1
|
Olivieri A, Mancini G. Current Approaches for the Prevention and Treatment of Acute and Chronic GVHD. Cells 2024; 13:1524. [PMID: 39329708 PMCID: PMC11431085 DOI: 10.3390/cells13181524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Whereas aGVHD has strong inflammatory components, cGVHD displays autoimmune and fibrotic features; incidence and risk factors are similar but not identical; indeed, the aGVHD is the main risk factor for cGVHD. Calcineurin Inhibitors (CNI) with either Methotrexate (MTX) or Mycophenolate (MMF) still represent the standard prophylaxis in HLA-matched allogeneic stem cell transplantation (HSCT); other strategies focused on ATG, Post-Transplant Cyclophosphamide (PTCy), Abatacept and graft manipulation. Despite the high rate, first-line treatment for aGVHD is represented by corticosteroids, and Ruxolitinib is the standard second-line therapy; investigational approaches include Microbiota transplant and the infusion of Mesenchymal stem cells. GVHD is a pleiotropic disease involving any anatomical district; also, Ruxolitinib represents the standard for steroid-refractory cGVHD in this setting. It is a pleiotropic disease involving any anatomical district; also, Ruxolitinib represents the standard for steroid-refractory cGVHD in this setting. Extracorporeal Photopheresis (ECP) is still an option used for steroid refractoriness or to achieve a steroid-sparing. For Ruxolitinib-refractory cGVHD, Belumosudil and Axatilimab represent the most promising agents. Bronchiolitis obliterans syndrome (BOS) still represents a challenge; among the compounds targeting non-immune effectors, Alvelestat, a Neutrophil elastase inhibitor, seems promising in BOS. Finally, in both aGVHD and cGVHD, the association of biological markers with specific disease manifestations could help refine risk stratification and the availability of reliable biomarkers for specific treatments.
Collapse
Affiliation(s)
- Attilio Olivieri
- Clinica di Ematologia, Università Politecnica delle Marche Ancona, 60126 Ancona, Italy
| | - Giorgia Mancini
- Department of Hematology, AOU delle Marche Ancona, 60126 Ancona, Italy;
| |
Collapse
|
2
|
Kielsen K, Møller DL, Pedersen AE, Nielsen CH, Ifversen M, Ryder LP, Müller K. Cytomegalovirus infection is associated with thymic dysfunction and chronic graft-versus-host disease after pediatric hematopoietic stem cell transplantation. Clin Immunol 2024; 265:110302. [PMID: 38942161 DOI: 10.1016/j.clim.2024.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Pediatric hematopoietic stem cell transplantation (HSCT) is challenged by chronic graft-versus-host disease (cGvHD) significantly affecting survival and long-term morbidity, but underlying mechanisms including the impact of post-HSCT CMV infection are sparsely studied. We first investigated the impact of CMV infection for development of cGvHD in 322 children undergoing standard myeloablative HSCT between 2000 and 2018. Clinically significant CMV infection (n = 61) was an independent risk factor for chronic GvHD in a multivariable Cox regression analysis (HR = 2.17, 95% CI = 1.18-3.97, P = 0.013). We next explored the underlying mechanisms in a subcohort of 39 children. CMV infection was followed by reduced concentration of recent thymic emigrants (17.5 vs. 51.9 × 106/L, P = 0.048) and naïve CD4+ and CD8+ T cells at 6 months post-HSCT (all P < 0.05). Furthermore, CD25highFOXP3+ Tregs tended to be lower in patients with CMV infection (2.9 vs. 9.6 × 106/L, P = 0.055), including Tregs expressing the naivety markers CD45RA and Helios. CD8+ T-cell numbers rose after CMV infection and was dominated by exhausted PD1-expressing cells (66% vs. 39%, P = 0.023). These findings indicate that post-HSCT CMV infection is a main risk factor for development of chronic GvHD after pediatric HSCT and suggest that this effect is caused by reduced thymic function with a persistently impaired production of naïve and regulatory T cells in combination with increased peripheral T-cell exhaustion.
Collapse
Affiliation(s)
- Katrine Kielsen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Departmen of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Dina Leth Møller
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Ifversen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lars Peter Ryder
- Departmen of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus Müller
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
González-Moles MÁ, Ramos-García P. Oral lichen planus and related lesions. What should we accept based on the available evidence? Oral Dis 2023; 29:2624-2637. [PMID: 36371653 DOI: 10.1111/odi.14438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Recent new terminologies have been proposed for lesions in the sphere of oral lichen planus (OLP) that theoretically present unique aetiological, clinical, prognostic or management characteristics different from those of the so-called typical forms of OLP. We aimed to critically analyse what concepts and terminologies related to OLP should we accept based on the available evidence. A review of the literature was carried out in order to critically analyse the concepts and terminologies related to OLP. New concepts and terminologies include oral lichenoid lesions; contact lichenoid reactions, drug lichenoid reactions or those in the context of graft-versus-host disease; chronic ulcerative stomatitis; lichen planus pemphigoid; and some lesions that are difficult to categorise, such as OLP with features of proliferative verrucous leukoplakia and lichenoid lesions of the upper labial mucosa. A multidisciplinary, multicontinent working group has recently published a guideline with recommendations for modifying definitions and terminologies associated with a disease, among which a reasoned, evidence-based justification for the proposed change is considered essential. An in-depth analysis of the newly proposed terms for OLP-related lesions shows that many of them are not justified. In this paper, we set out our position on the basis of the existing evidence on the appropriateness of the use of these new terms.
Collapse
Affiliation(s)
| | - Pablo Ramos-García
- School of Dentistry, Biohealth Research Institute (Ibs.Granada), University of Granada, Granada, Spain
| |
Collapse
|
4
|
Zavaro M, Dangot A, Bar-Lev TH, Amit O, Avivi I, Ram R, Aharon A. The Role of Extracellular Vesicles (EVs) in Chronic Graft vs. Host Disease, and the Potential Function of Placental Cell-Derived EVs as a Therapeutic Tool. Int J Mol Sci 2023; 24:ijms24098126. [PMID: 37175831 PMCID: PMC10179565 DOI: 10.3390/ijms24098126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) presents with dermal inflammation and fibrosis. We investigated the characteristics of extracellular vesicles (EVs) obtained from cGVHD patients, and their potential effects on human dermal fibroblast (NHDF) cells. The anti-inflammatory and anti-fibrotic effects of placental EVs were also explored given their known anti-inflammatory properties. Fourteen cGVHD patients' EVs contained higher levels of fibrosis-related proteins, TGFβ and α-smooth muscle actin (αSMA), compared to EVs from thirteen healthy subjects. The exposure of NHDF cells to the patients' EVs increased the NHDF cells' TGFβ and αSMA expressions. Placental EVs derived from placental-expanded cells (PLX) (Pluri Inc.) and human villous trophoblast (HVT) cells expressing the mesenchymal markers CD29, CD73, and CD105, penetrated into both the epidermal keratinocytes (HACATs) and NHDF cells. Stimulation of the HACAT cells with cytokine TNFα/INFγ (0.01-0.1 ng/µL) reduced cell proliferation, while the addition of placental EVs attenuated this effect, increasing and normalizing cell proliferation. The treatment of NHDF cells with a combination of TGFβ and placental HVT EVs reduced the stimulatory effects of TGFβ on αSMA production by over 40% (p = 0.0286). In summary, EVs from patients with cGVHD can serve as a biomarker for the cGVHD state. Placental EVs may be used to regulate dermal inflammation and fibrosis, warranting further investigation of their therapeutic potential.
Collapse
Affiliation(s)
- Mor Zavaro
- Hematology Research Laboratory, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
| | - Ayelet Dangot
- Hematology Research Laboratory, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
| | - Tali Hana Bar-Lev
- Hematology Research Laboratory, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Odelia Amit
- The BMT Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Irit Avivi
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
- Hematology Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Ron Ram
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
- The BMT Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Anat Aharon
- Hematology Research Laboratory, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
| |
Collapse
|
5
|
A Multiparameter Prognostic Risk Score of Chronic Graft-versus-Host Disease Based on CXCL10 and Plasmacytoid Dendritic Cell Levels in the Peripheral Blood at 3 Months after Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:302.e1-302.e8. [PMID: 36796518 DOI: 10.1016/j.jtct.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Chronic GVHD (cGVHD) is the major cause of long-term morbidity after allogeneic hematopoietic stem cell transplantation (HSCT). There are no biomarkers that can consistently predict its occurrence. We aimed to evaluate whether numbers of antigen-presenting cell subsets in peripheral blood (PB) or serum chemokine concentrations are biomarkers of cGVHD occurrence. The study cohort comprised 101 consecutive patients undergoing allogeneic HSCT between January 2007 and 2011. cGVHD was diagnosed by both modified Seattle criteria and National Institutes of Health (NIH) criteria. Multicolor flow cytometry was used to determine the number of PB myeloid dendritic cells (DCs), plasmacytoid DCs, CD16+ DCs, and CD16+ and CD16- monocytes, as well as CD4+ and CD8+ T cells, CD56+ natural killer cells, and CD19+ B cells. Serum concentrations of CXCL8, CXCL10, CCL2, CCL3, CCL4, and CCL5 were measured by a cytometry bead array assay. At a median of 60 days after enrollment, 37 patients had developed cGVHD. Patients with cGVHD and those without cGVHD had comparable clinical characteristics. However, previous acute GVHD (aGVHD) was strongly correlated with later cGVHD (57% versus 24%, respectively; P = .0024). Each potential biomarker was screened for its association with cGVHD using the Mann-Whitney U test. Biomarkers that differed significantly (P < .05) between patients with cGVHD and those without cGVHD were analyzed by receiver operating characteristic (ROC) curve analysis to select the variables predicting cGVHD with an area under the ROC curve (AUC) >.5 and a P value <.05. A multivariate Fine-Gray model identified the following variables as independently associated with the risk of cGVHD: CXCL10 ≥592.650 pg/mL (hazard ratio [HR], 2.655; 95% confidence interval [CI], 1.298 to 5.433; P = .008), pDC ≥2.448/μL (HR, .286; 95% CI, .142 to .577; P < .001) and previous aGVHD (HR, 2.635; 95% CI, 1.298 to 5.347; P = .007). A risk score was derived based on the weighted coefficients of each variable (2 points each), resulting in the identification of 4 cohorts of patients (scores of 0, 2, 4, and 6). In a competing risk analysis to stratify patients at differing risk levels of cGVHD, the cumulative incidence of cGVHD was 9.7%, 34.3%, 57.7%, and 100% in patients with scores of 0, 2, 4, and 6, respectively (P < .0001). The score could nicely stratify the patients based on the risk of extensive cGVHD as well as NIH-based global and moderate to severe cGVHD. Based on ROC analysis, the score could predict the occurrence of cGVHD with an AUC of .791 (95% CI, .703 to .880; P < .001). Finally, a cutoff score ≥4 was identified as the optimal cutoff by Youden J index with a sensitivity of 57.1% and a specificity of 85.0%. A multiparameter score including a history of previous aGVHD, serum CXCL10 concentration, and number of pDCs in the PB at 3 months post-HSCT stratify patients at varying risk levels of cGVHD. However, the score needs to be validated in a much larger independent and possibly multicenter cohort of patients undergoing transplantation from different donor types and with distinct GVHD prophylaxis regimens.
Collapse
|
6
|
Jeon Y, Lim JY, Im KI, Kim N, Cho SG. BAFF blockade attenuates acute graft-versus-host disease directly via the dual regulation of T- and B-cell homeostasis. Front Immunol 2022; 13:995149. [PMID: 36561743 PMCID: PMC9763883 DOI: 10.3389/fimmu.2022.995149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction B-cell-activating factor (BAFF) is associated with donor-specific antibodies and chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the effects of BAFF on T-cell physiological function have not been fully elucidated in acute GVHD. Methods We examined the effects of belimumab, a monoclonal antibody targeting BAFF, for the treatment of acute GVHD. We examined the effects of T cells and B cells separately when inducing GVHD in mouse model. Results Therapeutic functional manipulation of endogenous BAFF can improve acute GVHD during the early post-transplant period. In this study, BAFF was shown to increase the proportions of CD4+IL-17+, CD4+IL-6+ Th17, and CD4+IFN-γ+ Th1 cells and to reduce the proportion of regulatory T (Treg) cells. Furthermore, the belimumab therapy group showed increased B220+IgD+IgM+ mature B cells but decreased B220+IgD-IgM- memory B cells, B220+Fas+GL-7+ germinal center formation, and B220+IgD-CD138+ plasma cells. These results indicate that BAFF can alleviate acute GVHD by simultaneously regulating T and B cells. Interestingly, the BAFF level was higher in patients with acute GVHD after HSCT compared with patients receiving chemotherapy. Conclusion This study suggests that BAFF blockade might modulate CD4 +T-cell-induced acute GVHD early after allo-HSCT and the possibility of simultaneously controlling chronic GVHD, which may appear later after allo-HSCT.
