1
|
Zeper LW, Bos C, Leermakers PA, Franssen GM, Raavé R, Hoenderop JGJ, de Baaij JHF. Liver and spleen predominantly mediate calciprotein particle clearance in a rat model of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F622-F634. [PMID: 38420675 DOI: 10.1152/ajprenal.00239.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.
Collapse
Affiliation(s)
- Lara W Zeper
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter A Leermakers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René Raavé
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Hamid AK, Pastor Arroyo EM, Calvet C, Hewitson TD, Muscalu ML, Schnitzbauer U, Smith ER, Wagner CA, Egli-Spichtig D. Phosphate Restriction Prevents Metabolic Acidosis and Curbs Rise in FGF23 and Mortality in Murine Folic Acid-Induced AKI. J Am Soc Nephrol 2024; 35:261-280. [PMID: 38189228 PMCID: PMC10914210 DOI: 10.1681/asn.0000000000000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
SIGNIFICANCE STATEMENT Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI). Furthermore, the study provides evidence for P i -sensitive osseous Fgf23 mRNA expression and reveals that P i restriction mitigated calciprotein particles (CPPs) formation, inflammation, acidosis, cardiac electrical disturbances, and mortality in mice with FA-AKI. These findings suggest that P i restriction may have a prophylactic potential in patients at risk for AKI. BACKGROUND In AKI, plasma FGF23 and P i rise rapidly and are independently associated with disease severity and outcome. METHODS The effects of normal (NP) and low (LP) dietary P i were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. RESULTS After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α -Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. CONCLUSIONS This study reveals P i -sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that P i restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary P i restriction could have prophylactic potential in patients at risk for AKI.
Collapse
Affiliation(s)
- Ahmad Kamal Hamid
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Eva Maria Pastor Arroyo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Charlotte Calvet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Timothy D. Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne Australia
| | - Maria Lavinia Muscalu
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Edward R. Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne Australia
| | - Carsten Alexander Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| |
Collapse
|
3
|
Kamei Y, Okumura Y, Adachi Y, Mori Y, Sakai M, Ohnishi K, Ohminami H, Masuda M, Yamanaka-Okumura H, Taketani Y. Humoral and cellular factors inhibit phosphate-induced vascular calcification during the growth period. J Clin Biochem Nutr 2023; 73:198-204. [PMID: 37970550 PMCID: PMC10636584 DOI: 10.3164/jcbn.23-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 11/17/2023] Open
Abstract
Hyperphosphatemia is an independent and non-classical risk factor of cardiovascular disease and mortality in patients with chronic kidney disease (CKD). Increased levels of extracellular inorganic phosphate (Pi) are known to directly induce vascular calcification, but the detailed underlying mechanism has not been clarified. Although serum Pi levels during the growth period are as high as those observed in hyperphosphatemia in adult CKD, vascular calcification does not usually occur during growth. Here, we have examined whether the defence system against Pi-induced vascular calcification can exist during the growth period using mice model. We found that calcification propensity of young serum (aged 3 weeks) was significantly lower than that of adult serum (10 months), possibly due to high fetuin-A levels. In addition, when the aorta was cultured in high Pi medium in vitro, obvious calcification was observed in the adult aorta but not in the young aorta. Furthermore, culture in high Pi medium increased the mRNA level of tissue-nonspecific alkaline phosphatase (TNAP), which degrades pyrophosphate, only in the adult aorta. Collectively, our findings indicate that the aorta in growing mouse may be resistant to Pi-induced vascular calcification via a mechanism in which high serum fetuin-A levels and suppressed TNAP expression.
Collapse
Affiliation(s)
- Yuki Kamei
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Department of Food and Nutrition, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yosuke Okumura
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuki Mori
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Maiko Sakai
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Department of Food Science and Nutrition, Doshisha Women’s College of Liberal Arts, Teramachi Nishi-iru, Imadegawa-dori, Kamigyo-ku, Kyoto 602-0893, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
4
|
Söbü E, Yildiz Z, Karaaslan A, Çetin C, Akbeyaz BB, Özçora GK, Yilmaz B. EVALUATION OF FETUIN-A LEVELS IN THE EARLY STAGE OF AUTOIMMUNE THYROIDITIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:301-306. [PMID: 38356969 PMCID: PMC10863959 DOI: 10.4183/aeb.2023.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Context Fetuin-A is a multifunctional protein and is known to be related to metabolic syndrome, vascular calcification, and inflammation. Objective The purpose of this study was to determine the effects of serum fetuin-A levels on autoimmune thyroiditis without thyroid dysfunction. Subjects and Methods This prospective case-control study was performed at the pediatric endocrinology outpatient clinic of a tertiary health institution in Istanbul, Turkey between July 2022 and October 2022. Serum fetuin-A levels were assessed using a human fetuin-A enzyme-linked immunosorbent assay (ELISA) kit (Elabscience Biotechnology, Houston, TX, USA). Results The study included 86 participants, of which 42 were patients with Hashimoto's thyroiditis (HT) and 44 were controls. Autoimmune thyroiditis without thyroid dysfunction was found to be related to lower plasma fetuin-A levels. There were no statistically significant differences in the neutrophil-to-lymphocyte ratio, fasting blood glucose level, insulin level, or HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) value between the groups. A fetuin-A level of ≤162.22 µg/mL (80.95% sensitivity and 70.45% specificity) was found to support the identification of autoimmune thyroiditis. Conclusions The findings of our study suggest that autoimmune thyroiditis without thyroid dysfunction is related to lower fetuin-A levels. Low fetuin-A levels are known to be associated with an increased risk of cardiovascular disease, suggesting that careful monitoring is required in patients with low fetuin-A levels.
Collapse
Affiliation(s)
- E. Söbü
- Department of Pediatric Endocrinology, “Dr. Lutfi Kirdar” City Hospital, Istanbul, Turkey
| | - Z. Yildiz
- Department of Medical Biochemistry, “Dr. Lutfi Kirdar” City Hospital, Istanbul, Turkey
| | - A. Karaaslan
- Department of Pediatrics, “Dr. Lutfi Kirdar” City Hospital, Istanbul, Turkey
| | - C. Çetin
- Department of Pediatrics, “Dr. Lutfi Kirdar” City Hospital, Istanbul, Turkey
| | - B. Berk Akbeyaz
- Department of Pediatrics, “Dr. Lutfi Kirdar” City Hospital, Istanbul, Turkey
| | - G.D. Kaya Özçora
- Gaziantep Hasan Kalyoncu University, Faculty of Medical Sciences, Department of Pediatrics, Gaziantep, Turkey
| | - B. Yilmaz
- Department of Pediatrics, “Dr. Lutfi Kirdar” City Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Pathak AK, Tiwari V, Kulshrestha MR, Singh S, Singh S, Singh V. Impact of essential metals on insulin sensitivity and fetuin in obesity-related type 2 diabetes pathogenesis. J Diabetes Metab Disord 2023; 22:703-712. [PMID: 37255834 PMCID: PMC10225454 DOI: 10.1007/s40200-023-01193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/26/2023] [Indexed: 06/01/2023]
Abstract
Purpose Essential metals may be crucial in obesity and type 2 diabetes (T2DM); diabesity pathogenesis and consequences. This study aimed to determine the metal levels in obese and non-obese patients with and without T2DM and their relationships with fetuin-A(Fet-A) levels, insulin sensitivity, and insulin resistance. Methods A total of 314 participants were enrolled, with 160 newly diagnosed T2DM patients and 154 non-T2DM subjects categorized into diabetic obese (n = 57), diabetic non-obese (n = 103), non-diabetic obese (n = 48), and non-diabetic non-obese (n = 106) subgroups. Fet-A, insulin sensitivity (QUCKI)/resistance (HOMA-IR), fasting glucose, and body mass index (BMI) were assessed. The essential metals were measured using inductively coupled plasma mass spectroscopy (ICP-MS). Results Fet-A levels were 3-fold higher (1391.4 ± 839.8 ng/ml) in T2DM patients than in non-T2DM (2165.6 ± 651.9 vs. 424.3 ± 219.1 ng/ml, p < 0.0001). Fet-A levels were 2.3-fold higher in the diabetic obese group than in the diabetic non-obese group (p < 0.0001). Fet-A levels were 2.0-fold higher in the diabetic non-obese group than in the non-diabetic obese group (p < 0.0001). Fet-A levels were positively correlated with insulin resistance (HOMA-IR) (r = 0.34, p < 0.0001) and negatively correlated with insulin sensitivity (QUIKI) (r = -0.41, p < 0.0001).Cu, Se, Zn, and Fe levels were significantly lower in diabetic patients than in non-diabetic patients (p < 0.05). Se and Zn were significantly correlated with Fet-A (r = -0.41, p = 0.049 and r = -0.42, p = 0.001, respectively). Se and Zn were also correlated with insulin resistance (HOMA-IR) (r = -0.45, p = 0.049 and r = -0.36, p = 0.012, respectively) and insulin sensitivity (QUIKI) (r = 0.49, p = 0.042 and r = 0.30, p = 0.003, respectively). Similarly, Fe was negatively correlated with insulin levels (r = -0.33, p = 0.04) and insulin sensitivity (r = -0.34, p = 0.30). However, Mn was significantly correlated with Fet-A (r = 0.37, p = 0.001) and insulin resistance/sensitivity (r = 0.24, p = 0.026 and r = -0.24, p = 0.041) respectively in the diabetic obese group. Mg was an independent predictor of diabesity. Conclusions Mg play a significant role in obesity-related T2DM pathogenesis and complications via Fet-A, insulin sensitivity, and resistance modifications.
