the increase in mutation frequency after irradiation in the parent cell line. Although forced expression of APOBEC3B in the nucleus caused DNA damage, higher levels of APOBEC3B tended to reduce APOBEC3B-induced γ-H2AX foci formation (a measure of DNA damage repair). Further, the number of γ-H2AX foci in cells stably expressing APOBEC3B was not much higher than that in controls before and after irradiation, suggesting that a DNA repair pathway may be activated. This study demonstrates that irradiation induces sustained expression of APOBEC3B in HepG2, HeLa and SAS cells, and that APOBEC3B enhances radiation-induced partial deletions.
Collapse
Affiliation(s)
- Yohei Saito
- Corresponding author. Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aobaku, Sendai, 981-8558, Japan. Tel: +81-22-727-0161; Fax: +81-22-727-0165;
| | - Hiromasa Miura
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Nozomi Takahashi
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshikazu Kuwahara
- Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yumi Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Fumihiko Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
34
|
Roelofs PA, Goh CY, Chua BH, Jarvis MC, Stewart TA, McCann JL, McDougle RM, Carpenter MA, Martens JW, Span PN, Kappei D, Harris RS. Characterization of the mechanism by which the RB/E2F pathway controls expression of the cancer genomic DNA deaminase APOBEC3B. eLife 2020; 9:61287. [PMID: 32985974 PMCID: PMC7553775 DOI: 10.7554/elife.61287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall mutational landscape in breast cancer. Molecular mechanisms responsible for A3B upregulation in cancer are poorly understood. Here we show that a single E2F cis-element mediates repression in normal cells and that expression is activated by its mutational disruption in a reporter construct or the endogenous A3B gene. The same E2F site is required for A3B induction by polyomavirus T antigen indicating a shared molecular mechanism. Proteomic and biochemical experiments demonstrate the binding of wildtype but not mutant E2F promoters by repressive PRC1.6/E2F6 and DREAM/E2F4 complexes. Knockdown and overexpression studies confirm the involvement of these repressive complexes in regulating A3B expression. Altogether, these studies demonstrate that A3B expression is suppressed in normal cells by repressive E2F complexes and that viral or mutational disruption of this regulatory network triggers overexpression in breast cancer and provides fuel for tumor evolution.
Collapse
Affiliation(s)
- Pieter A Roelofs
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chai Yeen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Haow Chua
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States
| | - Teneale A Stewart
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Mater Research Institute, The University of Queensland, Faculty of Medicine, Brisbane, Australia
| | - Jennifer L McCann
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| | - Rebecca M McDougle
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Hennepin Healthcare, Minneapolis, United States
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| | - John Wm Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| |
Collapse
|
35
|
GATA3 and APOBEC3B are prognostic markers in adrenocortical carcinoma and APOBEC3B is directly transcriptionally regulated by GATA3. Oncotarget 2020; 11:3354-3370. [PMID: 32934779 PMCID: PMC7486697 DOI: 10.18632/oncotarget.27703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
Recent evidence has implicated APOBEC3B (Apolipoprotein B mRNA editing enzyme catalytic subunit 3B) as a source of mutations in breast, bladder, cervical, lung, head, and neck cancers. However, the role of APOBEC3B in adrenocortical carcinoma (ACC) and the mechanisms through which its expression is regulated in cancer are not fully understood. Here, we report that APOBEC3B is overexpressed in ACC and it regulates cell proliferation by inducing S phase arrest. We show high APOBEC3B expression is associated with a higher copy number gain/loss at chromosome 4 and 8 and TP53 mutation rate in ACC. GATA3 was identified as a positive regulator of APOBEC3B expression and directly binds the APOBEC3B promoter region. Both GATA3 and APOBEC3B expression levels were associated with patient survival. Our study provides novel insights into the function and regulation of APOBEC3B expression in addition to its known mutagenic ability.