Collapse
Affiliation(s)
- Youngwoo Jeon
- Department of Hematology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Lymphoma and Cell Therapy-Research Center, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea
| | - Jung-Yeon Lim
- Department of Biomedical Laboratory Science, Inje University, Kimhae, South Korea
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok-Goo Cho
- Department of Hematology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Lymphoma and Cell Therapy-Research Center, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,*Correspondence: Seok-Goo Cho,
| |
Collapse
|
7
|
A starting point for the phenotypic classification of pulmonary chronic graft-versus-host disease. Blood Adv 2022; 6:4987-4988. [PMID: 35882499 DOI: 10.1182/bloodadvances.2022008394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
|
8
|
Lv K, Hu B, Xu M, Wan L, Jin Z, Xu M, Du Y, Ma K, Lv Q, Xu Y, Lei L, Gong H, Liu H, Wu D, Liu Y. IL-39 promotes chronic graft-versus-host disease by increasing T and B Cell pathogenicity. Exp Hematol Oncol 2022; 11:34. [PMID: 35655245 PMCID: PMC9161463 DOI: 10.1186/s40164-022-00286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) remains a major complication during the late phase of allogeneic hematopoietic stem cell transplantation (allo-HSCT). IL-39, a newly described pro-inflammatory cytokine belonging to the IL-12 family, plays a role in lupus development. Recently, IL-39 has been identified as a pathogenic factor in acute GVHD (aGVHD). However, the role of IL-39 in the pathogenesis of cGVHD remains unclear. METHODS We constructed a recombinant IL-39 plasmid and established scleroderma and lupus-like cGVHD models. Quantitative PCR and enzyme-linked immunosorbent assay (ELISA) were used to detect IL-39 expression in mice and patients post transplantation, respectively. Hydrodynamic gene transfer (HGT) was performed to achieve IL-39 overexpression in vivo. Multiparameter flow cytometry, western blotting, and assays in vitro were performed to investigate the effect of IL-39 on cGVHD. RESULTS The relative expression of IL-23p19 and EBi3 was significantly increased in the intestine of cGVHD mice on day 40 post allo-HSCT, and IL-39 levels were significantly elevated in the serum of patients following allo-HSCT. Overexpression of IL-39 significantly aggravated the severity of cGVHD. Increased IL-39 levels promoted T-cell activation and germinal center responses, and may exacerbate thymic damage. Consistently, blocking IL-39 markedly ameliorated immune dysregulation in the cGVHD mice. Furthermore, we found that IL-39 was produced by B cells, CD11b+ cells, and CD8+T cells after activation. Stimulation of IL-39 led to upregulation of the IL-39 receptor on CD4+T cells and further caused activation of the STAT1/STAT3 pathway, through which IL-39 may exert its pro-inflammatory effects. CONCLUSION Our study reveals a critical role for IL-39 in cGVHD pathogenesis and indicates that IL-39 may serve as a potential therapeutic target for cGVHD prevention.
Collapse
Affiliation(s)
- Kangkang Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mingzhu Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Li Wan
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mimi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuanyuan Du
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Kunpeng Ma
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Quansheng Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haiyan Liu
- Department of Microbiology and Immunology, Life Sciences Institute, Immunology Translational Research ProgramYong Loo Lin School of MedicineImmunology ProgramNational University of Singapore, Singapore, Singapore.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Yuejun Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Pinto GR, Sarmento VA, de Carvalho-Filho PC, Fortuna VA, Costa RDS, Conceição RR, Trindade SC. Gene expression profile of chronic oral graft-versus-host disease. PLoS One 2022; 17:e0267325. [PMID: 35486633 PMCID: PMC9053775 DOI: 10.1371/journal.pone.0267325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Among the complications observed after allogeneic hematopoietic stem cell transplantation, graft-versus-host disease (GVHD) is the primary cause of post-transplant mortality. The oral cavity is the second most affected organ target in chronic GVHD. Tissue damage results from the upregulation of inflammatory mediators, which play a critical role in the immunopathogenesis of the disease. This case series observational study aims to evaluate the participation of cytokines, chemokines, transcription factors, and heat shock proteins in the pathogenesis of oral GVHD (oGVHD), describing the mRNA expression of 28 genes selected. Peripheral blood mononuclear cells were isolated from six participants with oGVHD and two without GVHD, and relative expression of transcripts with established roles as inflammatory mediators was determined in triplicate using the human RT2 Profiler™ PCR Array. The gene expression levels in the group with oGVHD were mainly up-regulated compared to those without GVHD. PBMC from oGVDH expressed consistently higher IFN-γ, TNF, IL-1β, CCL2, HSP60 (HSPD1) and HSP90 (HSP90B1). These results can provide a basis for developing new molecular diagnostics and targets therapies for the clinical management of oGVHD.
Collapse
Affiliation(s)
- Giselle Rocha Pinto
- Department of Dentistry, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- * E-mail:
| | | | | | - Vitor Antonio Fortuna
- Health Science Institute, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Ryan dos Santos Costa
- Health Science Institute, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Soraya Castro Trindade
- Health Science Institute, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Department of Dentistry, Feira de Santana State University (UEFS), Feira de Santana, Bahia, Brazil
| |
Collapse
|
10
|
Serpenti F, Lorentino F, Marktel S, Milani R, Messina C, Greco R, Girlanda S, Clerici D, Giglio F, Liberatore C, Farina F, Mastaglio S, Piemontese S, Guggiari E, Lunghi F, Marcatti M, Carrabba MG, Bernardi M, Bonini C, Assanelli A, Corti C, Peccatori J, Ciceri F, Lupo-Stanghellini MT. Immune Reconstitution-Based Score for Risk Stratification of Chronic Graft-Versus-Host Disease Patients. Front Oncol 2021; 11:705568. [PMID: 34367991 PMCID: PMC8341942 DOI: 10.3389/fonc.2021.705568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Allogeneic stem cell transplantation survivors are at a relevant risk of developing chronic GvHD (cGvHD), which importantly affects quality of life and increases morbidity and mortality. Early identification of patients at risk of cGvHD-related morbidity could represent a relevant tool to tailor preventive strategies. The aim of this study was to evaluate the prognostic power of immune reconstitution (IR) at cGvHD onset through an IR-based score. Methods We analyzed data from 411 adult patients consecutively transplanted between January 2011 and December 2016 at our Institution: 151 patients developed cGvHD (median follow-up 4 years). A first set of 111 consecutive patients with cGvHD entered the test cohort while an additional consecutive 40 patients represented the validation cohort. A Cox multivariate model for OS (overall survival) in patients with cGvHD of any severity allowed the identification of six variables independently predicting OS and TRM (transplant-related mortality). A formula for a prognostic risk index using the β coefficients derived from the model was designed. Each patient was assigned a score defining three groups of risk (low, intermediate, and high). Results Our multivariate model defined the variables independently predicting OS at cGvHD onset: CD4+ >233 cells/mm3, NK <115 cells/mm3, IgA <0.43g/L, IgM <0.45g/L, Karnofsky PS <80%, platelets <100x103/mm3. Low-risk patients were defined as having a score ≤3.09, intermediate-risk patients >3.09 and ≤6.9, and high-risk patients >6.9. By ROC analysis, we identified a cut-off of 6.310 for both TRM and overall mortality. In the training cohort, the 6-year OS and TRM from cGvHD occurrence were 85% (95% CI, 70-92) and 13% (95% CI, 5-25) for low-risk, 64% (95% CI, 44-89) and 30% (95% CI, 15-47) for intermediate-risk, 26% (95% CI, 10-47), and 42% (95% CI, 19-63) for high-risk patients (OS p<0.0001; TRM p = 0.015). The validation cohort confirmed the model with a 6-year OS and TRM of 83% (95% CI, 48-96) and 8% (95% CI, 1-32) for low-risk, 78% (95% CI, 37-94) and 11% (95% CI, 1-41) for intermediate-risk, 37% (95% CI, 17-58), and 63% (95% CI, 36-81) for high-risk patients (OS p = 0.0075; TRM p = 0.0009). Conclusions IR score at diagnosis of cGvHD predicts GvHD severity and overall survival. IR score may contribute to the risk stratification of patients. If confirmed in a larger and multicenter-based study, IR score could be adopted to identify patients at high risk and modulate cGvHD treatments accordingly in the context of clinical trial.
Collapse
Affiliation(s)
- Fabio Serpenti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lorentino
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,PhD Program in Public Health, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Messina
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Girlanda
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Clerici
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Giglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmine Liberatore
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Farina
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Piemontese
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Guggiari
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lunghi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo G Carrabba
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- University Vita-Salute, Milan, Italy.,Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Assanelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Consuelo Corti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Peccatori
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute, Milan, Italy
| | | |
Collapse
|
11
|
Lelas A, Greinix HT, Wolff D, Eissner G, Pavletic SZ, Pulanic D. Von Willebrand Factor, Factor VIII, and Other Acute Phase Reactants as Biomarkers of Inflammation and Endothelial Dysfunction in Chronic Graft-Versus-Host Disease. Front Immunol 2021; 12:676756. [PMID: 33995421 PMCID: PMC8119744 DOI: 10.3389/fimmu.2021.676756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is an immune mediated late complication of allogeneic hematopoietic stem cell transplantation (alloHSCT). Discovery of adequate biomarkers could identify high-risk patients and provide an effective pre-emptive intervention or early modification of therapeutic strategy, thus reducing prevalence and severity of the disease among long-term survivors of alloHSCT. Inflammation, endothelial injury, and endothelial dysfunction are involved in cGvHD development. Altered levels of acute phase reactants have shown a strong correlation with the activity of several immune mediated disorders and are routinely used in clinical practice. Since elevated von Willebrand factor (VWF) and factor VIII (FVIII) levels have been described as acute phase reactants that may indicate endothelial dysfunction and inflammation in different settings, including chronic autoimmune diseases, they could serve as potential candidate biomarkers of cGvHD. In this review we focused on reported data regarding VWF and FVIII as well as other markers of inflammation and endothelial dysfunction, evaluating their potential role in cGvHD.
Collapse
Affiliation(s)
- Antonela Lelas
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Steven Zivko Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Drazen Pulanic
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
12
|
[Chinese consensus on the diagnosis and management of chronic graft-versus-host disease (2021)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:265-275. [PMID: 33979969 PMCID: PMC8120129 DOI: 10.3760/cma.j.issn.0253-2727.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 12/02/2022]
|
13
|
Wan L, Jin Z, Hu B, Lv K, Lei L, Liu Y, Song Y, Zhu Y, Gong H, Xu M, Du Y, Xu Y, Liu H, Wu D, Liu Y. IL-Y Aggravates Murine Chronic Graft- Versus-Host Disease by Enhancing T and B Cell Responses. Front Immunol 2020; 11:559740. [PMID: 33329519 PMCID: PMC7719702 DOI: 10.3389/fimmu.2020.559740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
IL-Y, a synthetic member of IL-12 cytokine family, was found to exert potent immunosuppressive effects by inhibiting the differentiation and activation of Th1 and Th17 cells. However, the role of IL-Y in the development of chronic graft-versus-host disease (cGVHD) remains unknown. Here, using murine models of scleroderma-like and lupus-like cGVHD, we examined the function of IL-Y in the pathogenesis of cGVHD by hydrodynamically injecting minicircle-IL-Y expressing plasmids (MC IL-Y). In contrast with the reported immune suppressive function of IL-Y, administration of MC IL-Y enhanced cGVHD severity reflected by deteriorated multi-organ pathologic damages. In lupus-like cGVHD model, urine protein and the serum anti-dsDNA antibody (IgG) were significantly upregulated by IL-Y treatment. Further study demonstrated that IL-Y impacts both donor T and B cell response. In T cells, IL-Y inhibited the generation of CD4+Foxp3+ regulator T (Treg) cells during the development of cGVHD. IL-Y may also increase the infiltration of pathogenic TNF-α producing CD4+ and CD8+ T cells through IL-27Rα in recipient spleens, as this effect was diminished in IL-27Rα deficient T cells. Moreover, IL-Y enhanced the differentiation of ICOS+ T follicular helper (Tfh) cells. In B cells, the percentage of germinal center (GC) B cells in recipient spleens was significantly upregulated by MC IL-Y plasmid administration. The levels of co-stimulatory molecules, MHC-II and CD86, on B cells were also enhanced by IL-Y expression. Taken together, our data indicated that IL-Y promoted the process of cGVHD by activating pathogenic T and B cells.
