1
|
Khalef L, Lydia R, Filicia K, Moussa B. Cell viability and cytotoxicity assays: Biochemical elements and cellular compartments. Cell Biochem Funct 2024; 42:e4007. [PMID: 38593323 DOI: 10.1002/cbf.4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Cell viability and cytotoxicity assays play a crucial role in drug screening and evaluating the cytotoxic effects of various chemicals. The quantification of cell viability and proliferation serves as the cornerstone for numerous in vitro assays that assess cellular responses to external factors. In the last decade, several studies have developed guidelines for defining and interpreting cell viability and cytotoxicity based on morphological, biochemical, and functional perspectives. As this domain continues to experience ongoing growth, revealing new mechanisms orchestrating diverse cell cytotoxicity pathways, we suggest a revised classification for multiple assays employed in evaluating cell viability and cell death. This classification is rooted in the cellular compartment and/or biochemical element involved, with a specific focus on mechanistic and essential aspects of the process. The assays are founded on diverse cell functions, encompassing metabolic activity, enzyme activity, cell membrane permeability and integrity, adenosine 5'-triphosphate content, cell adherence, reduction equivalents, dye inclusion or exclusion, constitutive protease activity, colony formation, DNA fragmentation and nuclear splitting. These assays present straightforward, reliable, sensitive, reproducible, cost-effective, and high-throughput approaches for appraising the effects of newly formulated chemotherapeutic biomolecules on the cell survival during the drug development process.
Collapse
Affiliation(s)
- Lefsih Khalef
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| | - Radja Lydia
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| | - Khettar Filicia
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| | - Berkoud Moussa
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| |
Collapse
|
2
|
Wazzani R, Bourzac C, Elhafci H, Germain P, Ahmaidi S, Pallu S, Jaffré C, Portier H. Comparative effects of various running exercise modalities on femoral bone quality in rats. Eur J Appl Physiol 2024; 124:761-773. [PMID: 37690048 DOI: 10.1007/s00421-023-05293-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND It is now well established that physical exercise is an effective preventive method to reduce and treat certain chronic diseases, particularly musculoskeletal disorders. At the bone level, running exercise is well known for its positive effects on various parameters of bone quality. There is, however, no consensus regarding the effects of different running exercise modalities on bone quality. AIM The objective of this study was to compare the effects of three treadmill running modalities: intermittent, moderate continuous, and a combination of both-on bone quality parameters in rats. METHODS Thirty-nine, 5-week-old, male Wistar rats were randomly divided in 4 groups: sedentary control (SED; n = 10), intermittent running exercise (IE; n = 10), continuous running exercise (CE; n = 10) and combined running exercise (COME; n = 9). Rats in running groups were exercised 45 min/day, 5 days/week, for 8 consecutive weeks. Femoral micro-architectural parameters were assessed by micro-CT; femoral osteocyte apoptosis, osteoclast resorption and bone histomorphometry were assessed by histology. RESULTS Femoral trabecular thickness in the combined running group was increased (p < 0.0001) compared to respective results in the other running groups (0.13 mm vs 0.11 mm). The cortical thickness, osteocyte lacunae occupancy rate in the whole femur, numbers of apoptotic osteocytes and osteoclastic resorption surfaces were not significantly different between groups. Statistical differences were occasionally noted depending on the femoral anatomical region. CONCLUSION These results suggest that the femur should not be considered as the better bone to study the effects of running protocols.
