1
|
Otenaike TA, Farodoye OM, de Silva MM, Loreto JS, Adedara AO, Dos Santos MM, de Prestes AS, Barbosa NV, da Rocha JBT, Lobo LE, Wagner R, Abolaji AO, Loreto ELS. Nicotine and Vape: Drugs of the Same Profile Flock Together. J Biochem Mol Toxicol 2024; 38:e70075. [PMID: 39601203 DOI: 10.1002/jbt.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Smoking, a major behavioral health burden, causes preventable and premature deaths globally. Nicotine, the addictive component present in tobacco products and Electronic cigarettes (E-cigarettes, vape), can bind to nicotinic acetylcholine receptors in the brain to trigger a dopamine release that reinforces smoking. Despite the widespread usage of nicotine, its mechanisms of toxicity, particularly in e-cigarettes, are poorly understood. Using Drosophila melanogaster as a model organism, this study aims to investigate the mechanism of the toxicity of nicotine and vape. Behavioral parameters, oxidative stress indicators, mRNA expression levels of Dopamine 1- receptor 1 (Dop1R1), Acetyl-coenzyme A synthetase (AcCoAs), and apoptotic proteins were assessed in the flies after a 5-day exposure to varying concentrations of nicotine (0.15, 0.25, and 0.35 mg/mL diet) and vape (0.06, 0.08, and 0.12 mg/mL diet). Furthermore, Gas Chromatography-Mass Spectrometry (GC/MS) and Gas Chromatography-Flame Ionization Detection (GC/FID) analyzes were conducted to gain more insight on the composition of the vape used in study. Findings indicate that both nicotine and vape exposure significantly reduced lifespan, impaired locomotor activity, and disrupted sleep patterns. Notably, nicotine exposure stimulated Dop1R1 transcription and altered Acetyl-CoA gene expression, impacting the viability and behavior of the flies. Elevated levels of reactive oxygen biomarkers were observed, contributing to cellular damage through oxidative stress and apoptotic mechanisms mediated by the Reaper and DIAP1 proteins. Additionally, the composition analysis of vape liquid revealed the presence of propylene glycol, nicotine, methyl esters, and an unidentified compound. This study highlights the complex interplay between nicotine, gene expression, and physiological responses in Drosophila.
Collapse
Affiliation(s)
- Titilayomi A Otenaike
- Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil
- Drosophila Research and Training Centre, Ibadan, Nigeria
| | - Oluwabukola M Farodoye
- Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil
- Drosophila Research and Training Centre, Ibadan, Nigeria
| | - Monica M de Silva
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Julia S Loreto
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Adeola O Adedara
- Drosophila Research and Training Centre, Ibadan, Nigeria
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Matheus M Dos Santos
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Alessandro S de Prestes
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Nilda V Barbosa
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - João B T da Rocha
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Luiz E Lobo
- Department of Technology and Food Science, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Roger Wagner
- Department of Technology and Food Science, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Amos O Abolaji
- Drosophila Research and Training Centre, Ibadan, Nigeria
- Drosophila Laboratory, Department of Biochemistry, College of Medicine, Molecular Drug Metabolism and Toxicology Unit, Ibadan, Nigeria
| | - Elgion L S Loreto
- Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| |
Collapse
|
2
|
Horkan HR, Popgeorgiev N, Vervoort M, Gazave E, Krasovec G. Evolution of Apoptotic Signaling Pathways Within Lophotrochozoans. Genome Biol Evol 2024; 16:evae204. [PMID: 39318156 PMCID: PMC11463336 DOI: 10.1093/gbe/evae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Apoptosis is the main form of regulated cell death in metazoans. Apoptotic pathways are well characterized in nematodes, flies, and mammals, leading to a vision of the conservation of apoptotic pathways in metazoans. However, we recently showed that intrinsic apoptosis is in fact divergent among metazoans. In addition, extrinsic apoptosis is poorly studied in non-mammalian animals, making its evolution unclear. Consequently, our understanding of apoptotic signaling pathways evolution is a black box which must be illuminated by extending research to new biological systems. Lophotrochozoans are a major clade of metazoans which, despite their considerable biological diversity and key phylogenetic position as sister group of ecdysozoans (i.e. flies and nematodes), are poorly explored, especially regarding apoptosis mechanisms. Traditionally, each apoptotic signaling pathway was considered to rely on a specific initiator caspase, associated with an activator. To shed light on apoptosis evolution in animals, we explored the evolutionary history of initiator caspases, caspase activators, and the BCL-2 family (which control mitochondrial apoptotic pathway) in lophotrochozoans using phylogenetic analysis and protein interaction predictions. We discovered a diversification of initiator caspases in molluscs, annelids, and brachiopods, and the loss of key extrinsic apoptosis components in platyhelminths, along with the emergence of a clade-specific caspase with an ankyrin pro-domain. Taken together, our data show a specific history of apoptotic actors' evolution in lophotrochozoans, further demonstrating the appearance of distinct apoptotic signaling pathways during metazoan evolution.
Collapse
Affiliation(s)
- Helen R Horkan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Nikolay Popgeorgiev
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Gabriel Krasovec
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
3
|
Farodoye OM, Otenaike TA, Loreto JS, Adedara AO, Silva MM, Barbosa NV, Rocha JBTD, Abolaji AO, Loreto ELS. Evidence of acrylamide-induced behavioral deficit, mitochondrial dysfunction and cell death in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109971. [PMID: 38972620 DOI: 10.1016/j.cbpc.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Acrylamide (ACR), a ubiquitous compound with diverse route of exposure, has been demonstrated to have detrimental effects on human and animal health. The mechanisms underlying its toxicity is multifaceted and not fully elucidated. This study aims to provide further insight into novel pathways underlying ACR toxicity by leveraging on Drosophila melanogaster as a model organism. The concentrations of acrylamide (25, 50 and 100 mg/kg) and period of exposure (7-days) used in this study was established through a concentration response curve. ACR exposure demonstrably reduced organismal viability, evidenced by decline in survival rate, offspring emergence and deficits in activity, sleep and locomotory behaviors. Using a high-resolution respirometry assay, the role of mitochondria respiratory system in ACR-mediated toxicity in the flies was investigated. Acrylamide caused dysregulation in mitochondrial bioenergetics and respiratory capacity leading to an impaired OXPHOS activity and electron transport, ultimately contributing to the pathological process of ACR-toxicity. Furthermore, ACR exacerbated apoptosis and induced oxidative stress in D. melanogaster. The up-regulation of mRNA transcription of Reaper, Debcl and Dark genes and down-regulation of DIAP1, an ubiquitylation catalyzing enzyme, suggests that ACR promotes apoptosis through disruption of caspase and pro-apoptotic protein ubiquitination and a mitochondria-dependent pathway in Drosophila melanogaster. Conclusively, this study provides valuable insights into the cellular mechanism underlying ACR-mediated toxicity. Additionally, our study reinforces the utility of D. melanogaster as a translational tool for elucidating the complex mechanisms of ACR toxicity.
Collapse
Affiliation(s)
- Oluwabukola Mary Farodoye
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. https://twitter.com/@Bukolarita
| | - Titilayomi Ayomide Otenaike
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. https://twitter.com/@TITILAYOMIADE
| | - Julia Sepel Loreto
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Adeola Oluwatosin Adedara
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Monica Medeiros Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Joao Batista Teixeira da Rocha
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Amos Olalekan Abolaji
- Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria. https://twitter.com/@amosabolaji
| | - Elgion Lucio Silva Loreto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Teles-Reis J, Jain A, Liu D, Khezri R, Micheli S, Gomez AA, Dillard C, Rusten TE. EyaHOST, a modular genetic system for investigation of intercellular and tumor-host interactions in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611647. [PMID: 39314415 PMCID: PMC11418954 DOI: 10.1101/2024.09.06.611647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cell biology and genetic analysis of intracellular, intercellular and inter-organ interaction studies in animal models are key for understanding development, physiology, and disease. The MARCM technique can emulate tumor development by simultaneous clonal tumor suppressor loss-of-function generation coupled with GAL4-UAS-driven oncogene and marker expression, but the utility is limited for studying tumor-host interactions due to genetic constraints. To overcome this, we introduce EyaHOST, a novel system that replaces MARCM with the QF2-QUAS binary gene expression system under the eya promoter control, unleashing the fly community genome-wide GAL4-UAS driven tools to manipulate any host cells or tissue at scale. EyaHOST generates epithelial clones in the eye epithelium similar to MARCM. EyaHOST-driven Ras V12 oncogene overexpression coupled with scribble tumor suppressor knockdown recapitulates key cancer features, including systemic catabolic switching and organ wasting. We demonstrate effective tissue-specific manipulation of host compartments such as neighbouring epithelial cells, immune cells, fat body, and muscle using fly avatars with tissue-specific GAL4 drivers. Organ-specific inhibition of autophagy or stimulation of growth-signaling through PTEN knockdown in fat body or muscle prevents cachexia-like wasting. Additionally, we show that Ras V12 , scrib RNAi tumors induce caspase-driven apoptosis in the epithelial microenvironment. Inhibition of apoptosis by p35 expression in the microenvironment promotes tumor growth. EyaHOST offers a versatile modular platform for dissecting tumor-host interactions and other mechanisms involving intercellular and inter-organ communication in Drosophila . Highlights * eyes absent , eye disc-specific enhancer drives clonal KD recombinase flip-out activated QF2 expression in the larval eye epithelium for simultaneous QUAS-driven gain and loss-of-function analysis of gene function. *Clones are visualized by QUAS-tagBFP or QUAS-eGFP facilitating analysis of existing fluorescent reporters.*The GAL4-UAS system and existing genome-wide genetic tools are released to independently manipulate any cell population in the animal for cell biology, intercellular or inter-organ analysis for developmental, physiological, or disease model analysis.*Fly avatars for tumor-host interaction studies with multiple organs allow live monitoring and manipulation of tumors and organs in translucent larva.