Collapse
Affiliation(s)
- Anumesh K. Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| | - Vandana Tiwari
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| | - Manish Raj Kulshrestha
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| | - Shivani Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| | - Shefali Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| | - Vikram Singh
- Department of General Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
6
|
Bernabei I, So A, Busso N, Nasi S. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19:10-27. [PMID: 36509917 DOI: 10.1038/s41584-022-00875-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Zeper LW, Smith ER, Ter Braake AD, Tinnemans PT, de Baaij JHF, Hoenderop JGJ. Calciprotein Particle Synthesis Strategy Determines In Vitro Calcification Potential. Calcif Tissue Int 2023; 112:103-117. [PMID: 36326853 PMCID: PMC9813048 DOI: 10.1007/s00223-022-01036-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Circulating calciprotein particles (CPP), colloids of calcium, phosphate and proteins, were identified as potential drivers of the calcification process in chronic kidney disease. The present study compared CPP produced using different protocols with respect to particle morphology, composition, particle number and in vitro calcification potency. CPP were synthesized with 4.4 mM (CPP-A and B) or 6 mM (CPP-C and D) phosphate and 2.8 mM (CPP-A and B) or 10 mM (CPP-C and D) calcium, with either bovine fetuin-A (CPP-C) or fetal bovine serum (CPP-A, B and D) as a source of protein, and incubated for 7 (CPP-A2) or 14 days (CPP-B2), 12 h (CPP-C2, D2 and B1) or 30 min (CPP-D1). Particle number was determined with nanoparticle tracking and calcium content was measured in CPP preparations and to determine human vascular smooth muscle cell (hVSMC) calcification. Morphologically, CPP-C2 were the largest. Particle number did not correspond to the calcium content of CPP. Both methods of quantification resulted in variable potencies of CPP2 to calcify VSMC, with CPP-B2 as most stable inducer of hVSMC calcification. In contrast, CPP-B1 and D1 were unable to induce calcification of hVSMC, and endogenous CPP derived from pooled serum of dialysis patients were only able to calcify hVSMC to a small extent compared to CPP2.CPP synthesized using different protocols appear morphologically similar, but in vitro calcification potency is dependent on composition and how the CPP are quantified. Synthetic CPP are not comparable to endogenous CPP in terms of the calcification propensity.
Collapse
Affiliation(s)
- Lara W Zeper
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Nephrology, University of Melbourne, Parkville, VIC, Australia
| | - Anique D Ter Braake
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands
| | - Paul T Tinnemans
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Mattinzoli D, Li M, Castellano G, Ikehata M, Armelloni S, Elli FM, Molinari P, Tsugawa K, Alfieri CM, Messa P. Fibroblast growth factor 23 level modulates the hepatocyte's alpha-2-HS-glycoprotein transcription through the inflammatory pathway TNFα/NFκB. Front Med (Lausanne) 2022; 9:1038638. [PMID: 36569120 PMCID: PMC9769965 DOI: 10.3389/fmed.2022.1038638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction High serum levels of fibroblast growth factor 23 (FGF23) characterize chronic kidney disease (CKD) since its early stages and have been suggested to contribute to inflammation and cardiovascular disease. However, the mechanisms linking FGF23 with these pathological conditions remain still incompletely defined. The alpha-2-HS-glycoprotein (AHSG), a liver-produced anti-inflammatory cytokine, is highly modulated by inflammation itself, also through the TNFα/NFκB signaling pathway. In our previous study, we found that FGF23 modulates the production of AHSG in the liver in a bimodal way, with stimulation and inhibition at moderately and highly increased FGF23 concentrations, respectively. Methods The present study, aiming to gain further insights into this bimodal behavior, was performed in hepatocyte human cells line (HepG2), using the following methods: immunochemistry, western blot, chromatin immunoprecipitation, fluorescence in situ hybridization (FISH), qRT-PCR, and gene SANGER sequencing. Results We found that FGF23 at 400 pg/ml activates nuclear translocation of NFκB, possibly increasing AHSG transcription. At variance, at 1,200 pg/ml, FGF23 inactivates NFκB through the activation of two specific NFκB inhibitors (IκBα and NKIRAS2) and induces its detachment from the AHSG promoter, reducing AHSG transcription. Conclusion These results add another piece to the puzzle of FGF23 involvement in the multifold interactions between CKD, inflammation, and cardiovascular disease, suggesting the involvement of the NFκB pathway, which might represent a potential therapeutic target in CKD.
Collapse
Affiliation(s)
- Deborah Mattinzoli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy,*Correspondence: Deborah Mattinzoli,
| | - Min Li
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy
| | - Giuseppe Castellano
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Masami Ikehata
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy
| | - Silvia Armelloni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy,Silvia Armelloni,
| | - Francesca Marta Elli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| | - Paolo Molinari
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Carlo Maria Alfieri
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Piergiorgio Messa
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Li X, Zhang W, Fan Y, Niu X. MV-mediated biomineralization mechanisms and treatments of biomineralized diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
10
|
Development of a cyclic-inverso AHSG/Fetuin A-based peptide for inhibition of calcification in osteoarthritis. Osteoarthritis Cartilage 2022; 31:727-740. [PMID: 36414226 DOI: 10.1016/j.joca.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Ectopic calcification is an important contributor to chronic diseases, such as osteoarthritis. Currently, no effective therapies exist to counteract calcification. We developed peptides derived from the calcium binding domain of human Alpha-2-HS-Glycoprotein (AHSG/Fetuin A) to counteract calcification. METHODS A library of seven 30 amino acid (AA) long peptides, spanning the 118 AA Cystatin 1 domain of AHSG, were synthesized and evaluated in an in vitro calcium phosphate precipitation assay. The best performing peptide was modified (cyclic, retro-inverso and combinations thereof) and evaluated in cellular calcification models and the rat Medial Collateral Ligament Transection + Medial Meniscal Tear (MCLT + MMT) osteoarthritis model. RESULTS A cyclic peptide spanning AA 1-30 of mature AHSG showed clear inhibition of calcium phosphate precipitation in the nM-pM range that far exceeded the biological activity of the linear peptide variant or bovine Fetuin. Biochemical and electron microscopy analyses of calcium phosphate particles revealed a similar, but distinct, mode of action in comparison with bFetuin. A cyclic-inverso variant of the AHSG 1-30 peptide inhibited calcification of human articular chondrocytes, vascular smooth muscle cells and during osteogenic differentiation of bone marrow derived stromal cells. Lastly, we evaluated the effect of intra-articular injection of the cyclic-inverso AHSG 1-30 peptide in a rat osteoarthritis model. A significant improvement was found in histopathological osteoarthritis score and animal mobility. Serum levels of IFNγ were found to be lower in AHSG 1-30 peptide treated animals. CONCLUSIONS The cyclic-inverso AHSG 1-30 peptide directly inhibits the calcification process and holds the potential for future application in osteoarthritis.
Collapse
|
11
|
Gelli R, Pucci V, Ridi F, Baglioni P. A study on biorelevant calciprotein particles: Effect of stabilizing agents on the formation and crystallization mechanisms. J Colloid Interface Sci 2022; 620:431-441. [DOI: 10.1016/j.jcis.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
|
12
|
Tiong MK, Cai MMX, Toussaint ND, Tan SJ, Pasch A, Smith ER. Effect of nutritional calcium and phosphate loading on calciprotein particle kinetics in adults with normal and impaired kidney function. Sci Rep 2022; 12:7358. [PMID: 35513558 PMCID: PMC9072391 DOI: 10.1038/s41598-022-11065-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Plasma approaches metastability with respect to its calcium and phosphate content, with only minor perturbations in ionic activity needed to sustain crystal growth once nucleated. Physiologically, calcium and phosphate are intermittently absorbed from the diet each day, yet plasma concentrations of these ions deviate minimally post-prandially. This implies the existence of a blood-borne mineral buffer system to sequester calcium phosphates and minimise the risk of deposition in the soft tissues. Calciprotein particles (CPP), endogenous mineral-protein colloids containing the plasma protein fetuin-A, may fulfill this function but definitive evidence linking dietary mineral loading with their formation is lacking. Here we demonstrate that CPP are formed as a normal physiological response to feeding in healthy adults and that this occurs despite minimal change in conventional serum mineral markers. Further, in individuals with Chronic Kidney Disease (CKD), in whom mineral handling is impaired, we show that both fasting and post-prandial levels of CPP precursors are markedly augmented and strongly inversely correlated with kidney function. This study highlights the important, but often neglected, contribution of colloidal biochemistry to mineral homeostasis and provides novel insight into the dysregulation of mineral metabolism in CKD.