Collapse
Affiliation(s)
- Rkia Wazzani
- Laboratory APERE, University de Picardie Jules Verne, Avenue Paul Claudel, 80000, Amiens, France
| | - Céline Bourzac
- B3OA Laboratory, CNRS 7052, INSERM 1271, University of Paris, 10 Avenue de Verdun, 75010, Paris, France
- Plateforme de recherche biomédicale, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Hanane Elhafci
- B3OA Laboratory, CNRS 7052, INSERM 1271, University of Paris, 10 Avenue de Verdun, 75010, Paris, France
| | - Philippe Germain
- Research Group Sport, Physical Activity, Rehabilitation and Movement for Performance and Health, University of Orleans, 45067, Orléans, France
- Centre de Biophysique Moléculaire (CBM), UPR CNRS 4301, Université d'Orléans, Rue Charles Sandron, CS 80054, 45071, Orléans, France
| | - Said Ahmaidi
- Laboratory APERE, University de Picardie Jules Verne, Avenue Paul Claudel, 80000, Amiens, France
| | - Stéphane Pallu
- B3OA Laboratory, CNRS 7052, INSERM 1271, University of Paris, 10 Avenue de Verdun, 75010, Paris, France
- Research Group Sport, Physical Activity, Rehabilitation and Movement for Performance and Health, University of Orleans, 45067, Orléans, France
| | - Christelle Jaffré
- Laboratory APERE, University de Picardie Jules Verne, Avenue Paul Claudel, 80000, Amiens, France
| | - Hugues Portier
- B3OA Laboratory, CNRS 7052, INSERM 1271, University of Paris, 10 Avenue de Verdun, 75010, Paris, France.
- Research Group Sport, Physical Activity, Rehabilitation and Movement for Performance and Health, University of Orleans, 45067, Orléans, France.
| |
Collapse
|
3
|
Long S, Cao W, Qiu Y, Deng R, Liu J, Zhang L, Dong R, Liu F, Li S, Zhao H, Li N, Li K. The appearance of cytoplasmic cytochrome C precedes apoptosis during Drosophila salivary gland degradation. INSECT SCIENCE 2024; 31:157-172. [PMID: 37370257 DOI: 10.1111/1744-7917.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Apoptosis is an important process for organism development that functions to eliminate cell damage, maintain homeostasis, and remove obsolete tissues during morphogenesis. In mammals, apoptosis is accompanied by the release of cytochrome C (Cyt-c) from mitochondria to the cytoplasm. However, whether this process is conserved in the fruit fly, Drosophila melanogaster, remains controversial. In this study, we discovered that during the degradation of Drosophila salivary gland, the transcription of mitochondria apoptosis factors (MAPFs), Cyt-c, and death-associated APAF1-related killer (Dark) encoding genes are all upregulated antecedent to initiator and effector caspases encoding genes. The proteins Cyt-c and the active caspase 3 appear gradually in the cytoplasm during salivary gland degradation. Meanwhile, the Cyt-c protein colocates with mito-GFP, the marker indicating cytoplasmic mitochondria, and the change in mitochondrial membrane potential coincides with the appearance of Cyt-c in the cytoplasm. Moreover, impeding or promoting 20E-induced transcription factor E93 suppresses or enhances the staining of Cyt-c and the active caspase 3 in the cytoplasm of salivary gland, and accordingly decreases or increases the mitochondrial membrane potential, respectively. Our research provides evidence that cytoplasmic Cyt-c appears before apoptosis during Drosophila salivary gland degradation, shedding light on partial conserved mechanism in apoptosis between insects and mammals.
Collapse
Affiliation(s)
- Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenxin Cao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yongyu Qiu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruohan Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiali Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lidan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Renke Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fengxin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Haigang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- ChemPartner PharmaTech Co., Ltd, Jiangmen, Guangdong Province, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| |
Collapse
|
4
|
Wang P, Su J, Wang J, Xie Y, Chen W, Zhong J, Wang Y. NRF1 promotes primordial germ cell development, proliferation and survival. Cell Prolif 2024; 57:e13533. [PMID: 37539637 PMCID: PMC10771101 DOI: 10.1111/cpr.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Primordial germ cells (PGCs) are the germline precursors that give rise to oocytes and sperm, ensuring the continuation of life. While the PGC specification is extensively studied, it remains elusive how the PGC population is sustained and expanded after they migrate to embryonic gonads before birth. This study demonstrates that NRF1, a known regulator for mitochondrial metabolism, plays critical roles in post-migrating PGC development. We show that NRF1 protein level gradually increases in post-migrating PGCs during embryonic development. Conditional Nrf1 knockout from embryonic germ cells leads to impaired PGC proliferation and survival. In addition, NRF1 may also actively drive PGC derivation from pluripotent stem cells. Using whole genome transcriptome profiling and ChIP-seq analyses, we further reveal that NRF1 directly regulates key signalling molecules in PGC formation, transcription factors in proliferation and cell cycle and enzymes in mitochondrial metabolism. Overall, our findings highlight an essential requirement of NRF1 in regulating a broad transcriptional network to support post-migrating PGC development both in vitro and in vivo.