Collapse
|
5
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
6
|
Jang D, Kim CJ, Shin BH, Lim DH. The Biological Roles of microRNAs in Drosophila Development. INSECTS 2024; 15:491. [PMID: 39057224 PMCID: PMC11277110 DOI: 10.3390/insects15070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Drosophila is a well-established insect model system for studying various physiological phenomena and developmental processes, with a focus on gene regulation. Drosophila development is controlled by programmed regulatory mechanisms specific to individual tissues. When key developmental processes are shared among various insects, the associated regulatory networks are believed to be conserved across insects. Thus, studies of developmental regulation in Drosophila have substantially contributed to our understanding of insect development. Over the past two decades, studies on microRNAs (miRNAs) in Drosophila have revealed their crucial regulatory roles in various developmental processes. This review focuses on the biological roles of miRNAs in specific tissues and processes associated with Drosophila development. Additionally, as a future direction, we discuss sequencing technologies that can analyze the interactions between miRNAs and their target genes, with the aim of enhancing miRNA studies in Drosophila development.
Collapse
Affiliation(s)
| | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (D.J.); (C.J.K.); (B.H.S.)
| |
Collapse
|
7
|
Krasovec G, Renaud C, Quéinnec É, Sasakura Y, Chambon JP. Extrinsic apoptosis participates to tail regression during the metamorphosis of the chordate Ciona. Sci Rep 2024; 14:5729. [PMID: 38459045 PMCID: PMC10923776 DOI: 10.1038/s41598-023-48411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/26/2023] [Indexed: 03/10/2024] Open
Abstract
Apoptosis is a regulated cell death ubiquitous in animals defined by morphological features depending on caspases. Two regulation pathways are described, currently named the intrinsic and the extrinsic apoptosis. While intrinsic apoptosis is well studied and considered ancestral among metazoans, extrinsic apoptosis is poorly studied outside mammals. Here, we address extrinsic apoptosis in the urochordates Ciona, belonging to the sister group of vertebrates. During metamorphosis, Ciona larvae undergo a tail regression depending on tissue contraction, migration and apoptosis. Apoptosis begin at the tail tip and propagates towards the trunk as a polarized wave. We identified Ci-caspase 8/10 by phylogenetic analysis as homolog to vertebrate caspases 8 and 10 that are the specific initiator of extrinsic apoptosis. We detected Ci-caspase 8/10 expression in Ciona larvae, especially at the tail tip. We showed that chemical inhibition of Ci-caspase 8/10 leads to a delay of tail regression, and Ci-caspase 8/10 loss of function induced an incomplete tail regression. The specificity between apoptotic pathways and initiator caspase suggests that extrinsic apoptosis regulates cell death during the tail regression. Our study presents rare in vivo work on extrinsic apoptosis outside mammals, and contribute to the discussion on its evolutionary history in animals.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France.
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| | - Cécile Renaud
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France
| | - Éric Quéinnec
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
8
|
Suyama R, Cetraro N, Yew JY, Kai T. Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways. Commun Biol 2023; 6:1287. [PMID: 38123715 PMCID: PMC10733356 DOI: 10.1038/s42003-023-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Reproduction is highly dependent on environmental and physiological factors including nutrition, mating stimuli and microbes. Among these factors, microbes facilitate vital functions for host animals such as nutritional intake, metabolic regulation, and enhancing fertility under poor nutrition conditions. However, detailed molecular mechanisms by which microbes control germline maturation, leading to reproduction, remain largely unknown. In this study, we show that environmental microbes exert a beneficial effect on Drosophila oogenesis by promoting germline stem cell (GSC) proliferation and subsequent egg maturation via acceleration of ovarian cell division and suppression of apoptosis. Moreover, insulin-related signaling is not required; rather, the ecdysone pathway is necessary for microbe-induced increase of GSCs and promotion of egg maturation, while juvenile hormone contributes only to increasing GSC numbers, suggesting that hormonal pathways are activated at different stages of oogenesis. Our findings reveal that environmental microbes can enhance host reproductivity by modulating host hormone release and promoting oogenesis.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| | - Nicolas Cetraro
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Barrio L, Gaspar AE, Muzzopappa M, Ghosh K, Romao D, Clemente-Ruiz M, Milán M. Chromosomal instability-induced cell invasion through caspase-driven DNA damage. Curr Biol 2023; 33:4446-4457.e5. [PMID: 37751744 DOI: 10.1016/j.cub.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/28/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
Chromosomal instability (CIN), an increased rate of changes in chromosome structure and number, is observed in most sporadic human carcinomas with high metastatic activity. Here, we use a Drosophila epithelial model to show that DNA damage, as a result of the production of lagging chromosomes during mitosis and aneuploidy-induced replicative stress, contributes to CIN-induced invasiveness. We unravel a sub-lethal role of effector caspases in invasiveness by enhancing CIN-induced DNA damage and identify the JAK/STAT signaling pathway as an activator of apoptotic caspases through transcriptional induction of pro-apoptotic genes. We provide evidence that an autocrine feedforward amplification loop mediated by Upd3-a cytokine with homology to interleukin-6 and a ligand of the JAK/STAT signaling pathway-contributes to amplifying the activation levels of the apoptotic pathway in migrating cells, thus promoting CIN-induced invasiveness. This work sheds new light on the chromosome-signature-independent effects of CIN in metastasis.
Collapse
Affiliation(s)
- Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ana-Elena Gaspar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Mariana Muzzopappa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Kaustuv Ghosh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Daniela Romao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marta Clemente-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
10
|
Li C, Zhu X, Sun X, Guo X, Li W, Chen P, Shidlovskii YV, Zhou Q, Xue L. Slik maintains tissue homeostasis by preventing JNK-mediated apoptosis. Cell Div 2023; 18:16. [PMID: 37794497 PMCID: PMC10552427 DOI: 10.1186/s13008-023-00097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The c-Jun N-terminal kinase (JNK) pathway is an evolutionarily conserved regulator of cell death, which is essential for coordinating tissue homeostasis. In this study, we have characterized the Drosophila Ste20-like kinase Slik as a novel modulator of JNK pathway-mediated apoptotic cell death. RESULTS First, ectopic JNK signaling-triggered cell death is enhanced by slik depletion whereas suppressed by Slik overexpression. Second, loss of slik activates JNK signaling, which results in enhanced apoptosis and impaired tissue homeostasis. In addition, genetic epistasis analysis suggests that Slik acts upstream of or in parallel to Hep to regulate JNK-mediated apoptotic cell death. Moreover, Slik is necessary and sufficient for preventing physiologic JNK signaling-mediated cell death in development. Furthermore, introduction of STK10, the human ortholog of Slik, into Drosophila restores slik depletion-induced cell death and compromised tissue homeostasis. Lastly, knockdown of STK10 in human cancer cells also leads to JNK activation, which is cancelled by expression of Slik. CONCLUSIONS This study has uncovered an evolutionarily conserved role of Slik/STK10 in blocking JNK signaling, which is required for cell death inhibition and tissue homeostasis maintenance in development.
Collapse
Affiliation(s)
- Chenglin Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaojie Zhu
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xinyue Sun
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaowei Guo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wenzhe Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ping Chen
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yulii V Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov University, 8, bldg. 2 Trubetskaya St, Moscow, 119048, Russia
| | - Qian Zhou
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
| | - Lei Xue
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China.