Collapse
Affiliation(s)
- Li Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziqi Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Bo Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Kangkang Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan Song
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Zhu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huanle Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mimi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuanyuan Du
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuejun Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Partanen J, Hyvärinen K, Bickeböller H, Bogunia-Kubik K, Crossland RE, Ivanova M, Perutelli F, Dressel R. Review of Genetic Variation as a Predictive Biomarker for Chronic Graft-Versus-Host-Disease After Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:575492. [PMID: 33193367 PMCID: PMC7604383 DOI: 10.3389/fimmu.2020.575492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is one of the major complications of allogeneic stem cell transplantation (HSCT). cGvHD is an autoimmune-like disorder affecting multiple organs and involves a dermatological rash, tissue inflammation and fibrosis. The incidence of cGvHD has been reported to be as high as 30% to 60% and there are currently no reliable tools for predicting the occurrence of cGvHD. There is therefore an important unmet clinical need for predictive biomarkers. The present review summarizes the state of the art for genetic variation as a predictive biomarker for cGvHD. We discuss three different modes of action for genetic variation in transplantation: genetic associations, genetic matching, and pharmacogenetics. The results indicate that currently, there are no genetic polymorphisms or genetic tools that can be reliably used as validated biomarkers for predicting cGvHD. A number of recommendations for future studies can be drawn. The majority of studies to date have been under-powered and included too few patients and genetic markers. Like in all complex multifactorial diseases, large collaborative genome-level studies are now needed to achieve reliable and unbiased results. Some of the candidate genes, in particular, CTLA4, HSPE, IL1R1, CCR6, FGFR1OP, and IL10, and some non-HLA variants in the HLA gene region have been replicated to be associated with cGvHD risk in independent studies. These associations should now be confirmed in large well-characterized cohorts with fine mapping. Some patients develop cGvHD despite very extensive immunosuppression and other treatments, indicating that the current therapeutic regimens may not always be effective enough. Hence, more studies on pharmacogenetics are also required. Moreover, all of these studies should be adjusted for diagnostic and clinical features of cGvHD. We conclude that future studies should focus on modern genome-level tools, such as machine learning, polygenic risk scores and genome-wide association study-transcription meta-analyses, instead of focusing on just single variants. The risk of cGvHD may be related to the summary level of immunogenetic differences, or whole genome histocompatibility between each donor-recipient pair. As the number of genome-wide analyses in HSCT is increasing, we are approaching an era where there will be sufficient data to incorporate these approaches in the near future.
Collapse
Affiliation(s)
- Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Katarzyna Bogunia-Kubik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Rachel E Crossland
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Milena Ivanova
- Medical University, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Francesca Perutelli
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Silva-Carvalho AÉ, Rodrigues LP, Schiavinato JL, Alborghetti MR, Bettarello G, Simões BP, Neves FDAR, Panepucci RA, de Carvalho JL, Saldanha-Araujo F. GVHD-derived plasma as a priming strategy of mesenchymal stem cells. Stem Cell Res Ther 2020; 11:156. [PMID: 32299501 PMCID: PMC7164240 DOI: 10.1186/s13287-020-01659-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stem cell (MSC) therapy is an important alternative for GVHD treatment, but a third of patients fail to respond to such therapy. Therefore, strategies to enhance the immunosuppressive potential of MSCs constitute an active area of investigation. Here, we proposed an innovative priming strategy based on the plasma obtained from GVHD patients and tested whether this approach could enhance the immunosuppressive capacity of MSCs. Methods We obtained the plasma from healthy as well as acute (aGVHD) and chronic (cGVHD) GVHD donors. Plasma samples were characterized according to the TNF-α, IFN-γ, IL-10, IL-1β, IL-12p40, and IL-15 cytokine levels. The MSCs primed with such plasmas were investigated according to surface markers, morphology, proliferation, mRNA expression, and the capacity to control T cell proliferation and Treg generation. Results Interestingly, 57% of aGVHD and 33% of cGVHD plasmas significantly enhanced the immunosuppressive potential of MSCs. The most suppressive MSCs presented altered morphology, and those primed with cGHVD displayed a pronounced overexpression of ICAM-1 on their surface. Furthermore, we observed that the ratio of IFN-γ to IL-10 cytokine levels in the plasma used for MSC priming was significantly correlated with higher suppressive potential and Treg generation induction by primed MSCs, regardless of the clinical status of the donor. Conclusions This work constitutes an important proof of concept which demonstrates that it is possible to prime MSCs with biological material and also that the cytokine levels in the plasma may affect the MSC immunosuppressive potential, serving as the basis for the development of new therapeutic approaches for the treatment of immune diseases.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil.,Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil
| | - Leane Perim Rodrigues
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Josiane Lilian Schiavinato
- Laboratório de Hematologia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Marcos Rodrigo Alborghetti
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasilia, DF, Brazil
| | - Gustavo Bettarello
- Unidade de Transplante de Medula Óssea, Instituto de Cardiologia do Distrito Federal, Brasilia, DF, Brazil
| | - Belinda Pinto Simões
- Laboratório de Hematologia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Francisco de Assis Rocha Neves
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil
| | - Rodrigo Alexandre Panepucci
- Laboratório de Biologia Funcional (LFBio), Centro de Terapia Celular (CTC), Hemocentro de Ribeirão Preto, Rua Tenente Catão Roxo, Ribeirão Preto, SP, 2501, Brazil
| | - Juliana Lott de Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil.,Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasilia, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil. .,Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil.
| |
Collapse
|
16
|
Nakamae H, Fujii K, Nanno S, Okamura H, Nakane T, Koh H, Nakashima Y, Nakamae M, Hirose A, Teshima T, Hino M. A prospective observational study of immune reconstitution following transplantation with post‐transplant reduced‐dose cyclophosphamide from
HLA
‐haploidentical donors. Transpl Int 2019; 32:1322-1332. [DOI: 10.1111/tri.13494] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/06/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Hirohisa Nakamae
- Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Kazuki Fujii
- Department of Clinical Laboratory Osaka City University Hospital Osaka Japan
| | - Satoru Nanno
- Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Hiroshi Okamura
- Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Takahiko Nakane
- Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Hideo Koh
- Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Yasuhiro Nakashima
- Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Mika Nakamae
- Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Asao Hirose
- Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Takanori Teshima
- Department of Hematology Faculty of Medicine Hokkaido University Sapporo Japan
| | - Masayuki Hino
- Hematology Graduate School of Medicine Osaka City University Osaka Japan
| |
Collapse
|
17
|
Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: guidelines from the NMDP/CIBMTR. Blood 2019; 134:924-934. [PMID: 31292117 PMCID: PMC6753623 DOI: 10.1182/blood.2019001212] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation involves consideration of both donor and recipient characteristics to guide the selection of a suitable graft. Sufficient high-resolution donor-recipient HLA match is of primary importance in transplantation with adult unrelated donors, using conventional graft-versus-host disease prophylaxis. In cord blood transplantation, optimal unit selection requires consideration of unit quality, cell dose and HLA-match. In this summary, the National Marrow Donor Program (NMDP) and the Center for International Blood and Marrow Transplant Research, jointly with the NMDP Histocompatibility Advisory Group, provide evidence-based guidelines for optimal selection of unrelated donors and cord blood units.
Collapse
|
18
|
Alborghetti MR, Correa MEP, Whangbo J, Shi X, Aricetti JA, da Silva AA, Miranda ECM, Sforca ML, Caldana C, Gerszten RE, Ritz J, Zeri ACDM. Clinical Metabolomics Identifies Blood Serum Branched Chain Amino Acids as Potential Predictive Biomarkers for Chronic Graft vs. Host Disease. Front Oncol 2019; 9:141. [PMID: 30949447 PMCID: PMC6436081 DOI: 10.3389/fonc.2019.00141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
The allogeneic hematopoietic stem cell transplantation procedure—the only curative therapy for many types of hematological cancers—is increasing, and graft vs. host disease (GVHD) is the main cause of morbidity and mortality after transplantation. Currently, GVHD diagnosis is clinically performed. Whereas, biomarker panels have been developed for acute GVHD (aGVHD), there is a lack of information about the chronic form (cGVHD). Using nuclear magnetic resonance (NMR) and gas chromatography coupled to time-of-flight (GC-TOF) mass spectrometry, this study prospectively evaluated the serum metabolome of 18 Brazilian patients who had undergone allogeneic hematopoietic stem cell transplantation (HSCT). We identified and quantified 63 metabolites and performed the metabolomic profile on day −10, day 0, day +10 and day +100, in reference to day of transplantation. Patients did not present aGVHD or cGVHD clinical symptoms at sampling times. From 18 patients analyzed, 6 developed cGVHD. The branched-chain amino acids (BCAAs) leucine and isoleucine were reduced and the sulfur-containing metabolite (cystine) was increased at day +10 and day +100. The area under receiver operating characteristics (ROC) curves was higher than 0.79. BCAA findings were validated by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in 49 North American patients at day +100; however, cystine findings were not statistically significant in this patient set. Our results highlight the importance of multi-temporal and multivariate biomarker panels for predicting and understanding cGVHD.
Collapse
Affiliation(s)
| | - Maria Elvira Pizzigatti Correa
- Hematology and Hemotherapy Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, Campinas, Brazil
| | - Jennifer Whangbo
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Xu Shi
- Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA, United States
| | - Juliana Aparecida Aricetti
- Brazilian Bioethanol Science and Technology Laboratory (CTBE)/Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Andreia Aparecida da Silva
- Hematology and Hemotherapy Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, Campinas, Brazil
| | - Eliana Cristina Martins Miranda
- Hematology and Hemotherapy Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, Campinas, Brazil
| | - Mauricio Luis Sforca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory (CTBE)/Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Robert E Gerszten
- Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA, United States
| | - Jerome Ritz
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ana Carolina de Mattos Zeri
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
19
|
Svenberg P, Wang T, Uhlin M, Watz E, Remberger M, Ringden O, Mattsson J, Uzunel M. The importance of graft cell composition in outcome after allogeneic stem cell transplantation in patients with malignant disease. Clin Transplant 2019; 33:e13537. [PMID: 30873642 DOI: 10.1111/ctr.13537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Graft-versus-host disease (GVHD) and relapse remain majobstacles ftreatment success in allogeneic hematopoietic stem cell transplantation (HSCT). In the present study, we evaluated the immune cell profile of the graft to outcome after HSCT. STUDY DESIGN AND METHOD Flow cytometry data of graft cell subsets [CD34+ , CD3+ , CD19+ , CD4+ , CD8+ , CD3-CD56+ CD16+ , CD4+ CD127low CD25high ] from G-CSF primed peripheral blood stem cell (PBSC) donors was collected retrospectively from 299 patients with hematological malignancies undergoing HSCT between 2006 and 2013. The association to overall survival, transplant-related mortality (TRM), GVHD and probability of relapse was analyzed. Patients outcome from HLA-identical sibling (Sib) (n = 97) and unrelated donors (URD) (n = 202) were analyzed separately as all URD patients received anti-thymocyte globulin (ATG). RESULTS Five-year overall survival was similar in the two cohorts (68% (Sib) vs 65% (URD)). The relapse incidence was significantly lower in the Sib cohort (24% vs 35%, P = 0.04). Multivariate analysis in the URD group revealed an association between a higher CD8+ dose and less relapse (HR, 0.94; 95%CI, 0.90-0.98; P = 0.006) as well as an association between higher CD34+ dose and both higher TRM (HR, 1.09; 95%CI, 1.02-1.20; P = 0.02) and relapse (HR, 1.09; 95%CI, 1.01-1.17; P = 0.025). The Sib analysis showed an association between a higher graft CD19+ dose and more severe acute GVHD (HR, 1,09; 95%CI, 1.03-1.15; P = 0.003) and TRM (HR, 1.09; 95%CI, 1.01-1.17; P = 0.036). In addition, a higher CD4+ graft content was associated to an increased risk for chronic GVHD (HR, 1.02; 95%CI 1.00-1.04; P = 0.06). CONCLUSION These data indicate an importance of PBSC dongraft composition in patients with a hematological malignancy.
