1
|
Ma Y, Shih CH, Cheng J, Chen HC, Wang LJ, Tan Y, Chiu YC, Chen YC. High-Throughput Empirical and Virtual Screening to Discover Novel Inhibitors of Polyploid Giant Cancer Cells in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614522. [PMID: 39386568 PMCID: PMC11463688 DOI: 10.1101/2024.09.23.614522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Therapy resistance in breast cancer is increasingly attributed to polyploid giant cancer cells (PGCCs), which arise through whole-genome doubling and exhibit heightened resilience to standard treatments. Characterized by enlarged nuclei and increased DNA content, these cells tend to be dormant under therapeutic stress, driving disease relapse. Despite their critical role in resistance, strategies to effectively target PGCCs are limited, largely due to the lack of high-throughput methods for assessing their viability. Traditional assays lack the sensitivity needed to detect PGCC-specific elimination, prompting the development of novel approaches. To address this challenge, we developed a high-throughput single-cell morphological analysis workflow designed to differentiate compounds that selectively inhibit non-PGCCs, PGCCs, or both. Using this method, we screened a library of 2,726 FDA Phase 1-approved drugs, identifying promising anti-PGCC candidates, including proteasome inhibitors, FOXM1, CHK, and macrocyclic lactones. Notably, RNA-Seq analysis of cells treated with the macrocyclic lactone Pyronaridine revealed AXL inhibition as a potential strategy for targeting PGCCs. Although our single-cell morphological analysis pipeline is powerful, empirically testing all existing compounds is impractical and inefficient. To overcome this limitation, we trained a machine learning model to predict anti-PGCC efficacy in silico, integrating chemical fingerprints and compound descriptions from prior publications and databases. The model demonstrated a high correlation with experimental outcomes and predicted efficacious compounds in an expanded library of over 6,000 drugs. Among the top-ranked predictions, we experimentally validated two compounds as potent PGCC inhibitors. These findings underscore the synergistic potential of integrating high-throughput empirical screening with machine learning-based virtual screening to accelerate the discovery of novel therapies, particularly for targeting therapy-resistant PGCCs in breast cancer.
Collapse
Affiliation(s)
- Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Chien-Hung Shih
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
| | - Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Li-Ju Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Yanhao Tan
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Yu-Chiao Chiu
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Casotti MC, Meira DD, Zetum ASS, Campanharo CV, da Silva DRC, Giacinti GM, da Silva IM, Moura JAD, Barbosa KRM, Altoé LSC, Mauricio LSR, Góes LSBDB, Alves LNR, Linhares SSG, Ventorim VDP, Guaitolini YM, dos Santos EDVW, Errera FIV, Groisman S, de Carvalho EF, de Paula F, de Sousa MVP, Fechine PBA, Louro ID. Integrating frontiers: a holistic, quantum and evolutionary approach to conquering cancer through systems biology and multidisciplinary synergy. Front Oncol 2024; 14:1419599. [PMID: 39224803 PMCID: PMC11367711 DOI: 10.3389/fonc.2024.1419599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer therapy is facing increasingly significant challenges, marked by a wide range of techniques and research efforts centered around somatic mutations, precision oncology, and the vast amount of big data. Despite this abundance of information, the quest to cure cancer often seems more elusive, with the "war on cancer" yet to deliver a definitive victory. A particularly pressing issue is the development of tumor treatment resistance, highlighting the urgent need for innovative approaches. Evolutionary, Quantum Biology and System Biology offer a promising framework for advancing experimental cancer research. By integrating theoretical studies, translational methods, and flexible multidisciplinary clinical research, there's potential to enhance current treatment strategies and improve outcomes for cancer patients. Establishing stronger links between evolutionary, quantum, entropy and chaos principles and oncology could lead to more effective treatments that leverage an understanding of the tumor's evolutionary dynamics, paving the way for novel methods to control and mitigate cancer. Achieving these objectives necessitates a commitment to multidisciplinary and interprofessional collaboration at the heart of both research and clinical endeavors in oncology. This entails dismantling silos between disciplines, encouraging open communication and data sharing, and integrating diverse viewpoints and expertise from the outset of research projects. Being receptive to new scientific discoveries and responsive to how patients react to treatments is also crucial. Such strategies are key to keeping the field of oncology at the forefront of effective cancer management, ensuring patients receive the most personalized and effective care. Ultimately, this approach aims to push the boundaries of cancer understanding, treating it as a manageable chronic condition, aiming to extend life expectancy and enhance patient quality of life.
Collapse
Affiliation(s)
- Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | | | - Giulia Maria Giacinti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Iris Moreira da Silva
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - João Augusto Diniz Moura
- Laboratório de Oncologia Clínica e Experimental, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Vinícius do Prado Ventorim
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Sonia Groisman
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Flavia de Paula
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Pierre Basílio Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Iuri Drumond Louro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| |
Collapse
|
3
|
Liu P, Wang L, Yu H. Polyploid giant cancer cells: origin, possible pathways of formation, characteristics, and mechanisms of regulation. Front Cell Dev Biol 2024; 12:1410637. [PMID: 39055650 PMCID: PMC11269155 DOI: 10.3389/fcell.2024.1410637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Polyploid giant cancer cells (PGCCs) are characterized by the presence of either a single enlarged nucleus or multiple nuclei and are closely associated with tumor progression and treatment resistance. These cells contribute significantly to cellular heterogeneity and can arise from various stressors, including radiation, chemotherapy, hypoxia, and environmental factors. The formation of PGCCs can occur through mechanisms such as endoreplication, cell fusion, cytokinesis failure, mitotic slippage, or cell cannibalism. Notably, PGCCs exhibit traits similar to cancer stem cells (CSCs) and generate highly invasive progeny through asymmetric division. The presence of PGCCs and their progeny is pivotal in conferring resistance to chemotherapy and radiation, as well as facilitating tumor recurrence and metastasis. This review provides a comprehensive analysis of the origins, potential formation mechanisms, stressors, unique characteristics, and regulatory pathways of PGCCs, alongside therapeutic strategies targeting these cells. The objective is to enhance the understanding of PGCC initiation and progression, offering novel insights into tumor biology.
Collapse
Affiliation(s)
- Pan Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Beifang Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Zhao S, Wang L, Ouyang M, Xing S, Liu S, Sun L, Yu H. Polyploid giant cancer cells induced by Docetaxel exhibit a senescence phenotype with the expression of stem cell markers in ovarian cancer cells. PLoS One 2024; 19:e0306969. [PMID: 38990953 PMCID: PMC11239069 DOI: 10.1371/journal.pone.0306969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Docetaxel (Doc) plays a crucial role in clinical antineoplastic practice. However, it is continuously documented that tumors frequently develop chemoresistance and relapse, which may be related to polyploid giant cancer cells (PGCCs). The aim of this study was investigate the formation mechanism and biological behavior of PGCCs induced by Doc. Ovarian cancer cells were treated with Doc, and then the effect of Doc on cellular viability was evaluated by MTT assay and microscopic imaging analysis. The biological properties of PGCCs were further evaluated by Hoechst 33342 staining, cell cycle and DNA content assay, DNA damage response (DDR) signaling detection, β-galactosidase staining, mitochondrial membrane potential detection, and reverse transcription-quantitative polymerase chain reaction. The results indicated that Doc reduced cellular viability; however, many cells were still alive, and were giant and polyploid. Doc increased the proportion of cells stayed in the G2/M phase and reduced the number of cells. In addition, the expression of γ-H2A.X was constantly increased after Doc treatment. PGCCs showed senescence-associated β-galactosidase activity and an increase in the monomeric form of JC-1. The mRNA level of octamer-binding transcription factor 4 (OCT4) and krüppel-like factor 4 (KLF4) was significantly increased in PGCCs. Taken together, our results suggest that Doc induces G2/M cell cycle arrest, inhibits the proliferation and activates persistent DDR signaling to promote the formation of PGCCs. Importantly, PGCCs exhibit a senescence phenotype and express stem cell markers.
Collapse
Affiliation(s)
- Song Zhao
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Mingyue Ouyang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Sining Xing
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuo Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
5
|
Donati M, Kazakov DV. Beyond typical histology of BAP1-inactivated melanocytoma. Pathol Res Pract 2024; 259:155162. [PMID: 38326181 DOI: 10.1016/j.prp.2024.155162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
BAP1-inactivated melanocytoma (BIM) is a novel subgroup of melanocytic neoplasm listed in the 5th edition of WHO classification of skin tumor. BIM is characterized by two molecular alterations, including a mitogenic driver mutation (usually BRAF gene) and the loss of function of BAP1, a tumor suppressor gene located on chromosome 3p21, which encodes for BRCA1-associated protein (BAP1). The latter represents a nuclear-localized deubiquitinase involved in several cellular processes including cell cycle regulation, chromatin remodeling, DNA damage response, differentiation, senescence and cell death. BIMs are histologically characterized by a population of large epithelioid melanocytes with well-demarcated cytoplasmic borders and copious eosinophilic cytoplasm, demonstrating loss of BAP1 nuclear expression by immunohistochemistry. Recently, we have published a series of 50 cases, extending the morphological spectrum of the neoplasm and highlighting some new microscopic features. In the current article, we focus on some new histological features, attempting to explain and link them to certain mechanisms of tumor development, including senescence, endoreplication, endocycling, asymmetric cytokinesis, entosis and others. In light of the morphological and molecular findings observed in BIM, we postulated that this entity unmasks a fine mechanism of tumor in which both clonal/stochastic and hierarchical model can be unified.