Collapse
Affiliation(s)
- Mark K Tiong
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia. .,Department of Medicine (RMH), University of Melbourne, Parkville, Australia.
| | - Michael M X Cai
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Andreas Pasch
- Calciscon AG, Biel, Switzerland.,Lindenhofspital Bern, Bern, Switzerland.,Department of Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia. .,Department of Medicine (RMH), University of Melbourne, Parkville, Australia.
| |
Collapse
|
13
|
Interplay between Fatty Acid Binding Protein 4, Fetuin-A, Retinol Binding Protein 4 and Thyroid Function in Metabolic Dysregulation. Metabolites 2022; 12:metabo12040300. [PMID: 35448487 PMCID: PMC9026429 DOI: 10.3390/metabo12040300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022] Open
Abstract
Signalling between the tissues integrating synthesis, transformation and utilization of energy substrates and their regulatory hormonal axes play a substantial role in the development of metabolic disorders. Interactions between cytokines, particularly liver derived hepatokines and adipokines, secreted from adipose tissue, constitute one of major areas of current research devoted to metabolic dysregulation. The thyroid exerts crucial influence on the maintenance of basal metabolic rate, thermogenesis, carbohydrate and lipid metabolism, while its dysfunction promotes the development of metabolic disorders. In this review, we discuss the interplay between three adipokines: fatty acid binding protein type 4, fetuin-A, retinol binding protein type 4 and thyroid hormones, that shed a new light onto mechanisms underlying atherosclerosis, cardiovascular complications, obesity, insulin resistance and diabetes accompanying thyroid dysfunction. Furthermore, we summarize clinical findings on those cytokines in the course of thyroid disorders.
Collapse
|
14
|
Kim JS, Hwang HS. Vascular Calcification in Chronic Kidney Disease: Distinct Features of Pathogenesis and Clinical Implication. Korean Circ J 2021; 51:961-982. [PMID: 34854578 PMCID: PMC8636761 DOI: 10.4070/kcj.2021.0995] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with a higher prevalence of vascular calcification (VC) and cardiovascular disease. VC in CKD patients showed different pathophysiological features from those of the general population. The pathogenesis of VC in CKD is a highly organized process, and prior studies have suggested that patients with CKD have their own specific contributors to the phenotypic change of vascular smooth muscle cells (VSMCs), including uremic toxins, CKD-mineral and bone disease (CKD-MBD), inflammation, and oxidative stress. For the diagnosis and monitoring of VC in CKD, several imaging modalities, including plain radiography, ultrasound, and computed tomography have been utilized. VC in CKD patients has distinct clinical features and implications. CKD patients revealed a more intense and more prevalent calcification on the intimal and medial layers, whereas intimal calcification is predominantly observed in the general population. While a higher VC score is clearly associated with a higher risk of all-cause mortality and cardiovascular events, a greater VC score in CKD patients does not fully reflect the burden of atherosclerosis, because they have more calcification at equal volumes of atheromatous plaques. The primary goal of VC treatment in CKD is the prevention of VC progression, and the main management is to control the biochemical components of CKD-MBD. Cinacalcet and non-calcium-containing phosphate binders are the mainstay of VC prevention in CKD-MBD management. VC in patients with CKD is an ongoing area of research and is expected to advance soon.
Collapse
Affiliation(s)
- Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
15
|
Sekaran S, Vimalraj S, Thangavelu L. The Physiological and Pathological Role of Tissue Nonspecific Alkaline Phosphatase beyond Mineralization. Biomolecules 2021; 11:1564. [PMID: 34827562 PMCID: PMC8615537 DOI: 10.3390/biom11111564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme responsible for skeletal tissue mineralization. It is involved in the dephosphorylation of various physiological substrates, and has vital physiological functions, including extra-skeletal functions, such as neuronal development, detoxification of lipopolysaccharide (LPS), an anti-inflammatory role, bile pH regulation, and the maintenance of the blood brain barrier (BBB). TNAP is also implicated in ectopic pathological calcification of soft tissues, especially the vasculature. Although it is the crucial enzyme in mineralization of skeletal and dental tissues, it is a logical clinical target to attenuate vascular calcification. Various tools and studies have been developed to inhibit its activity to arrest soft tissue mineralization. However, we should not neglect its other physiological functions prior to therapies targeting TNAP. Therefore, a better understanding into the mechanisms mediated by TNAP is needed for minimizing off targeted effects and aid in the betterment of various pathological scenarios. In this review, we have discussed the mechanism of mineralization and functions of TNAP beyond its primary role of hard tissue mineralization.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| | - Selvaraj Vimalraj
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| |
Collapse
|
16
|
Parashar A, Gourgas O, Lau K, Li J, Muiznieks L, Sharpe S, Davis E, Cerruti M, Murshed M. Elastin calcification in in vitro models and its prevention by MGP's N-terminal peptide. J Struct Biol 2021; 213:107637. [PMID: 33059036 DOI: 10.1016/j.jsb.2020.107637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 01/17/2023]
Abstract
Medial calcification has been associated with diabetes, chronic kidney disease, and genetic disorders like pseudoxanthoma elasticum. Recently, we showed that genetic reduction of arterial elastin content reduces the severity of medial calcification in matrix Gla protein (MGP)-deficient and Eln haploinsufficient Mgp-/-;Eln+/- mice. This study suggests that there might be a direct effect of elastin amount on medial calcification. We studied this using novel in vitro systems, which are based on elastin or elastin-like polypeptides. We first examined the mineral deposition properties of a transfected pigmented epithelial cell line that expresses elastin and other elastic lamina proteins. When grown in inorganic phosphate-supplemented medium, these cells deposited calcium phosphate minerals, which could be prevented by an N'-terminal peptide of MGP (m3pS) carrying phosphorylated serine residues. We next confirmed these findings using a cell-free elastin-like polypeptide (ELP3) scaffold, where the peptide prevented mineral maturation. Overall, this work describes a novel cell culture model for elastocalcinosis and examines the inhibition of mineral deposition by the m3pS peptide in this and a cell-free elastin-based scaffold. Our study provides strong evidence suggesting the critical functional roles of MGP's phosphorylated serine residues in the prevention of elastin calcification and proposes a possible mechanism of their action.
Collapse
Affiliation(s)
- Abhinav Parashar
- Faculty of Dentistry, McGill University, Montreal, Québec, Canada
| | - Ophélie Gourgas
- Department of Medicine, McGill University, Montreal, Québec, Canada
| | - Kirk Lau
- Materials Engineering, McGill University, Montreal, Québec, Canada
| | - Jingjing Li
- Department of Medicine, McGill University, Montreal, Québec, Canada
| | - Lisa Muiznieks
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elaine Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Marta Cerruti
- Materials Engineering, McGill University, Montreal, Québec, Canada
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Québec, Canada; Department of Medicine, McGill University, Montreal, Québec, Canada; Shriners Hospital for Children, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Yu L, Wei M. Biomineralization of Collagen-Based Materials for Hard Tissue Repair. Int J Mol Sci 2021; 22:944. [PMID: 33477897 PMCID: PMC7833386 DOI: 10.3390/ijms22020944] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxyapatite (HA) reinforced collagen fibrils serve as the basic building blocks of natural bone and dentin. Mineralization of collagen fibrils play an essential role in ensuring the structural and mechanical functionalities of hard tissues such as bone and dentin. Biomineralization of collagen can be divided into intrafibrillar and extrafibrillar mineralization in terms of HA distribution relative to collagen fibrils. Intrafibrillar mineralization is termed when HA minerals are incorporated within the gap zone of collagen fibrils, while extrafibrillar mineralization refers to the minerals that are formed on the surface of collagen fibrils. However, the mechanisms resulting in these two types of mineralization still remain debatable. In this review, the evolution of both classical and non-classical biomineralization theories is summarized. Different intrafibrillar mineralization mechanisms, including polymer induced liquid precursor (PILP), capillary action, electrostatic attraction, size exclusion, Gibbs-Donnan equilibrium, and interfacial energy guided theories, are discussed. Exemplary strategies to induce biomimetic intrafibrillar mineralization using non-collagenous proteins (NCPs), polymer analogs, small molecules, and fluidic shear stress are discussed, and recent applications of mineralized collagen fibers for bone regeneration and dentin repair are included. Finally, conclusions are drawn on these proposed mechanisms, and the future trend of collagen-based materials for bone regeneration and tooth repair is speculated.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA;
| | - Mei Wei
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA;
- Department of Mechanical Engineering, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
18
|
Zhu H, Wang H, Jia Y, Cheng L, Cheng X. Increased serum calcium levels are associated with carotid atherosclerotic plaque in normocalcaemic individuals with type 2 diabetes. Ther Adv Endocrinol Metab 2021; 12:2042018821995369. [PMID: 33854752 PMCID: PMC8010831 DOI: 10.1177/2042018821995369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) have an elevated risk of atherosclerotic cardiovascular disease. Although previous data have suggested that serum calcium levels could be involved in T2DM and cardiovascular disease, whether this applies in T2DM patients with atherosclerosis remains unclear. This study therefore aimed to investigate the relationship between serum calcium levels within the physiological ranges and carotid atherosclerotic plaque in T2DM patients. METHODS A total of 594 normocalcaemic in-patients with T2DM were recruited, of whom 231 had carotid atherosclerotic plaque. Serum calcium levels were measured and carotid ultrasonography was performed. RESULTS Patients with plaque had significantly higher serum albumin-corrected calcium than those without plaque [9.02 (8.78-9.34) mg/dL versus 8.86 (8.66-9.06) mg/dL, p < 0.001]. As serum albumin-corrected calcium levels increased across tertiles, the percentage of plaque increased (27.6%, 35.5%, and 55.7%; p < 0.001). Logistic regression showed that serum albumin-corrected calcium levels were independently and positively correlated with the presence of plaque, but not parathyroid hormone levels. Compared with patients in the lowest serum calcium tertiles, the odds ratio for plaque in patients in the upper quartile was 2.47 (95% confidence interval 1.51-4.03, p < 0.001) after adjustment for potential confounders. CONCLUSION Serum albumin-corrected calcium levels are elevated in patients with T2DM and carotid atherosclerotic plaques.