Collapse
Affiliation(s)
- Petter Svenberg
- Pediatric Oncology/Coagulation Section, Karolinska University Hospital, Solna, Sweden.,Department of Clinical Research Center, Karolinska Institute, Stockholm, Sweden
| | - Tengyu Wang
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Emma Watz
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Remberger
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University Hospital, Uppsala University and KFUE, Uppsala, Sweden
| | - Olle Ringden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Mehmet Uzunel
- Department of Clinical Research Center, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
Inhibition of the IRE-1α/XBP-1 pathway prevents chronic GVHD and preserves the GVL effect in mice. Blood Adv 2019; 2:414-427. [PMID: 29483082 DOI: 10.1182/bloodadvances.2017009068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/02/2018] [Indexed: 01/07/2023] Open
Abstract
Hematopoietic stem cell transplantation (HCT) is a curative procedure for hematological malignancies, but chronic graft-versus-host disease (cGVHD) remains a major complication after allogeneic HCT. Because donor B cells are essential for cGVHD development and B cells are sensitive to endoplasmic reticulum (ER) stress, we hypothesized that the IRE-1α/XBP-1 pathway is required for B-cell activation and function and for the development of cGVHD. To test this hypothesis, we used conditional knock-out mice deficient of XBP-1 specifically in B cells. Recipients transplanted with donor grafts containing XBP-1-deficient B cells displayed reduced cGVHD compared with controls. Reduction of cGVHD correlated with impaired B-cell functions, including reduced production of anti-double-stranded DNA immunoglobulin G antibodies, CD86, Fas, and GL7 surface expression, and impaired T-cell responses, including reduced interferon-γ production and follicular helper T cells. In a bronchiolitis obliterans cGVHD model, recipients of transplants containing XBP-1-deficient B cells demonstrated improved pulmonary function correlated with reduced donor splenic follicular helper T cells and increased B cells compared with those of wild-type control donor grafts. We then tested if XBP-1 blockade via an IRE-1α inhibitor, B-I09, would attenuate cGVHD and preserve the graft-versus-leukemia (GVL) effect. In a cutaneous cGVHD model, we found that prophylactic administration of B-I09 reduced clinical features of cGVHD, which correlated with reductions in donor T-cell and dendritic cell skin infiltrates. Inhibition of the IRE-1α/XBP-1 pathway also preserved the GVL effect against chronic myelogenous leukemia mediated by allogeneic splenocytes. Collectively, the ER stress response mediated by the IRE-1α/XBP-1 axis is required for cGVHD development but dispensable for GVL activity.
Collapse
|
21
|
Effect of bone marrow CD34+cells and T-cell subsets on clinical outcomes after myeloablative allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2018; 54:775-781. [DOI: 10.1038/s41409-018-0380-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/02/2018] [Accepted: 10/13/2018] [Indexed: 12/17/2022]
|
22
|
Wang L, Ni M, Hückelhoven-Krauss A, Sellner L, Hoffmann JM, Neuber B, Luft T, Hegenbart U, Schönland S, Kleist C, Sill M, Chen BA, Wuchter P, Eckstein V, Krüger W, Hilgendorf I, Yerushalmi R, Nagler A, Müller-Tidow C, Ho AD, Dreger P, Schmitt M, Schmitt A. Modulation of B Cells and Homing Marker on NK Cells Through Extracorporeal Photopheresis in Patients With Steroid-Refractory/Resistant Graft-Vs.-Host Disease Without Hampering Anti-viral/Anti-leukemic Effects. Front Immunol 2018; 9:2207. [PMID: 30349527 PMCID: PMC6186805 DOI: 10.3389/fimmu.2018.02207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Graft-vs.-host disease (GvHD), a severe complication of allogeneic hematopoietic stem cell transplantation, significantly affects the post-transplant morbidity and mortality. Systemic steroids remain the gold standard for the initial management of GvHD. However, up to 60% of patients will not sufficiently respond to steroids. Extracorporeal photopheresis (ECP), a cell-based immunotherapy, has shown good clinical results in such steroid-refractory/resistant GvHD patients. Given its immunomodulatory, but not global immunosuppressive and steroid-sparing capacity, ECP constitutes an attractive option. In the case of GvHD, the balance of immune cells is destroyed: effector cells are not any longer efficiently controlled by regulatory cells. ECP therapy may restore this balance. However, the precise mechanism and the impact of ECP on anti-viral/anti-leukemic function remain unclear. In this study, 839 ECP treatments were performed on patients with acute GvHD (aGvHD) and chronic GvHD (cGvHD). A comprehensive analysis of effector and regulatory cells in patients under ECP therapy included multi-parametric flow cytometry and tetramer staining, LuminexTM-based cytokine, interferon-γ enzyme-linked immunospot, and chromium-51 release assays. Gene profiling of myeloid-derived suppressor cells (MDSCs) was performed by microarray analysis. Immunologically, modulations of effector and regulatory cells as well as proinflammatory cytokines were observed under ECP treatment: (1) GvHD-relevant cell subsets like CD62L+ NK cells and newly defined CD19hiCD20hi B cells were modulated, but (2) quantity and quality of anti-viral/anti-leukemic effector cells were preserved. (3) The development of MDSCs was promoted and switched from an inactivated subset (CD33-CD11b+) to an activated subset (CD33+CD11b+). (4) The frequency of Foxp3+CD4+ regulatory T cells (Tregs) and CD24+CD38hi regulatory B cells was considerably increased in aGvHD patients, and Foxp3+CD8+ Tregs in cGvHD patients. (5) Proinflammatory cytokines like IL-1β, IL-6, IL-8, and TNF-α were significantly reduced. In summary, ECP constitutes an effective immunomodulatory therapy for patients with steroid-refractory/resistant GvHD without impairment of anti-viral/leukemia effects.
Collapse
Affiliation(s)
- Lei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Ming Ni
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany.,Department of Hematology, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | - Leopold Sellner
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Jean-Marc Hoffmann
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, University Clinic Heidelberg, Heidelberg, Germany
| | - Martin Sill
- Division Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Bao-An Chen
- Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Patrick Wuchter
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany.,German Red Cross Blood Service, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology Mannheim, Mannheim, Germany
| | - Volker Eckstein
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - William Krüger
- Department of Internal Medicine C, Haematology, Oncology, Stem Cell Transplantation, Palliative Care, University Clinic Greifswald, Greifswald, Germany
| | - Inken Hilgendorf
- Department of Internal Medicine II, University Clinic Jena, Jena, Germany
| | - Ronit Yerushalmi
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Anthony D Ho
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Houdová L, Fetter M, Jindra P, Georgiev D. Optimal Donor Selection During Verification Process: Which Factors Are Worth Knowing? Transplant Proc 2018; 50:3082-3087. [PMID: 30577170 DOI: 10.1016/j.transproceed.2018.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/31/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The selection of optimal donor is crucial for successful hematopoietic stem cell transplantation (HSCT). Thereby, it is appropriate to know, in addition to basic human leukocyte antigen (HLA) gene matches, other immunogenic or nonimmunogenic parameters predicting the outcome of transplant. OBJECTIVE A unified approach is necessary to provide a comprehensive view of the patient-donor compatibility characterization outside of standard HLA genes. The approach should be applicable as a tool for optimizing procedures for extended donor typing and/or verification typing of a donor. METHODS The study used the summary, unification, and innovation of existing practical knowledge and experience of the Czech National Marrow Donor Registry of various factors beyond HLA matching with impact on transplant outcome. RESULTS An information technology system-implemented procedure (a verification algorithm) is presented as the decision support approach for prematurely discarding less suitable donors from the transplantation process. It is intended primarily for the transplant specialist to help establish optimal procedures for verifying and determining donor critical factors. CONCLUSIONS A process defining HLAs, killer cell immunoglobulin-like receptors, and cytokine typing strategies was proposed to provide support to a transplant specialist in refining the choice of a suitable donor.
Collapse
Affiliation(s)
- L Houdová
- New Technologies for the Information Society, University of West Bohemia, Plzen, Czech Republic.
| | - M Fetter
- New Technologies for the Information Society, University of West Bohemia, Plzen, Czech Republic
| | - P Jindra
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Plzen, Czech Republic; Charles University Hospital Pilsen, Plzen, Czech Republic
| | - D Georgiev
- New Technologies for the Information Society, University of West Bohemia, Plzen, Czech Republic
| |
Collapse
|
24
|
Mawardi H, Hashmi SK, Elad S, Aljurf M, Treister N. Chronic graft‐versus‐host disease: Current management paradigm and future perspectives. Oral Dis 2018; 25:931-948. [DOI: 10.1111/odi.12936] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Hani Mawardi
- Faculty of Dentistry King AbdulAziz University Jeddah Kingdom of Saudi Arabia
- AlFarabi Private College Jeddah Kingdom of Saudi Arabia
| | - Shahrukh K. Hashmi
- Department of Medicine Mayo Clinic Rochester Minnesota
- Oncology Center KFSHRC Riyadh Kingdom of Saudi Arabia
| | - Sharon Elad
- Department of Dentistry University of Rochester Rochester New York
| | | | - Nathaniel Treister
- Division of Oral Medicine and Dentistry, Brigham and Women's Hospital Boston Massachusetts
- Department of Oral Medicine, Infection and Immunity Harvard School of Dental Medicine Boston Massachusetts
| |
Collapse
|
25
|
Stern L, McGuire H, Avdic S, Rizzetto S, Fazekas de St Groth B, Luciani F, Slobedman B, Blyth E. Mass Cytometry for the Assessment of Immune Reconstitution After Hematopoietic Stem Cell Transplantation. Front Immunol 2018; 9:1672. [PMID: 30093901 PMCID: PMC6070614 DOI: 10.3389/fimmu.2018.01672] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Mass cytometry, or Cytometry by Time-Of-Flight, is a powerful new platform for high-dimensional single-cell analysis of the immune system. It enables the simultaneous measurement of over 40 markers on individual cells through the use of monoclonal antibodies conjugated to rare-earth heavy-metal isotopes. In contrast to the fluorochromes used in conventional flow cytometry, metal isotopes display minimal signal overlap when resolved by single-cell mass spectrometry. This review focuses on the potential of mass cytometry as a novel technology for studying immune reconstitution in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Reconstitution of a healthy donor-derived immune system after HSCT involves the coordinated regeneration of innate and adaptive immune cell subsets in the recipient. Mass cytometry presents an opportunity to investigate immune reconstitution post-HSCT from a systems-level perspective, by allowing the phenotypic and functional features of multiple cell populations to be assessed simultaneously. This review explores the current knowledge of immune reconstitution in HSCT recipients and highlights recent mass cytometry studies contributing to the field.