Collapse
|
36
|
Mas-Ponte D, Supek F. DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat Genet 2020; 52:958-968. [PMID: 32747826 PMCID: PMC7610516 DOI: 10.1038/s41588-020-0674-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 06/30/2020] [Indexed: 01/12/2023]
Abstract
Certain mutagens, including the APOBEC3 (A3) cytosine deaminase enzymes, can create multiple genetic changes in a single event. Activity of A3s results in striking 'mutation showers' occurring near DNA breakpoints; however, less is known about the mechanisms underlying the majority of A3 mutations. We classified the diverse patterns of clustered mutagenesis in tumor genomes, which identified a new A3 pattern: nonrecurrent, diffuse hypermutation (omikli). This mechanism occurs independently of the known focal hypermutation (kataegis), and is associated with activity of the DNA mismatch-repair pathway, which can provide the single-stranded DNA substrate needed by A3, and contributes to a substantial proportion of A3 mutations genome wide. Because mismatch repair is directed towards early-replicating, gene-rich chromosomal domains, A3 mutagenesis has a high propensity to generate impactful mutations, which exceeds that of other common carcinogens such as tobacco smoke and ultraviolet exposure. Cells direct their DNA repair capacity towards more important genomic regions; thus, carcinogens that subvert DNA repair can be remarkably potent.
Collapse
Affiliation(s)
- David Mas-Ponte
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
37
|
Bellmunt J, Kim J, Reardon B, Perera-Bel J, Orsola A, Rodriguez-Vida A, Wankowicz SA, Bowden M, Barletta JA, Morote J, de Torres I, Juanpere N, Lloreta-Trull J, Hernandez S, Mouw KW, Taplin ME, Cejas P, Long HW, Van Allen EM, Getz G, Kwiatkowski DJ. Genomic Predictors of Good Outcome, Recurrence, or Progression in High-Grade T1 Non-Muscle-Invasive Bladder Cancer. Cancer Res 2020; 80:4476-4486. [PMID: 32868381 DOI: 10.1158/0008-5472.can-20-0977] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/27/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022]
Abstract
High-grade T1 (HGT1) bladder cancer is the highest risk subtype of non-muscle-invasive bladder cancer with unpredictable outcome and poorly understood risk factors. Here, we examined the association of somatic mutation profiles with nonrecurrent disease (GO, good outcome), recurrence (R), or progression (PD) in a cohort of HGT1 patients. Exome sequencing was performed on 62 HGT1 and 15 matched normal tissue samples. Both tumor only (TO) and paired analyses were performed, focusing on 95 genes known to be mutated in bladder cancer. Somatic mutations, copy-number alterations, mutation load, and mutation signatures were studied. Thirty-three GO, 10 R, 18 PD, and 1 unknown outcome patients were analyzed. Tumor mutational burden (TMB) was similar to muscle-invasive disease and was highest in GO, intermediate in PD, and lowest in R patients (P = 0.017). DNA damage response gene mutations were associated with higher TMB (P < 0.0001) and GO (P = 0.003). ERCC2 and BRCA2 mutations were associated with GO. TP53, ATM, ARID1A, AHR, and SMARCB1 mutations were more frequent in PD. Focal copy-number gain in CCNE1 and CDKN2A deletion was enriched in PD or R (P = 0.047; P = 0.06). APOBEC (46%) and COSMIC5 (34%) signatures were most frequent. APOBEC-A and ERCC2 mutant tumors (COSMIC5) were associated with GO (P = 0.047; P = 0.0002). pT1b microstaging was associated with a genomic cluster (P = 0.05) with focal amplifications of E2F3/SOX4, PVRL4, CCNE1, and TP53 mutations. Findings were validated using external public datasets. These findings require confirmation but suggest that management of HGT1 bladder cancer may be improved via molecular characterization to predict outcome. SIGNIFICANCE: Detailed genetic analyses of HGT1 bladder tumors identify features that correlate with outcome, e.g., high mutational burden, ERCC2 mutations, and high APOBEC-A/ERCC2 mutation signatures were associated with good outcome.