Collapse
Affiliation(s)
- Michele Donati
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Pathology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy.
| | - Dmitry V Kazakov
- IDP Dermatohistopathologie Institut, Pathologie Institut Enge, Zurich, Switzerland
| |
Collapse
|
6
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
7
|
Buck SAJ, Van Hemelryk A, de Ridder C, Stuurman D, Erkens-Schulze S, van 't Geloof S, Teubel WJ, Koolen SLW, Martens-Uzunova ES, van Royen ME, de Wit R, Mathijssen RHJ, van Weerden WM. Darolutamide Added to Docetaxel Augments Antitumor Effect in Models of Prostate Cancer through Cell Cycle Arrest at the G1-S Transition. Mol Cancer Ther 2024; 23:711-720. [PMID: 38030379 DOI: 10.1158/1535-7163.mct-23-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Resistance to taxane chemotherapy is frequently observed in metastatic prostate cancer. The androgen receptor (AR) is a major driver of prostate cancer and a key regulator of the G1-S cell-cycle checkpoint, promoting cancer cell proliferation by irreversible passage to the S-phase. We hypothesized that AR signaling inhibitor (ARSi) darolutamide in combination with docetaxel could augment antitumor effect by impeding the proliferation of taxane-resistant cancer cells. We monitored cell viability in organoids, tumor volume, and PSA secretion in patient-derived xenografts (PDX) and analyzed cell cycle and signaling pathway alterations. Combination treatment increased antitumor effect in androgen-sensitive, AR-positive prostate cancer organoids and PDXs. Equally beneficial effects of darolutamide added to docetaxel were observed in a castration-resistant model, progressive on docetaxel, enzalutamide, and cabazitaxel. In vitro studies showed that docetaxel treatment with simultaneous darolutamide resulted in a reduction of cells entering the S-phase in contrast to only docetaxel. Molecular analysis in the prostate cancer cell line LNCaP revealed an upregulation of cyclin-dependent kinase inhibitor p21, supporting blockade of S-phase entry and cell proliferation. Our results provide a preclinical support for combining taxanes and darolutamide as a multimodal treatment strategy in patients with metastatic prostate cancer progressive on ARSi and taxane chemotherapy.
Collapse
Affiliation(s)
- Stefan A J Buck
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Annelies Van Hemelryk
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Debra Stuurman
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Sem van 't Geloof
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Wilma J Teubel
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
8
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
9
|
Ghosh S, Choudhury D, Ghosh D, Mondal M, Singha D, Malakar P. Characterization of polyploidy in cancer: Current status and future perspectives. Int J Biol Macromol 2024; 268:131706. [PMID: 38643921 DOI: 10.1016/j.ijbiomac.2024.131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Various cancers frequently exhibit polyploidy, observed in a condition where a cell possesses more than two sets of chromosomes, which is considered a hallmark of the disease. The state of polyploidy often leads to aneuploidy, where cells possess an abnormal number or structure of chromosomes. Recent studies suggest that oncogenes contribute to aneuploidy. This finding significantly underscores its impact on cancer. Cancer cells exposed to certain chemotherapeutic drugs tend to exhibit an increased incidence of polyploidy. This occurrence is strongly associated with several challenges in cancer treatment, including metastasis, resistance to chemotherapy and the recurrence of malignant tumors. Indeed, it poses a significant hurdle to achieve complete tumor eradication and effective cancer therapy. Recently, there has been a growing interest in the field of polyploidy related to cancer for developing effective anti-cancer therapies. Polyploid cancer cells confer both advantages and disadvantages to tumor pathogenicity. This review delineates the diverse characteristics of polyploid cells, elucidates the pivotal role of polyploidy in cancer, and explores the advantages and disadvantages it imparts to cancer cells, along with the current approaches tried in lab settings to target polyploid cells. Additionally, it considers experimental strategies aimed at addressing the outstanding questions within the realm of polyploidy in relation to cancer.
Collapse
Affiliation(s)
- Srijonee Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Debopriya Choudhury
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Dhruba Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India.
| |
Collapse
|
10
|
Buss JH, Begnini KR, Lenz G. The contribution of asymmetric cell division to phenotypic heterogeneity in cancer. J Cell Sci 2024; 137:jcs261400. [PMID: 38334041 DOI: 10.1242/jcs.261400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Cells have evolved intricate mechanisms for dividing their contents in the most symmetric way during mitosis. However, a small proportion of cell divisions results in asymmetric segregation of cellular components, which leads to differences in the characteristics of daughter cells. Although the classical function of asymmetric cell division (ACD) in the regulation of pluripotency is the generation of one differentiated daughter cell and one self-renewing stem cell, recent evidence suggests that ACD plays a role in other physiological processes. In cancer, tumor heterogeneity can result from the asymmetric segregation of genetic material and other cellular components, resulting in cell-to-cell differences in fitness and response to therapy. Defining the contribution of ACD in generating differences in key features relevant to cancer biology is crucial to advancing our understanding of the causes of tumor heterogeneity and developing strategies to mitigate or counteract it. In this Review, we delve into the occurrence of asymmetric mitosis in cancer cells and consider how ACD contributes to the variability of several phenotypes. By synthesizing the current literature, we explore the molecular mechanisms underlying ACD, the implications of phenotypic heterogeneity in cancer, and the complex interplay between these two phenomena.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Karine Rech Begnini
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Instituto do Cérebro (INSCER), Pontifícia Universidade Católica RS (PUCRS), Porto Alegre, RS 90610-000, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| |
Collapse
|
11
|
Fisher TB, Saini G, Rekha TS, Krishnamurthy J, Bhattarai S, Callagy G, Webber M, Janssen EAM, Kong J, Aneja R. Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer. Breast Cancer Res 2024; 26:12. [PMID: 38238771 PMCID: PMC10797728 DOI: 10.1186/s13058-023-01752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30-40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60-70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. METHODS H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. RESULTS The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. CONCLUSION Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
Collapse
Affiliation(s)
- Timothy B Fisher
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Geetanjali Saini
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - T S Rekha
- JSSAHER (JSS Academy of Higher Education and Research) Medical College, Mysuru, Karnataka, India
| | - Jayashree Krishnamurthy
- JSSAHER (JSS Academy of Higher Education and Research) Medical College, Mysuru, Karnataka, India
| | - Shristi Bhattarai
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Grace Callagy
- Discipline of Pathology, University of Galway, Galway, Ireland
| | - Mark Webber
- Discipline of Pathology, University of Galway, Galway, Ireland
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA.
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
He T, Li NX, Pan ZJ, Zou ZH, Chen JC, Yu SZ, Lv F, Xie QC, Zou J. Serine/threonine kinase 36 induced epithelial-mesenchymal transition promotes docetaxel resistance in prostate cancer. Sci Rep 2024; 14:729. [PMID: 38184689 PMCID: PMC10771505 DOI: 10.1038/s41598-024-51360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
To investigate the role and potential mechanism of serine/threonine kinase 36 (STK36) in docetaxel resistance-prostate cancer (PCa). The expression of STK36 in PCa and the correlation with clinicopathological characteristics of PCa patients were analyzed using the data from different databases and tissue microarrays. To investigate the role of STK36 on cell proliferation, invasion, and migration, STK36 was overexpressed and silenced in DU-145 and PC-3 cell lines. Cell counting kit-8 (CCK8) was used to test cell proliferation. Cell invasion and migration were detected by cell wound scratch assay and trans well, respectively. The expression profile of STK36, E-Cadherin, and Vimentin was analyzed by Western blot. Cell apoptosis was detected by the TUNEL assay. STK36 expression was upregulated in PCa tissue compared with adjacent benign PCa tissue; it was higher in patients with advanced stages compared with lower stages and was significantly correlated with decreased overall survival. Up-regulation of STK36 significantly promoted the proliferation, invasion, and migration of DU-145 and PC-3 cells and compensated for the suppression caused by docetaxel treatment in vitro. A striking apoptosis inhibition could be observed when dealing with docetaxel, although the apoptosis of DU-145 and PC-3 cells was not affected by the STK36 exclusive overexpression. Besides, E-Cadherin expression was restrained while the expression levels of vimentin were all enhanced. The knockdown of STK36 reversed the above process. STK36 up-regulation could accelerate the biological behavior and docetaxel resistance of PCa by epithelial-mesenchymal transition (EMT) activation. STK36 may be potentially used as a target in PCa resolvent with docetaxel.