Collapse
Affiliation(s)
- Lauren Stern
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Helen McGuire
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Selmir Avdic
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | - Barbara Fazekas de St Groth
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Fabio Luciani
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Barry Slobedman
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, Sydney, NSW, Australia
| |
Collapse
|
26
|
Kean LS. Defining success with cellular therapeutics: the current landscape for clinical end point and toxicity analysis. Blood 2018; 131:2630-2639. [PMID: 29728399 PMCID: PMC6032897 DOI: 10.1182/blood-2018-02-785881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Cellular therapies play a major and expanding role in the treatment of hematologic diseases. For each of these therapies, a narrow therapeutic window exists, where efficacy is maximized and toxicities minimized. This review focuses on one of the most established cellular therapies, hematopoietic stem cell transplant, and one of the newest cellular therapies, chimeric antigen receptor-T cells. In this review, I will discuss the current state of the field for clinical end point analysis with each of these therapeutics, including their critical toxicities, and focus on the major elements of success for each of these complex treatments for hematologic disease.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA; Clinical Research Division, The Fred Hutchinson Cancer Research Center, Seattle, WA; and Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
27
|
Kimura M, Nishikawa K, Sakamaki H, Mizokami M, Kimura K. Reduced therapeutic effect of antiviral drugs in patients with hepatitis B virus reactivation after hematopoietic stem cell transplantation. Hepatol Res 2018; 48:469-478. [PMID: 29235226 DOI: 10.1111/hepr.13044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022]
Abstract
AIM Patients with resolved hepatitis B virus (HBV) infection following hematopoietic stem cell transplantation (HSCT) are potentially at high risk of HBV reactivation. Although antiviral drug therapy is recommended when HBV DNA reappears in the serum, drug efficacy after HBV reactivation remains unclear. METHODS Host immune response against HBV was investigated by immunological analyses at 12 months after entecavir (ETV) treatment in six HSCT-treated and five non-HSCT-treated patients with HBV reactivation, and 18 patients with chronic hepatitis B (CHB). Peripheral HBV-specific CD8+ T cells were analyzed for total numbers by flow cytometry and tetramer staining, as was intracellular γ-interferon (IFN-γ) production and CD107a expression in response to HBV peptides. Interleukin-10 (IL-10)-expressing CD19+ B-cell count and serum inflammatory cytokine levels were also analyzed. RESULTS Serum HBV DNA was detectable in HSCT-treated patients with HBV reactivation at 12 months compared with other groups, indicating insufficient ETV efficacy against HBV. The HBV-specific CD8+ T-cell counts in HSCT-treated patients with HBV reactivation were significantly lower compared with those in non-HSCT patients. Additionally, IFN-γ production and CD107a expression by CD8+ T cells after incubation with HBV peptides was significantly reduced in HSCT-treated compared with CHB patients at 12 months after ETV treatment. Conversely, HSCT-treated patient serum IL-10 levels were significantly elevated compared with those in non-HSCT patients. Finally, IL-10-producing CD19+ B-cell counts were increased in HSCT-treated compared with CHB patients. CONCLUSION After HBV reactivation, ETV efficacy was impaired in HSCT-treated patients as evidenced by low HBV-specific CD8+ T-cell counts and high B-cell IL-10 production.
Collapse
Affiliation(s)
| | | | - Hisashi Sakamaki
- Division of Hematology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | | |
Collapse
|
28
|
Nair S, Vanathi M, Mahapatra M, Seth T, Kaur J, Velpandian T, Ravi A, Titiyal JS, Tandon R. Tear inflammatory mediators and protein in eyes of post allogenic hematopoeitic stem cell transplant patients. Ocul Surf 2018; 16:352-367. [PMID: 29723628 DOI: 10.1016/j.jtos.2018.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
AIM To analyze tear cytokines levels and their correlation to ocular surface parameters in allogenic hematopoietic stem cell transplants (allo-HSCT) patients. METHODS Prospective longitudinal study of allo-HSCT patients and controls for ocular surface evaluation (OSDI, TBUT, Schirmer's test, staining scores), tear biochemical analysis for protein, cytokines [IL-10, IL-12, IL-2, IL-4, IL-6, IL-17, interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, VEGF], MMPs [MMP 2, 9, 7, 13, 10 and chemokine (IL-8)], & VEGF on three consecutive follow up visits (at three monthly interval) was done. RESULTS Of 24 post allo-HSCT patients (19 males, 5 females) & 12 controls (mean age 34.3 + 5.8 years) enrolled, 20 patients [mean age 33.4 + 7.77 years; mean time of recruitment of 5.2 + 2.12 months following alloHSCT] who completed three consecutive follow up visits were included for analysis. Ocular GVHD (oGVHD) was seen in 8 patients (33.3%). Tears biochemical analysis showed elevated levels of interferon γ, IL 6, IL 8, IL 10, IL 12AP70, IL 17A, MMP 9 and VEGF in oGVHD eyes as compared to non-oGVHD & control eyes. Non-oGVHD eyes showed elevated tear MMP 7 and MMP 9 as compared to healthy controls. Tear protein levels were significantly decreased in oGVHD eyes and were equivocal in nonGVHD and control eyes. TBUT and ocular staining scores to correlate best with tear interleukins and MMPs. CONCLUSION Evaluation of levels of tear VEGF, total protein & MMP 9 can be of significance in identifying oGVHD in post alloHSCT patients.
Collapse
Affiliation(s)
- Sridevi Nair
- Cornea & Ocular Surface Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Murugesan Vanathi
- Cornea & Ocular Surface Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Manoranjan Mahapatra
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tulika Seth
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jasbir Kaur
- Ocular Biochemistry Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - T Velpandian
- Ocular Pharmacology Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alok Ravi
- Ocular Biochemistry Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jeewan Singh Titiyal
- Cornea & Ocular Surface Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Radhika Tandon
- Cornea & Ocular Surface Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
29
|
Du J, Flynn R, Paz K, Ren HG, Ogata Y, Zhang Q, Gafken PR, Storer BE, Roy NH, Burkhardt JK, Mathews W, Tolar J, Lee SJ, Blazar BR, Paczesny S. Murine chronic graft-versus-host disease proteome profiling discovers CCL15 as a novel biomarker in patients. Blood 2018; 131:1743-1754. [PMID: 29348127 PMCID: PMC5897867 DOI: 10.1182/blood-2017-08-800623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022] Open
Abstract
Improved diagnostic and treatment methods are needed for chronic graft-versus-host disease (cGVHD), the leading cause of late nonrelapse mortality (NRM) in long-term survivors of allogenic hematopoietic cell transplantation. Validated biomarkers that facilitate disease diagnosis and classification generally are lacking in cGVHD. Here, we conducted whole serum proteomics analysis of a well-established murine multiorgan system cGVHD model. We discovered 4 upregulated proteins during cGVHD that are targetable by genetic ablation or blocking antibodies, including the RAS and JUN kinase activator, CRKL, and CXCL7, CCL8, and CCL9 chemokines. Donor T cells lacking CRK/CRKL prevented the generation of cGVHD, germinal center reactions, and macrophage infiltration seen with wild-type T cells. Whereas antibody blockade of CCL8 or CXCL7 was ineffective in treating cGVHD, CCL9 blockade reversed cGVHD clinical manifestations, histopathological changes, and immunopathological hallmarks. Mechanistically, elevated CCL9 expression was present predominantly in vascular smooth muscle cells and uniquely seen in cGVHD mice. Plasma concentrations of CCL15, the human homolog of mouse CCL9, were elevated in a previously published cohort of 211 cGVHD patients compared with controls and associated with NRM. In a cohort of 792 patients, CCL15 measured at day +100 could not predict cGVHD occurring within the next 3 months with clinically relevant sensitivity/specificity. Our findings demonstrate for the first time the utility of preclinical proteomics screening to identify potential new targets for cGVHD and specifically CCL15 as a diagnosis marker for cGVHD. These data warrant prospective biomarker validation studies.
Collapse
Affiliation(s)
- Jing Du
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ryan Flynn
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Katelyn Paz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Hong-Gang Ren
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | - Barry E Storer
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia-Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia-Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wendy Mathews
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Stephanie J Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Sophie Paczesny
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
30
|
Kuba A, Raida L. Graft versus Host Disease: From Basic Pathogenic Principles to DNA Damage Response and Cellular Senescence. Mediators Inflamm 2018; 2018:9451950. [PMID: 29785172 PMCID: PMC5896258 DOI: 10.1155/2018/9451950] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Graft versus host disease (GVHD), a severe immunogenic complication of allogeneic hematopoietic stem cell transplantation (HSCT), represents the most frequent cause of transplant-related mortality (TRM). Despite a huge progress in HSCT techniques and posttransplant care, GVHD remains a significant obstacle in successful HSCT outcome. This review presents a complex summary of GVHD pathogenesis with focus on references considering basic biological processes such as DNA damage response and cellular senescence.
Collapse
Affiliation(s)
- Adam Kuba
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Ludek Raida
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
31
|
Qian L, Dima D, Berce C, Liu Y, Rus I, Raduly LZ, Liu Y, Petrushev B, Berindan-Neagoe I, Irimie A, Tanase A, Jurj A, Shen J, Tomuleasa C. Protein dysregulation in graft versus host disease. Oncotarget 2017; 9:1483-1491. [PMID: 29416707 PMCID: PMC5787452 DOI: 10.18632/oncotarget.23276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a well-established treatment for many malignant and non-malignant hematological disorders. As a frequent complication in up to 50% of all patients, graft-versus-host disease is still the main cause for morbidity and non-relapse mortality. Diagnosis is usually done clinically, even though confirmation by pathology is often used to support the clinical findings. Effective treatment requires intensified immunosuppression as early as possible. Although several promising biomarkers have been proposed for an early diagnosis, no internationally-recognized consensus has yet been established. Protein-based biomarkers represent an interesting tool since they have been recently reported to be an important regulator of various cells, including immune cells such as T cells. Therefore, we assume that protein dysregulation is important in the pathogenesis of acute graft versus host disease and their detection might be an possibility in the early diagnosis and monitoring. In this review, we aim to summarize the previous reports of protein biomarkers, focusing on the pathogenesis of the disease and possible implications in diagnostic approaches.
Collapse
Affiliation(s)
- Liren Qian
- Department of Hematology, Navy General Hospital, Beijing, PR China
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Cristian Berce
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Yu Liu
- Department of Hematology, Navy General Hospital, Beijing, PR China
| | - Ioana Rus
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Yi Liu
- Department of Hematology, Navy General Hospital, Beijing, PR China
| | - Bobe Petrushev
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | | | - Alexandru Irimie
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Ancuta Jurj
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Jianliang Shen
- Department of Hematology, Navy General Hospital, Beijing, PR China
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania.,Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| |
Collapse
|
32
|
Presland RB. Application of proteomics to graft-versus-host disease: from biomarker discovery to potential clinical applications. Expert Rev Proteomics 2017; 14:997-1006. [DOI: 10.1080/14789450.2017.1388166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Richard B. Presland
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Dukat-Mazurek A, Bieniaszewska M, Hellmann A, Moszkowska G, Trzonkowski P. Association of cytokine gene polymorphisms with the complications of allogeneic haematopoietic stem cell transplantation. Hum Immunol 2017; 78:672-683. [PMID: 28987962 DOI: 10.1016/j.humimm.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
The purpose of our study was to confirm the prevalence of the association between single nucleotide polymorphisms present in genes encoding cytokines and the complications occurring after haematopoietic stem cell transplantation (HSCT). 108 recipients and 81 donors were typed for TNF-α (-308), TGF-β1 (codon 10, 25), IL-10 (-1082, -819, -592), IL-6 (-174) and INF-γ (+874). Our studies have shown a tendency toward association between the occurrence of acute form of graft versus host disease (aGVHD) and IL-6 genotype. Homozygote C/C was less likely to develop aGVHD (p=0,09). Genotype GCC/ATA in IL-10 recipient gene alone had protective effect against the occurrence of aGVHD (p=0,01). Furthermore, GCC/ATA protected the host against developing the disease in the clinically relevant grades (II-IV) (p=0,03). In addition, the recipient's T/T G/G genotype (TGF-β1) predisposed to the development of both acute (p=0,06 - trend) and chronic (p=0,04) GVHD and also severe aGVHD (p=0,004). We also observed a statistically significant association between the genotype of recipient and the risk of infection - the protective function of the G/C IL-6 in the bloodstream infections (p=0,001). Our results suggest that IL-6, IL-10 and TGF-β1 genotypes of recipient are the most associated with the risk of complications after HSCT.