Collapse
Affiliation(s)
- Huijing Zhu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Endocrinology & Metabolism, Heze Municipal Hospital, Heze, Shandong, China
| | - Huili Wang
- Department of Endocrinology & Metabolism, Heze Municipal Hospital, Heze, Shandong, China
| | | | - Lin Cheng
- Department of Endocrinology & Metabolism, Heze Municipal Hospital, Heze, Shandong, China
| | - Xingbo Cheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, China
| |
Collapse
|
19
|
Calciprotein Particles and Serum Calcification Propensity: Hallmarks of Vascular Calcifications in Patients with Chronic Kidney Disease. J Clin Med 2020; 9:jcm9051287. [PMID: 32365608 PMCID: PMC7288330 DOI: 10.3390/jcm9051287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular complications are one of the leading causes of mortality worldwide and are strongly associated with atherosclerosis and vascular calcification (VC). Patients with chronic kidney disease (CKD) have a higher prevalence of VC as renal function declines, which will result in increased mortality. Serum calciprotein particles (CPPs) are colloidal nanoparticles that have a prominent role in the initiation and progression of VC. The T50 test is a novel test that measures the conversion of primary to secondary calciprotein particles indicating the tendency of serum to calcify. Therefore, we accomplished a comprehensive review as the first integrated approach to clarify fundamental aspects that influence serum CPP levels and T50, and to explore the effects of CPP and calcification propensity on various chronic disease outcomes. In addition, new topics were raised regarding possible clinical uses of T50 in the assessment of VC, particularly in patients with CKD, including possible opportunities in VC management. The relationships between serum calcification propensity and cardiovascular and all-cause mortality were also addressed. The review is the outcome of a comprehensive search on available literature and could open new directions to control VC.
Collapse
|
20
|
Lee SJ, Lee IK, Jeon JH. Vascular Calcification-New Insights Into Its Mechanism. Int J Mol Sci 2020; 21:ijms21082685. [PMID: 32294899 PMCID: PMC7216228 DOI: 10.3390/ijms21082685] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC), which is categorized by intimal and medial calcification, depending on the site(s) involved within the vessel, is closely related to cardiovascular disease. Specifically, medial calcification is prevalent in certain medical situations, including chronic kidney disease and diabetes. The past few decades have seen extensive research into VC, revealing that the mechanism of VC is not merely a consequence of a high-phosphorous and -calcium milieu, but also occurs via delicate and well-organized biologic processes, including an imbalance between osteochondrogenic signaling and anticalcific events. In addition to traditionally established osteogenic signaling, dysfunctional calcium homeostasis is prerequisite in the development of VC. Moreover, loss of defensive mechanisms, by microorganelle dysfunction, including hyper-fragmented mitochondria, mitochondrial oxidative stress, defective autophagy or mitophagy, and endoplasmic reticulum (ER) stress, may all contribute to VC. To facilitate the understanding of vascular calcification, across any number of bioscientific disciplines, we provide this review of a detailed updated molecular mechanism of VC. This encompasses a vascular smooth muscle phenotypic of osteogenic differentiation, and multiple signaling pathways of VC induction, including the roles of inflammation and cellular microorganelle genesis.
Collapse
Affiliation(s)
- Sun Joo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea;
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-(53)-200-3182; Fax: +82-(53)-200-3155
| |
Collapse
|
21
|
Bressendorff I, Hansen D, Pasch A, Holt SG, Schou M, Brandi L, Smith ER. The effect of increasing dialysate magnesium on calciprotein particles, inflammation and bone markers: post hoc analysis from a randomized controlled clinical trial. Nephrol Dial Transplant 2019; 36:713-721. [DOI: 10.1093/ndt/gfz234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
The formation of calciprotein particles (CPPs) may be an important component of the humoral defences against ectopic calcification. Although magnesium (Mg) has been shown to delay the transition of amorphous calcium-/phosphate-containing primary CPP (CPP-1) to crystalline apatite-containing secondary CPP (CPP-2) ex vivo, effects on the endogenous CPP pool are unknown.
Methods
We used post hoc analyses from a randomized double-blind parallel-group controlled clinical trial of 28 days treatment with high dialysate Mg of 2.0 mEq/L versus standard dialysate Mg of 1.0 mEq/L in 57 subjects undergoing maintenance hemodialysis for end-stage kidney disease. CPP load, markers of systemic inflammation and bone turnover were measured at baseline and follow-up.
Results
After 28 days of treatment with high dialysate Mg, serum total CPP (−52%), CPP-1 (−42%) and CPP-2 (−68%) were lower in the high Mg group (all P < 0.001) but were unchanged in the standard dialysate Mg group. Tumour necrosis factor-α (−20%) and interleukin-6 (−22%) were also reduced with high dialysate Mg treatment (both P < 0.01). High dialysate Mg resulted in higher levels of bone-specific alkaline phosphatase (a marker of bone formation) (+17%) but lower levels of tartrate-resistant acid phosphatase 5 b (a marker of bone resorption; −33%) (both P < 0.01). Inflammatory cytokines and bone turnover markers were unchanged in the standard dialysate Mg group over the same period.
Conclusions
In this exploratory analysis, increasing dialysate Mg was associated with reduced CPP load and systemic inflammation and divergent changes in markers of bone formation and resorption.
Collapse
Affiliation(s)
- Iain Bressendorff
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Nephrology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Ditte Hansen
- Department of Nephrology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Andreas Pasch
- Calciscon AG, Nidau, Switzerland
- Insitute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Stephen G Holt
- Department of Nephrology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Lisbet Brandi
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
| | - Edward R Smith
- Department of Nephrology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Mancio J, Barros AS, Conceicao G, Pessoa-Amorim G, Santa C, Bartosch C, Ferreira W, Carvalho M, Ferreira N, Vouga L, Miranda IM, Vitorino R, Manadas B, Falcao-Pires I, Ribeiro VG, Leite-Moreira A, Bettencourt N. Epicardial adipose tissue volume and annexin A2/fetuin-A signalling are linked to coronary calcification in advanced coronary artery disease: Computed tomography and proteomic biomarkers from the EPICHEART study. Atherosclerosis 2019; 292:75-83. [PMID: 31783201 DOI: 10.1016/j.atherosclerosis.2019.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/27/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The role of epicardial adipose tissue (EAT) in the pathophysiology of late stage-coronary artery disease (CAD) has not been investigated. We explored the association of EAT volume and its proteome with advanced coronary atherosclerosis. METHODS The EPICHEART Study prospectively enrolled 574 severe aortic stenosis patients referred to cardiac surgery. Before surgery, EAT volume was quantified by computed tomography (CT). During surgery, epicardial, mediastinal (MAT) and subcutaneous (SAT) adipose tissue samples were collected to explore fat phenotype by analyzing the proteomic profile using SWATH-mass spectrometry; pericardial fluid and peripheral venous blood were also collected. CAD presence was defined as coronary artery stenosis ≥50% in invasive angiography and by CT-derived Agatston coronary calcium score (CCS). RESULTS EAT volume adjusted for body fat was associated with higher CCS, but not with the presence of coronary stenosis. In comparison with mediastinal and subcutaneous fat depots, EAT exhibited a pro-calcifying proteomic profile in patients with CAD characterized by upregulation of annexin-A2 and downregulation of fetuin-A; annexin-A2 protein levels in EAT samples were also positively correlated with CCS. We confirmed that the annexin-A2 gene was overexpressed in EAT samples of CAD patients and positively correlated with CCS. Fetuin-A gene was not detected in EAT samples, but systemic fetuin-A was higher in CAD than in non-CAD patients, suggesting that fetuin-A was locally downregulated. CONCLUSIONS In an elderly cohort of stable patients, CCS was associated with EAT volume and annexin-A2/fetuin-A signaling, suggesting that EAT might orchestrate pro-calcifying conditions in the late phases of CAD.