Collapse
Affiliation(s)
- Pengxiang Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jun Su
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Junpeng Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Yilin Xie
- Department of Animal Sciences, College of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMichiganUSA
| | - Wei Chen
- Department of Animal Sciences, College of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMichiganUSA
| | - Jinhai Zhong
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
5
|
Güneş M, Yalçın B, Burgazlı AY, Tagorti G, Yavuz E, Akarsu E, Kaya N, Marcos R, Kaya B. Morphologically different hydroxyapatite nanoparticles exert differential genotoxic effects in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166556. [PMID: 37633389 DOI: 10.1016/j.scitotenv.2023.166556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Hydroxyapatite (HAP) occurs naturally in sedimentary and metamorphic rocks and constitutes the hard structures in many organisms. Since synthetic nano-sized HAP (HAP-NPs) are used in orthopedic applications and for heavy metal remediation in aquatic and terrestrial media, both environment and humans are exposed to them. Due to the concerns about their potential hazards, the genotoxic effects that round/rod forms of HAP-NPs were investigated in Drosophila using the wing-spot and the comet assays. Furthermore, caspase activities were evaluated to examine the activation of cell death pathways. As a novelty, the expression of 36 genes involved in DNA repair was investigated, as a tool to indirectly determine DNA damage induction. Obtained sizes were 35-60 nm (roundHAP-NPs) and 45-90 nm (rodHAP-NPs) with a low Zeta-potential (-1.65 and 0.37 mV, respectively). Genotoxicity was detected in the wing-spot (round form), and in the comet assay (round and rod-like HA-NPs). In addition, increased expression of Caspases 3/7, 8, and 9 activities were observed. For both HAP forms, increased changes in the expression were observed for mismatch repair genes, while decreased expression was observed for genes involved in ATM, ATR, and cell cycle pathways. The observed changes in the repair pathways would reinforce the view that HAP-NPs have genotoxic potential, although more markedly in the round form. Thus, the environmental presence of engineered nanoparticles, including HAPs, raises concerns about potential effects on human health. It is essential that the effects of their use are carefully assessed and monitored to ensure safety and to mitigate any potential adverse effects.
Collapse
Affiliation(s)
- Merve Güneş
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | | | - Ghada Tagorti
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Emre Yavuz
- Department of Chemistry, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Esin Akarsu
- Department of Chemistry, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Nuray Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Bülent Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
6
|
Li J, Yin K, Hou L, Zhang Y, Lu H, Ma C, Xing M. Polystyrene microplastics mediate inflammatory responses in the chicken thymus by Nrf2/NF-κB pathway and trigger autophagy and apoptosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104136. [PMID: 37127111 DOI: 10.1016/j.etap.2023.104136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) are now a hot environmental contaminant. However, researchers paid little attention to their effects on immune organs such as the thymus. Here, we exposed chickens to a concentration gradient of polystyrene microplastics (PS-MPs) and then followed the decrease in the thymus index. HE staining showed cellular infiltration in the thymus. The assay kit corroborated that PS-MPs impelled oxidative stress in the thymus: increased MDA levels, downregulated antioxidants such as SOD, CAT, and GSH, and significantly undermined total antioxidant capacity. Western blotting and qRT-PCR results showed that Nrf2/NF-κB, Bcl-2/Bax, and AKT signaling pathways were activated in the thymus after exposure to PS-MPs. It stimulated the increased expression of downstream such as IL-1β, caspase-3, and Beclin1, triggering thymus inflammation, apoptosis, and autophagy. This study provides new insights into the field of microplastic immunotoxicity and highlights potential environmental hazards in poultry farming.