Collapse
Affiliation(s)
- Tao He
- Department of Emergency Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, 63 DuoBao Road, Guangzhou, Guangdong, 510150, People's Republic of China
| | - Nan-Xing Li
- Department of Emergency Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, 63 DuoBao Road, Guangzhou, Guangdong, 510150, People's Republic of China
| | - Zhao-Jun Pan
- Department of Urology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, People's Republic of China
| | - Zi-Hao Zou
- Department of Urology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, People's Republic of China
| | - Jie-Chuan Chen
- The Third Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Si-Zhe Yu
- The Third Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Fa Lv
- The Third Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Quan-Cheng Xie
- The Third Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Jun Zou
- Department of Emergency Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, 63 DuoBao Road, Guangzhou, Guangdong, 510150, People's Republic of China.
| |
Collapse
|
13
|
Zhou M, Ma Y, Chiang CC, Rock EC, Butler SC, Anne R, Yatsenko S, Gong Y, Chen YC. Single-cell morphological and transcriptome analysis unveil inhibitors of polyploid giant breast cancer cells in vitro. Commun Biol 2023; 6:1301. [PMID: 38129519 PMCID: PMC10739852 DOI: 10.1038/s42003-023-05674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Considerable evidence suggests that breast cancer therapeutic resistance and relapse can be driven by polyploid giant cancer cells (PGCCs). The number of PGCCs increases with the stages of disease and therapeutic stress. Given the importance of PGCCs, it remains challenging to eradicate them. To discover effective anti-PGCC compounds, there is an unmet need to rapidly distinguish compounds that kill non-PGCCs, PGCCs, or both. Here, we establish a single-cell morphological analysis pipeline with a high throughput and great precision to characterize dynamics of individual cells. In this manner, we screen a library to identify promising compounds that inhibit all cancer cells or only PGCCs (e.g., regulators of HDAC, proteasome, and ferroptosis). Additionally, we perform scRNA-Seq to reveal altered cell cycle, metabolism, and ferroptosis sensitivity in breast PGCCs. The combination of single-cell morphological and molecular investigation reveals promising anti-PGCC strategies for breast cancer treatment and other malignancies.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Samuel Charles Butler
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Rajiv Anne
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Svetlana Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee Womens Research Institute, Pittsburgh, PA, USA
| | - Yinan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA.
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
14
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
15
|
Bouezzedine F, El Baba R, Haidar Ahmad S, Herbein G. Polyploid Giant Cancer Cells Generated from Human Cytomegalovirus-Infected Prostate Epithelial Cells. Cancers (Basel) 2023; 15:4994. [PMID: 37894361 PMCID: PMC10604969 DOI: 10.3390/cancers15204994] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Prostate cancer is the most commonly diagnosed malignancy and the sixth leading cause of cancer death in men worldwide. Chromosomal instability (CIN) and polyploid giant cancer cells (PGCCs) have been considered predominant hallmarks of cancer. Recent clinical studies have proven the association of CIN, aneuploidy, and PGCCs with poor prognosis of prostate cancer (PCa). Evidence of HCMV transforming potential might indicate that HCMV may be involved in PCa. METHODS Herein, we underline the role of the high-risk HCMV-DB and -BL clinical strains in transforming prostate epithelial cells and assess the molecular and cellular oncogenic processes associated with PCa. RESULTS Oncogenesis parallels a sustained growth of "CMV-Transformed Prostate epithelial cells" or CTP cells that highly express Myc and EZH2, forming soft agar colonies and displaying stemness as well as mesenchymal features, hence promoting EMT as well as PGCCs and a spheroid appearance. CONCLUSIONS HCMV-induced Myc and EZH2 upregulation coupled with stemness and EMT traits in IE1-expressing CTP might highlight the potential role of HCMV in PCa development and encourage the use of anti-EZH2 and anti-HCMV in PCa treatment.
Collapse
Affiliation(s)
- Fidaa Bouezzedine
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, 25000 Besançon, France; (F.B.); (R.E.B.); (S.H.A.)
| | - Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, 25000 Besançon, France; (F.B.); (R.E.B.); (S.H.A.)
| | - Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, 25000 Besançon, France; (F.B.); (R.E.B.); (S.H.A.)
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, 25000 Besançon, France; (F.B.); (R.E.B.); (S.H.A.)
- Department of Virology, CHU Besançon, 25030 Besançon, France
| |
Collapse
|
16
|
Pendleton KE, Wang K, Echeverria GV. Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. Front Cell Dev Biol 2023; 11:1254313. [PMID: 37779896 PMCID: PMC10534013 DOI: 10.3389/fcell.2023.1254313] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Deregulation of tumor cell metabolism is widely recognized as a "hallmark of cancer." Many of the selective pressures encountered by tumor cells, such as exposure to anticancer therapies, navigation of the metastatic cascade, and communication with the tumor microenvironment, can elicit further rewiring of tumor cell metabolism. Furthermore, phenotypic plasticity has been recently appreciated as an emerging "hallmark of cancer." Mitochondria are dynamic organelles and central hubs of metabolism whose roles in cancers have been a major focus of numerous studies. Importantly, therapeutic approaches targeting mitochondria are being developed. Interestingly, both plastic (i.e., reversible) and permanent (i.e., stable) metabolic adaptations have been observed following exposure to anticancer therapeutics. Understanding the plastic or permanent nature of these mechanisms is of crucial importance for devising the initiation, duration, and sequential nature of metabolism-targeting therapies. In this review, we compare permanent and plastic mitochondrial mechanisms driving therapy resistance. We also discuss experimental models of therapy-induced metabolic adaptation, therapeutic implications for targeting permanent and plastic metabolic states, and clinical implications of metabolic adaptations. While the plasticity of metabolic adaptations can make effective therapeutic treatment challenging, understanding the mechanisms behind these plastic phenotypes may lead to promising clinical interventions that will ultimately lead to better overall care for cancer patients.
Collapse
Affiliation(s)
- Katherine E. Pendleton
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Karen Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Gloria V. Echeverria
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Bukkuri A, Pienta KJ, Austin RH, Hammarlund EU, Amend SR, Brown JS. A mathematical investigation of polyaneuploid cancer cell memory and cross-resistance in state-structured cancer populations. Sci Rep 2023; 13:15027. [PMID: 37700000 PMCID: PMC10497555 DOI: 10.1038/s41598-023-42368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023] Open
Abstract
The polyaneuploid cancer cell (PACC) state promotes cancer lethality by contributing to survival in extreme conditions and metastasis. Recent experimental evidence suggests that post-therapy PACC-derived recurrent populations display cross-resistance to classes of therapies with independent mechanisms of action. We hypothesize that this can occur through PACC memory, whereby cancer cells that have undergone a polyaneuploid transition (PAT) reenter the PACC state more quickly or have higher levels of innate resistance. In this paper, we build on our prior mathematical models of the eco-evolutionary dynamics of cells in the 2N+ and PACC states to investigate these two hypotheses. We show that although an increase in innate resistance is more effective at promoting cross-resistance, this trend can also be produced via PACC memory. We also find that resensitization of cells that acquire increased innate resistance through the PAT have a considerable impact on eco-evolutionary dynamics and extinction probabilities. This study, though theoretical in nature, can help inspire future experimentation to tease apart hypotheses surrounding how cross-resistance in structured cancer populations arises.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
18
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
19
|
Fisher TB, Saini G, Ts R, Krishnamurthy J, Bhattarai S, Callagy G, Webber M, Janssen EAM, Kong J, Aneja R. Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer. RESEARCH SQUARE 2023:rs.3.rs-3243195. [PMID: 37645881 PMCID: PMC10462230 DOI: 10.21203/rs.3.rs-3243195/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30-40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60-70% show residual disease (RD). The role of the tumor microenvironment (TME) in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) were separated through a stratified 8-fold cross validation strategy for the first step and leave one out cross validation strategy for the second step. A tile-level histology label prediction pipeline and four machine learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
Collapse
Affiliation(s)
| | | | - Rekha Ts
- JSSAHER (JSS Academy of Higher Education and Research) Medical College
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhao S, Xing S, Wang L, Ouyang M, Liu S, Sun L, Yu H. IL-1β is involved in docetaxel chemoresistance by regulating the formation of polyploid giant cancer cells in non-small cell lung cancer. Sci Rep 2023; 13:12763. [PMID: 37550397 PMCID: PMC10406903 DOI: 10.1038/s41598-023-39880-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
Docetaxel (Doc) is a cornerstone of chemotherapy; however, treatment with Doc often and inevitably leads to drug resistance and the formation of polyploid giant cancer cells (PGCCs). In this study, we investigated the effect of Doc on non-small cell lung cancer to explore the role of PGCCs in drug resistance and the molecular mechanisms that regulate this resistance. We found that Doc induced G2/M cell cycle arrest and cell death in A549 and NCI-H1299 cells. However, many cells remained alive and became PGCCs by decreasing the expression of key regulatory proteins related to the cell cycle and proliferation. Notably, the PGCCs showed typical features of senescence, especially upregulation of p21 and p-histone H2A.X expression. Moreover, the mRNA level of IL-1β in the senescence-associated secretory phenotype was increased significantly with the development of PGCCs. Inhibition of IL-1β reduced the expression of p-histone H2A.X and promoted polyploidy to enhance the proapoptotic effect of Doc. Taken together, our results suggested that IL-1β was involved in the formation of PGCCs and regulated the senescence of PGCCs, which contributed to drug resistance to Doc. Therefore, targeting IL-1β in PGCCs may be a novel approach to overcome drug resistance.