| |
Collapse
|
11
|
Park JE, Lee J, Ok S, Byun S, Chang EJ, Yoon SE, Kim YJ, Kang MJ. Wg/Wnt1 and Erasp link ER stress to proapoptotic signaling in an autosomal dominant retinitis pigmentosa model. Exp Mol Med 2023; 55:1544-1555. [PMID: 37464094 PMCID: PMC10394004 DOI: 10.1038/s12276-023-01044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/20/2023] Open
Abstract
The endoplasmic reticulum (ER) is a subcellular organelle essential for cellular homeostasis. Perturbation of ER functions due to various conditions can induce apoptosis. Chronic ER stress has been implicated in a wide range of diseases, including autosomal dominant retinitis pigmentosa (ADRP), which is characterized by age-dependent retinal degeneration caused by mutant rhodopsin alleles. However, the signaling pathways that mediate apoptosis in response to ER stress remain poorly understood. In this study, we performed an unbiased in vivo RNAi screen with a Drosophila ADRP model and found that Wg/Wnt1 mediated apoptosis. Subsequent transcriptome analysis revealed that ER stress-associated serine protease (Erasp), which has been predicted to show serine-type endopeptidase activity, was a downstream target of Wg/Wnt1 during ER stress. Furthermore, knocking down Erasp via RNAi suppressed apoptosis induced by mutant rhodopsin-1 (Rh-1P37H) toxicity, alleviating retinal degeneration in the Drosophila ADRP model. In contrast, overexpression of Erasp resulted in enhanced caspase activity in Drosophila S2 cells treated with apoptotic inducers and the stabilization of the initiator caspase Dronc (Death regulator Nedd2-like caspase) by stimulating DIAP1 (Drosophila inhibitor of apoptosis protein 1) degradation. These findings helped identify a novel cell death signaling pathway involved in retinal degeneration in an autosomal dominant retinitis pigmentosa model.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jiyoun Lee
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul, 01133, Republic of Korea
| | - Soonhyuck Ok
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seunghee Byun
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Min-Ji Kang
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
12
|
Santos-Cruz LF, Ponciano-Gómez A, Torres-Gregorio JT, Ramírez-Cruz BG, Vázquez-Gómez G, Hernández-Portilla LB, Flores-Ortiz CM, Dueñas-García IE, Heres-Pulido ME, Castañeda-Partida L, Durán-Díaz Á, Campos-Aguilar M, Sigrist-Flores SC, Piedra-Ibarra E. Zearalenone Does Not Show Genotoxic Effects in the Drosophila melanogaster Wing Spot Test, but It Induces Oxidative Imbalance, Development, and Fecundity Alterations. Toxins (Basel) 2023; 15:358. [PMID: 37368659 DOI: 10.3390/toxins15060358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEN) is a non-steroidal mycoestrogen produced by the Fusarium genus. ZEN and its metabolites compete with 17-beta estradiol for cytosolic estrogen receptors, causing reproductive alterations in vertebrates. ZEN has also been associated with toxic and genotoxic effects, as well as an increased risk for endometrial adenocarcinomas or hyperplasia, breast cancer, and oxidative damage, although the underlying mechanisms remain unclear. Previous studies have monitored cellular processes through levels of transcripts associated with Phase I Xenobiotic Metabolism (Cyp6g1 and Cyp6a2), oxidative stress (hsp60 and hsp70), apoptosis (hid, grim, and reaper), and DNA damage genes (Dmp53). In this study, we evaluated the survival and genotoxicity of ZEN, as well as its effects on emergence rate and fecundity in Drosophila melanogaster. Additionally, we determined levels of reactive oxygen species (ROS) using the D. melanogaster flare and Oregon R(R)-flare strains, which differ in levels of Cyp450 gene expression. Our results showed that ZEN toxicity did not increase mortality by more than 30%. We tested three ZEN concentrations (100, 200, and 400 μM) and found that none of the concentrations were genotoxic but were cytotoxic. Taking into account that it has previously been demonstrated that ZEN administration increased hsp60 expression levels and apoptosis gene transcripts in both strains, the data agree with an increase in ROS and development and fecundity alterations. Since Drosophila lacks homologous genes for mammalian estrogen receptors alpha and beta, the effects of this mycotoxin can be explained by a mechanism different from estrogenic activity.
Collapse
Affiliation(s)
- Luis Felipe Santos-Cruz
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Juan Tomás Torres-Gregorio
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Bertha Guadalupe Ramírez-Cruz
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Gerardo Vázquez-Gómez
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Luis Barbo Hernández-Portilla
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Cesar Mateo Flores-Ortiz
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Irma Elena Dueñas-García
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - María Eugenia Heres-Pulido
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Laura Castañeda-Partida
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Ángel Durán-Díaz
- Mathematics, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Santiago Cristobal Sigrist-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Elías Piedra-Ibarra
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| |
Collapse
|
13
|
Quesnelle DC, Bendena WG, Chin-Sang ID. A Compilation of the Diverse miRNA Functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci 2023; 24:ijms24086963. [PMID: 37108126 PMCID: PMC10139094 DOI: 10.3390/ijms24086963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNAs are critical regulators of post-transcriptional gene expression in a wide range of taxa, including invertebrates, mammals, and plants. Since their discovery in the nematode, Caenorhabditis elegans, miRNA research has exploded, and they are being identified in almost every facet of development. Invertebrate model organisms, particularly C. elegans, and Drosophila melanogaster, are ideal systems for studying miRNA function, and the roles of many miRNAs are known in these animals. In this review, we compiled the functions of many of the miRNAs that are involved in the development of these invertebrate model species. We examine how gene regulation by miRNAs shapes both embryonic and larval development and show that, although many different aspects of development are regulated, several trends are apparent in the nature of their regulation.
Collapse
Affiliation(s)
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
14
|
Factors Affecting Arbovirus Midgut Escape in Mosquitoes. Pathogens 2023; 12:pathogens12020220. [PMID: 36839492 PMCID: PMC9963182 DOI: 10.3390/pathogens12020220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Arboviral diseases spread by mosquitoes cause significant morbidity and mortality throughout much of the world. The treatment and prevention of these diseases through medication and vaccination is often limited, which makes controlling arboviruses at the level of the vector ideal. One way to prevent the spread of an arbovirus would be to stop its vector from developing a disseminated infection, which is required for the virus to make its way to the saliva of the mosquito to be potentially transmitted to a new host. The midgut of the mosquito provides one such opportunity to stop an arbovirus in its tracks. It has been known for many years that in certain arbovirus-vector combinations, or under certain circumstances, an arbovirus can infect and replicate in the midgut but is unable to escape from the tissue to cause disseminated infection. This situation is known as a midgut escape barrier. If we better understand why this barrier occurs, it might aid in the development of more informed control strategies. In this review, we discuss how the midgut escape barrier contributes to virus-vector specificity and possible mechanisms that may allow this barrier to be overcome in successful virus-vector combinations. We also discuss several of the known factors that either increase or decrease the likelihood of midgut escape.
Collapse
|
15
|
Mitochondrial remodelling is essential for female germ cell differentiation and survival. PLoS Genet 2023; 19:e1010610. [PMID: 36696418 PMCID: PMC9901744 DOI: 10.1371/journal.pgen.1010610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/06/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells often possess immature mitochondria with few inner membrane invaginations, which increase as stem cells differentiate. Despite this being a conserved feature across many stem cell types in numerous organisms, how and why mitochondria undergo such remodelling during stem cell differentiation has remained unclear. Here, using Drosophila germline stem cells (GSCs), we show that Complex V drives mitochondrial remodelling during the early stages of GSC differentiation, prior to terminal differentiation. This endows germline mitochondria with the capacity to generate large amounts of ATP required for later egg growth and development. Interestingly, impairing mitochondrial remodelling prior to terminal differentiation results in endoplasmic reticulum (ER) lipid bilayer stress, Protein kinase R-like ER kinase (PERK)-mediated activation of the Integrated Stress Response (ISR) and germ cell death. Taken together, our data suggest that mitochondrial remodelling is an essential and tightly integrated aspect of stem cell differentiation. This work sheds light on the potential impact of mitochondrial dysfunction on stem and germ cell function, highlighting ER lipid bilayer stress as a potential major driver of phenotypes caused by mitochondrial dysfunction.
Collapse
|
16
|
Gao L, Zang X, Qiao H, Moussian B, Wang Y. Xenobiotic responses of Drosophila melanogaster to insecticides with different modes of action and entry. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21958. [PMID: 35942563 DOI: 10.1002/arch.21958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Depending on their chemical structure, insecticides enter the insect body either through the cuticle or by ingestion (mode of entry [MoE]), and, naturally, harm or even kill insects through different mechanisms (modes of action). In parallel, they trigger a systemic detoxification response, especially by activation of detoxification gene expression. We monitored the acute genetic alterations of known xenobiotic response target genes against five different insecticides with two most common MoEs (contact toxicity and stomach toxicity), found that: 1. only a few genes were detected responding to acute exposure to insecticides (LD90 ); 2. The expression of cyp12d1 was upregulated in all experiments, except for dichlorodiphenyltrichloroethane exposure, suggesting that cyp12d1 is a general first response gene of the xenobiotic response; 3. The contact and stomach entries did not show any notable difference, both MoEs induced the response of JNK signaling pathway, possibly serving as the driver of the response of cyp12d1 and a few other genes. In conclusion, the changes in gene expression levels were relatively modest and no significant differences were found between the two MoEs, so the insecticide entry route does not seem to have an impact on the detoxification response. However, the two MoEs of the same insecticide showed different efficiencies in our test. Thus, the study of these two MoEs will help to develop more efficient release and management methods for the use of such insecticides.
Collapse
Affiliation(s)
- Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiya Zang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, Parc Valrose, France
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Baonza A, Tur-Gracia S, Pérez-Aguilera M, Estella C. Regulation and coordination of the different DNA damage responses in Drosophila. Front Cell Dev Biol 2022; 10:993257. [PMID: 36147740 PMCID: PMC9486394 DOI: 10.3389/fcell.2022.993257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cells have evolved mechanisms that allow them to respond to DNA damage to preserve genomic integrity and maintain tissue homeostasis. These responses include the activation of the cell cycle checkpoints and the repair mechanisms or the induction of apoptosis that eventually will eliminate damaged cells. These “life” vs. “death” decisions differ depending on the cell type, stages of development, and the proliferation status of the cell. The apoptotic response after DNA damage is of special interest as defects in its induction could contribute to tumorigenesis or the resistance of cancer cells to therapeutic agents such as radiotherapy. Multiples studies have elucidated the molecular mechanisms that mediate the activation of the DNA damage response pathway (DDR) and specifically the role of p53. However, much less is known about how the different cellular responses such as cell proliferation control and apoptosis are coordinated to maintain tissue homeostasis. Another interesting question is how the differential apoptotic response to DNA damage is regulated in distinct cell types. The use of Drosophila melanogaster as a model organism has been fundamental to understand the molecular and cellular mechanisms triggered by genotoxic stress. Here, we review the current knowledge regarding the cellular responses to ionizing radiation as the cause of DNA damage with special attention to apoptosis in Drosophila: how these responses are regulated and coordinated in different cellular contexts and in different tissues. The existence of intrinsic mechanisms that might attenuate the apoptotic pathway in response to this sort of DNA damage may well be informative for the differences in the clinical responsiveness of tumor cells after radiation therapy.