Collapse
Affiliation(s)
- Jennifer Mancio
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Portugal; Department of Cardiology, Centro Hospitalar de Vila Nova de Gaia, Portugal.
| | - Antonio S Barros
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Portugal
| | - Gloria Conceicao
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Portugal
| | - Guilherme Pessoa-Amorim
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Portugal
| | - Catia Santa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; III: Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Portugal
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Wilson Ferreira
- Department of Cardiology, Centro Hospitalar de Vila Nova de Gaia, Portugal
| | - Monica Carvalho
- Department of Cardiology, Centro Hospitalar de Vila Nova de Gaia, Portugal
| | - Nuno Ferreira
- Department of Cardiology, Centro Hospitalar de Vila Nova de Gaia, Portugal
| | - Luis Vouga
- Department of Cardiothoracic Surgery, Centro Hospitalar de Vila Nova de Gaia, Portugal
| | - Isabel M Miranda
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Portugal
| | - Rui Vitorino
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ines Falcao-Pires
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Portugal
| | - Vasco Gama Ribeiro
- Department of Cardiology, Centro Hospitalar de Vila Nova de Gaia, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Portugal; Department of Cardiothoracic Surgery, Centro Hospitalar de Sao Joao, Portugal
| | - Nuno Bettencourt
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
23
|
Lin YH, Zhu J, Meijer S, Franc V, Heck AJR. Glycoproteogenomics: A Frequent Gene Polymorphism Affects the Glycosylation Pattern of the Human Serum Fetuin/α-2-HS-Glycoprotein. Mol Cell Proteomics 2019; 18:1479-1490. [PMID: 31097672 PMCID: PMC6683009 DOI: 10.1074/mcp.ra119.001411] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Fetuin, also known as α-2-HS-glycoprotein (gene name: AHSG), is one of the more abundant glycoproteins secreted into the bloodstream. There are two frequently occurring alleles of human AHSG, resulting in three genotypes (AHSG*1, AHSG*2, and heterozygous AHSG1/2). The backbone amino acid sequences of fetuin coded by the AHSG*1 and AHSG*2 genes differ in two amino acids including one known O-glycosylation site (aa position 256). Although fetuin levels have been extensively studied, the originating genotype is often ignored in such analysis. As fetuin has been suggested repeatedly as a potential biomarker for several disorders, the question whether the gene polymorphism affects the fetuin profile is of great interest. In this work, we describe detailed proteoform profiles of fetuin, isolated from serum of 10 healthy and 10 septic patient individuals and investigate potential glycoproteogenomics correlations, e.g. how gene polymorphisms affect glycosylation. We established an efficient method for fetuin purification from individuals' serum using ion-exchange chromatography. Subsequently, we performed hybrid mass spectrometric approaches integrating data from native mass spectra and peptide-centric MS analysis. Our data reveal a crucial effect of the gene polymorphism on the glycosylation pattern of fetuin. Moreover, we clearly observed increased fucosylation in the samples derived from the septic patients. Our serum proteoform analysis, targeted at one protein obtained from 20 individuals, exposes the wide variability in proteoform profiles, which should be taken into consideration when using fetuin as biomarker. Importantly, focusing on a single or few proteins, the quantitative proteoform profiles can provide, as shown here, already ample data to classify individuals by genotype and disease state.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sander Meijer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; ¶Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam 1066 CX, the Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
24
|
Gelli R, Ridi F, Baglioni P. The importance of being amorphous: calcium and magnesium phosphates in the human body. Adv Colloid Interface Sci 2019; 269:219-235. [PMID: 31096075 DOI: 10.1016/j.cis.2019.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
Abstract
This article focuses on the relevance of amorphous calcium (and magnesium) phosphates in living organisms. Although crystalline calcium phosphate (CaP)-based materials are known to constitute the major inorganic constituents of human hard tissues, amorphous CaP-based structures, often in combination with magnesium, are frequently employed by Nature to build up components of our body and guarantee their proper functioning. After a brief description of amorphous calcium phosphate (ACP) formation mechanism and structure, this paper is focused on the stabilization strategies that can be used to enhance the lifetime of the poorly stable amorphous phase. The various locations of our body in which ACP (pure or in combination with Mg2+) can be found (i.e. bone, enamel, small intestine, calciprotein particles and casein micelles) are highlighted, showing how the amorphous nature of ACP is often of paramount importance for the achievement of a specific physiological function. The last section is devoted to ACP-based biomaterials, focusing on how these materials differ from their crystalline counterparts in terms of biological response.
Collapse
|
25
|
Ramos R, Zhang K, Quinn D, Sawyer SW, Mcloughlin S, Soman P. Measuring Changes in Electrical Impedance During Cell-Mediated Mineralization. Bioelectricity 2019; 1:73-84. [PMID: 34471812 PMCID: PMC8370274 DOI: 10.1089/bioe.2018.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fundamental electrical properties of bone have been attributed to the organic collagen and the inorganic mineral component; however, contributions of individual components within bone tissue toward the measured electrical properties are not known. In our study, we investigated the electrical properties of cell-mediated mineral deposition process and compared our results with cell-free mineralization. Materials and Methods: Saos-2 cells encapsulated within gelatin methacrylate (GelMA) hydrogels were chemically stimulated in osteogenic medium for a period of 4 weeks. The morphology, composition, and mechanical properties of the mineralized constructs were characterized using bright-field imaging, scanning electron microscopy (SEM) energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy (FITR), nuclear magnetic resonance spectroscopy (NMR), micro-CT, immunostaining, and mechanical compression tests. In parallel, a custom-made device was used to measure the electrical impedance of mineralized constructs. All results were compared with cell-free GelMA hydrogels mineralized through the simulated body fluid approach. Results: Results demonstrate a decrease in the electrical impedance of deposited mineral in both cell-mineralized and cell-free mineralized samples. Conclusions: This study establishes a model system to investigate in vivo and in vitro mineralization processes.
Collapse
Affiliation(s)
- Rafael Ramos
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
- Syracuse Biomaterial Institute, Syracuse, New York
| | - Kairui Zhang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
- Syracuse Biomaterial Institute, Syracuse, New York
| | - David Quinn
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
- Syracuse Biomaterial Institute, Syracuse, New York
| | - Stephen W. Sawyer
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
- Syracuse Biomaterial Institute, Syracuse, New York
| | - Shannon Mcloughlin
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
- Syracuse Biomaterial Institute, Syracuse, New York
| | - Pranav Soman
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
- Syracuse Biomaterial Institute, Syracuse, New York
| |
Collapse
|
26
|
Voelkl J, Lang F, Eckardt KU, Amann K, Kuro-O M, Pasch A, Pieske B, Alesutan I. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci 2019; 76:2077-2091. [PMID: 30887097 PMCID: PMC6502780 DOI: 10.1007/s00018-019-03054-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Medial vascular calcification has emerged as a putative key factor contributing to the excessive cardiovascular mortality of patients with chronic kidney disease (CKD). Hyperphosphatemia is considered a decisive determinant of vascular calcification in CKD. A critical role in initiation and progression of vascular calcification during elevated phosphate conditions is attributed to vascular smooth muscle cells (VSMCs), which are able to change their phenotype into osteo-/chondroblasts-like cells. These transdifferentiated VSMCs actively promote calcification in the medial layer of the arteries by producing a local pro-calcifying environment as well as nidus sites for precipitation of calcium and phosphate and growth of calcium phosphate crystals. Elevated extracellular phosphate induces osteo-/chondrogenic transdifferentiation of VSMCs through complex intracellular signaling pathways, which are still incompletely understood. The present review addresses critical intracellular pathways controlling osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification during hyperphosphatemia. Elucidating these pathways holds a significant promise to open novel therapeutic opportunities counteracting the progression of vascular calcification in CKD.
Collapse
MESH Headings
- Animals
- Calcium Phosphates/chemistry
- Calcium Phosphates/metabolism
- Cell Transdifferentiation
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Gene Expression Regulation
- Humans
- Hyperphosphatemia/complications
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Hyperphosphatemia/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Osteoblasts/metabolism
- Osteoblasts/pathology
- RANK Ligand/genetics
- RANK Ligand/metabolism
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/complications
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076, Tübingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Andreas Pasch
- Calciscon AG, Aarbergstrasse 5, 2560, Nidau-Biel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
| |
Collapse
|
27
|
Jirak P, Stechemesser L, Moré E, Franzen M, Topf A, Mirna M, Paar V, Pistulli R, Kretzschmar D, Wernly B, Hoppe UC, Lichtenauer M, Salmhofer H. Clinical implications of fetuin-A. Adv Clin Chem 2019; 89:79-130. [PMID: 30797472 DOI: 10.1016/bs.acc.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fetuin-A, also termed alpha2-Heremans-Schmid glycoprotein, is a 46kDa hepatocyte derived protein (hepatokine) and serves multifaceted functions.