Collapse
Affiliation(s)
- Song Zhao
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Sining Xing
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Mingyue Ouyang
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Shuo Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Lingyan Sun
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
21
|
Zhang X, Yao J, Li X, Niu N, Liu Y, Hajek RA, Peng G, Westin S, Sood AK, Liu J. Targeting polyploid giant cancer cells potentiates a therapeutic response and overcomes resistance to PARP inhibitors in ovarian cancer. SCIENCE ADVANCES 2023; 9:eadf7195. [PMID: 37478190 PMCID: PMC10361597 DOI: 10.1126/sciadv.adf7195] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
To understand the mechanism of acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) olaparib, we induced the formation of polyploid giant cancer cells (PGCCs) in ovarian and breast cancer cell lines, high-grade serous cancer (HGSC)-derived organoids, and patient-derived xenografts (PDXs). Time-lapse tracking of ovarian cancer cells revealed that PGCCs primarily developed from endoreplication after exposure to sublethal concentrations of olaparib. PGCCs exhibited features of senescent cells but, after olaparib withdrawal, can escape senescence via restitutional multipolar endomitosis and other noncanonical modes of cell division to generate mitotically competent resistant daughter cells. The contraceptive drug mifepristone blocked PGCC formation and daughter cell formation. Mifepristone/olaparib combination therapy substantially reduced tumor growth in PDX models without previous olaparib exposure, while mifepristone alone decreased tumor growth in PDX models with acquired olaparib resistance. Thus, targeting PGCCs may represent a promising approach to potentiate the therapeutic response to PARPi and overcome PARPi-induced resistance.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoran Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Na Niu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard A. Hajek
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Necroptosis Induced by Delta-Tocotrienol Overcomes Docetaxel Chemoresistance in Prostate Cancer Cells. Int J Mol Sci 2023; 24:ijms24054923. [PMID: 36902362 PMCID: PMC10003232 DOI: 10.3390/ijms24054923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Prostate cancer (PCa) represents the fifth cause of cancer death in men. Currently, chemotherapeutic agents for the treatment of cancers, including PCa, mainly inhibit tumor growth by apoptosis induction. However, defects in apoptotic cellular responses frequently lead to drug resistance, which is the main cause of chemotherapy failure. For this reason, trigger non-apoptotic cell death might represent an alternative approach to prevent drug resistance in cancer. Several agents, including natural compounds, have been shown to induce necroptosis in human cancer cells. In this study we evaluated the involvement of necroptosis in anticancer activity of delta-tocotrienol (δ-TT) in PCa cells (DU145 and PC3). Combination therapy is one tool used to overcome therapeutic resistance and drug toxicity. Evaluating the combined effect of δ-TT and docetaxel (DTX), we found that δ-TT potentiates DTX cytotoxicity in DU145 cells. Moreover, δ-TT induces cell death in DU145 cells that have developed DTX resistance (DU-DXR) activating necroptosis. Taken together, obtained data indicate the ability of δ-TT to induce necroptosis in both DU145, PC3 and DU-DXR cell lines. Furthermore, the ability of δ-TT to induce necroptotic cell death may represent a promising therapeutical approach to overcome DTX chemoresistance in PCa.
Collapse
|
23
|
Zhao Y, Lu T, Song Y, Wen Y, Deng Z, Fan J, Zhao M, Zhao R, Luo Y, xie J, Hu B, Sun H, Wang Y, He S, Gong Y, Cheng J, Liu X, Yu L, Li J, Li C, Shi Y, Huang Q. Cancer Cells Enter an Adaptive Persistence to Survive Radiotherapy and Repopulate Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204177. [PMID: 36658726 PMCID: PMC10015890 DOI: 10.1002/advs.202204177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Repopulation of residual tumor cells impedes curative radiotherapy, yet the mechanism is not fully understood. It is recently appreciated that cancer cells adopt a transient persistence to survive the stress of chemo- or targeted therapy and facilitate eventual relapse. Here, it is shown that cancer cells likewise enter a "radiation-tolerant persister" (RTP) state to evade radiation pressure in vitro and in vivo. RTP cells are characterized by enlarged cell size with complex karyotype, activated type I interferon pathway and two gene patterns represented by CST3 and SNCG. RTP cells have the potential to regenerate progenies via viral budding-like division, and type I interferon-mediated antiviral signaling impaired progeny production. Depleting CST3 or SNCG does not attenuate the formation of RTP cells, but can suppress RTP cells budding with impaired tumor repopulation. Interestingly, progeny cells produced by RTP cells actively lose their aberrant chromosomal fragments and gradually recover back to a chromosomal constitution similar to their unirradiated parental cells. Collectively, this study reveals a novel mechanism of tumor repopulation, i.e., cancer cell populations employ a reversible radiation-persistence by poly- and de-polyploidization to survive radiotherapy and repopulate the tumor, providing a new therapeutic concept to improve outcome of patients receiving radiotherapy.
Collapse
Affiliation(s)
- Yucui Zhao
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Tingting Lu
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Yanwei Song
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yanqin Wen
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
| | - Zheng Deng
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jiahui Fan
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
| | - Minghui Zhao
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Ruyi Zhao
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yuntao Luo
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jianzhu xie
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Binjie Hu
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Haoran Sun
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yiwei Wang
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Sijia He
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yanping Gong
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jin Cheng
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Xinjian Liu
- Department of BiochemistrySchool of MedicineSun Yat‐sen UniversityShenzhen518107China
| | - Liang Yu
- Department of General SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jikun Li
- Department of General SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Chuanyuan Li
- Department of DermatologyDuke University Medical CenterBox 3135DurhamNC27710USA
| | - Yongyong Shi
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio‐X Institutes)Qingdao UniversityQingdao266003China
| | - Qian Huang
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
24
|
Trabzonlu L, Pienta KJ, Trock BJ, De Marzo AM, Amend SR. Presence of cells in the polyaneuploid cancer cell (PACC) state predicts the risk of recurrence in prostate cancer. Prostate 2023; 83:277-285. [PMID: 36372998 PMCID: PMC9839595 DOI: 10.1002/pros.24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The nonproliferating polyaneuploid cancer cell (PACC) state is associated with therapeutic resistance in cancer. A subset of cancer cells enters the PACC state by polyploidization and acts as cancer stem cells by undergoing depolyploidization and repopulating the tumor cell population after the therapeutic stress is relieved. Our aim was to systematically assess the presence and importance of this entity in men who underwent radical prostatectomy with curative intent to treat their presumed localized prostate cancer (PCa). MATERIALS AND METHODS Men with National Comprehensive Cancer Network intermediate- or high-risk PCa who underwent radical prostatectomy l from 2007 to 2015 and who did not receive neoadjuvant treatment were included. From the cohort of 2159 patients, the analysis focused on a subcohort of 209 patients and 38 cases. Prostate tissue microarrays (TMAs) were prepared from formalin-fixed, paraffin-embedded blocks of the radical prostatectomy specimens. A total of 2807 tissue samples of matched normal/benign and cancer were arrayed in nine TMA blocks. The presence of PACCs and the number of PACCs on each core were noted. RESULTS The total number of cells in the PACC state and the total number of cores with PACCs were significantly correlated with increasing Gleason score (p = 0.0004) and increasing Cancer of the Prostate Risk Assessment Postsurgical (CAPRA-S) (p = 0.004), but no other variables. In univariate proportional hazards models of metastasis-free survival, year of surgery, Gleason score (9-10 vs. 7-8), pathology stage, CAPRA-S, total PACCs, and cores positive for PACCs were all statistically significant. The multivariable models with PACCs that gave the best fit included CAPRA-S. Adding either total PACCs or cores positive for PACCs to CAPRA-S both significantly improved model fit compared to CAPRA-S alone. CONCLUSION Our findings show that the number of PACCs and the number of cores positive for PACCs are statistically significant prognostic factors for metastasis-free survival, after adjusting for CAPRA-S, in a case-cohort of intermediate- or high-risk men who underwent radical prostatectomy. In addition, despite the small number of men with complete data to evaluate time to metastatic castration-resistant PCa (mCRPC), the total number of PACCs was a statistically significant predictor of mCRPC in univariate analysis and suggested a prognostic effect even after adjusting for CAPRA-S.
Collapse
Affiliation(s)
- Levent Trabzonlu
- Department of Pathology and Laboratory MedicineLoyola University Medical CenterMaywoodIllinoisUSA
| | - Kenneth J. Pienta
- Cancer Ecology Center, The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bruce J. Trock
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Angelo M. De Marzo
- Departments of Pathology, Urology and Oncology, The Johns Hopkins University School of MedicineThe Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
25
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
26
|
Hsieh CY, Lin CC, Huang YW, Chen JH, Tsou YA, Chang LC, Fan CC, Lin CY, Chang WC. Macrophage secretory IL-1β promotes docetaxel resistance in head and neck squamous carcinoma via SOD2/CAT-ICAM1 signaling. JCI Insight 2022; 7:157285. [PMID: 36264639 PMCID: PMC9746909 DOI: 10.1172/jci.insight.157285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Docetaxel (DTX) combined with cisplatin and 5-fluorouracil has been used as induction chemotherapy for head and neck squamous cell carcinoma (HNSCC). However, the development of acquired resistance remains a major obstacle to treatment response. Tumor-associated macrophages are associated with chemotherapeutic resistance. In the present study, increased infiltration of macrophages into the tumor microenvironment (TME) was significantly associated with shorter overall survival and increased resistance to chemotherapeutic drugs, particularly DTX, in patients with HNSCC. Macrophage coculture induced expression of intercellular adhesion molecule 1 (ICAM1), which promotes stemness and the formation of polyploid giant cancer cells, thereby reducing the efficacy of DTX. Both genetic silencing and pharmacological inhibition of ICAM1 sensitized HNSCC to DTX. Macrophage secretion of IL-1β was found to induce tumor expression of ICAM1. IL-1β neutralization and IL-1 receptor blockade reversed DTX resistance induced by macrophage coculture. IL-1β activated superoxide dismutase 2 and inhibited catalase, thereby modulating intracellular levels of ROS and inducing ICAM1 expression. Arsenic trioxide (ATO) reduced macrophage infiltration into the TME and impaired IL-1β secretion by macrophages. The combinatorial use of ATO enhanced the in vivo efficacy of DTX in a mouse model, which may provide a revolutionary approach to overcoming acquired therapeutic resistance in HNSCC.