Collapse
Affiliation(s)
- Junbo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Chengxue Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
7
|
Nandy N, Roy JK. Rab11 negatively regulates wingless preventing JNK-mediated apoptosis in Drosophila epithelium during embryonic dorsal closure. Cell Tissue Res 2023; 391:485-504. [PMID: 36705747 DOI: 10.1007/s00441-023-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
Rab11, a small Ras like GTPase marking the recycling endosomes, plays instrumental roles in Drosophila embryonic epithelial morphogenesis where an array of reports testify its importance in the maintenance of cyto-architectural as well as functional attributes of the concerned cells. Proper Rab11 functions ensure a precise regulation of developmentally active cell signaling pathways which in turn promote the expression of morphogens and other physico-chemical cues which finally forge an embryo out of a single layer of cells. Earlier reports have established that Rab11 functions are vital for fly embryonic development where amorphic mutants such as EP3017 homozygotes show a fair degree of epithelial defects along with incomplete dorsal closure. Here, we present a detailed account of the effects of Rab11 loss of function in the dorso-lateral epithelium which resulted in severe dorsal closure defects along with an elevated JNK-Dpp expression. We further observed that the dorso-lateral epithelial cells undergo epithelial to mesenchymal transition as well as apoptosis in Rab11 mutants with elevated expression levels of MMP1 and Caspase-3, where Caspase-3 contributes to the Rab11 knockout phenotype contrary to the knockdown mutants or hypomorphs. Interestingly, the elevated expressions of the core JNK-Dpp signaling could be rescued with a simultaneous knockdown of wingless in the Rab11 knockout mutants suggesting a genetic interaction of Rab11 with the Wingless pathway during dorsal closure, an ideal model of epithelial wound healing.
Collapse
Affiliation(s)
- Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
8
|
Molano-Fernández M, Hickson ID, Herranz H. Cyclin E overexpression in the Drosophila accessory gland induces tissue dysplasia. Front Cell Dev Biol 2023; 10:992253. [PMID: 36704199 PMCID: PMC9871066 DOI: 10.3389/fcell.2022.992253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The regulation of the cell division cycle is governed by a complex network of factors that together ensure that growing or proliferating cells maintain a stable genome. Defects in this system can lead to genomic instability that can affect tissue homeostasis and thus compromise human health. Variations in ploidy and cell heterogeneity are observed frequently in human cancers. Here, we examine the consequences of upregulating the cell cycle regulator Cyclin E in the Drosophila melanogaster male accessory gland. The accessory gland is the functional analog of the human prostate. This organ is composed of a postmitotic epithelium that is emerging as a powerful in vivo system for modelling different aspects of tumor initiation and progression. We show that Cyclin E upregulation in this model is sufficient to drive tissue dysplasia. Cyclin E overexpression drives endoreplication and affects DNA integrity, which results in heterogeneous nuclear and cellular composition and variable degrees of DNA damage. We present evidence showing that, despite the presence of genotoxic stress, those cells are resistant to apoptosis and thus defective cells are not eliminated from the tissue. We also show that Cyclin E-expressing cells in the accessory gland display mitochondrial DNA aggregates that colocalize with Cyclin E protein. Together, the findings presented here show that Cyclin E upregulation in postmitotic cells of the accessory gland organ causes cellular defects such as genomic instability and mitochondrial defects, eventually leading to tissue dysplasia. This study highlights novel mechanisms by which Cyclin E might contribute to disease initiation and progression.