Collapse
Affiliation(s)
- Peter Jirak
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Lars Stechemesser
- Department of Internal Medicine I, Divisions of Nephrology and Endocrinology, Paracelsus Medical University, Salzburg, Austria
| | - Elena Moré
- Department of Internal Medicine I, Divisions of Nephrology and Endocrinology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Franzen
- Department of Internal Medicine I, Divisions of Nephrology and Endocrinology, Paracelsus Medical University, Salzburg, Austria
| | - Albert Topf
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Vera Paar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Rudin Pistulli
- Department of Internal Medicine I, Division of Cardiology, Friedrich Schiller University Jena, Jena, Germany
| | - Daniel Kretzschmar
- Department of Internal Medicine I, Division of Cardiology, Friedrich Schiller University Jena, Jena, Germany
| | - Bernhard Wernly
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| | - Hermann Salmhofer
- Department of Internal Medicine I, Divisions of Nephrology and Endocrinology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
28
|
CKD, arterial calcification, atherosclerosis and bone health: Inter-relationships and controversies. Atherosclerosis 2018; 278:49-59. [DOI: 10.1016/j.atherosclerosis.2018.08.046] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/12/2018] [Accepted: 08/29/2018] [Indexed: 01/14/2023]
|
29
|
Tseng FY, Chen YT, Chi YC, Chen PL, Yang WS. Serum levels of fetuin-A are negatively associated with log transformation levels of thyroid-stimulating hormone in patients with hyperthyroidism or euthyroidism: An observational study at a medical center in Taiwan. Medicine (Baltimore) 2018; 97:e13254. [PMID: 30431610 PMCID: PMC6257609 DOI: 10.1097/md.0000000000013254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Fetuin-A is a protein with various biological functions. It plays a role in insulin resistance and arterial calcium deposition. Thyroid dysfunction may affect energy expenditure, glucose metabolism, and the risk of cardiovascular diseases. In the present study, we compared the serum fetuin-A concentrations in hyperthyroid patients with those in euthyroid patients.We recruited 30 newly-diagnosed hyperthyroid patients (the HY group) and treated them with anti-thyroid regimens as clinically indicated. We recruited 30 euthyroid individuals (the EU group) as controls. We compared laboratory parameters at the baseline and at 6 months. We then determined the associations between the levels of fetuin-A and free thyroxine (fT4), thyroid-stimulating hormone (TSH), or log transformation of TSH (logTSH).At the baseline, the HY patients had significantly higher serum fetuin-A levels than the EU patients (median [Q1, Q3]: 735.4 [537.9, 843.4] ng/mL vs 561.1[449.2, 670.5] ng/mL, P = .010). At 6 months, the serum fetuin-A levels of the HY patients decreased but were still higher than those of the EU patients (698.4 [627.6, 924.3] ng/mL vs 616.5 [498.2, 727.7] ng/mL, P = .002). At baseline, the serum levels of fetuin-A were negatively associated with logTSH (β = -53.79, P = .010). At 6 months, the levels of fetuin-A were positively associated with fT4 (β = 86.91, P = .039), and negatively associated with logTSH (β = -104.28, P < .001). Changes to the levels of fetuin-A within 6 months were negatively associated with changes to logTSH (β = -57.80, P = .019). The negative associations between fetuin-A levels and logTSH at baseline and at 6 months, and the changes during the 6 months remained significant after adjustment for sex and age (β = -51.72, P = .016; β = -103.11, P < .001; and β = -59.36, P = .020, respectively).The patients with hyperthyroidism had higher serum fetuin-A levels than the patients with euthyroidism. In patients with hyperthyroidism, the serum fetuin-A concentrations decreased after the anti-thyroid treatment. In the present study, serum fetuin-A concentrations were negatively associated with logTSH.
Collapse
Affiliation(s)
- Fen-Yu Tseng
- Department of Internal Medicine, National Taiwan University Hospital, and National Taiwan University College of Medicine
| | - Yen-Ting Chen
- Graduate Institute of Clinical Medicine, College of Medicine
| | - Yu-Chiao Chi
- Graduate Institute of Clinical Medicine, College of Medicine
| | - Pei-Lung Chen
- Department of Internal Medicine, National Taiwan University Hospital, and National Taiwan University College of Medicine
- Department of Medical Genetics, National Taiwan University Hospital
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital, and National Taiwan University College of Medicine
- Graduate Institute of Clinical Medicine, College of Medicine
| |
Collapse
|
30
|
Cai MMX, Smith ER, Kent A, Huang L, Hewitson TD, McMahon LP, Holt SG. Calciprotein Particle Formation in Peritoneal Dialysis Effluent Is Dependent on Dialysate Calcium Concentration. Perit Dial Int 2018; 38:286-292. [PMID: 29793980 DOI: 10.3747/pdi.2017.00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/05/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The accumulation of fetuin-A-containing calciprotein particles (CPP) in the serum of patients with renal disease and those with chronic inflammation may be involved in driving sterile inflammation and extraosseous mineral deposition. We previously showed that both fetuin-A and CPP were present in the peritoneal dialysis (PD) effluent of stable PD patients. It is unknown whether different PD fluids might affect the formation of CPP in vivo. METHOD Peritoneal effluent from 12 patients was collected after a 6-hour dwell with 7 different commercial PD fluids. Calciprotein particles and inflammatory cytokines were measured by flow cytometry. RESULTS High inter-subject variability in CPP concentration was observed. Peritoneal dialysis fluids containing 1.75 mmol/L calcium were associated with enhanced formation of CPP in vivo, compared with fluids containing 1.25 mmol/L calcium. Osmotic agent, fluid pH, and glucose concentration did not affect CPP formation. Peritoneal dialysis effluent CPP levels were not associated with changes in inflammatory cytokines. CONCLUSION High calcium-containing PD fluids favor intraperitoneal CPP formation. This finding may have relevance for future PD fluid design.
Collapse
Affiliation(s)
- Michael M X Cai
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia .,Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Australia
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Australia
| | - Annette Kent
- Eastern Health Integrated Renal Services, Eastern Health, Melbourne, Australia
| | - Louis Huang
- Eastern Health Integrated Renal Services, Eastern Health, Melbourne, Australia.,Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Australia
| | - Lawrence P McMahon
- Eastern Health Integrated Renal Services, Eastern Health, Melbourne, Australia.,Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Sakaguchi Y, Hamano T, Isaka Y. Magnesium and Progression of Chronic Kidney Disease: Benefits Beyond Cardiovascular Protection? Adv Chronic Kidney Dis 2018; 25:274-280. [PMID: 29793667 DOI: 10.1053/j.ackd.2017.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
Experimental and clinical studies have demonstrated that magnesium deficiency leads to hypertension, insulin resistance, and endothelial dysfunction, and is associated with an increased risk of cardiovascular events. Given that cardiovascular disease and CKD share similar risk factors, the low magnesium status may also contribute to CKD progression. In fact, lower serum magnesium levels and lower dietary magnesium intake are associated with an increased risk of incident CKD and progression to end-stage kidney disease. Because these associations are independent of traditional risk factors, other pathways might be involved in the relationship between magnesium deficiency and the risk of CKD progression. Recent evidence has shown that magnesium suppresses phosphate-induced vascular calcification. Magnesium impairs the crystallization of calcium phosphate-more specifically, the maturation of calciprotein particles. Considering that phosphate overload causes kidney damage, magnesium might counteract the phosphate toxicity to the kidney, as in the case of vascular calcification. This hypothesis is supported by an in vitro observation that magnesium alleviates proximal tubular cell injury induced by high phosphate. Potential usefulness of magnesium as a treatment option for phosphate toxicity in CKD should be further investigated by intervention studies.
Collapse
|
32
|
Bottini M, Mebarek S, Anderson KL, Strzelecka-Kiliszek A, Bozycki L, Simão AMS, Bolean M, Ciancaglini P, Pikula JB, Pikula S, Magne D, Volkmann N, Hanein D, Millán JL, Buchet R. Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. Biochim Biophys Acta Gen Subj 2018; 1862:532-546. [PMID: 29108957 PMCID: PMC5801150 DOI: 10.1016/j.bbagen.2017.11.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.
Collapse
Affiliation(s)
- Massimo Bottini
- University of Rome Tor Vergata, Department of Experimental Medicine and Surgery, 00133 Roma, Italy; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Saida Mebarek
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France
| | - Karen L Anderson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Agnieszka Strzelecka-Kiliszek
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Lukasz Bozycki
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ana Maria Sper Simão
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Joanna Bandorowicz Pikula
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Slawomir Pikula
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - David Magne
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France
| | - Niels Volkmann
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dorit Hanein
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rene Buchet
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France.
| |
Collapse
|
33
|
Tan SJ, Cai MM. Is there a role for newer biomarkers in chronic kidney disease-mineral and bone disorder management? Nephrology (Carlton) 2018; 22 Suppl 2:14-18. [PMID: 28429560 DOI: 10.1111/nep.13015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The current management of Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD) relies largely on clinical judgement and assessment of biochemical parameters including serum calcium, phosphate and intact parathyroid hormone concentrations. In the past two decades, there has been a leap in the understanding of the pathophysiology of CKD-MBD, leading to the discovery of novel biomarkers. The potential utility of these markers in this clinical setting is an area of intense investigation. In the absence of any guidelines aiding the clinician's understanding and application of these markers, we summarise the current available literature surrounding fibroblast growth factor-23, α-Klotho, sclerostin and serum calcification propensity testing and their respective assays in the context of CKD-MBD management.
Collapse
Affiliation(s)
- Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Mx Cai
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Mehrsai A, Guitynavard F, Nikoobakht MR, Gooran S, Ahmadi A. The relationship between serum and urinary Fetuin-A levels and kidney stone formation among kidney stone patients. Cent European J Urol 2017; 70:394-399. [PMID: 29410892 PMCID: PMC5791390 DOI: 10.5173/ceju.2017.873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/29/2022] Open
Abstract
Introduction Mineralization inhibitors are required to prevent the precipitation of minerals and inhibit the formation of kidney stones and other ectopic calcifications. In laboratory studies, Fetuin-A as a glycoprotein has inhibited hydroxyapatite precipitation in calcium and phosphate supersaturated solutions; however, information about patients with kidney stones is limited. The aim of this study was to investigate the association of serum and urinary Fetuin-A levels with calcium oxalate kidney stones. Material and methods In this case-control study, 30 patients with kidney stones and 30 healthy individuals without any history of urolithiasis who were referred to the urology ward of Sina Hospital of Tehran, Iran, in 2015 were entered into the study. All patients underwent computerized tomography scans. After collecting demographic information, serum and urine levels of Fetuin-A and some other calcification inhibitors and promoters, were measured and compared using T-test, Mann-Whitney and logistic regression between the two study groups. Results Patients with kidney stones, on average, had lower levels of Serum Fetuin-A (1522.27 ±755.39 vs. 1914.64 ±733.76 μg/ml; P = 0.046) as well as lower levels of Urine Fetuin-A (944.62 ±188.5 vs. 1409.68 ±295.26 μg/ml; P <0.001). Multivariate logistic analysis showed that urinary calcium and serum creatinine are the risk factors and Fetuin-A is a urinary protective factor for kidney stones. Conclusions PFC Our study showed that patients with kidney stones had lower serum and urinary levels of Fetuin-A. In the logistic regression model, urinary Fetuin-A was reported as a protective factor for kidney stones.