Collapse
Affiliation(s)
- Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jong-Hang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yung-An Tsou
- Department of Otolaryngology-Head and Neck Surgery and
| | - Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Chinese Medicinal Research and Development Center, China Medical University Hospital, and,Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chi-Chen Fan
- Department of Research and Development, Marker Exploration Corporation, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chen-Yuan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Can 3D bioprinting solve the mystery of senescence in cancer therapy? Ageing Res Rev 2022; 81:101732. [PMID: 36100069 DOI: 10.1016/j.arr.2022.101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 01/31/2023]
Abstract
Tumor dormancy leading to cancer relapse is still a poorly understood mechanism. Several cell states such as quiescence and diapause can explain the persistence of tumor cells in a dormant state, but the potential role of tumor cell senescence has been met with hesitance given the historical understanding of the senescent growth arrest as irreversible. However, recent evidence has suggested that senescence might contribute to dormancy and relapse, although its exact role is not fully developed. This limited understanding is largely due to the paucity of reliable study models. The current 2D cell modeling is overly simplistic and lacks the appropriate representation of the interactions between tumor cells (senescent or non-senescent) and the other cell types within the tumor microenvironment (TME), as well as with the extracellular matrix (ECM). 3D cell culture models, including 3D bioprinting techniques, offer a promising approach to better recapitulate the native cancer microenvironment and would significantly improve our understanding of cancer biology and cellular response to treatment, particularly Therapy-Induced Senescence (TIS), and its contribution to tumor dormancy and cancer recurrence. Fabricating a novel 3D bioprinted model offers excellent opportunities to investigate both the role of TIS in tumor dormancy and the utility of senolytics (drugs that selectively eliminate senescent cells) in targeting dormant cancer cells and mitigating the risk for resurgence. In this review, we discuss literature on the possible contribution of TIS in tumor dormancy, provide examples on the current 3D models of senescence, and propose a novel 3D model to investigate the ultimate role of TIS in mediating overall response to therapy.
Collapse
|
28
|
Polyploidy and Myc Proto-Oncogenes Promote Stress Adaptation via Epigenetic Plasticity and Gene Regulatory Network Rewiring. Int J Mol Sci 2022; 23:ijms23179691. [PMID: 36077092 PMCID: PMC9456078 DOI: 10.3390/ijms23179691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.
Collapse
|
29
|
Krause W. Resistance to prostate cancer treatments. IUBMB Life 2022; 75:390-410. [PMID: 35978491 DOI: 10.1002/iub.2665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
A review of the current treatment options for prostate cancer and the formation of resistance to these regimens has been compiled including primary, acquired, and cross-resistance. The diversification of the pathways involved and the escape routes the tumor is utilizing have been addressed. Whereas early stages of tumor can be cured, there is no treatment available after a point of no return has been reached, leaving palliative treatment as the only option. The major reasons for this outcome are the heterogeneity of tumors, both inter- and intra-individually and the nearly endless number of escape routes, which the tumor can select to overcome the effects of treatment. This means that more focus should be applied to the individualization of both diagnosis and therapy of prostate cancer. In addition to current treatment options, novel drugs and ongoing clinical trials have been addressed in this review.
Collapse
|
30
|
Bukkuri A, Pienta KJ, Austin RH, Hammarlund EU, Amend SR, Brown JS. A life history model of the ecological and evolutionary dynamics of polyaneuploid cancer cells. Sci Rep 2022; 12:13713. [PMID: 35962062 PMCID: PMC9374668 DOI: 10.1038/s41598-022-18137-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Therapeutic resistance is one of the main reasons for treatment failure in cancer patients. The polyaneuploid cancer cell (PACC) state has been shown to promote resistance by providing a refuge for cancer cells from the effects of therapy and by helping them adapt to a variety of environmental stressors. This state is the result of aneuploid cancer cells undergoing whole genome doubling and skipping mitosis, cytokinesis, or both. In this paper, we create a novel mathematical framework for modeling the eco-evolutionary dynamics of state-structured populations and use this framework to construct a model of cancer populations with an aneuploid and a PACC state. Using in silico simulations, we explore how the PACC state allows cancer cells to (1) survive extreme environmental conditions by exiting the cell cycle after S phase and protecting genomic material and (2) aid in adaptation to environmental stressors by increasing the cancer cell's ability to generate heritable variation (evolvability) through the increase in genomic content that accompanies polyploidization. In doing so, we demonstrate the ability of the PACC state to allow cancer cells to persist under therapy and evolve therapeutic resistance. By eliminating cells in the PACC state through appropriately-timed PACC-targeted therapies, we show how we can prevent the emergence of resistance and promote cancer eradication.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Nordic Center for Earth Evolution, University of Southern Denmark and Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
31
|
Stochastic models of Mendelian and reverse transcriptional inheritance in state-structured cancer populations. Sci Rep 2022; 12:13079. [PMID: 35906318 PMCID: PMC9338039 DOI: 10.1038/s41598-022-17456-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Recent evidence suggests that a polyaneuploid cancer cell (PACC) state may play a key role in the adaptation of cancer cells to stressful environments and in promoting therapeutic resistance. The PACC state allows cancer cells to pause cell division and to avoid DNA damage and programmed cell death. Transition to the PACC state may also lead to an increase in the cancer cell’s ability to generate heritable variation (evolvability). One way this can occur is through evolutionary triage. Under this framework, cells gradually gain resistance by scaling hills on a fitness landscape through a process of mutation and selection. Another way this can happen is through self-genetic modification whereby cells in the PACC state find a viable solution to the stressor and then undergo depolyploidization, passing it on to their heritably resistant progeny. Here, we develop a stochastic model to simulate both of these evolutionary frameworks. We examine the impact of treatment dosage and extent of self-genetic modification on eco-evolutionary dynamics of cancer cells with aneuploid and PACC states. We find that under low doses of therapy, evolutionary triage performs better whereas under high doses of therapy, self-genetic modification is favored. This study generates predictions for teasing apart these biological hypotheses, examines the implications of each in the context of cancer, and provides a modeling framework to compare Mendelian and non-traditional forms of inheritance.
Collapse
|
32
|
Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Semin Cancer Biol 2022; 81:37-47. [PMID: 33358748 PMCID: PMC8214633 DOI: 10.1016/j.semcancer.2020.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023]
Abstract
Senescence is a unique state of growth arrest that develops in response to a plethora of cellular stresses, including replicative exhaustion, oxidative injury, and genotoxic insults. Senescence has been implicated in the pathogenesis of multiple aging-related pathologies, including cancer. In cancer, senescence plays a dual role, initially acting as a barrier against tumor progression by enforcing a durable growth arrest in premalignant cells, but potentially promoting malignant transformation in neighboring cells through the secretion of pro-tumorigenic drivers. Moreover, senescence is induced in tumor cells upon exposure to a wide variety of conventional and targeted anticancer drugs (termed Therapy-Induced Senescence-TIS), representing a critical contributing factor to therapeutic outcomes. As with replicative or oxidative senescence, TIS manifests as a complex phenotype of macromolecular damage, energetic dysregulation, and altered gene expression. Senescent cells are also frequently polyploid. In vitro studies have suggested that polyploidy may confer upon senescent tumor cells the ability to escape from growth arrest, thereby providing an additional avenue whereby tumor cells escape the lethality of anticancer treatment. Polyploidy in tumor cells is also associated with persistent energy production, chromatin remodeling, self-renewal, stemness and drug resistance - features that are also associated with escape from senescence and conversion to a more malignant phenotype. However, senescent cells are highly heterogenous and can present with variable phenotypes, where polyploidy is one component of a complex reversion process. Lastly, emerging efforts to pharmacologically target polyploid tumor cells might pave the way towards the identification of novel targets for the elimination of senescent tumor cells by the incorporation of senolytic agents into cancer therapeutic strategies.
Collapse
|
33
|
Saini G, Joshi S, Garlapati C, Li H, Kong J, Krishnamurthy J, Reid MD, Aneja R. Polyploid giant cancer cell characterization: New frontiers in predicting response to chemotherapy in breast cancer. Semin Cancer Biol 2022; 81:220-231. [PMID: 33766651 PMCID: PMC8672208 DOI: 10.1016/j.semcancer.2021.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Although polyploid cells were first described nearly two centuries ago, their ability to proliferate has only recently been demonstrated. It also becomes increasingly evident that a subset of tumor cells, polyploid giant cancer cells (PGCCs), play a critical role in the pathophysiology of breast cancer (BC), among other cancer types. In BC, PGCCs can arise in response to therapy-induced stress. Their progeny possess cancer stem cell (CSC) properties and can repopulate the tumor. By modulating the tumor microenvironment (TME), PGCCs promote BC progression, chemoresistance, metastasis, and relapse and ultimately impact the survival of BC patients. Given their pro- tumorigenic roles, PGCCs have been proposed to possess the ability to predict treatment response and patient prognosis in BC. Traditionally, DNA cytometry has been used to detect PGCCs.. The field will further derive benefit from the development of approaches to accurately detect PGCCs and their progeny using robust PGCC biomarkers. In this review, we present the current state of knowledge about the clinical relevance of PGCCs in BC. We also propose to use an artificial intelligence-assisted image analysis pipeline to identify PGCC and map their interactions with other TME components, thereby facilitating the clinical implementation of PGCCs as biomarkers to predict treatment response and survival outcomes in BC patients. Finally, we summarize efforts to therapeutically target PGCCs to prevent chemoresistance and improve clinical outcomes in patients with BC.