Collapse
Affiliation(s)
- Joaquim Bellmunt
- Beth Israel Deaconess Medical Center, Boston, Massachusetts. .,Harvard Medical School University, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,IMIM-Hospital del Mar Medical Research Institute; Hospital del Mar, Barcelona, Spain
| | - Jaegil Kim
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Brendan Reardon
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Júlia Perera-Bel
- IMIM-Hospital del Mar Medical Research Institute; Hospital del Mar, Barcelona, Spain
| | - Anna Orsola
- IMIM-Hospital del Mar Medical Research Institute; Hospital del Mar, Barcelona, Spain
| | - Alejo Rodriguez-Vida
- IMIM-Hospital del Mar Medical Research Institute; Hospital del Mar, Barcelona, Spain
| | - Stephanie A Wankowicz
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michaela Bowden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Juan Morote
- Department of Urology, University Hospital Valle de Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Inés de Torres
- Department of Pathology, University Hospital Valle de Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Juanpere
- Department of Pathology, University Hospital del Mar, Pompeu Fabra University, Barcelona, Spain
| | - Josep Lloreta-Trull
- Department of Pathology, University Hospital del Mar, Pompeu Fabra University, Barcelona, Spain
| | - Silvia Hernandez
- Department of Pathology, University Hospital del Mar, Pompeu Fabra University, Barcelona, Spain
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Harvard Medical School University, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Eliezer M Van Allen
- Harvard Medical School University, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - David J Kwiatkowski
- Harvard Medical School University, Boston, Massachusetts. .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
38
|
Seligson ND, Knepper TC, Ragg S, Walko CM. Developing Drugs for Tissue-Agnostic Indications: A Paradigm Shift in Leveraging Cancer Biology for Precision Medicine. Clin Pharmacol Ther 2020; 109:334-342. [PMID: 32535906 PMCID: PMC7891377 DOI: 10.1002/cpt.1946] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Targeted therapies have reshaped the landscape of the development of cancer therapeutics. Recent biomarker‐driven, tissue‐agnostic clinical trials represent a significant paradigm shift in precision cancer medicine. Despite their growth in preclinical and clinical studies, to date only a few biomarker‐driven, tissue‐agnostic indications have seen approval by the US Food and Drug Administration (FDA). These approvals include pembrolizumab in microsatellite instability‐high or mismatch repair deficient solid tumors, as well as both larotrectinib and entrectinib in NTRK fusion‐positive tumors. Complex cancer biology, clinical trial design, and identification of resistance mechanisms represent some of the challenges that future tissue‐agnostic therapies have to overcome. In this Review, we present a brief history of the development of tissue‐agnostic therapies, comparing the similarities in the approval of pembrolizumab, larotrectinib, and entrectinib for tissue‐agnostic indications. We also explore the future of tissue‐agnostic cancer therapeutics while identifying important challenges for the future that drugs targeting tissue‐agnostic indications will face.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, University of Florida, Jacksonville, Florida, USA.,Center for Pharmacogenomics and Translational Research, Nemours Children's Specialty Care, Jacksonville, Florida, USA
| | - Todd C Knepper
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Susanne Ragg
- Department of Pediatrics, College of Medicine-Jacksonville, University of Florida, Jacksonville, Florida, USA
| | - Christine M Walko
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
39
|
Serebrenik AA, Argyris PP, Jarvis MC, Brown WL, Bazzaro M, Vogel RI, Erickson BK, Lee SH, Goergen KM, Maurer MJ, Heinzen EP, Oberg AL, Huang Y, Hou X, Weroha SJ, Kaufmann SH, Harris RS. The DNA Cytosine Deaminase APOBEC3B is a Molecular Determinant of Platinum Responsiveness in Clear Cell Ovarian Cancer. Clin Cancer Res 2020; 26:3397-3407. [PMID: 32060098 PMCID: PMC7334080 DOI: 10.1158/1078-0432.ccr-19-2786] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/04/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Clear cell ovarian carcinoma (CCOC) is an aggressive disease that often demonstrates resistance to standard chemotherapies. Approximately 25% of patients with CCOC show a strong APOBEC mutation signature. Here, we determine which APOBEC3 enzymes are expressed in CCOC, establish clinical correlates, and identify a new biomarker for detection and intervention. EXPERIMENTAL DESIGNS APOBEC3 expression was analyzed by IHC and qRT-PCR in a pilot set of CCOC specimens (n = 9 tumors). The IHC analysis of APOBEC3B was