Collapse
|
18
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Bian C, Su J, Zheng Z, Wei J, Wang H, Meng L, Xin Y, Jiang X. ARTS, an unusual septin, regulates tumorigenesis by promoting apoptosis. Biomed Pharmacother 2022; 152:113281. [PMID: 35714512 DOI: 10.1016/j.biopha.2022.113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Apoptosis plays particularly important roles in tumorigenesis through various mechanisms. Apoptosis can be initiated by both extrinsic and intrinsic signals centered in and coming from the mitochondria. Antiapoptotic proteins promote tumor progression, and the occurrence and progression of tumors are closely related to antiapoptotic protein expression. As the only member of the septin gene family with proapoptotic function, apoptosis-related proteins in the TGF-β signaling pathway (ARTS) has received extensive attention for its unique structure. In contrast, unlike other known inhibitors of apoptosis protein (IAP) antagonists, ARTS exhibits a stronger tumor suppressor potential. Recent research has shown that ARTS can bind and inhibit XIAP and Bcl-2 directly or assist p53 in the degradation of Bcl-XL. Here, we review recent advances in the molecular mechanisms by which the proapoptotic protein ARTS, with its unique structure, inhibits tumorigenesis. We also discuss the possibility of mimicking ARTS to develop small-molecule drugs.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
D'Souza LC, Dwivedi S, Raihan F, Yathisha UG, Raghu SV, Mamatha BS, Sharma A. Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1723-1739. [PMID: 35301792 DOI: 10.1002/tox.23520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Benzene, a ubiquitous environmental chemical, is known to cause immune dysfunction and developmental defects. This study aims to investigate the relation between benzene-induced immune dysfunction and developmental toxicity in a genetically tractable animal model, Drosophila melanogaster. Further, the study explored the protective role of Heat Shock Protein 70 (Hsp70) against benzene-induced immunotoxicity and subsequent developmental impact. Drosophila larvae exposed to benzene (1.0, 10.0, and 100.0 mM) were examined for total hemocyte (immune cells) count, phagocytic activity, oxidative stress, apoptosis, and their developmental delay and reduction were analyzed. Benzene exposure for 48 h reduced the total hemocytes count and phagocytic activity, along with an increase in the Reactive Oxygen Species (ROS), and lipid peroxidation in the larval hemocytes. Subsequently, JNK-dependent activation of the apoptosis (Caspase-3 dependent) was also observed. During their development, benzene exposure to Drosophila larvae led to 3 days of delay in development, and ~40% reduced adult emergence. Hsp70-overexpression in hemocytes was found to mitigate benzene-induced oxidative stress and abrogated the JNK-mediated apoptosis in hemocytes, thus restoring total hemocyte count and improving phagocytotic activity. Further, hsp70-overexpression in hemocytes also lessened the benzene-induced developmental delay (rescue of 2.5 days) and improved adult emergence (~20%) emergence, revealing a possible control of immune cells on the organism's development and survival. Overall, this study established that hsp70-overexpression in the Drosophila hemocytes confers protection against benzene-induced immune injury via regulating the ROS/JNK signaling pathway, which helps in the organism's survival and development.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shiwangi Dwivedi
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Faiza Raihan
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Undiganalu Gangadharappa Yathisha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | | | - Bangera Sheshappa Mamatha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| |
Collapse
|
21
|
Ramaccini D, Pedriali G, Perrone M, Bouhamida E, Modesti L, Wieckowski MR, Giorgi C, Pinton P, Morciano G. Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway. Biomedicines 2022; 10:biomedicines10030726. [PMID: 35327528 PMCID: PMC8945338 DOI: 10.3390/biomedicines10030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
The heart is one of the most fascinating organs in living beings. It beats up to 100,000 times a day throughout the lifespan, without resting. The heart undergoes profound anatomical, biochemical, and functional changes during life, from hypoxemic fetal stages to a completely differentiated four-chambered cardiac muscle. In the middle, many biological events occur after and intersect with each other to regulate development, organ size, and, in some cases, regeneration. Several studies have defined the essential roles of the Hippo pathway in heart physiology through the regulation of apoptosis, autophagy, cell proliferation, and differentiation. This molecular route is composed of multiple components, some of which were recently discovered, and is highly interconnected with multiple known prosurvival pathways. The Hippo cascade is evolutionarily conserved among species, and in addition to its regulatory roles, it is involved in disease by drastically changing the heart phenotype and its function when its components are mutated, absent, or constitutively activated. In this review, we report some insights into the regulation of cardiac physiology and pathology by the Hippo pathway.
Collapse
Affiliation(s)
- Daniela Ramaccini
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Mariasole Perrone
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| |
Collapse
|
22
|
Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev 2022; 102:411-454. [PMID: 34898294 PMCID: PMC8676434 DOI: 10.1152/physrev.00002.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/01/2022] [Indexed: 12/21/2022] Open
Abstract
The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
23
|
The role of caspases as executioners of apoptosis. Biochem Soc Trans 2021; 50:33-45. [PMID: 34940803 DOI: 10.1042/bst20210751] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.
Collapse
|
24
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
25
|
Wang Z, Feng K, Tang F, Xu M. Activation of the Host Immune Response in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae) Induced by Serratia marcescens Bizio. INSECTS 2021; 12:insects12110983. [PMID: 34821784 PMCID: PMC8617612 DOI: 10.3390/insects12110983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023]
Abstract
Simple Summary Hyphantria cunea (Drury) is a quarantine pest, due to its extensive host, leading to serious economic losses in the agricultural and forestry industries. To control this pest, it is increasingly important to use microbial pesticides because they are biologically active and ecologically safe. Serratia marcescens Bizio (SM1) is a potential biocontrol bacterium. Although SM1 has a pathogenic role in H. cunea, H. cunea self-defense reduces the pathogenic effect of SM1. In this study, immune-related differentially expressed genes (DEGs) in H. cunea were first identified after SM1 infection, and the immune regulation mode of H. cunea in response to SM1, including antimicrobial peptide synthesis pathways, melanization and cellular immunity, was revealed. According to the analysis, the immune system of H. cunea was induced by SM1. In summary, our study demonstrates how the immune systems of the H. cunea work to resist the infection of SM1, which provides the theoretical basis for researching more efficient microbial pesticides for H. cunea. Abstract Host–pathogen interactions are essential to our understanding of biological pesticides. Hyphantria cunea (Drury) is an important forest pest worldwide. The immune mechanism of the interaction between H. cunea and Serratia marcescens Bizio (SM1) is unclear. First, transcriptome sequencing and quantitative real-time PCR (qRT-PCR) analysis described the H. cunea immune response to SM1. A total of 234 immune-related differentially expressed genes (DEGs) were found. Many immune regulatory genes in three classical pathways were found. Antimicrobial peptides, including attacin B, cecropin A, gloverin, lebocin and diapausin, are involved in defending against SM1 challenge, and are mainly produced by Toll and immune deficiency (IMD) pathways. Some melanization genes were changed in H. cunea, which suggested that H. cunea melanization was activated by SM1. Furthermore, phagocytosis, autophagolysosome and apoptosis pathways in cellular immunity were activated in H. cunea against SM1. Finally, the expression patterns of 10 immune genes were analyzed systematically by qRT-PCR, and most of the genes were upregulated compared to the control. Our studies provide useful information about the immune response of H. cunea under the stress of SM1, which is important to understand how SM1 affects the immune system of H. cunea and provides new ideas to control H. cunea by using SM1.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-13813966269
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
26
|
Kramer J, Neves J, Koniikusic M, Jasper H, Lamba DA. Dpp/TGFβ-superfamily play a dual conserved role in mediating the damage response in the retina. PLoS One 2021; 16:e0258872. [PMID: 34699550 PMCID: PMC8547621 DOI: 10.1371/journal.pone.0258872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal homeostasis relies on intricate coordination of cell death and survival in response to stress and damage. Signaling mechanisms that coordinate this process in the adult retina remain poorly understood. Here we identify Decapentaplegic (Dpp) signaling in Drosophila and its mammalian homologue Transforming Growth Factor-beta (TGFβ) superfamily, that includes TGFβ and Bone Morphogenetic Protein (BMP) signaling arms, as central mediators of retinal neuronal death and tissue survival following acute damage. Using a Drosophila model for UV-induced retinal damage, we show that Dpp released from immune cells promotes tissue loss after UV-induced retinal damage. Interestingly, we find a dynamic response of retinal cells to this signal: in an early phase, Dpp-mediated stimulation of Saxophone/Smox signaling promotes apoptosis, while at a later stage, stimulation of the Thickveins/Mad axis promotes tissue repair and survival. This dual role is conserved in the mammalian retina through the TGFβ/BMP signaling, as supplementation of BMP4 or inhibition of TGFβ using small molecules promotes retinal cell survival, while inhibition of BMP negatively affects cell survival after light-induced photoreceptor damage and NMDA induced inner retinal neuronal damage. Our data identify key evolutionarily conserved mechanisms by which retinal homeostasis is maintained.