Collapse
Affiliation(s)
- Abdolrasoul Mehrsai
- Urology Research Center, Sina Hospital,Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Guitynavard
- Urology Research Center, Sina Hospital,Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahram Gooran
- Urology Research Center, Sina Hospital,Tehran University of Medical Sciences, Tehran, Iran
| | - Ayat Ahmadi
- Urology Research Center, Sina Hospital,Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Smith ER, Hewitson TD, Cai MMX, Aghagolzadeh P, Bachtler M, Pasch A, Holt SG. A novel fluorescent probe-based flow cytometric assay for mineral-containing nanoparticles in serum. Sci Rep 2017; 7:5686. [PMID: 28720774 PMCID: PMC5515983 DOI: 10.1038/s41598-017-05474-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Calciprotein particles, nanoscale aggregates of insoluble mineral and binding proteins, have emerged as potential mediators of phosphate toxicity in patients with Chronic Kidney Disease. Although existing immunochemical methods for their detection have provided compelling data, these approaches are indirect, lack specificity and are subject to a number of other technical and theoretical shortcomings. Here we have developed a rapid homogeneous fluorescent probe-based flow cytometric method for the detection and quantitation of individual mineral-containing nanoparticles in human and animal serum. This method allows the discrimination of membrane-bound from membrane-free particles and different mineral phases (amorphous vs. crystalline). Critically, the method has been optimised for use on a conventional instrument, without the need for manual hardware adjustments. Using this method, we demonstrate a consistency in findings across studies of Chronic Kidney Disease patients and commonly used uraemic animal models. These studies demonstrate that renal dysfunction is associated with the ripening of calciprotein particles to the crystalline state and reveal bone metabolism and dietary mineral as important modulators of circulating levels. Flow cytometric analysis of calciprotein particles may enhance our understanding of mineral handling in kidney disease and provide a novel indicator of therapeutic efficacy for interventions targeting Chronic Kidney Disease-Mineral Bone Disorder.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia. .,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael M X Cai
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Matthias Bachtler
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Andreas Pasch
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Hocher B, Pasch A. Hope for CKD-MBD Patients: New Diagnostic Approaches for Better Treatment of CKD-MBD. KIDNEY DISEASES 2017; 3:8-14. [PMID: 28785559 DOI: 10.1159/000477244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic kidney disease-mineral and bone disorder (CKD-MBD) patients have a huge morbidity and mortality. Only relatively minor progress in therapeutic strategies has been made in the past decades. This is at least partially due to a lack of predictive diagnostic tools allowing personalized treatment of CKD-MBD patients. SUMMARY In this review we describe recent progress in the diagnosis of disturbances of calcium and phosphate metabolism in patients with CKD-MBD, measuring biological active nonoxidized parathyroid hormone as well as the overall likelihood of a patient to get calcified. KEY MESSAGE There is hope. The new tools have the potential of allowing personalized therapy for the treatment of CKD-MBD and hence improving outcome.
Collapse
Affiliation(s)
- Berthold Hocher
- Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Germany.,IFLb, Institut für Labormedizin Berlin, Berlin, Germany.,Department of Embryology, Medical School of Jinan University, Guangzhou, China.,Department of Nephrology, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Andreas Pasch
- Department of Clinical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Toussaint ND, Holt SG. Is serum phosphate a useful target in patients with chronic kidney disease and what is the role for dietary phosphate restriction? Nephrology (Carlton) 2017; 22 Suppl 2:36-41. [DOI: 10.1111/nep.13025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nigel D Toussaint
- Department of Nephrology; The Royal Melbourne Hospital; Melbourne Parkville, Australia
- Department of Medicine; The University of Melbourne; Melbourne Australia
| | - Stephen G Holt
- Department of Nephrology; The Royal Melbourne Hospital; Melbourne Parkville, Australia
- Department of Medicine; The University of Melbourne; Melbourne Australia
| |
Collapse
|
38
|
Free DNA precipitates calcium phosphate apatite crystals in the arterial wall in vivo. Atherosclerosis 2017; 259:60-67. [PMID: 28292668 DOI: 10.1016/j.atherosclerosis.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/29/2017] [Accepted: 03/02/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS The arterial wall calcium score and circulating free DNA levels are now used in clinical practice as biomarkers of cardiovascular risk. Calcium phosphate apatite retention in the arterial wall necessitates precipitation on an anionic platform. Here, we explore the role of tissue-free DNA as such a platform. METHODS The first step consisted of histological observation of samples from human and rat calcified arteries. Various stains were used to evaluate colocalization of free DNA with calcified tissue (alizarin red, fluorescent Hoechst, DNA immunostaining and TUNEL assay). Sections were treated by EDTA to reveal calcification background. Secondly, a rat model of vascular calcifications induced by intra-aortic infusions of free DNA and elastase + free DNA was developed. Rat aortas underwent a micro-CT for calcium score calculation at 3 weeks. Rat and human calcifications were qualitatively characterized using μFourier Transform Infrared Spectroscopy (μFTIR) and Field Emission-Scanning Electron Microscopy (FE-SEM). RESULTS Our histological study shows colocalization of calcified arterial plaques with free DNA. In the intra-aortic infusion model, free DNA was able to penetrate into the arterial wall and induce calcifications whereas no microscopic calcification was seen in control aortas. The calcification score in the elastase + free DNA group was significantly higher than in the control groups. Qualitative evaluation with μFTIR and FE-SEM demonstrated typical calcium phosphate retention in human and rat arterial specimens. CONCLUSIONS This translational study demonstrates that free DNA could be involved in arterial calcification formation by precipitating calcium phosphate apatite crystals in the vessel wall.
Collapse
|
39
|
Effects of Magnesium on the Phosphate Toxicity in Chronic Kidney Disease: Time for Intervention Studies. Nutrients 2017; 9:nu9020112. [PMID: 28178182 PMCID: PMC5331543 DOI: 10.3390/nu9020112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/20/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022] Open
Abstract
Magnesium, an essential mineral for human health, plays a pivotal role in the cardiovascular system. Epidemiological studies in the general population have found an association between lower dietary magnesium intake and an elevated risk of cardiovascular events. In addition, magnesium supplementation was shown to improve blood pressure control, insulin sensitivity, and endothelial function. The relationship between magnesium and cardiovascular prognosis among patients with chronic kidney disease (CKD) has been increasingly investigated as it is becoming evident that magnesium can inhibit vascular calcification, a prominent risk of cardiovascular events, which commonly occurs in CKD patients. Cohort studies in patients receiving dialysis have shown a lower serum magnesium level as a significant risk for cardiovascular mortality. Interestingly, the cardiovascular mortality risk associated with hyperphosphatemia is alleviated among those with high serum magnesium levels, consistent with in vitro evidence that magnesium inhibits high-phosphate induced calcification of vascular smooth muscle cells. Furthermore, a harmful effect of high phosphate on the progression of CKD is also attenuated among those with high serum magnesium levels. The potential usefulness of magnesium as a remedy for phosphate toxicity should be further explored by future intervention studies.
Collapse
|
40
|
Formation and characteristics of biomimetic mineralo-organic particles in natural surface water. Sci Rep 2016; 6:28817. [PMID: 27350595 PMCID: PMC4923871 DOI: 10.1038/srep28817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/08/2016] [Indexed: 01/21/2023] Open
Abstract
Recent studies have shown that nanoparticles exist in environmental water but the formation, characteristics and fate of such particles remain incompletely understood. We show here that surface water obtained from various sources (ocean, hot springs, and soil) produces mineralo-organic particles that gradually increase in size and number during incubation. Seawater produces mineralo-organic particles following several cycles of filtration and incubation, indicating that this water possesses high particle-seeding potential. Electron microscopy observations reveal round, bacteria-like mineral particles with diameters of 20 to 800 nm, which may coalesce and aggregate to form mineralized biofilm-like structures. Chemical analysis of the particles shows the presence of a wide range of chemical elements that form mixed mineral phases dominated by calcium and iron sulfates, silicon and aluminum oxides, sodium carbonate, and iron sulfide. Proteomic analysis indicates that the particles bind to proteins of bacterial, plant and animal origins. When observed under dark-field microscopy, mineral particles derived from soil-water show biomimetic morphologies, including large, round structures similar to cells undergoing division. These findings have important implications not only for the recognition of biosignatures and fossils of small microorganisms in the environment but also for the geochemical cycling of elements, ions and organic matter in surface water.