extended to a larger cohort to identify clinical correlates (n = 48). Dose-response experiments with platinum-based drugs in CCOC cell lines and carboplatin treatment of patient-derived xenografts (PDXs) were done to address mechanistic linkages. RESULTS One DNA deaminase, APOBEC3B, is overexpressed in a formidable subset of CCOC tumors and is low or absent in normal ovarian and fallopian tube epithelial tissues. High APOBEC3B expression associates with improved progression-free survival (P = 0.026) and moderately with overall survival (P = 0.057). Cell-based studies link APOBEC3B activity and subsequent uracil processing to sensitivity to cisplatin and carboplatin. PDX studies extend this mechanistic relationship to CCOC tissues. CONCLUSIONS These studies demonstrate that APOBEC3B is overexpressed in a subset of CCOC and, contrary to initial expectations, associated with improved (not worse) clinical outcomes. A likely molecular explanation is that APOBEC3B-induced DNA damage sensitizes cells to additional genotoxic stress by cisplatin. Thus, APOBEC3B is a molecular determinant and a candidate predictive biomarker of the therapeutic response to platinum-based chemotherapy. These findings may have broader translational relevance, as APOBEC3B is overexpressed in many different cancer types.
Collapse
Affiliation(s)
- Artur A Serebrenik
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, Minnesota
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Martina Bazzaro
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Britt K Erickson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Sun-Hee Lee
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Krista M Goergen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Matthew J Maurer
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ethan P Heinzen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Yajue Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
40
|
Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res 2020; 30:902-913. [PMID: 32398863 PMCID: PMC7608103 DOI: 10.1038/s41422-020-0333-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a poor-prognosis cancer type with limited understanding of its molecular etiology. Using 508 ESCC genomes, we identified five novel significantly mutated genes and uncovered mutational signature clusters associated with metastasis and patients' outcomes. Several functional assays implicated that NFE2L2 may act as a tumor suppressor in ESCC and that mutations in NFE2L2 probably impaired its tumor-suppressive function, or even conferred oncogenic activities. Additionally, we found that the NFE2L2 mutations were significantly associated with worse prognosis of ESCC. We also identified potential noncoding driver mutations including hotspot mutations in the promoter region of SLC35E2 that were correlated with worse survival. Approximately 5.9% and 15.2% of patients had high tumor mutation burden or actionable mutations, respectively, and may benefit from immunotherapy or targeted therapies. We found clinically relevant coding and noncoding genomic alterations and revealed three major subtypes that robustly predicted patients' outcomes. Collectively, we report the largest dataset of genomic profiling of ESCC useful for developing ESCC-specific biomarkers for diagnosis and treatment.
Collapse
|
41
|
Verret B, Sourisseau T, Stefanovska B, Mosele F, Tran-Dien A, André F. The Influence of Cancer Molecular Subtypes and Treatment on the Mutation Spectrum in Metastatic Breast Cancers. Cancer Res 2020; 80:3062-3069. [PMID: 32245795 DOI: 10.1158/0008-5472.can-19-3260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing has sparked the exploration of cancer genomes, with the aim of discovering the genetic etiology of the disease and proposing rationally designed therapeutic interventions. Driver gene alterations have been comprehensively charted, but the improvement of cancer patient management somewhat lags behind these basic breakthroughs. Recently, large-scale sequencing that focused on metastasis, the main cause of cancer-related deaths, has shed new light on the driving forces at work during disease progression, particularly in breast cancer. Despite a fairly stable pool of driver genetic alterations between early and late disease, a number of therapeutically targetable mutations have been found enriched in metastatic samples. The molecular processes fueling disease progression have been delineated in recent studies and the clonal composition of breast cancer samples can be examined in detail. Here we discuss how these findings may be combined to improve the diagnosis of breast cancer to better select patients at risk, and to identify targeted agents to treat advanced diseases and to design therapeutic strategies exploiting vulnerabilities of cancer cells rooted in their ability to evolve and drive disease progression.