Collapse
Affiliation(s)
- Joshua Kramer
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Joana Neves
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Faculdade de Medicina, Instituto de Medicina Molecular (iMM), Universidade de Lisboa, Lisbon, Portugal
| | - Mia Koniikusic
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States of America
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| |
Collapse
|
27
|
Liu B, Ding Y, Sun B, Liu Q, Zhou Z, Zhan M. The Hh pathway promotes cell apoptosis through Ci-Rdx-Diap1 axis. Cell Death Discov 2021; 7:263. [PMID: 34561426 PMCID: PMC8463586 DOI: 10.1038/s41420-021-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Apoptosis is a strictly coordinated process to eliminate superfluous or damaged cells, and its deregulation leads to birth defects and various human diseases. The regulatory mechanism underlying apoptosis still remains incompletely understood. To identify novel components in apoptosis, we carry out a modifier screen and find that the Hh pathway aggravates Hid-induced apoptosis. In addition, we reveal that the Hh pathway triggers apoptosis through its transcriptional target gene rdx, which encodes an E3 ubiquitin ligase. Rdx physically binds Diap1 to promote its K63-linked polyubiquitination, culminating in attenuating Diap1-Dronc interaction without affecting Diap1 stability. Taken together, our findings unexpectedly uncover the oncogenic Hh pathway is able to promote apoptosis through Ci-Rdx-Diap1 module, raising a concern to choose Hh pathway inhibitors as anti-tumor drugs.
Collapse
Affiliation(s)
- Bin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yan Ding
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Bing Sun
- Department of Anorectum, the First affiliated Hospital of Shandong First Medical University, Ji'nan, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China.
| |
Collapse
|
28
|
Zhang L, Buhr S, Voigt A, Methner A. The Evolutionary Conserved Transmembrane BAX Inhibitor Motif (TMBIM) Containing Protein Family Members 5 and 6 Are Essential for the Development and Survival of Drosophila melanogaster. Front Cell Dev Biol 2021; 9:666484. [PMID: 34540824 PMCID: PMC8446389 DOI: 10.3389/fcell.2021.666484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian Transmembrane BAX Inhibitor Motif (TMBIM) protein family consists of six evolutionarily conserved hydrophobic proteins that affect programmed cell death and the regulation of intracellular calcium levels. The bacterial ortholog BsYetJ is a pH-dependent calcium channel. We here identified seven TMBIM family members in Drosophila melanogaster and describe their expression levels in diverse tissues and developmental stages. A phylogenetic analysis revealed that CG30379 represents the ortholog of human TMBIM4 although these two proteins are much less related than TMBIM5 (CG2076 and CG1287/Mics1) and TMBIM6 (CG7188/Bi-1) to their respective orthologs. For TMBIM1-3 the assignment is more dubious because the fly and the human proteins cluster together. We conducted a functional analysis based on expression levels and the availability of RNAi lines. This revealed that the ubiquitous knockdown of CG3798/Nmda1 and CG3814/Lfg had no effect on development while knockdown of CG2076/dTmbim5 resulted in death at the pupa stage and knockdown of CG7188/dTmbim6 in death at the embryonic stage. Ubiquitous knockdown of the second TMBIM5 paralog CG1287/Mics1 ensued in male sterility. Knockdown of dTmbim5 and 6 in muscle and neural tissue also greatly reduced lifespan through different mechanisms. Knockdown of the mitochondrial family member dTmbim5 resulted in reduced ATP production and a pro-apoptotic expression profile while knockdown of the ER protein dTmbim6 increased the ER calcium levels similar to findings in mammalian cells. Our data demonstrate that dTmbim5 and 6 are essential for fly development and survival but affect cell survival through different mechanisms.
Collapse
Affiliation(s)
- Li Zhang
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Buhr
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich GmbH, JARA-Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen University, Aachen, Germany
| | - Axel Methner
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
29
|
Petrignani B, Rommelaere S, Hakim-Mishnaevski K, Masson F, Ramond E, Hilu-Dadia R, Poidevin M, Kondo S, Kurant E, Lemaitre B. A secreted factor NimrodB4 promotes the elimination of apoptotic corpses by phagocytes in Drosophila. EMBO Rep 2021; 22:e52262. [PMID: 34370384 PMCID: PMC8419693 DOI: 10.15252/embr.202052262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
Programmed cell death plays a fundamental role in development and tissue homeostasis. Professional and non‐professional phagocytes achieve the proper recognition, uptake, and degradation of apoptotic cells, a process called efferocytosis. Failure in efferocytosis leads to autoimmune and neurodegenerative diseases. In Drosophila, two transmembrane proteins of the Nimrod family, Draper and SIMU, mediate the recognition and internalization of apoptotic corpses. Beyond this early step, little is known about how apoptotic cell degradation is regulated. Here, we study the function of a secreted member of the Nimrod family, NimB4, and reveal its crucial role in the clearance of apoptotic cells. We show that NimB4 is expressed by macrophages and glial cells, the two main types of phagocytes in Drosophila. Similar to draper mutants, NimB4 mutants accumulate apoptotic corpses during embryogenesis and in the larval brain. Our study points to the role of NimB4 in phagosome maturation, more specifically in the fusion between the phagosome and lysosomes. We propose that similar to bridging molecules, NimB4 binds to apoptotic corpses to engage a phagosome maturation program dedicated to efferocytosis.
Collapse
Affiliation(s)
- Bianca Petrignani
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel Rommelaere
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ketty Hakim-Mishnaevski
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Florent Masson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elodie Ramond
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Reut Hilu-Dadia
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | | - Shu Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
| | - Estee Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
30
|
Guntur AR, Venkatanarayan A, Gangula S, Lundell MJ. Zfh-2 facilitates Notch-induced apoptosis in the CNS and appendages of Drosophila melanogaster. Dev Biol 2021; 475:65-79. [PMID: 33705738 DOI: 10.1016/j.ydbio.2021.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022]
Abstract
Apoptosis is a fundamental remodeling process for most tissues during development. In this manuscript we examine a pro-apoptotic function for the Drosophila DNA binding protein Zfh-2 during development of the central nervous system (CNS) and appendages. In the CNS we find that a loss-of-function zfh-2 allele gives an overall reduction of apoptotic cells in the CNS, and an altered pattern of expression for the axonal markers 22C10 and FasII. This same loss-of-function zfh-2 allele causes specific cells in the NB7-3 lineage of the CNS that would normally undergo apoptosis to be inappropriately maintained, whereas a gain-of-function zfh-2 allele has the opposite effect, resulting in a loss of normal NB 7-3 progeny. We also demonstrate that Zfh-2 and Hunchback reciprocally repress each other's gene expression which limits apoptosis to later born progeny of the NB7-3 lineage. Apoptosis is also required for proper segmentation of the fly appendages. We find that Zfh-2 co-localizes with apoptotic cells in the folds of the imaginal discs and presumptive cuticular joints. A reduction of Zfh-2 levels with RNAi inhibits expression of the pro-apoptotic gene reaper, and produces abnormal joints in the leg, antenna and haltere. Apoptosis has previously been shown to be activated by Notch signaling in both the NB7-3 CNS lineage and the appendage joints. Our results indicate that Zfh-2 facilitates Notch-induced apoptosis in these structures.
Collapse
Affiliation(s)
- Ananya R Guntur
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | - Sindhura Gangula
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
31
|
Harnish JM, Link N, Yamamoto S. Drosophila as a Model for Infectious Diseases. Int J Mol Sci 2021; 22:2724. [PMID: 33800390 PMCID: PMC7962867 DOI: 10.3390/ijms22052724] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
Collapse
Affiliation(s)
- J. Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| |
Collapse
|
32
|
Fan WM, Luo D, Zhang JZ, Wang D, Shen J. Vestigial suppresses apoptosis and cell migration in a manner dependent on the level of JNK-Caspase signaling in the Drosophila wing disc. INSECT SCIENCE 2021; 28:63-76. [PMID: 32037698 DOI: 10.1111/1744-7917.12762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
The Decapentaplegic (Dpp) and Wingless (Wg) signal pathways play important roles in numerous biological processes in Drosophila. The Drosophila vestigial (vg) gene is selectively required for wing imaginal disc cell proliferation, which is essential for the formation of the adult wing and halter structures, and is regulated by Dpp and Wg signaling. Using a Drosophila invasion model of wing epithelium, we showed herein that inhibition of Dpp or Wg signaling promoted cells to migrate across the cell lineage restrictive anterior/posterior (A/P) compartment boundary. Being downstream of both Dpp and Wg signaling, vg can block cell migration induced by loss of either pathway. In addition, suppression of vg is sufficient to induce cell migration across the A/P boundary. Transcriptomic analysis revealed potential downstream genes involved in the cell migration after suppressing vg in the wing disc. We further demonstrated that the c-Jun N-terminal kinase (JNK) signaling promoted cell migration induced by vg suppression by upregulating Caspase activity. Taken together, our results revealed the requirement of Vg for suppressing cell migration and clarified how developmental signals collaborate to stabilize cells along the compartment boundary.