Collapse
Affiliation(s)
- Geetanjali Saini
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Shriya Joshi
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Hongxiao Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA; Department of Computer Science, Georgia State University, Atlanta, GA, USA; Department of Computer Science, Emory University, Atlanta, GA, USA
| | | | - Michelle D Reid
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
34
|
White-Gilbertson S, Lu P, Esobi I, Echesabal-Chen J, Mulholland PJ, Gooz M, Ogretmen B, Stamatikos A, Voelkel-Johnson C. Polyploid giant cancer cells are dependent on cholesterol for progeny formation through amitotic division. Sci Rep 2022; 12:8971. [PMID: 35624221 PMCID: PMC9142539 DOI: 10.1038/s41598-022-12705-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Polyploid Giant Cancer Cells (PGCC) are increasingly being recognized as drivers of cancer recurrence. Therapy stress promotes the formation of these cells, which upon stress cessation often successfully generate more aggressive progeny that repopulate the tumor. Therefore, identification of potential PGCC vulnerabilities is key to preventing therapy failure. We have previously demonstrated that PGCC progeny formation depends on the lysosomal enzyme acid ceramidase (ASAH1). In this study, we compared transcriptomes of parental cancer cells and PGCC in the absence or presence of the ASAH1 inhibitor LCL521. Results show that PGCC express less INSIG1, which downregulates cholesterol metabolism and that inhibition of ASAH1 increased HMGCR which is the rate limiting enzyme in cholesterol synthesis. Confocal microscopy revealed that ceramide and cholesterol do not colocalize. Treatment with LCL521 or simvastatin to inhibit ASAH1 or HMGCR, respectively, resulted in accumulation of ceramide at the cell surface of PGCC and prevented PGCC progeny formation. Our results suggest that similarly to inhibition of ASAH1, disruption of cholesterol signaling is a potential strategy to interfere with PGCC progeny formation.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA
| | - Ping Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA
| | - Ikechukwu Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston Alcohol Research Center, Charleston, USA
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA.
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA.
| |
Collapse
|
35
|
nurP28, a New-to-Nature Zein-Derived Peptide, Enhances the Therapeutic Effect of Docetaxel in Breast Cancer Monolayers and Spheroids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092824. [PMID: 35566175 PMCID: PMC9105272 DOI: 10.3390/molecules27092824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
The development of novel cancer therapeutic strategies has garnered increasing interest in cancer research. Among the therapeutic choices, chemosensitizers have shown exciting prospects. Peptides are an attractive alternative among the molecules that may be used as chemosensitizers. We rationally designed a new-to-nature peptide, nurP28, derived from the 22-kDa α-zein protein sequence (entry Q00919_MAIZE). The resultant sequence of the nurP28 peptide after the addition of arginine residues was LALLALLRLRRRATTAFIIP, and we added acetyl and amide groups at the N- and C-terminus, respectively, for capping. We evaluated the cytotoxicity of the nurP28 peptide alone and in combination with docetaxel in fibroblast monolayers and breast cancer monolayers and spheroids. Our results indicated that nurP28 is not cytotoxic to human fibroblasts or cancer cells. Nevertheless, when combined with 1 µM docetaxel, 3 ng/mL nurP28 induced equivalent (in MCF7 monolayers) and higher (in MCF7 spheroids) cytotoxic effects than 10-fold higher doses of docetaxel alone. These findings suggest that nurP28 may act as a chemosensitizer in breast cancer treatment. This study describes the enhancing “anti-cancer” effects of nurP28 in breast cancer 2D and 3D cultures treated with docetaxel. Further studies should explore the mechanisms underlying these effects and assess the clinical potential of our findings using animal models.
Collapse
|
36
|
Mesenchymal Stem Cells and their Derived Exosomes Promote Malignant Phenotype of Polyploid Non-Small-Cell Lung Cancer Cells through AMPK Signaling Pathway. Anal Cell Pathol 2022; 2022:8708202. [PMID: 35419253 PMCID: PMC9001126 DOI: 10.1155/2022/8708202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is an important method for the treatment of non-small-cell lung cancer (NSCLC), but it can lead to side effects and polyploid cancer cells. The polyploid cancer cells can live and generate daughter cancer cells via budding. Mesenchymal stem cells (MSCs) are pluripotent stem cells with repair and regeneration functions and can resist tissue damage caused by tumor therapy. This study is aimed at investigating the effects of MSCs and their derived exosomes on the biological characteristics of polyploid NSCLC cells and the potential mechanisms. We found that MSC conditioned medium (CM), MSCs, and MSC-exosomes had no effect on cell proliferation of the polyploid A549 and H1299 cells. Compared with the control group, MSCs and MSC-exosomes significantly promoted epithelial mesenchymal transformation, cell migration, antiapoptosis, and autophagy in the polyploid A549 and H1299 by activating AMPK signaling pathway, but no significant changes were observed in MSC-CM treatment. These results revealed that MSCs and MSC-exosomes promoted malignant phenotype of polyploid NSCLC cells through the AMPK signaling pathway.
Collapse
|
37
|
Mittal K, Kaur J, Sharma S, Sharma N, Wei G, Choudhary I, Imhansi-Jacob P, Maganti N, Pawar S, Rida P, Toss MS, Aleskandarany M, Janssen EA, Søiland H, Gupta MV, Reid MD, Rakha EA, Aneja R. Hypoxia Drives Centrosome Amplification in Cancer Cells via HIF1α-dependent Induction of Polo-Like Kinase 4. Mol Cancer Res 2022; 20:596-606. [PMID: 34933912 PMCID: PMC8983505 DOI: 10.1158/1541-7786.mcr-20-0798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Centrosome amplification (CA) has been implicated in the progression of various cancer types. Although studies have shown that overexpression of PLK4 promotes CA, the effect of tumor microenvironment on polo-like kinase 4 (PLK4) regulation is understudied. The aim of this study was to examine the role of hypoxia in promoting CA via PLK4. We found that hypoxia induced CA via hypoxia-inducible factor-1α (HIF1α). We quantified the prevalence of CA in tumor cell lines and tissue sections from breast cancer, pancreatic ductal adenocarcinoma (PDAC), colorectal cancer, and prostate cancer and found that CA was prevalent in cells with increased HIF1α levels under normoxic conditions. HIF1α levels were correlated with the extent of CA and PLK4 expression in clinical samples. We analyzed the correlation between PLK4 and HIF1A mRNA levels in The Cancer Genome Atlas (TCGA) datasets to evaluate the role of PLK4 and HIF1α in breast cancer and PDAC prognosis. High HIF1A and PLK4 levels in patients with breast cancer and PDAC were associated with poor overall survival. We confirmed PLK4 as a transcriptional target of HIF1α and demonstrated that in PLK4 knockdown cells, hypoxia-mimicking agents did not affect CA and expression of CA-associated proteins, underscoring the necessity of PLK4 in HIF1α-related CA. To further dissect the HIF1α-PLK4 interplay, we used HIF1α-deficient cells overexpressing PLK4 and showed a significant increase in CA compared with HIF1α-deficient cells harboring wild-type PLK4. These findings suggest that HIF1α induces CA by directly upregulating PLK4 and could help us risk-stratify patients and design new therapies for CA-rich cancers. IMPLICATIONS Hypoxia drives CA in cancer cells by regulating expression of PLK4, uncovering a novel HIF1α/PLK4 axis.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shaligram Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Nivya Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Guanhao Wei
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ishita Choudhary
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Nagini Maganti
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shrikant Pawar
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Padmashree Rida
- Novazoi Theranostics, Inc., Rolling Hills Estates, California
| | - Michael S. Toss
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Mohammed Aleskandarany
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | | | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | | | | | - Emad A. Rakha
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
38
|
Liu J, Niu N, Li X, Zhang X, Sood AK. The life cycle of polyploid giant cancer cells and dormancy in cancer: Opportunities for novel therapeutic interventions. Semin Cancer Biol 2021; 81:132-144. [PMID: 34670140 DOI: 10.1016/j.semcancer.2021.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Recent data suggest that most genotoxic agents in cancer therapy can lead to shock of genome and increase in cell size, which leads whole genome duplication or multiplication, formation of polyploid giant cancer cells, activation of an early embryonic program, and dedifferentiation of somatic cells. This process is achieved via the giant cell life cycle, a recently proposed mechanism for malignant transformation of somatic cells. Increase in both cell size and ploidy allows cells to completely or partially restructures the genome and develop into a blastocyst-like structure, similar to that observed in blastomere-stage embryogenesis. Although blastocyst-like structures with reprogrammed genome can generate resistant or metastatic daughter cells or benign cells of different lineages, they also acquired ability to undergo embryonic diapause, a reversible state of suspended embryonic development in which cells enter dormancy for survival in response to environmental stress. Therapeutic agents can activate this evolutionarily conserved developmental program, and when cells awaken from embryonic diapause, this leads to recurrence or metastasis. Understanding of the key mechanisms that regulate the different stages of the giant cell life cycle offers new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinsong Liu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Na Niu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoran Li
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xudong Zhang
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
39
|
Liu H, Xia T, You Y, Zhang Q, Ni H, Liu Y, Liu Y, Xu Y, You B, Zhang Z. Characteristics and clinical significance of polyploid giant cancer cells in laryngeal carcinoma. Laryngoscope Investig Otolaryngol 2021; 6:1228-1234. [PMID: 34667869 PMCID: PMC8513447 DOI: 10.1002/lio2.667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/16/2021] [Accepted: 09/12/2021] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES We aimed to construct an induction system for polyploid giant cancer cells (PGCCs), as well as to investigate PGCC features and clinical significance. METHODS A laryngeal neoplasm-PGCC induction system was constructed using paclitaxel liposomes (PTX). We used western blots to compare expression of epithelial-mesenchymal transition-related proteins, stem cell interrelated proteins, and cyclin-associated proteins. We then measured PGCC count in tissue samples of patients with laryngeal neoplasms and analyzed its relationship with prognosis. Statistical significance was determined using t-tests. RESULTS PTX successfully induced PGCCs. Western blotting showed that CyclinB1, CDC25C, CDK1, E-cadherin, and EIF-4A expression decreased in PGCCs compared with normal cancer cells, whereas vimentin and CD133 expression increased. Number of PGCCs in laryngeal cancer tissues and overall survival time were inversely correlated (P < .05). CONCLUSIONS PTX successfully induces PGCC formation in laryngeal carcinoma, which may be the cause of poor prognosis in patients with laryngeal cancer.Level of Evidence: 4.