Collapse
Affiliation(s)
- Benjamin Verret
- Medical Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Sourisseau
- Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
| | | | - Fernanda Mosele
- Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
| | | | - Fabrice André
- Medical Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France. .,Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
| |
Collapse
|
42
|
Targeting ATR as Cancer Therapy: A new era for synthetic lethality and synergistic combinations? Pharmacol Ther 2020; 207:107450. [DOI: 10.1016/j.pharmthera.2019.107450] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022]
|
43
|
Abstract
In this review, Slade provides an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. The author also highlights the clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discusses the predictive biomarkers of inhibitor sensitivity and mechanisms of resistance as well as the means of overcoming them through combination therapy. Oxidative and replication stress underlie genomic instability of cancer cells. Amplifying genomic instability through radiotherapy and chemotherapy has been a powerful but nonselective means of killing cancer cells. Precision medicine has revolutionized cancer therapy by putting forth the concept of selective targeting of cancer cells. Poly(ADP-ribose) polymerase (PARP) inhibitors represent a successful example of precision medicine as the first drugs targeting DNA damage response to have entered the clinic. PARP inhibitors act through synthetic lethality with mutations in DNA repair genes and were approved for the treatment of BRCA mutated ovarian and breast cancer. PARP inhibitors destabilize replication forks through PARP DNA entrapment and induce cell death through replication stress-induced mitotic catastrophe. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) exploit and exacerbate replication deficiencies of cancer cells and may complement PARP inhibitors in targeting a broad range of cancer types with different sources of genomic instability. Here I provide an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. I highlight clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discuss the predictive biomarkers of inhibitor sensitivity, mechanisms of resistance as well as the means of overcoming them through combination therapy.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
44
|
Prognosis, Biology, and Targeting of TP53 Dysregulation in Multiple Myeloma. Cells 2020; 9:cells9020287. [PMID: 31991614 PMCID: PMC7072230 DOI: 10.3390/cells9020287] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological cancer and is characterized by genetic features including translocations, chromosomal copy number aberrations, and mutations in key oncogene and tumor suppressor genes. Dysregulation of the tumor suppressor TP53 is important in the pathogenesis of many cancers, including MM. In newly-diagnosed MM patients, TP53 dysregulation occurs in three subsets: monoallelic deletion as part of deletion of chromosome 17p (del17p) (~8%), monoallelic mutations (~6%), and biallelic inactivation (~4%). Del17p is an established high-risk feature in MM and is included in current disease staging criteria. Biallelic inactivation and mutation have also been reported in MM patients but are not yet included in disease staging criteria for high-risk disease. Emerging clinical and genomics data suggest that the biology of high-risk disease is complex, and so far, traditional drug development efforts to target dysregulated TP53 have not been successful. Here we review the TP53 dysregulation literature in cancer and in MM, including the three segments of TP53 dysregulation observed in MM patients. We propose a reverse translational approach to identify novel targets and disease drivers from TP53 dysregulated patients to address the unmet medical need in this setting.
Collapse
|
45
|
Pandey R, Zhou M, Islam S, Chen B, Barker NK, Langlais P, Srivastava A, Luo M, Cooke LS, Weterings E, Mahadevan D. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) in Pancreatic Ductal Adenocarcinoma (PDA): An integrative analysis of a novel therapeutic target. Sci Rep 2019; 9:18347. [PMID: 31797958 PMCID: PMC6893022 DOI: 10.1038/s41598-019-54545-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated biomarker CEACAM6, a highly abundant cell surface adhesion receptor that modulates the extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDA). The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) RNA-Seq data from PDA patients were analyzed for CEACAM6 expression and evaluated for overall survival, association, enrichment and correlations. A CRISPR/Cas9 Knockout (KO) of CEACAM6 in PDA cell line for quantitative proteomics, mitochondrial bioenergetics and tumor growth in mice were conducted. We found CEACAM6 is over-expressed in primary and metastatic basal and classical PDA subtypes. Highest levels are in classical activated stroma subtype. CEACAM6 over-expression is universally a poor prognostic marker in KRAS mutant and wild type PDA. High CEACAM6 expression is associated with low cytolytic T-cell activity in both basal and classical PDA subtypes and correlates with low levels of T-REG markers. In HPAF-II cells knockout of CEACAM6 alters ECM-cell adhesion, catabolism, immune environment, transmembrane transport and autophagy. CEACAM6 loss increases mitochondrial basal and maximal respiratory capacity. HPAF-II CEACAM6−/− cells are growth suppressed by >65% vs. wild type in mice bearing tumors. CEACAM6, a key regulator affects several hallmarks of PDA including the fibrotic reaction, immune regulation, energy metabolism and is a novel therapeutic target in PDA.