Collapse
Affiliation(s)
- Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ian D. Hickson
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Héctor Herranz,
| |
Collapse
|
9
|
Xu T, Jiang Y, Hu X, Yang G, Chen Y, Zhang S, Zhang Q, Zheng L, Xie HQ, Xu L, Zhao B. Effects of the emerging contaminant 1,3,6,8-tetrabromocarbazole on the NF-κB and correlated mechanism in human hepatocellular carcinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114199. [PMID: 36274317 DOI: 10.1016/j.ecoenv.2022.114199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
1,3,6,8-Tetrabromocarbazole (1368-BCZ) is identified as an emerging contaminant that exerts angiogenic effects. Multiple studies indicated there was a positive correlation between angiogenesis and nuclear factor kappa B (NF-κB) activation. While the role of NF-κB in inflammation and apoptosis has been well known, the potential biological effects of 1368-BCZ on NF-κB signaling and related mechanism remain unclear. We, therefore, explored the possible effects of 1368-BCZ on the NF-κB pathway at the gene and protein levels and confirmed that NF-κB activation by 1368-BCZ exposure caused an augmented phosphorylated protein level, induction of NF-κB response element (κBRE)-driven luciferase activity and upregulation of transcriptional level of downstream responsive genes. Although 1368-BCZ did not produce detectable changes in hepatic fibrosis in vivo, it obviously altered the apoptosis in human hepatocellular carcinoma (HepG2) cells. Furthermore, the induction of apoptosis was confirmed by the increased cleaved caspase-3 level. These data revealed the activating effects of 1368-BCZ on NF-κB and its involvement in the underlying mechanisms, providing additional information for toxicology studies of emerging contaminants and introducing a mechanism-based toxicological evaluation of emerging pollutants.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Jiang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanglei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songyan Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Banreti A, Bhattacharya S, Wien F, Matsuo K, Réfrégiers M, Meinert C, Meierhenrich U, Hudry B, Thompson D, Noselli S. Biological effects of the loss of homochirality in a multicellular organism. Nat Commun 2022; 13:7059. [PMID: 36400783 PMCID: PMC9674851 DOI: 10.1038/s41467-022-34516-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Homochirality is a fundamental feature of all known forms of life, maintaining biomolecules (amino-acids, proteins, sugars, nucleic acids) in one specific chiral form. While this condition is central to biology, the mechanisms by which the adverse accumulation of non-L-α-amino-acids in proteins lead to pathophysiological consequences remain poorly understood. To address how heterochirality build-up impacts organism's health, we use chiral-selective in vivo assays to detect protein-bound non-L-α-amino acids (focusing on aspartate) and assess their functional significance in Drosophila. We find that altering the in vivo chiral balance creates a 'heterochirality syndrome' with impaired caspase activity, increased tumour formation, and premature death. Our work shows that preservation of homochirality is a key component of protein function that is essential to maintain homeostasis across the cell, tissue and organ level.
Collapse
Affiliation(s)
- Agnes Banreti
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Shayon Bhattacharya
- grid.10049.3c0000 0004 1936 9692Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Frank Wien
- grid.426328.9DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Koichi Matsuo
- grid.257022.00000 0000 8711 3200HiSOR Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - Matthieu Réfrégiers
- grid.417870.d0000 0004 0614 8532Centre de Biophysique Moléculaire, CNRS; UPR4301, 45071 Orléans, France
| | - Cornelia Meinert
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, Institut de Chimie de Nice, CNRS; UMR 7272, 06108 Nice, France
| | - Uwe Meierhenrich
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, Institut de Chimie de Nice, CNRS; UMR 7272, 06108 Nice, France
| | - Bruno Hudry
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Damien Thompson
- grid.10049.3c0000 0004 1936 9692Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Stéphane Noselli
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
11
|
Mitra A, Vo L, Soukar I, Chaubal A, Greenberg ML, Pile LA. Isoforms of the transcriptional cofactor SIN3 differentially regulate genes necessary for energy metabolism and cell survival. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119322. [PMID: 35820484 PMCID: PMC10557476 DOI: 10.1016/j.bbamcr.2022.119322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
Abstract