Collapse
Affiliation(s)
- Anna Dukat-Mazurek
- Department of Hematology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| | - Andrzej Hellmann
- Department of Hematology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| | - Grażyna Moszkowska
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| |
Collapse
|
34
|
Metafuni E, Giammarco S, De Ritis DG, Rossi M, Corrente F, Piccirillo N, Bacigalupo AP, Sica S, Chiusolo P. Changes in protein serum levels during stem cell transplantation. Eur J Clin Invest 2017; 47:711-718. [PMID: 28796281 DOI: 10.1111/eci.12796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND GvHD is one of the major complication after stem cell transplantation affecting transplant-related mortality. Throughout the last years, many serum proteins were been proposed as possible biomarkers for GvHD. AIMS We studied the trend of five of the most studied serum proteins to evaluate whether a correlation exists between proteins concentration and post-HSCT outcomes. MATERIALS AND METHODS We measured serum concentration of REG3α, ST2, B-cell activating factor (BAFF), CXCL9 and elafin in a cohort of 77 patients submitted to Hematopoietic allogeneic stem cell transplantation (HSCT) in our department. Blood samples were been collected at baseline, day +30, GvHD onset and GvHD resolution. RESULTS REG3α levels showed an association only with acute GvHD. Elafin and ST2 levels varied according to both acute and chronic GvHD occurrence. BAFF concentration showed an inverse association with acute GvHD development. Interestingly, baseline BAFF and ST2 levels predicted post-HSCT survival. No associations were found for CXCL9. CONCLUSIONS Except for CXCL9, the protein levels seem to change according to GvHD development, independently from organ involvement and grading. Pretransplant ST2 and BAFF appeared to be predictors for survival after HSCT.
Collapse
Affiliation(s)
| | - Sabrina Giammarco
- Hematology Department, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | | | - Monica Rossi
- Molecular Biology and HLA Typing Laboratory, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | - Francesco Corrente
- Molecular Biology and HLA Typing Laboratory, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | - Nicola Piccirillo
- Apheresis and Transfusional Medicine Division, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | | | - Simona Sica
- Hematology Department, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| |
Collapse
|
35
|
Lia G, Brunello L, Bruno S, Carpanetto A, Omedè P, Festuccia M, Tosti L, Maffini E, Giaccone L, Arpinati M, Ciccone G, Boccadoro M, Evangelista A, Camussi G, Bruno B. Extracellular vesicles as potential biomarkers of acute graft-vs-host disease. Leukemia 2017; 32:765-773. [PMID: 28852198 DOI: 10.1038/leu.2017.277] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Acute graft-vs-host disease (GVHD) is a serious complication after allografting. We carried out an exploratory study to investigate a potential correlation of surface antigens on extracellular vesicles (EVs) and acute GVHD. EVs were extracted from serum samples from 41 multiple myeloma patients who underwent allografting. EVs were characterized by flow cytometry using a panel of 13 antibodies against specific membrane proteins that were reported to be predictive of acute GVHD. We observed a correlation between three potential biomarkers expressed on EV surface and acute GVHD onset by both logistic regression analysis and Cox proportional hazard model. In our study, CD146 (MCAM-1) was correlated with an increased risk-by almost 60%-of developing GVHD, whereas CD31 and CD140-α (PECAM-1 and PDGFR-α) with a decreased risk-by almost 40 and 60%, respectively. These biomarkers also showed a significant change in signal level from baseline to the onset of acute GVHD. Our novel study encourages future investigations into the potential correlation between EVs and acute GVHD. Larger prospective multicenter studies are currently in progress.
Collapse
Affiliation(s)
- G Lia
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - L Brunello
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - S Bruno
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Torino, Italy
| | - A Carpanetto
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Torino, Italy
| | - P Omedè
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy
| | - M Festuccia
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - L Tosti
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - E Maffini
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - L Giaccone
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - M Arpinati
- Dipartimento di Ematologia e Scienze Oncologiche 'L. e A. Seràgnoli', Università di Bologna, Bologna, Italy
| | - G Ciccone
- A.O.U. Città della Salute e della Scienza di Torino, Epidemiologia Clinica, Torino, Italy
| | - M Boccadoro
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - A Evangelista
- A.O.U. Città della Salute e della Scienza di Torino, Epidemiologia Clinica, Torino, Italy
| | - G Camussi
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Torino, Italy
| | - B Bruno
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| |
Collapse
|
36
|
Skert C, Perucca S, Chiarini M, Giustini V, Sottini A, Ghidini C, Martellos S, Cattina F, Rambaldi B, Cancelli V, Malagola M, Turra A, Polverelli N, Bernardi S, Imberti L, Russo D. Sequential monitoring of lymphocyte subsets and of T-and-B cell neogenesis indexes to identify time-varying immunologic profiles in relation to graft-versus-host disease and relapse after allogeneic stem cell transplantation. PLoS One 2017; 12:e0175337. [PMID: 28399164 PMCID: PMC5388479 DOI: 10.1371/journal.pone.0175337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/24/2017] [Indexed: 11/19/2022] Open
Abstract
T and B lymphocyte subsets have been not univocally associated to Graft-versus-host disease (GVHD) and relapse of hematological malignancies after stem cell transplantation (SCT). Their sequential assessment together with B and T cell neogenesis indexes has been not thoroughly analysed in relation to these changing and interrelated immunologic/clinic events yet. Lymphocyte subsets in peripheral blood (PB) and B and T cell neogenesis indexes were analysed together at different time points in a prospective study of 50 patients. Principal component analysis (PCA) was used as first step of multivariate analysis to address issues related to a high number of variables versus a relatively low number of patients. Multivariate analysis was completed by Fine-Gray proportional hazard regression model. PCA identified 3 clusters of variables (PC1-3), which correlated with acute GVHD: PC1 (pre-SCT: KRECs≥6608/ml, unswitched memory B <2.4%, CD4+TCM cells <45%; HR 0.5, p = 0.001); PC2 (at aGVHD onset: CD4+>44%, CD8+TCM cells>4%; HR 1.9, p = 0.01), and PC3 (at aGVHD onset: CD4+TEMRA<1, total Treg<4, TregEM <2 cells/μl; HR 0.5, p = 0.002). Chronic GVHD was associated with one PC (TregEM <2 cells/μl at day+28, CD8+TEMRA<43% at day+90, immature B cells<6 cells/μl and KRECs<11710/ml at day+180; HR 0.4, P = 0.001). Two PC correlated with relapse: PC1 (pre-SCT: CD4+ <269, CD4+TCM <120, total Treg <18, TregCM <8 cells/μl; HR 4.0, p = 0.02); PC2 (pre-SCT mature CD19+ >69%, switched memory CD19+ = 0 cells and KRECs<6614/ml at +90; HR 0.1, p = 0.008). All these immunologic parameters were independent indicators of chronic GVHD and relapse, also considering the possible effect of previous steroid-therapy for acute GVHD. Specific time-varying immunologic profiles were associated to GVHD and relapse. Pre-SCT host immune-microenvironment and changes of B cell homeostasis could influence GVH- and Graft-versus-Tumor reactions. The paradoxical increase of EM Treg in PB of patients with GVHD could be explained by their compartmentalization outside lymphoid tissues, which are of critical relevance for regulation of GVH reactions.
Collapse
Affiliation(s)
- Cristina Skert
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
- * E-mail:
| | - Simone Perucca
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Marco Chiarini
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Viviana Giustini
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Claudia Ghidini
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Martellos
- Department of Life Sciences, Research Unit of Biodiversity Informatics, University of Trieste, Trieste, Italy
| | - Federica Cattina
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Benedetta Rambaldi
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Valeria Cancelli
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Michele Malagola
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Alessandro Turra
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Nicola Polverelli
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Simona Bernardi
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Luisa Imberti
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Domenico Russo
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| |
Collapse
|
37
|
Alfred A, Taylor PC, Dignan F, El-Ghariani K, Griffin J, Gennery AR, Bonney D, Das-Gupta E, Lawson S, Malladi RK, Douglas KW, Maher T, Guest J, Hartlett L, Fisher AJ, Child F, Scarisbrick JJ. The role of extracorporeal photopheresis in the management of cutaneous T-cell lymphoma, graft-versus-host disease and organ transplant rejection: a consensus statement update from the UK Photopheresis Society. Br J Haematol 2017; 177:287-310. [PMID: 28220931 PMCID: PMC5412836 DOI: 10.1111/bjh.14537] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/23/2016] [Indexed: 12/17/2022]
Abstract
Extracorporeal photopheresis (ECP) has been used for over 35 years in the treatment of erythrodermic cutaneous T‐cell lymphoma (CTCL) and over 20 years for chronic and acute graft‐versus‐host disease (GvHD) and solid organ transplant rejection. ECP for CTCL and GvHD is available at specialised centres across the UK. The lack of prospective randomised trials in ECP led to the development of UK Consensus Statements for patient selection, treatment schedules, monitoring protocols and patient assessment criteria for ECP. The recent literature has been reviewed and considered when writing this update. Most notably, the national transition from the UVAR XTS® machine to the new CELLEX machine for ECP with dual access and a shorter treatment time has led to relevant changes in these schedules. This consensus statement updates the previous statement from 2007 on the treatment of CTCL and GvHD with ECP using evidence based medicine and best medical practise and includes guidelines for both children and adults.
Collapse
Affiliation(s)
- Arun Alfred
- Rotherham Foundation NHS Trust, Rotherham, UK
| | | | - Fiona Dignan
- Central Manchester NHS Foundation Trust, Manchester, UK
| | - Khaled El-Ghariani
- Therapeutics and Tissue Services, NHS Blood and Transplant, Sheffield, UK
| | - James Griffin
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle-Upon-Tyne, UK
| | - Denise Bonney
- Royal Manchester Children's Hospital, Manchester, UK
| | - Emma Das-Gupta
- Centre for Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Ram K Malladi
- University Hospitals Birmingham NHS Trust, Birmingham, UK
| | | | | | - Julie Guest
- Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle-Upon-Tyne, UK
| | | | - Andrew J Fisher
- Institute of Transplantation, Newcastle University and Freeman Hospital, Newcastle-upon-Tyne, UK
| | - Fiona Child
- St John's Institute of Dermatology, Guy's and St Thomas' Hospital, London, UK
| | | |
Collapse
|
38
|
Juric MK, Shevtsov M, Mozes P, Ogonek J, Crossland RE, Dickinson AM, Greinix HT, Holler E, Weissinger EM, Multhoff G. B-Cell-Based and Soluble Biomarkers in Body Liquids for Predicting Acute/Chronic Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2017; 7:660. [PMID: 28138325 PMCID: PMC5238459 DOI: 10.3389/fimmu.2016.00660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/16/2016] [Indexed: 02/02/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the main curative therapy for hematological malignancy such as leukemias, lymphomas, or multiple myelomas and some other hematological disorders. In this therapy, cure of hematological diseases relies on graft-versus-malignancy effects by allogenic immune cells. However, severe posttransplant treatment-associated complications such as acute graft-versus-host disease (aGvHD) and chronic graft-versus-host disease (cGvHD) limit this approach. Most research into GvHD has concentrated on the aGvHD, while the more complex and multifaceted chronic form has been largely poorly investigated. cGvHD is a multi-organ autoimmune disorder and is the major cause of non-relapse morbidity and mortality following allo-HSCT, occurring in about 50% of patients, or 13,000–15,000 patients per year worldwide. Therefore, there is a high medical need for an early prediction of these therapy-associated toxicities. Biomarkers have gained importance over the last decade in diagnosis, in prognosis, and in prediction of pending diseases or side effects. Biomarkers can be cells, factors isolated from target tissues, or soluble factors that can be detected in body fluids. In this review, we aim to summarize some of the recent developments of biomarkers in the field of allo-HSCT. We will focus on cell-based biomarkers (B-cell subsets) for cGvHD and soluble factors including microRNA (miRNA), which are excreted into serum/plasma and urine. We also discuss the potential role of cytosolic and extracellular 70 kDa heat shock proteins (HSP70) as potential biomarkers for aGvHD and their role in preclinical models. Proteomic biomarkers in the blood have been used as predictors of treatment responses in patients with aGvHD for many years. More recently, miRNAs have been found to serve as a biomarker to diagnose aGvHD in the plasma. Another development relates to urine-based biomarkers that are usually detected by capillary electrophoresis and mass spectrometry. These biomarkers have the potential to predict the development of severe aGvHD (grades III–IV), overall mortality, and the pending development of cGvHD in patients posttransplant.