Collapse
Affiliation(s)
- Ritu Pandey
- University of Arizona Cancer Center, University of Arizona, Tucson, USA. .,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA.
| | - Muhan Zhou
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Shariful Islam
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Baowei Chen
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Natalie K Barker
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Paul Langlais
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Anup Srivastava
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Moulun Luo
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Laurence S Cooke
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Eric Weterings
- University of Arizona Cancer Center, University of Arizona, Tucson, USA.,Department of Medicine, College of Medicine, University of Arizona, Tucson, USA.,Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, USA
| | - Daruka Mahadevan
- University of Arizona Cancer Center, University of Arizona, Tucson, USA. .,Department of Medicine, College of Medicine, University of Arizona, Tucson, USA.
| |
Collapse
|
46
|
Cortez LM, Brown AL, Dennis MA, Collins CD, Brown AJ, Mitchell D, Mertz TM, Roberts SA. APOBEC3A is a prominent cytidine deaminase in breast cancer. PLoS Genet 2019; 15:e1008545. [PMID: 31841499 PMCID: PMC6936861 DOI: 10.1371/journal.pgen.1008545] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/30/2019] [Accepted: 12/01/2019] [Indexed: 11/19/2022] Open
Abstract
APOBEC cytidine deaminases are the second-most prominent source of mutagenesis in sequenced tumors. Previous studies have proposed that APOBEC3B (A3B) is the major source of mutagenesis in breast cancer (BRCA). We show that APOBEC3A (A3A) is the only APOBEC whose expression correlates with APOBEC-induced mutation load and that A3A expression is responsible for cytidine deamination in multiple BRCA cell lines. Comparative analysis of A3A and A3B expression by qRT-PCR, RSEM-normalized RNA-seq, and unambiguous RNA-seq validated the use of RNA-seq to measure APOBEC expression, which indicates that A3A is the primary correlate with APOBEC-mutation load in primary BRCA tumors. We also demonstrate that A3A has >100-fold more cytidine deamination activity than A3B in the presence of cellular RNA, likely explaining why higher levels of A3B expression contributes less to mutagenesis in BRCA. Our findings identify A3A as a major source of cytidine deaminase activity in breast cancer cells and possibly a prominent contributor to the APOBEC mutation signature.
Collapse
Affiliation(s)
- Luis M. Cortez
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Amber L. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Madeline A. Dennis
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Christopher D. Collins
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- School of Molecular Biosciences, Washington State University-Vancouver, Vancouver, WA, United States of America
| | - Debra Mitchell
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Tony M. Mertz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
47
|
Starrett GJ, Buck CB. The case for BK polyomavirus as a cause of bladder cancer. Curr Opin Virol 2019; 39:8-15. [PMID: 31336246 PMCID: PMC6901737 DOI: 10.1016/j.coviro.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022]
Abstract
In 2014, the International Agency for Research on Cancer judged Merkel cell polyomavirus (MCPyV) to be a probable human carcinogen. BK polyomavirus (BKPyV, a distant cousin of MCPyV) was ruled a possible carcinogen. In this review, we argue that it has recently become reasonable to view both of these viruses as known human carcinogens. In particular, several complementary lines of evidence support a causal role for BKPyV in the development of bladder carcinomas affecting organ transplant patients. The expansion of inexpensive deep sequencing has opened new approaches to investigating the important question of whether BKPyV causes urinary tract cancers in the general population.