Collapse
Affiliation(s)
- Wen-Min Fan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Dan Luo
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Jun-Zheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Steichele M, Sauermann LS, König AC, Hauck S, Böttger A. Ancestral role of TNF-R pathway in cell differentiation in the basal metazoan Hydra. J Cell Sci 2021; 134:224109. [PMID: 33277380 DOI: 10.1242/jcs.255422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022] Open
Abstract
Tumour necrosis factor receptors (TNF-Rs) and their ligands, tumour necrosis factors, are highly conserved proteins described in all metazoan phyla. They function as inducers of extrinsic apoptotic signalling and facilitate inflammation, differentiation and cell survival. TNF-Rs use distinct adaptor molecules to activate signalling cascades. Fas-associated protein with death domain (FADD) family adaptors often mediate apoptosis, and TNF-R-associated factor (TRAF) family adaptors mediate cell differentiation and inflammation. Most of these pathway components are conserved in cnidarians, and, here, we investigated the Hydra TNF-R. We report that it is related to the ectodysplasin receptor, which is involved in epithelial cell differentiation in mammals. In Hydra, it is localised in epithelial cells with incorporated nematocytes in tentacles and body column, indicating a similar function. Further experiments suggest that it interacts with the Hydra homologue of a TRAF adaptor, but not with FADD proteins. Hydra FADD proteins colocalised with Hydra caspases in death effector filaments and recruited caspases, suggesting that they are part of an apoptotic signalling pathway. Regulating epithelial cell differentiation via TRAF adaptors therefore seems to be an ancient function of TNF-Rs, whereas FADD-caspase interactions may be part of a separate apoptotic pathway.
Collapse
Affiliation(s)
- Mona Steichele
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Lara S Sauermann
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Ann-Christine König
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Stefanie Hauck
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Angelika Böttger
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| |
Collapse
|
34
|
Wang Y, Misto M, Yang J, Gehring N, Yu X, Moussian B. Toxicity of Dithiothreitol (DTT) to Drosophila melanogaster. Toxicol Rep 2020; 8:124-130. [PMID: 33425686 PMCID: PMC7782319 DOI: 10.1016/j.toxrep.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
The thiol-containing compound Dithiothreitol (DTT) has been shown to be toxic to cultured cells by inducing the generation of reactive oxygen species that ultimately cause cell death. However, its effects on multicellular organisms and the environment have not been investigated yet in detail. In this work, we tested the toxicity of DTT to the model insect Drosophila melanogaster. We show that DTT is lethal to D. melanogaster by topical application but not through feeding. DTT treatment triggers the transcription of the canonical apoptosis regulators grim, hid and rpr at low amounts. The amplitude of this induction declines with elevating DTT amounts. By live microscopy, we observe apoptotic cells especially in the gut of DTT treated flies. In parallel, low DTT amounts also activate the expression of the cuticle barrier component gene snsl. This indicates that a physical defence response is launched upon DTT contact. This combined measure is seemingly successful in preventing fly death. The expression of a number of known detoxification genes including cyp6a2, cyp6a8, cyp12d1 and GstD2 is also enhanced through DTT contact. The degree of upregulation of these genes is proportional to the applied DTT amounts. Despite this effort, flies exposed to high amounts of DTT eventually die. Together, D. melanogaster is able to sense DTT toxicity and adjust the defence response successfully at least at low concentrations. This is the first time to analyse the molecular consequences of DTT exposure in a multicellular organism. Our work provides a new model to discuss the physiological response of animals against thiol toxins and to resurvey the effect of redox agents on the environment.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Maïlys Misto
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Jing Yang
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Nicole Gehring
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Xiaoyu Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Institut Biologie Valrose (iBV), Université Nice Sophia Antipolis, Parc Valrose, Nice Cedex, France
| |
Collapse
|
35
|
Arthurton L, Nahotko DA, Alonso J, Wendler F, Baena‐Lopez LA. Non-apoptotic caspase activation preserves Drosophila intestinal progenitor cells in quiescence. EMBO Rep 2020; 21:e48892. [PMID: 33135280 PMCID: PMC7726796 DOI: 10.15252/embr.201948892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Caspase malfunction in stem cells often precedes the appearance and progression of multiple types of cancer, including human colorectal cancer. However, the caspase-dependent regulation of intestinal stem cell properties remains poorly understood. Here, we demonstrate that Dronc, the Drosophila ortholog of caspase-9/2 in mammals, limits the number of intestinal progenitor cells and their entry into the enterocyte differentiation programme. Strikingly, these unexpected roles for Dronc are non-apoptotic and have been uncovered under experimental conditions without epithelial replenishment. Supporting the non-apoptotic nature of these functions, we show that they require the enzymatic activity of Dronc, but are largely independent of the apoptotic pathway. Alternatively, our genetic and functional data suggest that they are linked to the caspase-mediated regulation of Notch signalling. Our findings provide novel insights into the non-apoptotic, caspase-dependent modulation of stem cell properties that could improve our understanding of the origin of intestinal malignancies.
Collapse
Affiliation(s)
- Lewis Arthurton
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | | - Jana Alonso
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma)Unidad Técnica del IPNA‐CSICSanta Cruz de La PalmaSpain
| | - Franz Wendler
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | |
Collapse
|
36
|
Xiao Y, Li LL, Bibi A, Zhang N, Chen T, Mo Y, Yue W, Miao Y. Role of Bm30kc6 gene in cell apoptosis and the silk gland degradation signaling pathway in Bombyx mori L. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21741. [PMID: 33002240 DOI: 10.1002/arch.21741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Apoptosis is a process of programmed cell death that is regulated by genes independently. The Bm30kc6 gene is a kind of small molecular lipoprotein about 30 kDa, expressed highly in the late stage of the silkworm hemolymph. Our study showed that overexpression of Bm30kc6 could decrease caspase-3 activation. Meanwhile, activation of caspase-3 increased when Bm30kc6 expression was disturbed by small interfering RNA (siRNA). Cell apoptosis was decreased when Bm30kc6 was overexpressed under UV treatment. The apoptosis rate induced by actinomycin D is similar to the trend by UV. It was inferred that Bm30kc6 has an inhibitory effect on the apoptosis of silkworm cells. The apoptosis-related genes, such as BmFadd, BmDredd, and BmDaxx were increased after overexpression of Bm30kc6 or decreased after interference of siRNA. It was speculated that there was an interactive relationship between Bm30kc6, BmDaxx, BmFadd, and BmDredd in the apoptosis signaling pathways. We investigated the transcription expression of the Bm30kc6 gene in different growth stages and tissues of the silkworm. The results showed that Bm30kc6 reached its peak in the hemolymph during the 6th to 7th days of the 5th instar, or in spinning post 24 h of the silk gland. In the silkworm BmN cells treated with caspase-3/7 inhibitor, the caspase-3 enzyme activity, and the expression levels of Bm30kc6, BmFadd, BmDredd, and BmDaxx were significantly reduced. The expression levels of Bm30kc6 increased sharply when silkworms were treated by molting hormone at Day 3 or 5 of the 5th instar. The results indicated that the expression of the Bm30kc6 gene was affected by the molting hormone and was likely to be its downstream target. In conclusion, the results suggest that the Bm30kc6 gene is involved in the regulation of the apoptotic signaling pathway and plays a role in the apoptotic process.
Collapse
Affiliation(s)
- Ying Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lei-Lei Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Asma Bibi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ning Zhang
- Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Ting Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yitao Mo
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wanfu Yue
- Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yungen Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Plachetzki DC, Pankey MS, MacManes MD, Lesser MP, Walker CW. The Genome of the Softshell Clam Mya arenaria and the Evolution of Apoptosis. Genome Biol Evol 2020; 12:1681-1693. [PMID: 32653903 PMCID: PMC7531772 DOI: 10.1093/gbe/evaa143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Apoptosis is a fundamental feature of multicellular animals and is best understood in mammals, flies, and nematodes, with the invertebrate models being thought to represent a condition of ancestral simplicity. However, the existence of a leukemia-like cancer in the softshell clam Mya arenaria provides an opportunity to re-evaluate the evolution of the genetic machinery of apoptosis. Here, we report the whole-genome sequence for M. arenaria which we leverage with existing data to test evolutionary hypotheses on the origins of apoptosis in animals. We show that the ancestral bilaterian p53 locus, a master regulator of apoptosis, possessed a complex domain structure, in contrast to that of extant ecdysozoan p53s. Further, ecdysozoan taxa, but not chordates or lophotrochozoans like M. arenaria, show a widespread reduction in apoptosis gene copy number. Finally, phylogenetic exploration of apoptosis gene copy number reveals a striking linkage with p53 domain complexity across species. Our results challenge the current understanding of the evolution of apoptosis and highlight the ancestral complexity of the bilaterian apoptotic tool kit and its subsequent dismantlement during the ecdysozoan radiation.
Collapse
Affiliation(s)
- David C Plachetzki
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
| | - M Sabrina Pankey
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
| | - Matthew D MacManes
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
| | - Michael P Lesser
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
- School of Marine Science and Ocean Engineering, University of New Hampshire
| | - Charles W Walker
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
| |
Collapse
|
38
|
Brown J, Bush I, Bozon J, Su TT. Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms. PLoS Genet 2020; 16:e1009056. [PMID: 33075096 PMCID: PMC7595702 DOI: 10.1371/journal.pgen.1009056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 10/29/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Loss of Heterozygosity (LOH) typically refers to a phenomenon in which diploid cells that are heterozygous for a mutant allele lose their wild type allele through mutations. LOH is implicated in oncogenesis when it affects the remaining wild type copy of a tumor suppressor. Drosophila has been a useful model to identify genes that regulate the incidence of LOH, but most of these studies use adult phenotypic markers such as multiple wing hair (mwh). Here, we describe a cell-autonomous fluorescence-based system that relies on the QF/QS transcriptional module to detect LOH, which may be used in larval, pupal and adult stages and in conjunction with the GAL4/UAS system. Using the QF/QS system, we were able to detect the induction of cells with LOH by X-rays in a dose-dependent manner in the larval wing discs, and to monitor their fate through subsequent development in pupa and adult stages. We tested the genetic requirement for changes in LOH, using both classical mutants and GAL4/UAS-mediated RNAi. Our results identify two distinct culling phases that eliminate cells with LOH, one in late larval stages and another in the pupa. The two culling phases are genetically separable, showing differential requirement for pro-apoptotic genes of the H99 locus and transcription factor Srp. A direct comparison of mwh LOH and QF/QS LOH suggests that cells with different LOH events are distinguished from each other in a p53-dependent manner and are retained to different degrees in the final adult structure. These studies reveal previously unknown mechanisms for the elimination of cells with chromosome aberrations.