The SIN3 scaffolding protein is a conserved transcriptional regulator known to fine-tune gene expression. In Drosophila, there are two major isoforms of SIN3, SIN3 220 and SIN3 187, which each assemble into multi-subunit histone modifying complexes. The isoforms have distinct developmental expression patterns and non-redundant functions. Gene regulatory network analyses indicate that both isoforms affect genes encoding proteins in pathways such as the cell cycle and cell morphogenesis. Interestingly, the SIN3 187 isoform uniquely regulates a subset of pathways including post-embryonic development, phosphate metabolism and apoptosis. Target genes in the phosphate metabolism pathway include nuclear-encoded mitochondrial genes coding for proteins responsible for oxidative phosphorylation. Here, we investigate the physiological effects of SIN3 isoforms on energy metabolism and cell survival. We find that ectopic expression of SIN3 187 represses expression of several nuclear-encoded mitochondrial genes affecting production of ATP and generation of reactive oxygen species (ROS). Forced expression of SIN3 187 also activates several pro-apoptotic and represses a few anti-apoptotic genes. In the SIN3 187 expressing cells, these gene expression patterns are accompanied with an increased sensitivity to paraquat-mediated oxidative stress. These findings indicate that SIN3 187 influences the regulation of mitochondrial function, apoptosis and oxidative stress response in ways that are dissimilar from SIN3 220. The data suggest that the distinct SIN3 histone modifying complexes are deployed in different cellular contexts to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Ashlesha Chaubal
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
12
|
Mlih M, Karpac J. Integrin-ECM interactions and membrane-associated Catalase cooperate to promote resilience of the Drosophila intestinal epithelium. PLoS Biol 2022; 20:e3001635. [PMID: 35522719 PMCID: PMC9116668 DOI: 10.1371/journal.pbio.3001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Balancing cellular demise and survival constitutes a key feature of resilience mechanisms that underlie the control of epithelial tissue damage. These resilience mechanisms often limit the burden of adaptive cellular stress responses to internal or external threats. We recently identified Diedel, a secreted protein/cytokine, as a potent antagonist of apoptosis-induced regulated cell death in the Drosophila intestinal midgut epithelium during aging. Here, we show that Diedel is a ligand for RGD-binding Integrins and is thus required for maintaining midgut epithelial cell attachment to the extracellular matrix (ECM)-derived basement membrane. Exploiting this function of Diedel, we uncovered a resilience mechanism of epithelial tissues, mediated by Integrin-ECM interactions, which shapes cell death spreading through the regulation of cell detachment and thus cell survival. Moreover, we found that resilient epithelial cells, enriched for Diedel-Integrin-ECM interactions, are characterized by membrane association of Catalase, thus preserving extracellular reactive oxygen species (ROS) balance to maintain epithelial integrity. Intracellular Catalase can relocalize to the extracellular membrane to limit cell death spreading and repair Integrin-ECM interactions induced by the amplification of extracellular ROS, which is a critical adaptive stress response. Membrane-associated Catalase, synergized with Integrin-ECM interactions, likely constitutes a resilience mechanism that helps balance cellular demise and survival within epithelial tissues.
Collapse
Affiliation(s)
- Mohamed Mlih
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, Texas, United States of America
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, Texas, United States of America
| |
Collapse
|
13
|
Wang XR, Shao Y, Wang C, Liu YQ. Effects of heat stress on virus transmission and virus-mediated apoptosis in whitefly Bemisia tabaci. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21857. [PMID: 34859483 DOI: 10.1002/arch.21857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), a plant DNA virus of the genus Begomovirus, is transmitted by whiteflies of the Bemisia tabaci species complex in a persistent manner. Our previous study indicated that activation of the apoptosis pathway in whiteflies could facilitate TYLCV accumulation and transmission. Considering that temperature change can influence the spread of insect-borne plant viruses, we focused on plant virus induced-apoptosis to investigate the underlying mechanism of temperature regulation on plant virus transmission via an insect vector. We found that heat stress (40°C) on whiteflies could facilitate TYLCV accumulation and increase transmission to tomato plants. Despite upregulation of caspase-1 and caspase-3 gene expression, heat stress failed to induce an increase in the activation of cleaved caspase-3 and DNA fragmentation in TYLCV-infected whiteflies. However, our data failed to determine the role of heat stress in apoptosis modulation of insect-plant virus interplay while still providing clues to understand insect vectors and their transmitted plant viruses.