Collapse
Affiliation(s)
- Gabriel J Starrett
- National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263, United States.
| | - Christopher B Buck
- National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263, United States
| |
Collapse
|
48
|
Green AM, Weitzman MD. The spectrum of APOBEC3 activity: From anti-viral agents to anti-cancer opportunities. DNA Repair (Amst) 2019; 83:102700. [PMID: 31563041 PMCID: PMC6876854 DOI: 10.1016/j.dnarep.2019.102700] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
The APOBEC3 family of cytosine deaminases are part of the innate immune response to viral infection, but also have the capacity to damage cellular DNA. Detection of mutational signatures consistent with APOBEC3 activity, together with elevated APOBEC3 expression in cancer cells, has raised the possibility that these enzymes contribute to oncogenesis. Genome deamination by APOBEC3 enzymes also elicits DNA damage response signaling and presents therapeutic vulnerabilities for cancer cells. Here, we discuss implications of APOBEC3 activity in cancer and the potential to exploit their mutagenic activity for targeted cancer therapies.
Collapse
Affiliation(s)
- Abby M Green
- Division of Oncology, Children's Hospital of Philadelphia, United States; Division of Infectious Diseases, Children's Hospital of Philadelphia, United States; Center for Childhood Cancer Research, Children's Hospital of Philadelphia, United States; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, United States; Department of Pediatrics, Washington University School of Medicine, United States.
| | - Matthew D Weitzman
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, United States; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, United States; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, United States.
| |
Collapse
|
49
|
Tao L, Jiang Z, Xu M, Xu T, Liu Y. Induction of APOBEC3C Facilitates the Genotoxic Stress-Mediated Cytotoxicity of Artesunate. Chem Res Toxicol 2019; 32:2526-2537. [DOI: 10.1021/acs.chemrestox.9b00358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Tao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhuangzhuang Jiang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tingting Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanqing Liu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
50
|
Serebrenik AA, Starrett GJ, Leenen S, Jarvis MC, Shaban NM, Salamango DJ, Nilsen H, Brown WL, Harris RS. The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase. Proc Natl Acad Sci U S A 2019; 116:22158-22163. [PMID: 31611371 PMCID: PMC6825264 DOI: 10.1073/pnas.1904024116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human cells express up to 9 active DNA cytosine deaminases with functions in adaptive and innate immunity. Many cancers manifest an APOBEC mutation signature and APOBEC3B (A3B) is likely the main enzyme responsible. Although significant numbers of APOBEC signature mutations accumulate in tumor genomes, the majority of APOBEC-catalyzed uracil lesions are probably counteracted in an error-free manner by the uracil base excision repair pathway. Here, we show that A3B-expressing cells can be selectively killed by inhibiting uracil DNA glycosylase 2 (UNG) and that this synthetic lethal phenotype requires functional mismatch repair (MMR) proteins and p53. UNG knockout human 293 and MCF10A cells elicit an A3B-dependent death. This synthetic lethal phenotype is dependent on A3B catalytic activity and reversible by UNG complementation. A3B expression in UNG-null cells causes a buildup of genomic uracil, and the ensuing lethality requires processing of uracil lesions (likely U/G mispairs) by MSH2 and MLH1 (likely noncanonical MMR). Cancer cells expressing high levels of endogenous A3B and functional p53 can also be killed by expressing an UNG inhibitor. Taken together, UNG-initiated base excision repair is a major mechanism counteracting genomic mutagenesis by A3B, and blocking UNG is a potential strategy for inducing the selective death of tumors.
Collapse
Affiliation(s)
- Artur A Serebrenik
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Gabriel J Starrett
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892
| | - Sterre Leenen
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Radiation Oncology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Nadine M Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, 1478 Lørenskog, Norway
- Akershus University Hospital, 1478 Lørenskog, Norway
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455;
- Howard Hughes Medical Institute, Minneapolis, MN 55455
| |
Collapse
|