Collapse
|
41
|
Komaba H, Fukagawa M. Phosphate-a poison for humans? Kidney Int 2016; 90:753-63. [PMID: 27282935 DOI: 10.1016/j.kint.2016.03.039] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population.
Collapse
Affiliation(s)
- Hirotaka Komaba
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan; Interactive Translational Research Center for Kidney Diseases, Tokai University School of Medicine, Isehara, Japan; The Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
42
|
Reid IR, Gamble GD, Bolland MJ. Circulating calcium concentrations, vascular disease and mortality: a systematic review. J Intern Med 2016; 279:524-40. [PMID: 26749423 DOI: 10.1111/joim.12464] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Associations between serum calcium and vascular disease have been reported, but the consistency of these findings is unknown. We conducted a systematic review to determine whether circulating calcium concentrations are associated with risks of cardiovascular disease and death in normocalcaemic populations. We conducted PubMed searches up to 18 December 2014 and scrutinized reference lists of papers. Eligible studies related serum calcium to mortality or cardiovascular events in humans. A follow-up of at least one year was required for longitudinal studies. Studies in populations selected on the basis of renal disease or abnormal serum calcium were excluded. Two investigators performed independent data extraction. The results were tabulated and, where possible, meta-analysed. Five of 11 studies reported a statistically significant positive association between serum calcium and mortality. Meta-analysis of eight of these studies showed a hazard ratio of death of 1.13 (1.09, 1.18) per standard deviation of serum calcium. Eight of 13 studies reported a statistically significant positive association between serum calcium and cardiovascular disease. Meta-analysis of eight studies showed a hazard ratio of cardiovascular disease of 1.08 (1.04, 1.13) per standard deviation of serum calcium. For two studies reporting odds ratios, the pooled odds ratio per standard deviation was 1.22 (1.11, 1.32). When hazard ratios adjusted for cardiovascular risk factors were meta-analysed, the pooled hazard ratio was 1.04 (1.01, 1.08). Other studies demonstrated associations between serum calcium and stroke and between serum calcium and direct measurements of arterial disease and calcification. These observational data indicate that serum calcium is associated with vascular disease and death, but they cannot determine causality.
Collapse
Affiliation(s)
- I R Reid
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Endocrinology, Auckland District Health Board, Auckland, New Zealand
| | - G D Gamble
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - M J Bolland
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Robinson KN, Teran-Garcia M. From infancy to aging: Biological and behavioral modifiers of Fetuin-A. Biochimie 2016; 124:141-149. [DOI: 10.1016/j.biochi.2015.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022]
|
44
|
Holt SG, Smith ER. Fetuin-A-containing calciprotein particles in mineral trafficking and vascular disease. Nephrol Dial Transplant 2016; 31:1583-7. [PMID: 27190332 DOI: 10.1093/ndt/gfw048] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/18/2016] [Indexed: 11/14/2022] Open
Abstract
Calcium and phosphate combine to form insoluble precipitates in both inorganic and organic materials. This property is useful biologically and has been used by numerous organisms to create hard tissues, a process referred to as biomineralisation [1]. In humans, calcium and phosphate combine to form useful crystal structures largely composed of calcium hydroxyapatite [Ca10(PO4)6(OH)2] and these are essential in the growth, maintenance and strength of parts of the skeleton and other structures like teeth. However, it remains unclear how the body achieves the exquisite specificity involved in biomineralisation. In ageing and disease, these pathways are perturbed, resulting in ectopic calcium crystal deposition impairing tissue function and, interestingly, frequently accompanied by simultaneous loss of mineral from sites where it is useful (e.g. bone). One paradigm for this maladaptive situation is renal failure; a situation that we know is associated with vascular stiffening and calcification, along with mineral loss from the skeleton. Mineral trafficking is a loose term used to describe the movements of calcium salts around the body, and new insights into these pathways may explain some of the problems of previous models of bone mineral disease in renal failure and point to potential future therapeutic strategies.
Collapse
Affiliation(s)
- Stephen G Holt
- Royal Melbourne Hospital, 300 Grattan Street, Parkville, Melbourne, VIC 3050, Australia Melbourne University, Melbourne Medical School, Level 2 (Street level), West Wing, Medical Building 181, Parkville, VIC 3050, Australia
| | - Edward R Smith
- Royal Melbourne Hospital, 300 Grattan Street, Parkville, Melbourne, VIC 3050, Australia
| |
Collapse
|
45
|
Bellia C, Agnello L, Lo Sasso B, Milano S, Bivona G, Scazzone C, Pivetti A, Novo G, Palermo C, Bonomo V, La Grutta L, Midiri M, Novo S, Ciaccio M. Fetuin-A is Associated to Serum Calcium and AHSG T256S Genotype but Not to Coronary Artery Calcification. Biochem Genet 2016; 54:222-231. [PMID: 26825086 DOI: 10.1007/s10528-016-9714-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022]
Abstract
Vascular calcification has been recently associated to an increased cardiovascular risk and mortality. In few studies, Fetuin-A showed an association to coronary artery calcification (CAC), although the physiopathological mechanism underlying this association has not been fully established yet. Seventy-four patients with one or more cardiovascular risk factor and asymptomatic for coronary vasculopathy were included in the study. CAC was evaluated by Agatston score. Serum Fetuin-A levels were determined by ELISA. Molecular analysis of AHSG T256S gene variant (rs4918) was performed by PCR-RFLP. Serum Fetuin-A was correlated to serum calcium (r = 0,321; P = 0,018), but not to serum phosphorous. Multivariate linear regression analysis confirmed this association and showed that calcium and AHSG genotype were independent predictors of Fetuin-A (P = 0.037, P = 0.014, respectively). In particular, subjects carrying the SS genotype had lower levels of Fetuin-A and calcium (P = 0.037 and P = 0.038, respectively). When we compare subjects with CAC 0-10 with subjects with CAC > 10, we found that only age and male gender (P < 0.001, P = 0.035, respectively), but not Fetuin-A, were associated to CAC. Fetuin-A is not associated to CAC in subjects with low cardiovascular risk profile and asymptomatic for coronary vasculopathy, suggesting that in this setting Fetuin-A, although correlated to serum levels of calcium, could be not involved in mineral deposition on coronary vessels.
Collapse
Affiliation(s)
- Chiara Bellia
- Sezione Biochimica Clinica e Medicina Molecolare Clinica, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy
| | - Luisa Agnello
- Sezione Biochimica Clinica e Medicina Molecolare Clinica, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Sezione Biochimica Clinica e Medicina Molecolare Clinica, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatore Milano
- Sezione Biochimica Clinica e Medicina Molecolare Clinica, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy
| | - Giulia Bivona
- Sezione Biochimica Clinica e Medicina Molecolare Clinica, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy
| | - Concetta Scazzone
- Sezione Biochimica Clinica e Medicina Molecolare Clinica, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy
| | - Alessia Pivetti
- Sezione Biochimica Clinica e Medicina Molecolare Clinica, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppina Novo
- Cattedra e Divisione di Cardiologia, Università degli Studi di Palermo, Palermo, Italy
| | - Chiara Palermo
- Cattedra e Divisione di Cardiologia, Università degli Studi di Palermo, Palermo, Italy
| | - Vito Bonomo
- Cattedra e Divisione di Cardiologia, Università degli Studi di Palermo, Palermo, Italy
| | - Ludovico La Grutta
- Sezione di Scienze Radiologiche, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy
| | - Massimo Midiri
- Sezione di Scienze Radiologiche, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatore Novo
- Cattedra e Divisione di Cardiologia, Università degli Studi di Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Sezione Biochimica Clinica e Medicina Molecolare Clinica, Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli Studi di Palermo, Palermo, Italy. .,UOC Medicina di Laboratorio - CoreLab, AOUP "P. Giaccone", Palermo, Italy.
| |
Collapse
|
46
|
The Isolation and Quantitation of Fetuin-A-Containing Calciprotein Particles from Biological Fluids. Methods Mol Biol 2016; 1397:221-240. [PMID: 26676136 DOI: 10.1007/978-1-4939-3353-2_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple overlapping systemic and local inhibitory networks have evolved to prevent the unwanted deposition of mineral at ectopic sites. Fetuin-A is a liver-derived glycoprotein abundant in plasma that binds and stabilizes nascent mineral ion nuclei to form soluble colloidal high molecular weight complexes, called calciprotein particles (CPP). The binding of fetuin-A to mineral retards crystal ripening and precipitation from the aqueous phase, thereby facilitating the regulated clearance of mineral debris from the extracellular fluid. However, persistent disturbances in this humoral homeostatic system, as frequently seen in patients with Chronic Kidney Disease, may lead to the accumulation and aggregation of these nanoparticles in extraosseous tissues like the vasculature, driving inflammatory cascades, aberrant tissue remodeling, and functional impairment. Consistent with this conceptual framework, higher circulating CPP levels are associated with reduced renal function, increments in systemic inflammatory markers, derangements in bone morphogenetic cytokines, higher vascular calcification scores, aortic stiffening and an increased risk of death. This chapter describes optimized sample collection and preparative procedures for the isolation and enrichment of CPP from biological fluids. Methods for CPP quantitation are critically reviewed and detailed.
Collapse
|