Collapse
Affiliation(s)
- Hui‐Ting Liu
- Otorhinolaryngology Head and Neck Surgery DepartmentAffiliated Hospital of Nantong UniversityNantongChina
- Otolaryngology Head and Neck Surgery InstituteAffiliated Hospital of Nantong UniversityNantongChina
| | - Tian Xia
- Otorhinolaryngology Head and Neck Surgery DepartmentAffiliated Hospital of Nantong UniversityNantongChina
- Otolaryngology Head and Neck Surgery InstituteAffiliated Hospital of Nantong UniversityNantongChina
| | - Yi‐Wen You
- Otorhinolaryngology Head and Neck Surgery DepartmentAffiliated Hospital of Nantong UniversityNantongChina
- Otolaryngology Head and Neck Surgery InstituteAffiliated Hospital of Nantong UniversityNantongChina
| | - Qi‐Cheng Zhang
- Otorhinolaryngology Head and Neck Surgery DepartmentAffiliated Hospital of Nantong UniversityNantongChina
- Otolaryngology Head and Neck Surgery InstituteAffiliated Hospital of Nantong UniversityNantongChina
| | - Hao‐sheng Ni
- Otorhinolaryngology Head and Neck Surgery DepartmentAffiliated Hospital of Nantong UniversityNantongChina
- Otolaryngology Head and Neck Surgery InstituteAffiliated Hospital of Nantong UniversityNantongChina
| | - Yi‐Fei Liu
- Department of PathologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Yuan‐Ru Liu
- Otorhinolaryngology Head and Neck Surgery DepartmentAffiliated Hospital of Nantong UniversityNantongChina
- Otolaryngology Head and Neck Surgery InstituteAffiliated Hospital of Nantong UniversityNantongChina
| | - Yu‐Qing Xu
- Otorhinolaryngology Head and Neck Surgery DepartmentAffiliated Hospital of Nantong UniversityNantongChina
| | - Bo You
- Otorhinolaryngology Head and Neck Surgery DepartmentAffiliated Hospital of Nantong UniversityNantongChina
- Otolaryngology Head and Neck Surgery InstituteAffiliated Hospital of Nantong UniversityNantongChina
| | - Zhen‐Xin Zhang
- Otorhinolaryngology Head and Neck Surgery DepartmentAffiliated Hospital of Nantong UniversityNantongChina
- Otolaryngology Head and Neck Surgery InstituteAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
40
|
IL-6 promotes drug resistance through formation of polyploid giant cancer cells and stromal fibroblast reprogramming. Oncogenesis 2021; 10:65. [PMID: 34588424 PMCID: PMC8481288 DOI: 10.1038/s41389-021-00349-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
To understand the role of polyploid giant cancer cells (PGCCs) in drug resistance and disease relapse, we examined the mRNA expression profile of PGCCs following treatment with paclitaxel in ovarian cancer cells. An acute activation of IL-6 dominated senescence-associated secretory phenotype lasted 2–3 weeks and declined during the termination phase of polyploidy. IL-6 activates embryonic stemness during the initiation of PGCCs and can reprogram normal fibroblasts into cancer-associated fibroblasts (CAFs) via increased collagen synthesis, activation of VEGF expression, and enrichment of CAFs and the GPR77 + /CD10 + fibroblast subpopulation. Blocking the IL-6 feedback loop with tocilizumab or apigenin prevented PGCC formation, attenuated embryonic stemness and the CAF phenotype, and inhibited tumor growth in a patient-derived xenograft high-grade serous ovarian carcinoma model. Thus, IL-6 derived by PGCCs is capable of reprogramming both cancer and stromal cells and contributes to the evolution and remodeling of cancer. Targeting IL-6 in PGCCs may represent a novel approach to combating drug resistance.
Collapse
|
41
|
Kostecka LG, Pienta KJ, Amend SR. Lipid droplet evolution gives insight into polyaneuploid cancer cell lipid droplet functions. Med Oncol 2021; 38:133. [PMID: 34581907 PMCID: PMC8478749 DOI: 10.1007/s12032-021-01584-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022]
Abstract
Lipid droplets (LDs) are found throughout all phyla across the tree of life. Originating as pure energy stores in the most basic organisms, LDs have evolved to fill various roles as regulators of lipid metabolism, signaling, and trafficking. LDs have been noted in cancer cells and have shown to increase tumor aggressiveness and chemotherapy resistance. A certain transitory state of cancer cell, the polyaneuploid cancer cell (PACC), appears to have higher LD levels than the cancer cell from which they are derived. PACCs are postulated to be the mediators of metastasis and resistance in many different cancers. Utilizing the evolutionarily conserved roles of LDs to protect from cellular lipotoxicity allows PACCs to survive otherwise lethal stressors. By better understanding how LDs have evolved throughout different phyla we will identify opportunities to target LDs in PACCs to increase therapeutic efficiency in cancer cells.
Collapse
Affiliation(s)
- Laurie G Kostecka
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA. .,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
42
|
Song Y, Zhao Y, Deng Z, Zhao R, Huang Q. Stress-Induced Polyploid Giant Cancer Cells: Unique Way of Formation and Non-Negligible Characteristics. Front Oncol 2021; 11:724781. [PMID: 34527590 PMCID: PMC8435787 DOI: 10.3389/fonc.2021.724781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polyploidy is a conserved mechanism in cell development and stress responses. Multiple stresses of treatment, including radiation and chemotherapy drugs, can induce the polyploidization of tumor cells. Through endoreplication or cell fusion, diploid tumor cells convert into giant tumor cells with single large nuclei or multiple small nucleuses. Some of the stress-induced colossal cells, which were previously thought to be senescent and have no ability to proliferate, can escape the fate of death by a special way. They can remain alive at least before producing progeny cells through asymmetric cell division, a depolyploidization way named neosis. Those large and danger cells are recognized as polyploid giant cancer cells (PGCCs). Such cells are under suspicion of being highly related to tumor recurrence and metastasis after treatment and can bring new targets for cancer therapy. However, differences in formation mechanisms between PGCCs and well-accepted polyploid cancer cells are largely unknown. In this review, the methods used in different studies to induce polyploid cells are summarized, and several mechanisms of polyploidization are demonstrated. Besides, we discuss some characteristics related to the poor prognosis caused by PGCCs in order to provide readers with a more comprehensive understanding of these huge cells.
Collapse
Affiliation(s)
- Yanwei Song
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucui Zhao
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Deng
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruyi Zhao
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
44
|
Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc Natl Acad Sci U S A 2021; 118:2020838118. [PMID: 33504594 PMCID: PMC7896294 DOI: 10.1073/pnas.2020838118] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present a unifying theory to explain cancer recurrence, therapeutic resistance, and lethality. The basis of this theory is the formation of simultaneously polyploid and aneuploid cancer cells, polyaneuploid cancer cells (PACCs), that avoid the toxic effects of systemic therapy by entering a state of cell cycle arrest. The theory is independent of which of the classically associated oncogenic mutations have already occurred. PACCs have been generally disregarded as senescent or dying cells. Our theory states that therapeutic resistance is driven by PACC formation that is enabled by accessing a polyploid program that allows an aneuploid cancer cell to double its genomic content, followed by entry into a nondividing cell state to protect DNA integrity and ensure cell survival. Upon removal of stress, e.g., chemotherapy, PACCs undergo depolyploidization and generate resistant progeny that make up the bulk of cancer cells within a tumor.
Collapse
|
45
|
Kostecka LG, Pienta KJ, Amend SR. Polyaneuploid Cancer Cell Dormancy: Lessons From Evolutionary Phyla. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.660755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dormancy is a key survival strategy in many organisms across the tree of life. Organisms that utilize some type of dormancy (hibernation, aestivation, brumation, diapause, and quiescence) are able to survive in habitats that would otherwise be uninhabitable. Induction into dormant states is typically caused by environmental stress. While organisms are dormant, their physical activity is minimal, and their metabolic rates are severely depressed (hypometabolism). These metabolic reductions allow for the conservation and distribution of energy while conditions in the environment are poor. When conditions are more favorable, the organisms are then able to come out of dormancy and reengage in their environment. Polyaneuploid cancer cells (PACCs), proposed mediators of cancer metastasis and resistance, access evolutionary programs and employ dormancy as a survival mechanism in response to stress. Quiescence, the type of dormancy observed in PACCs, allows these cells the ability to survive stressful conditions (e.g., hypoxia in the microenvironment, transiting the bloodstream during metastasis, and exposure to chemotherapy) by downregulating and altering metabolic function, but then increasing metabolic activities again once stress has passed. We can gain insights regarding the mechanisms underlying PACC dormancy by looking to the evolution of dormancy in different organisms.