Collapse
Affiliation(s)
- Jeremy Brown
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Inle Bush
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Justine Bozon
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| |
Collapse
|
39
|
Wrapping glia regulates neuronal signaling speed and precision in the peripheral nervous system of Drosophila. Nat Commun 2020; 11:4491. [PMID: 32901033 PMCID: PMC7479103 DOI: 10.1038/s41467-020-18291-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the peripheral nervous system of Drosophila larvae to determine how glia regulates axonal properties. We show that wrapping glial differentiation depends on gap junctions and FGF-signaling. Abnormal glial differentiation affects axonal diameter and conductance velocity and causes mild behavioral phenotypes that can be rescued by a sphingosine-rich diet. Ablation of wrapping glia does not further impair axonal diameter and conductance velocity but causes a prominent locomotion phenotype that cannot be rescued by sphingosine. Moreover, optogenetically evoked locomotor patterns do not depend on conductance speed but require the presence of wrapping glial processes. In conclusion, our data indicate that wrapping glia modulates both speed and precision of neuronal signaling.
Collapse
|
40
|
González-González A, Wayne ML. Immunopathology and immune homeostasis during viral infection in insects. Adv Virus Res 2020; 107:285-314. [PMID: 32711732 DOI: 10.1016/bs.aivir.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organisms clear infections by mounting an immune response that is normally turned off once the pathogens have been cleared. However, sometimes this immune response is not properly or timely arrested, resulting in the host damaging itself. This immune dysregulation may be referred to as immunopathology. While our knowledge of immune and metabolic pathways in insects, particularly in response to viral infections, is growing, little is known about the mechanisms that regulate this immune response and hence little is known about immunopathology in this important and diverse group of organisms. In this chapter we focus both on documenting the molecular mechanisms described involved in restoring immune homeostasis in insects after viral infections and on identifying potential mechanisms for future investigation. We argue that learning about the immunopathological consequences of an improperly regulated immune response in insects will benefit both insect and human health.
Collapse
Affiliation(s)
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Ramond E, Dudzic JP, Lemaitre B. Comparative RNA-Seq analyses of Drosophila plasmatocytes reveal gene specific signatures in response to clean injury and septic injury. PLoS One 2020; 15:e0235294. [PMID: 32598400 PMCID: PMC7323993 DOI: 10.1371/journal.pone.0235294] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
Drosophila melanogaster's blood cells (hemocytes) play essential roles in wound healing and are involved in clearing microbial infections. Here, we report the transcriptional changes of larval plasmatocytes after clean injury or infection with the Gram-negative bacterium Escherichia coli or the Gram-positive bacterium Staphylococcus aureus compared to hemocytes recovered from unchallenged larvae via RNA-Sequencing. This study reveals 676 differentially expressed genes (DEGs) in hemocytes from clean injury samples compared to unchallenged samples, and 235 and 184 DEGs in E. coli and S. aureus samples respectively compared to clean injury samples. The clean injury samples showed enriched DEGs for immunity, clotting, cytoskeleton, cell migration, hemocyte differentiation, and indicated a metabolic reprogramming to aerobic glycolysis, a well-defined metabolic adaptation observed in mammalian macrophages. Microbial infections trigger significant transcription of immune genes, with significant differences between the E. coli and S. aureus samples suggesting that hemocytes have the ability to engage various programs upon infection. Collectively, our data bring new insights on Drosophila hemocyte function and open the route to post-genomic functional analysis of the cellular immune response.
Collapse
Affiliation(s)
- Elodie Ramond
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan Paul Dudzic
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
42
|
Apoptosis Functions in Defense against Infection of Mammalian Cells with Environmental Chlamydiae. Infect Immun 2020; 88:IAI.00851-19. [PMID: 32179584 DOI: 10.1128/iai.00851-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 01/09/2023] Open
Abstract
Apoptotic cell death can be an efficient defense reaction of mammalian cells infected with obligate intracellular pathogens; the host cell dies and the pathogen cannot replicate. While this is well established for viruses, there is little experimental support for such a concept in bacterial infections. All Chlamydiales are obligate intracellular bacteria, and different species infect vastly different hosts. Chlamydia trachomatis infects human epithelial cells; Parachlamydia acanthamoebae replicates in amoebae. We here report that apoptosis impedes growth of P. acanthamoebae in mammalian cells. In HeLa human epithelial cells, P. acanthamoebae infection induced apoptosis, which was inhibited when mitochondrial apoptosis was blocked by codeletion of the mediators of mitochondrial apoptosis, Bax and Bak, by overexpression of Bcl-XL or by deletion of the apoptosis initiator Noxa. Deletion of Bax and Bak in mouse macrophages also inhibited apoptosis. Blocking apoptosis permitted growth of P. acanthamoebae in HeLa cells, as measured by fluorescence in situ hybridization, assessment of genome replication and protein synthesis, and the generation of infectious progeny. Coinfection with C. trachomatis inhibited P. acanthamoebae-induced apoptosis, suggesting that the known antiapoptotic activity of C. trachomatis can also block P. acanthamoebae-induced apoptosis. C. trachomatis coinfection could not rescue P. acanthamoebae growth in HeLa; in coinfected cells, C. trachomatis even suppressed the growth of P. acanthamoebae independently of apoptosis, while P. acanthamoebae surprisingly enhanced the growth of C. trachomatis Our results show that apoptosis can be used in the defense of mammalian cells against obligate intracellular bacteria and suggest that the known antiapoptotic activity of human pathogenic chlamydiae is indeed required to permit their growth in human cells.
Collapse
|
43
|
Li Z, Wu C, Ding X, Li W, Xue L. Toll signaling promotes JNK-dependent apoptosis in Drosophila. Cell Div 2020; 15:7. [PMID: 32174999 PMCID: PMC7063707 DOI: 10.1186/s13008-020-00062-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Apoptosis plays pivotal roles in organ development and tissue homeostasis, with its major function to remove unhealthy cells that may compromise the fitness of the organism. Toll signaling, with the ancient evolutionary origin, regulates embryonic dorsal–ventral patterning, axon targeting and degeneration, and innate immunity. Using Drosophila as a genetic model, we characterized the role of Toll signaling in apoptotic cell death. Results We found that gain of Toll signaling is able to trigger caspase-dependent cell death in development. In addition, JNK activity is required for Toll-induced cell death. Furthermore, ectopic Toll expression induces the activation of JNK pathway. Moreover, physiological activation of Toll signaling is sufficient to produce JNK-dependent cell death. Finally, Toll signaling activates JNK-mediated cell death through promoting ROS production. Conclusions As Toll pathway has been evolutionarily conserved from Drosophila to human, this study may shed light on the mechanism of mammalian Toll-like receptors (TLRs) signaling in apoptotic cell death.
Collapse
Affiliation(s)
- Zhuojie Li
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Chenxi Wu
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China.,2College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210 China
| | - Xiang Ding
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Wenzhe Li
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Lei Xue
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China.,3Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000 China
| |
Collapse
|
44
|
Singh MD, Jensen M, Lasser M, Huber E, Yusuff T, Pizzo L, Lifschutz B, Desai I, Kubina A, Yennawar S, Kim S, Iyer J, Rincon-Limas DE, Lowery LA, Girirajan S. NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genet 2020; 16:e1008590. [PMID: 32053595 PMCID: PMC7043793 DOI: 10.1371/journal.pgen.1008590] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/26/2020] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
The 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2-mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development. Rare copy-number variants, or large deletions and duplications in the genome, are associated with a wide range of neurodevelopmental disorders. The 3q29 deletion confers an increased risk for schizophrenia and autism. To understand the conserved biological mechanisms that are disrupted by this deletion, we systematically tested 14 individual homologs and 314 pairwise interactions of 3q29 genes for neuronal, cellular, and developmental phenotypes in Drosophila melanogaster and Xenopus laevis models. We found that multiple homologs of genes within the deletion region contribute towards developmental defects, such as larval lethality and disrupted cellular organization. Interestingly, we found that NCBP2 acts as a key modifier gene within the region, enhancing the developmental phenotypes of each of the homologs for other 3q29 genes and leading to disruptions in apoptosis and cell cycle pathways. Our results suggest that multiple genes within the 3q29 region interact with each other through shared mechanisms and jointly contribute to neurodevelopmental defects.