Collapse
Affiliation(s)
- Mateja Kralj Juric
- Department of Internal Medicine I, BMT, Medical University of Vienna , Vienna , Austria
| | - Maxim Shevtsov
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Petra Mozes
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Justyna Ogonek
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology, Hannover Medical School , Hannover , Germany
| | - Rachel E Crossland
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Anne M Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | | | - Ernst Holler
- Department of Internal Medicine III, University Hospital of Regensburg , Regensburg , Germany
| | - Eva M Weissinger
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology, Hannover Medical School , Hannover , Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| |
Collapse
|
39
|
Presland RB. Biology of chronic graft- vs-host disease: Immune mechanisms and progress in biomarker discovery. World J Transplant 2016; 6:608-619. [PMID: 28058210 PMCID: PMC5175218 DOI: 10.5500/wjt.v6.i4.608] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/02/2016] [Accepted: 09/18/2016] [Indexed: 02/05/2023] Open
Abstract
Chronic graft-vs-host disease (cGVHD) is the leading cause of long-term morbidity and mortality following allogeneic hematopoietic stem cell transplantation. It presents as a chronic inflammatory and sclerotic autoimmune-like condition that most frequently affects the skin, oral mucosa, liver, eyes and gastrointestinal tract. Both clinical and animal studies have shown that multiple T cell subsets including Th1, Th2, Th17, T follicular helper cells and regulatory T-cells play some role in cGVHD development and progression; B cells also play an important role in the disease including the production of antibodies to HY and nuclear antigens that can cause serious tissue damage. An array of cytokines and chemokines produced by different types of immune cells also mediate tissue inflammation and damage of cGVHD target tissues such as the skin and oral cavity. Many of these same immune regulators have been studied as candidate cGVHD biomarkers. Recent studies suggest that some of these biomarkers may be useful for determining disease prognosis and planning long-term clinical follow-up of cGVHD patients.
Collapse
|
40
|
A Canine Model of Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2016; 23:420-427. [PMID: 28013013 DOI: 10.1016/j.bbmt.2016.12.629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/18/2016] [Indexed: 11/20/2022]
Abstract
In long-term survivors of allogeneic hematopoietic cell transplantation (HCT), chronic graft-versus-host disease (GVHD) is the major cause of morbidity and mortality and a major determinant of quality of life. Chronic GVHD responds poorly to current immunosuppressive drugs, and while T cell depletion may be preventive, this gain is offset by increased relapse rates. A significant impediment to progress in treating chronic GVHD has been the limitations of existing animal models. The goal of this study was to develop a reproducible comprehensive model of chronic GVHD in the dog. Ten recipient dogs received 920 cGy total body irradiation, infusion of marrow, and an infusion of buffy coat cells from a dog leukocyte antigen (DLA)-mismatched unrelated donor. Postgrafting immunosuppression consisted of methotrexate (days 1, 3, 6, 11) and cyclosporine. The duration of cyclosporine administration was limited to 80 days instead of the clinically used 180 days. This was done to contain costs, as chronic GVHD was expected to develop at earlier time points. All recipients were given ursodiol for liver protection. One dog had graft failure and 9 dogs showed stable engraftment. Eight of the 9 developed de novo chronic GVHD. Dogs progressed with clinical signs of chronic GVHD over a period of 43 to 164 (median, 88) days after discontinuation of cyclosporine. Target organs showed the spectrum of chronic GVHD manifestations that are typically seen clinically. These included lichenoid changes of the skin, fasciitis, ocular involvement (xerophthalmia), conjunctivitis, bronchiolitis obliterans, salivary gland involvement, gingivitis, esophageal involvement, and hepatic involvement. Peripheral blood lymphocyte surface antigen expression of CD28 and inducible costimulator was elevated in dogs with GHVD compared with those in normal dogs, but not significantly so. Serum levels of IL-8 and monocyte chemotactic protein-1 in GVHD-affected dogs at time of euthanasia were elevated, whereas levels of IL-15 were depressed compared with those in normal dogs. Results indicate that the canine model is well suited for future studies aimed at preventing or treating chronic GVHD.
Collapse
|
41
|
GVHD prevents NK-cell-dependent leukemia and virus-specific innate immunity. Blood 2016; 129:630-642. [PMID: 27927647 DOI: 10.1182/blood-2016-08-734020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/22/2016] [Indexed: 01/20/2023] Open
Abstract
Allogeneic bone marrow transplantation (allo-BMT) is a curative therapy for hematological malignancies, but is associated with significant complications, principally graft-versus-host disease (GVHD) and opportunistic infections. Natural killer (NK) cells mediate important innate immunity that provides a temporal bridge until the reconstruction of adaptive immunity. Here, we show that the development of GVHD after allo-BMT prevented NK-cell reconstitution, particularly within the maturing M1 and M2 NK-cell subsets in association with exaggerated activation, apoptosis, and autophagy. Donor T cells were critical in this process by limiting the availability of interleukin 15 (IL-15), and administration of IL-15/IL-15Rα or immune suppression with rapamycin could restore NK-cell reconstitution. Importantly, the NK-cell defect induced by GVHD resulted in the failure of NK-cell-dependent in vivo cytotoxicity and graft-versus-leukemia effects. Control of cytomegalovirus infection after allo-BMT was also impaired during GVHD. Thus, during GVHD, donor T cells compete with NK cells for IL-15 thereby inducing profound defects in NK-cell reconstitution that compromise both leukemia and pathogen-specific immunity.
Collapse
|
42
|
Lifestyle Behaviors, Perceived Stress, and Inflammation of Individuals With Chronic Graft-Versus-Host Disease. Cancer Nurs 2016; 41:11-22. [PMID: 27922915 DOI: 10.1097/ncc.0000000000000453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Stress is a potent immunomodulator contributing to chronic conditions. Chronic graft-versus-host disease (cGVHD) is a life-threatening late effect of allogeneic hematopoietic cell transplantation associated with stress and exaggerated immune response that may be associated to lifestyle behaviors. OBJECTIVE The aim of this study is to explore associations among lifestyle behaviors, perceived stress, and inflammation of individuals with cGVHD. METHODS A secondary analysis from a prospective observational study of 24 adults (≥18 years) with cGVHD was conducted. Demographic, clinical, and symptom data were assessed using medical records and validated self-report measures; inflammatory markers were assessed using multiplex and enzyme-linked-immunosorbent assays from plasma. RESULTS Spiritual growth and total perceived stress were correlated (P < .001). Nutrition and C-reactive protein were negatively correlated (P = .02). Physical activity and cytokines (interleukin [IL]-2, IL-4, IL-5, IL-7, IL-10, IL-12, IL-13, IL-17, and granulocyte colony-stimulating factor) were associated (P < .05). Perceived stress and inflammatory markers were not associated. Individuals did not routinely engage in assessed health-promoting lifestyle behaviors. CONCLUSION Associations in this sample were noted among lifestyle behaviors, perceived stress, and inflammation. Given these promising findings, further research with a larger sample size is needed to test these associations. Activity, nutrition, stress management, and social support interventions may reduce stress and inflammation. Particularly, connecting with one's higher-self may reduce levels of perceived stress. Finding ways to engage survivors in healthy lifestyle behaviors should be explored. IMPLICATIONS FOR PRACTICE Information from this study allows nurses to be informed about the role of lifestyle behaviors on inflammation and stress to provide anticipatory guidance to HCT survivors regarding lifestyle choices that may mitigate inflammation and stress to promote positive health outcomes.
Collapse
|
43
|
Pidala J, Sigdel TK, Wang A, Hsieh S, Inamoto Y, Martin PJ, Flowers ME, Hansen JA, Lee SJ, Sarwal MM. A combined biomarker and clinical panel for chronic graft versus host disease diagnosis. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2016; 3:3-16. [PMID: 28138397 PMCID: PMC5259564 DOI: 10.1002/cjp2.58] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/18/2016] [Indexed: 12/30/2022]
Abstract
Whilst many chronic graft versus host disease (cGVHD) biomarkers have been previously reported, few have been verified in an independent cGVHD cohort. We aimed to verify the diagnostic accuracy of previously reported markers of cGVHD in a multi-centre Chronic GVHD Consortium. A total of 42 RNA and 18 protein candidate biomarkers were assessed amongst 59 cGVHD cases and 33 matched non-GVHD controls. Total RNA was isolated from PBMC, and RNA markers were quantified using PCR. Serum protein markers were quantified using ELISA. A combined 3 RNA biomarker (IRS2, PLEKHF1 and IL1R2) and 2 clinical variables (recipient CMV serostatus and conditioning regimen intensity) panel accurately (AUC 0.81) segregated cGVHD cases from controls. Other studied RNA and protein markers were not confirmed as accurate cGVHD diagnostic biomarkers. The studied markers failed to segregate higher risk cGVHD (per overall NIH 0-3 score, and overlap versus classic cGVHD status). These data support the need for multiple independent verification studies for the ultimate clinical application of cGVHD diagnostic biomarkers.
Collapse
Affiliation(s)
- Joseph Pidala
- Department of Blood and Marrow Transplantation H. Lee Moffitt Cancer Center and Research Institute Tampa FL USA
| | - Tara K Sigdel
- Department of Surgery University of California San Francisco San Francisco CA USA
| | - Anyou Wang
- Department of Surgery University of California San Francisco San Francisco CA USA
| | - Sue Hsieh
- Department of Surgery University of California San Francisco San Francisco CA USA
| | - Yoshi Inamoto
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - Paul J Martin
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - Mary Ed Flowers
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - John A Hansen
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - Stephanie J Lee
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - Minnie M Sarwal
- Department of Surgery University of California San Francisco San Francisco CA USA
| |
Collapse
|
44
|
Hu R, Liu Y, Su M, Song Y, Rood D, Lai L. Transplantation of Donor-Origin Mouse Embryonic Stem Cell-Derived Thymic Epithelial Progenitors Prevents the Development of Chronic Graft-versus-Host Disease in Mice. Stem Cells Transl Med 2016; 6:121-130. [PMID: 28170174 PMCID: PMC5442732 DOI: 10.5966/sctm.2016-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/16/2016] [Indexed: 01/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant diseases. However, chronic graft-versus-host disease (cGVHD) remains a significant cause of late morbidity and mortality after allogeneic HSCT. cGVHD often manifests as autoimmune syndrome. Thymic epithelial cells (TECs) play a critical role in supporting negative selection and regulatory T-cell (Treg) generation. Studies have shown that damage in TECs is sufficient to induce cGVHD. We have previously reported that mouse embryonic stem cells (mESCs) can be selectively induced to generate thymic epithelial progenitors (TEPs) in vitro. When transplanted in vivo, mESC-TEPs further develop into TECs that support T-cell development. We show here that transplantation of donor-origin mESC-TEPs into cGVHD recipients induces immune tolerance to both donor and host antigens and prevents the development of cGVHD. This is associated with more TECs and Tregs. Our results suggest that embryonic stem cell-derived TEPs may offer a new tool to control cGVHD. Stem Cells Translational Medicine 2017;6:121-130.
Collapse
Affiliation(s)
- Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yalan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
45
|
Yu J, Storer BE, Kushekhar K, Abu Zaid M, Zhang Q, Gafken PR, Ogata Y, Martin PJ, Flowers ME, Hansen JA, Arora M, Cutler C, Jagasia M, Pidala J, Hamilton BK, Chen GL, Pusic I, Lee SJ, Paczesny S. Biomarker Panel for Chronic Graft-Versus-Host Disease. J Clin Oncol 2016; 34:2583-90. [PMID: 27217465 DOI: 10.1200/jco.2015.65.9615] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To identify diagnostic and prognostic markers of chronic graft-versus-host disease (cGVHD), the major cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). PATIENTS AND METHODS Using a quantitative proteomics approach, we compared pooled plasma samples obtained at matched time points after HCT (median, 103 days) from 35 patients with cGVHD and 18 without cGVHD (data are available via ProteomeXchange with identifier PXD002762). Of 105 proteins showing at least a 1.25-fold difference in expression, 22 were selected on the basis of involvement in relevant pathways and enzyme-linked immunosorbent assay availability. Chemokine (C-X-C motif) ligand 9 (CXCL9) and suppression of tumorigenicity 2 (ST2) also were measured on the basis of previously determined associations with GVHD. Concentrations of the four lead biomarkers were measured at or after diagnosis in plasma from two independent verification cohorts (n = 391) to determine their association with cGVHD. Their prognostic ability when measured at approximately day +100 after HCT was evaluated in plasma of a second verification cohort (n = 172). RESULTS Of 24 proteins measured in the first verification cohort, nine proteins were associated with cGVHD, and only four (ST2, CXCL9, matrix metalloproteinase 3, and osteopontin) were necessary to compose a four-biomarker panel with an area under the receiver operating characteristic curve (AUC) of 0.89 and significant correlation with cGVHD diagnosis, cGVHD severity, and nonrelapse mortality. In a second verification cohort, this panel distinguished patients with cGVHD (AUC, 0.75), and finally, the panel measured at day +100 could predict cGVHD occurring within the next 3 months with an AUC of 0.67 and 0.79 without and with known clinical risk factors, respectively. CONCLUSION We conclude that the biomarker panel measured at diagnosis or day +100 after HCT may allow patient stratification according to risk of cGVHD.