Collapse
|
46
|
Zhang S, Shen Y, Li H, Bi C, Sun Y, Xiong X, Wei W, Sun Y. The Negative Cross-Talk between SAG/RBX2/ROC2 and APC/C E3 Ligases in Regulation of Cell Cycle Progression and Drug Resistance. Cell Rep 2021; 32:108102. [PMID: 32905768 PMCID: PMC7505520 DOI: 10.1016/j.celrep.2020.108102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/05/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a well-characterized E3 ligase that couples with UBE2C and UBE2S E2s for substrate ubiquitylation by the K11 linkage. Our recent data show that SAG/RBX2/ROC2, a RING component of Cullin-RING E3 ligase, also complexes with these E2s for K11-linked substrate polyubiquitylation. Whether these two E3s cross-talk with each other was previously unknown. Here, we report that SAG competes with APC2 for UBE2C/UBE2S binding to act as a potential endogenous inhibitor of APC/C, thereby regulating the G2-to-M progression. As such, SAG knockdown triggers premature activation of APC/C, leading to mitotic slippage and resistance to anti-microtubule drugs. On the other hand, SAG itself is a substrate of APC/CCDH1 for targeted degradation at the G1 phase. The degradation-resistant mutant of SAG-R98A/L101A accelerates the G1-to-S progression. Our study reveals that the negative cross-talk between SAG and APC/C is likely a mechanism to ensure the fidelity of cell cycle progression. Zhang et al. provide a mechanistic insight of how negative cross-talk between E3 ligases SAG and APC/C ensures proper cell cycle progression. SAG knockdown prematurely activates APC/C to promote mitotic progression and trigger anti-microtubule drugs resistance, whereas SAG degradation by APC/CCDH1 mainly occurs in G1 phase for proper G1-to-S transition.
Collapse
Affiliation(s)
- Shizhen Zhang
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yanwen Shen
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Hua Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Chao Bi
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yilun Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Xiufang Xiong
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.
| |
Collapse
|
47
|
Ceramide Synthase 6 Maximizes p53 Function to Prevent Progeny Formation from Polyploid Giant Cancer Cells. Cancers (Basel) 2021; 13:cancers13092212. [PMID: 34062962 PMCID: PMC8125704 DOI: 10.3390/cancers13092212] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary One mechanism that contributes to cancer recurrence is the ability of some malignant cells to temporarily halt cell division and accumulate multiple nuclei that are later released as progeny, which resume cell division. The release of progeny occurs via primitive cleavage and is highly dependent on the sphingolipid enzyme acid ceramidase but the role of sphingolipid metabolism in this process remains to be elucidated. This study highlights differences in sphingolipid metabolism between non-polyploid and polyploid cancer cells and shows that ceramide synthase 6, which preferentially generates C16-ceramide maximizes the ability of the tumor suppressor p53 to inhibit progeny formation in polyploid cancer cells. These results offer an explanation as to why non-cancerous polyploid cells, which express wildtype p53, do not generate progeny and suggest that cancer cells with deregulated p53 function pose a higher risk of evading therapy especially if enzymes that generate C16-ceramide are also dysregulated. Abstract Polyploid giant cancer cells (PGCC) constitute a transiently senescent subpopulation of cancer cells that arises in response to stress. PGCC are capable of generating progeny via a primitive, cleavage-like cell division that is dependent on the sphingolipid enzyme acid ceramidase (ASAH1). The goal of this study was to understand differences in sphingolipid metabolism between non-polyploid and polyploid cancer cells to gain an understanding of the ASAH1-dependence in the PGCC population. Steady-state and flux analysis of sphingolipids did not support our initial hypothesis that the ASAH1 product sphingosine is rapidly converted into the pro-survival lipid sphingosine-1-phosphate. Instead, our results suggest that ASAH1 activity is important for preventing the accumulation of long chain ceramides such as C16-ceramide. We therefore determined how modulation of C16-ceramide, either through CerS6 or p53, a known PGCC suppressor and enhancer of CerS6-derived C16-ceramide, affected PGCC progeny formation. Co-expression of the CerS6 and p53 abrogated the ability of PGCC to form offspring, suggesting that the two genes form a positive feedback loop. CerS6 enhanced the effect of p53 by significantly increasing protein half-life. Our results support the idea that sphingolipid metabolism is of functional importance in PGCC and that targeting this signaling pathway has potential for clinical intervention.
Collapse
|
48
|
Venugopalan A, Lynberg M, Cultraro CM, Nguyen KDP, Zhang X, Waris M, Dayal N, Abebe A, Maity TK, Guha U. SCAMP3 is a mutant EGFR phosphorylation target and a tumor suppressor in lung adenocarcinoma. Oncogene 2021; 40:3331-3346. [PMID: 33850265 PMCID: PMC8514158 DOI: 10.1038/s41388-021-01764-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 02/01/2023]
Abstract
Mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain constitutively activate EGFR resulting in lung tumorigenesis. Activated EGFR modulates downstream signaling by altering phosphorylation-driven interactions that promote growth and survival. Secretory carrier membrane proteins (SCAMPs) are a family of transmembrane proteins that regulate recycling of receptor proteins, including EGFR. The potential role of SCAMPs in mutant EGFR function and tumorigenesis has not been elucidated. Using quantitative mass-spectrometry-based phosphoproteomics, we identified SCAMP3 as a target of mutant EGFRs in lung adenocarcinoma and sought to further investigate the role of SCAMP3 in the regulation of lung tumorigenesis. Here we show that activated EGFR, either directly or indirectly phosphorylates SCAMP3 at Y86 and this phosphorylation increases the interaction of SCAMP3 with both wild-type and mutant EGFRs. SCAMP3 knockdown increases lung adenocarcinoma cell survival and increases xenograft tumor growth in vivo, demonstrating a tumor suppressor role of SCAMP3 in lung tumorigenesis. The tumor suppressor function is a result of SCAMP3 promoting EGFR degradation and attenuating MAP kinase signaling pathways. SCAMP3 knockdown also increases multinucleated cells in culture, suggesting that SCAMP3 is required for efficient cytokinesis. The enhanced growth, increased colony formation, reduced EGFR degradation and multinucleation phenotype of SCAMP3-depleted cells were reversed by re-expression of wild-type SCAMP3, but not SCAMP3 Y86F, suggesting that Y86 phosphorylation is critical for SCAMP3 function. Taken together, the results of this study demonstrate that SCAMP3 functions as a novel tumor suppressor in lung cancer by modulating EGFR signaling and cytokinesis that is partly Y86 phosphorylation-dependent.
Collapse
Affiliation(s)
- Abhilash Venugopalan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Matthew Lynberg
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Constance M Cultraro
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Khoa Dang P Nguyen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Maryam Waris
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Noelle Dayal
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Asebot Abebe
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Tapan K Maity
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
- Bristol Myers Squibb, Lawrenceville, NJ, USA.
| |
Collapse
|
49
|
Shapiro JA. What can evolutionary biology learn from cancer biology? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:19-28. [PMID: 33930405 DOI: 10.1016/j.pbiomolbio.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Detecting and treating cancer effectively involves understanding the disease as one of somatic cell and tumor macroevolution. That understanding is key to avoid triggering an adverse reaction to therapy that generates an untreatable and deadly tumor population. Macroevolution differs from microevolution by karyotype changes rather than isolated localized mutations being the major source of hereditary variation. Cancer cells display major multi-site chromosome rearrangements that appear to have arisen in many different cases abruptly in the history of tumor evolution. These genome restructuring events help explain the punctuated macroevolutionary changes that mark major transitions in cancer progression. At least two different nonrandom patterns of rapid multisite genome restructuring - chromothripsis ("chromosome shattering") and chromoplexy ("chromosome weaving") - are clearly distinct in their distribution within the genome and in the cell biology of the stress-induced processes responsible for their occurrence. These observations tell us that eukaryotic cells have the capacity to reorganize their genomes rapidly in response to calamity. Since chromothripsis and chromoplexy have been identified in the human germline and in other eukaryotes, they provide a model for organismal macroevolution in response to the kinds of stresses that lead to mass extinctions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, United States.
| |
Collapse
|
50
|
Zhang J, Qiao Q, Xu H, Zhou R, Liu X. Human cell polyploidization: The good and the evil. Semin Cancer Biol 2021; 81:54-63. [PMID: 33839294 DOI: 10.1016/j.semcancer.2021.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance represents a major cause of death for most lethal cancers. However, the underlying mechanisms of such resistance have remained unclear. The polyploid cells are due to an increase in DNA content, commonly associated with cell enlargement. In human, they play a variety of roles in physiology and pathologic conditions and perform the specialized functions during development, inflammation, and cancer. Recent work shows that cancer cells can be induced into polyploid giant cancer cells (PGCCs) that leads to reprogramming of surviving cancer cells to acquire resistance. In this article, we will review the polyploidy involved in development and inflammation, and the process of PGCCs formation and propagation that benefits to cell survival. We will discuss the potential opportunities in fighting resistant cancers. The increased knowledge of PGCCs will offer a completely new paradigm to explore the therapeutic intervention for lethal cancers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Hong Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ru Zhou
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xinzhe Liu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|