Collapse
Affiliation(s)
- Mayanglambam Dhruba Singh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tanzeen Yusuff
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Brian Lifschutz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Inshya Desai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alexis Kubina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sneha Yennawar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sydney Kim
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Janani Iyer
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
45
|
Martín-Folgar R, Martínez-Guitarte JL. Effects of single and mixture exposure of cadmium and copper in apoptosis and immune related genes at transcriptional level on the midge Chironomus riparius Meigen (Diptera, Chironomidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:590-598. [PMID: 31071664 DOI: 10.1016/j.scitotenv.2019.04.364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Metals and heavy metals are natural contaminants with an increasing presence in aquatic ecosystems as a result of human activities. Although they are mixed in the water, research is usually focused on analyzing them in isolation, so there is a lack of knowledge about their combined effects. The aim of this work was to assess the damage produced by mixtures of cadmium and copper, two frequent metals used in industry, in the harlequin midge Chironomus riparius (Diptera). The effects of acute doses of cadmium and copper were evaluated in fourth instar larvae by analyzing the mRNA levels of six genes related to apoptosis (DRONC, IAP1), immune system (PO1, Defensin), stress (Gp93), and copper homeostasis (Ctr1). DRONC, Ctr1, and IAP1 transcripts are described here for first time in this species. Individual fourth instar larvae were submitted to 10 μM, 1 μM and 0.1 μM of CdCl2 or CuCl2, and mixture. The employed individuals came from different egg masses. Real-time PCR analysis showed a complex pattern of alterations in transcriptional activity for two genes, DRONC and Gp93, while the rest of them did not show any statistically significant differences. The effector caspase DRONC showed upregulation with the highest concentration tested of the mixture. In case of gp93, chaperone involved in regulation of immune response, differences in expression levels were found with 1 and 10 μM Cu and 0.1 and 10 μM of mixtures, compared to control samples. These results suggest that mixtures affect the transcriptional activity differently and produce changes in apoptosis and stress processes, although it is also possible that Gp93 alteration could be related to the immune system since it is homologous to human protein Gp96, which has been related with Toll-like receptors. In conclusion, cadmium and copper mixtures can affect the population by affecting the ability of larvae to respond to the infection and the apoptosis, an important process in the metamorphosis of insects.
Collapse
Affiliation(s)
- Raquel Martín-Folgar
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
46
|
Walls SM, Cammarato A, Chatfield DA, Ocorr K, Harris GL, Bodmer R. Ceramide-Protein Interactions Modulate Ceramide-Associated Lipotoxic Cardiomyopathy. Cell Rep 2019. [PMID: 29514098 DOI: 10.1016/j.celrep.2018.02.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lipotoxic cardiomyopathy (LCM) is characterized by abnormal myocardial accumulation of lipids, including ceramide; however, the contribution of ceramide to the etiology of LCM is unclear. Here, we investigated the association of ceramide metabolism and ceramide-interacting proteins (CIPs) in LCM in the Drosophila heart model. We find that ceramide feeding or ceramide-elevating genetic manipulations are strongly associated with cardiac dilation and defects in contractility. High ceramide-associated LCM is prevented by inhibiting ceramide synthesis, establishing a robust model of direct ceramide-associated LCM, corroborating previous indirect evidence in mammals. We identified several CIPs from mouse heart and Drosophila extracts, including caspase activator Annexin-X, myosin chaperone Unc-45, and lipogenic enzyme FASN1, and remarkably, their cardiac-specific manipulation can prevent LCM. Collectively, these data suggest that high ceramide-associated lipotoxicity is mediated, in part, through altering caspase activation, sarcomeric maintenance, and lipogenesis, thus providing evidence for conserved mechanisms in LCM pathogenesis in mammals.
Collapse
Affiliation(s)
- Stanley M Walls
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA, USA
| | - Anthony Cammarato
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Dale A Chatfield
- Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Greg L Harris
- Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA, USA.
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
47
|
Kulkarni M, Stolp ZD, Hardwick JM. Targeting intrinsic cell death pathways to control fungal pathogens. Biochem Pharmacol 2019; 162:71-78. [PMID: 30660496 DOI: 10.1016/j.bcp.2019.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Fungal pathogens pose an increasing threat to public health. Limited clinical drug regimens and emerging drug-resistant isolates challenge infection control. The global burden of human fungal pathogens is estimated at 1 billion infections and 1.5 million deaths annually. In addition, plant fungal pathogens increasingly threaten global food resources. Novel strategies are needed to combat emerging fungal diseases and pan-resistant fungi. An untapped mechanistically novel approach is to pharmacologically activate the intrinsic cell death pathways encoded by pathogenic fungi. This strategy is analogous to new anti-cancer therapeutics now entering the clinic. Here we summarize the best understood examples of cell death mechanisms encoded by pathogenic fungi, contrast these to mammalian cell death pathways, and highlight the gaps in knowledge towards identifying potential death effectors as druggable targets.
Collapse
Affiliation(s)
- Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - Zachary D Stolp
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
48
|
Lv Z, Song X, Xu J, Jia Z, Yang B, Jia Y, Qiu L, Wang L, Song L. The modulation of Smac/DIABLO on mitochondrial apoptosis induced by LPS in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2019; 84:587-598. [PMID: 30336283 DOI: 10.1016/j.fsi.2018.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The mitochondrial pathway of apoptosis is well studied as the major mechanism of physiological cell death in vertebrates. In the present study, a second mitochondria-derived activator of caspases (Smac)/direct inhibitor of apoptosis-binding protein (IAP) with low pI protein (DIABLO) (designated as CgSmac) was identified from oyster Crassostrea gigas. The open reading frame of CgSmac was of 966 bp nucleotides encoding a predicted polypeptide of 321 amino acids with a conserved Smac/DIABLO domain containing a potential IAP-binding motif of VMPV. CgSmac proteins were distributed in hemocytes and co-localized with mitochondria. Western blotting analysis revealed that CgSmac proteins mainly existed in the dimer form in hemocytes, and the monomeric precursors and mature monomers were also detected. After lipopolysaccharide (LPS) stimulation, the mRNA expression of CgSmac in hemocytes was significantly up-regulated and peaked at 6 h (12.26-fold, p < 0.05), and the protein level of its dimers was significantly up-regulated at 6 h, 12 h, 24 h, and 48 h, while that of CgSmac monomers was up-regulated at 6 h, 12 h and down-regulated at 24 h, 48 h. The decrease of mitochondrial membrane potential indicated that the occurrence of early stage of apoptosis in primary cultured hemocytes was induced by LPS, and RNA interference (RNAi) of CgSmac could not rescue this decrease. The caspase-3 activity in primary cultured hemocytes was significantly suppressed after RNAi of CgSmac. Correspondingly, the total apoptotic rate of primary cultured hemocytes was also significantly suppressed in dsCgSmac + LPS group (31.57%) compared to dsEGFP + LPS group (40.27%, p < 0.05), which in turn demonstrated the conserved pro-apoptotic function of CgSmac. Furthermore, the early apoptotic rate (10.4% vs. 8.5%, p < 0.05) was significantly higher in dsCgSmac + LPS group than that of dsEGFP + LPS group, while the necrosis (7.7% vs. 10.0%, p < 0.05) and late apoptotic rates (13.4% vs. 21.9%, p < 0.05) were lower in dsCgSmac + LPS group than those of dsEGFP + LPS group. Collectively, CgSmac could activate mitochondrial apoptosis pathway by promoting caspase-3 activity in oyster hemocytes against exogenous LPS invasion. These results provided new insights on oyster apoptosis and the immune defense mechanisms in invertebrates.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaorui Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology& Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology& Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
49
|
Volin M, Zohar-Fux M, Gonen O, Porat-Kuperstein L, Toledano H. microRNAs selectively protect hub cells of the germline stem cell niche from apoptosis. J Cell Biol 2018; 217:3829-3838. [PMID: 30093492 PMCID: PMC6219711 DOI: 10.1083/jcb.201711098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/10/2017] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Genotoxic stress such as irradiation causes a temporary halt in tissue regeneration. The ability to regain regeneration depends on the type of cells that survived the assault. Previous studies showed that this propensity is usually held by the tissue-specific stem cells. However, stem cells cannot maintain their unique properties without the support of their surrounding niche cells. In this study, we show that exposure of Drosophila melanogaster to extremely high levels of irradiation temporarily arrests spermatogenesis and kills half of the stem cells. In marked contrast, the hub cells that constitute a major component of the niche remain completely intact. We further show that this atypical resistance to cell death relies on the expression of certain antiapoptotic microRNAs (miRNAs) that are selectively expressed in the hub and keep the cells inert to apoptotic stress signals. We propose that at the tissue level, protection of a specific group of niche cells from apoptosis underlies ongoing stem cell turnover and tissue regeneration.
Collapse
Affiliation(s)
- Marina Volin
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maayan Zohar-Fux
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Oren Gonen
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lilach Porat-Kuperstein
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
50
|
Honey protects against wings posture error and molecular changes related to mitochondrial pathways induced by hypoxia/reoxygenation in adult Drosophila melanogaster. Chem Biol Interact 2018; 291:245-252. [PMID: 29964003 DOI: 10.1016/j.cbi.2018.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
We conducted an investigation to evaluate the effects of Brazilian Pampa biome honey and its major phenolic compounds on the development of an erected wings posture phenotype and related mitochondrial aspects induced by Hypoxia/Reoxygenation (H/R) in Drosophila melanogaster. Flies were pre-treated for 3 days with a 10% honey solution and different concentrations of caffeic acid and ρ-coumaric acid and then submitted to hypoxia for 3 h. We observed that after reoxygenation, some flies acquired an erected wings posture and that this feature may be related to mortality. In addition, H/R induced down-regulation of ewg mRNA expression, which could be associated to the observed complex phenotype. H/R also caused a dysregulation in opa1-like, ldh and diap genes expression and reduced O2 fluxes in flie's mitochondria. Honey mitigated opa1-like mRNA expression changes provoked by H/R. Differently from honey, caffeic and ρ-coumaric acids displayed no protective effects. In conclusion, we report for the first time the protective effects of honey against complex phenotypes and mitochondrial changes induced by H/R in adult flies.
Collapse
|