Collapse
Affiliation(s)
- Jeffrey Yu
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Barry E Storer
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Kushi Kushekhar
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Mohammad Abu Zaid
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Qing Zhang
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Philip R Gafken
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Yuko Ogata
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Paul J Martin
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Mary E Flowers
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - John A Hansen
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Mukta Arora
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Corey Cutler
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Madan Jagasia
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Joseph Pidala
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Betty K Hamilton
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - George L Chen
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Iskra Pusic
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Stephanie J Lee
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO
| | - Sophie Paczesny
- Jeffrey Yu, Kushi Kushekhar, Mohammad Abu Zaid, and Sophie Paczesny, Indiana University School of Medicine, Indianapolis, IN; Barry E. Storer, Paul J. Martin, Mary E. Flowers, John A. Hansen, Stephanie J. Lee, Qing Zhang, Philip R. Gafken, and Yuko Ogata, Fred Hutchinson Cancer Research Center; Barry E. Storer, University of Washington School of Medicine, Seattle, WA; Mukta Arora, University of Minnesota, Minneapolis, MN; Corey Cutler, Dana-Farber Cancer Institute, Boston, MA; Madan Jagasia, Vanderbilt University, Nashville, TN; Joseph Pidala, H. Lee Moffitt Cancer Center, Tampa, FL; Betty K. Hamilton, Cleveland Clinic Foundation, Cleveland, OH; George L. Chen, Roswell Park Cancer Institute, Buffalo, NY; and Iskra Pusic, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
46
|
Kim SW, Lim JY, Rhee CK, Kim JH, Park CK, Kim TJ, Cho CS, Min CK, Yoon HK. Effect of roflumilast, novel phosphodiesterase-4 inhibitor, on lung chronic graft-versus-host disease in mice. Exp Hematol 2016; 44:332-341.e4. [PMID: 26898707 DOI: 10.1016/j.exphem.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
Chronic graft-versus-host disease (CGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation. Roflumilast has anti-inflammatory effects and has been used in the treatment of inflammatory airway diseases. It is at present unclear whether roflumilast may have a therapeutic role in CGVHD. To test this, we used the B10.D2 → BALB/c model of CGVHD to address the therapeutic effect of roflumilast on the development of CGVHD. Lungs of animals treated with roflumilast exhibited less chronic inflammatory cell infiltration and fibrosis in the peribronchial and perivascular area versus allogeneic controls. To define the mechanism, we examined the expression of pro-inflammatory and profibrotic cytokines in the lung. Messenger RNA expression of interleukin-6 and interleukin-1β in the lungs was significantly reduced in recipients treated with roflumilast. Similar changes were observed in profibrotic cytokines and chemokines. In addition, the percentage of Foxp3(+) regulatory T cells (Tregs), which have the potential to attenuate GVHD, increased significantly within the CD4(+) T cells with roflumilast in the lungs. In conclusion, roflumilast treatment attenuated murine lung CGVHD by blocking T-cell activation mediated by Tregs and downregulating pro-inflammatory and profibrotic cytokines, resulting in the reduction of lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Sei Won Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Young Lim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hye Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Soo Cho
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Ki Min
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyoung Kyu Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Im A, Mitchell SA, Steinberg SM, Curtis L, Berger A, Baird K, Kuzmina Z, Joe G, Comis LE, Juckett M, Avila D, Baruffaldi J, Masuch L, Pirsl F, Pavletic SZ. Prevalence and determinants of fatigue in patients with moderate to severe chronic GvHD. Bone Marrow Transplant 2016; 51:705-12. [PMID: 26828906 DOI: 10.1038/bmt.2015.320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 11/09/2022]
Abstract
Although fatigue is common after allogeneic hematopoietic cell transplantation, little is known about fatigue in patients with chronic GvHD (cGvHD). The aim of this study was to explore factors associated with fatigue in cGvHD. Data were drawn from a sequentially recruited, cross-sectional study of adults with moderate or severe cGvHD (n=263). Respondents were classified as fatigued or not fatigued based on their response to a single item regarding loss of energy from the Lee cGvHD Symptom Scale. In univariate analysis, factors significantly associated with fatigue included performance status, number of prior cGvHD therapies, cGvHD symptom bother, self-assessed physical and mental health, nutritional status, walk velocity and self-reported physical activity. There were no significant associations between fatigue and disease-related cGvHD variables. Multivariable logistic regression demonstrated that being less active and having pulmonary and/or muscle/joint symptoms were independently associated with fatigue. In conclusion, clinically significant fatigue was prevalent in more than one-third of subjects with cGvHD, and was disabling. Absence of association with measures of cGvHD severity underscores the need to elucidate the pathogenesis of fatigue and its relationship with inflammatory activity. Pulmonary and muscle/joint symptoms and physical inactivity represent potential targets for intervention in clinical studies.
Collapse
Affiliation(s)
- A Im
- Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - S A Mitchell
- Outcomes Research Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, MD, USA
| | - S M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, National Cancer Institute, NIH, Bethesda, MD, USA
| | - L Curtis
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - A Berger
- Pain and Palliative Care, Clinical Center, NIH, Bethesda, MD, USA
| | - K Baird
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Z Kuzmina
- Oncology/Hematology, Hospital Hietzing, Vienna, Austria
| | - G Joe
- Rehabilitation Medicine Department, NIH, Bethesda, MD, USA
| | - L E Comis
- Rehabilitation Medicine Department, NIH, Bethesda, MD, USA
| | - M Juckett
- Division of Hematology and Medical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - D Avila
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - J Baruffaldi
- Clinical Research Directorate/CMRP, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - L Masuch
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - F Pirsl
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - S Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
48
|
Park Y, Cheong JW, Park MH, Kim MS, Kim JS, Kim HS. Effect of major histocompatibility complex haplotype matching by C4 and MICA genotyping on acute graft versus host disease in unrelated hematopoietic stem cell transplantation. Hum Immunol 2015; 77:176-83. [PMID: 26602146 DOI: 10.1016/j.humimm.2015.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
We explored whether matching of human leukocyte antigen (HLA) haplotypes between the recipient and donor of hematopoietic stem cell transplantation (HSCT) predicted by C4 and MICA typing is associated with the incidence of acute graft versus host disease (aGVHD). DNA preparations collected from a total of 81 recipient and donor pairs were used for PCR-based C4 subtyping and/or MICA sequence-based typing. Incidences of aGVHD were compared according to C4 and MICA matching. The six most common MICA alleles were MICA*008:01, *010:01, *002:01, *004, *009:01/049, and *012:01. Among the 59 unrelated pairs, HLA alleles were matched in 34 (57.6%). C4 subtypes were identical between the recipient and donor in 28 (82.4%) HLA-matched unrelated pairs, while MICA genotypes were matched in all HLA-matched unrelated pairs. In the 22 HLA-matched related pairs, all recipients showed identical C4 subtypes with their respective donors. In multivariate analysis, C4 mismatch was a significant risk factor associated with the development of aGVHD in unrelated HSCT (hazard ratio=3.24, P=0.006). PCR-based C4 subtyping is a simple method for assessing the genetic identity of the HLA region between a recipient and unrelated donor. This test would be also useful for prediction of aGVHD in HSCT.
Collapse
Affiliation(s)
- Yongjung Park
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Hee Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Korea Organ Donation Agency Laboratory, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Division of Transplantation Surgery, Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Sun Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Erkers T, Kaipe H, Nava S, Molldén P, Gustafsson B, Axelsson R, Ringdén O. Treatment of severe chronic graft-versus-host disease with decidual stromal cells and tracing with (111)indium radiolabeling. Stem Cells Dev 2015; 24:253-63. [PMID: 25162829 DOI: 10.1089/scd.2014.0265] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Decidual stromal cells (DSCs) isolated from fetal membranes of term placentas are easily expanded and are highly immunosuppressive in vitro. These cells express high levels of integrins that are of importance in homing to inflamed tissues. In this study, we investigated DSCs as a cellular therapy for chronic graft-versus-host disease (cGvHD), a severe complication after allogeneic hematopoietic stem cell transplantation. Subsequent to transplantation, three patients developed severe extensive cGvHD and were treated with DSCs (1-2.8 × 10(6) cells/kg). One-third of the DSCs administered to two patients were labeled with (111)Indium, and the in vivo distribution was tracked for 48 h. The (111)In-labeled DSCs were initially located in the lungs, followed by dissemination to the liver and spleen. The DSCs induced a partial response in two of the patients. Blood samples from the patients were extensively evaluated by flow cytometry, luminex, and enzyme-linked immunosorbent assay. The nonresponder had the highest proportion of T-cells with Th17 and Th2 phenotypes and the highest median plasma concentrations of IL-17 and IL-4. The same patient also had high frequencies of HLA-DR(+) T-cells and regulatory T-cells. To conclude, DSCs are safe to infuse with no adverse effects. We determined how stromal cells are distributed in vivo after infusion in a cGvHD setting. The methods established for analysis of blood samples will be useful in determining the effect of DSCs in a study comprising a larger patient material. This pilot study may provide a basis for further controlled investigations with DSCs in a clinical setting.
Collapse
Affiliation(s)
- Tom Erkers
- 1 Division of Therapeutic Immunology, Department of Laboratory Medicine, Center for Allogeneic Stem Cell Transplantation, Karolinska Institutet and Karolinska University Hospital , Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Jung JW, Han SJ, Song MK, Kim TI, Kim EK, Min YH, Cheong JW, Seo KY. Tear Cytokines as Biomarkers for Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2015; 21:2079-2085. [PMID: 26303101 DOI: 10.1016/j.bbmt.2015.08.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/14/2015] [Indexed: 01/11/2023]
Abstract
We investigated the tear cytokine profiles in patients who underwent stem cell transplantation (SCT) and attempted to evaluate whether tear cytokines are associated with the presence of systemic chronic graft-versus-host disease (GVHD), regardless of ocular GVHD status. We also tested tear cytokines as biomarkers for chronic ocular GVHD severity. Forty-four patients who underwent SCT were enrolled and their diagnosis of chronic GVHD was confirmed. Ocular surface parameters and tear cytokine profiles were evaluated and the correlations between concentrations of cytokines and ocular surface parameters or several chronic ocular GVHD severity scales were evaluated. Tear interleukin (IL)-2, IL-10, IL-17α, interferon (IFN)-γ, IL-6, and tumor necrosis factor (TNF)-α were elevated in patients with chronic systemic GVHD compared with patients without chronic systemic GVHD. Receiver-operating characteristic curve analysis revealed that area under the curve (AUC) values for tear IL-10 (AUC = .795), IL-17α (AUC = .821), IL-6 (AUC = .912), and TNF-α (AUC = .910) were significantly correlated with the presence of chronic GVHD (all P < .001). Tear IL-10, IL-6, and TNF-α showed a stronger correlation with ocular surface parameters than other cytokines and these cytokines also correlated with several chronic ocular GVHD severity scales (all P < .05). Our data suggest the tear cytokines are useful biomarkers for the diagnosis of chronic GVHD after SCT and chronic ocular GVHD severity.
Collapse
Affiliation(s)
- Ji Won Jung
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Department of Ophthalmology and Inha Vision Science Laboratory, Inha University School of Medicine, Incheon, South Korea
| | - Soo Jung Han
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Kyung Song
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-Im Kim
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea/Institute of Vision Research, Severance Biomedical Science Institute, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoo Hong Min
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|