Collapse
Affiliation(s)
- Xin-Ru Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Yue Shao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Plant Protection and Soil Fertilizer Management Station of Wenzhou, Wenzhou, Zhejiang, China
| | - Chao Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Li J, Zeng X, Wang W. miR-122-5p downregulation attenuates lipopolysaccharide-induced acute lung injury by targeting IL1RN. Exp Ther Med 2021; 22:1278. [PMID: 34594415 PMCID: PMC8456493 DOI: 10.3892/etm.2021.10713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) and inflammatory cytokines can induce acute lung injury (ALI), which can develop into acute respiratory distress syndrome in severe cases. Previous research has revealed that miR-122-5p participates in the development of ALI, and that its expression is positively associated with ALI. However, the mechanism by which miR-122-5p contributes to ALI remains to be determined. In the current study, TargetScan and dual luciferase reporter gene assays were used to confirm that IL-1 receptor antagonist (IL1RN) was a target of miR-122-5p. Subsequently, by referring to previous literature, a lipopolysaccharide (LPS)-induced ALI cell model was established. A549 cells were transfected with mimic control or miR-122-5p mimics for 24 h, and 10 µg LPS was used to treat the transfected cells for 12 h. The results revealed that miR-122-5p mimics decreased cell viability and promoted apoptosis. Lactate dehydrogenase (LDH) release assays indicated that miR-122-5p mimics increased LDH release. ELISA demonstrated that miR-122-5p mimics promoted TNF-α, IL-1β and IL-6 expression levels. A549 cells were transfected with inhibitor control, miR-122-5p inhibitor, miR-122-5p inhibitor + control-small interfering (si)RNA or miR-122-5p inhibitor + IL1RN-siRNA for 24 h, after which the cells were treated with 10 µg LPS for 12 h. The results revealed that the effects of the miR-122-5p inhibitor were the opposite of those of the miR-122-5p mimic. All the effects of miR-122-5p inhibitor on LPS-treated A549 cells were significantly reversed by IL1RN-siRNA. Overall, the results highlighted miR-122-5p as a potential novel target for the treatment of ALI.
Collapse
Affiliation(s)
- Jie Li
- Department of Pulmonary Disease, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430000, P.R. China
| | - Xiaoxia Zeng
- Department of Emergency, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430000, P.R. China
| | - Weiqing Wang
- Department of Emergency, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
15
|
Wada Y, Ohsawa S, Igaki T. Yorkie ensures robust tissue growth in Drosophila ribosomal protein mutants. Development 2021; 148:dev198705. [PMID: 34313318 DOI: 10.1242/dev.198705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
Heterozygosity of ribosomal protein genes causes a variety of developmental abnormalities in humans, which are collectively known as ribosomopathies, yet the underlying mechanisms remain elusive. Here, we analyzed Drosophila Minute (M)/+ mutants, a group of mutants heterozygous for ribosomal protein genes that exhibit a characteristic thin-bristle phenotype. We found that, although M/+ flies develop essentially normal wings, simultaneous deletion of one copy of the Hippo pathway effector yki resulted in severe wing growth defects. These defects were caused by JNK-mediated cell death in the wing pouch via Eiger/TNF signaling. The JNK activation in M/+, yki/+ wing discs required the caspase Dronc, which is normally blocked by DIAP1. Notably, heterozygosity of yki reduced DIAP1 expression in the wing pouch, leading to elevation of Dronc activity. Dronc and JNK formed a positive-feedback loop that amplifies Dronc activation, leading to apoptosis. Our observations suggest a mechanism of robust tissue growth whereby tissues with reduced ribosomal protein prevent ectopic apoptosis via Yki activity.
Collapse
Affiliation(s)
- Yayoi Wada
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyoku, Kyoto 607-8501, Japan
| | - Shizue Ohsawa
- Group of Genetics, Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyoku, Kyoto 607-8501, Japan
| |
Collapse
|
16
|
Park A, Yang Y, Jo J, Yoon SR. Modified MYOMI-14 Korean herbal formulations have protective effects against cyclophosphamide-induced male infertility in mice. Andrologia 2021; 53:e14025. [PMID: 33749904 DOI: 10.1111/and.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Korean herbal formulation, MYOMI-14, has been reported to improve the idiopathic male infertility condition with poor semen. In this study, four MYOMI formulations were modified from MYOMI-14 by reducing the number of constituents. We investigated the therapeutic effect of MYOMI formulations on cyclophosphamide-induced male infertility using mice model. Cyclophosphamide treatment significantly decreased body weight, testicular weight, sperm count, normal-shaped sperm rate and sperm motility compared to untreated control group, whereas MYOMI formulations restore the cyclophosphamide-induced dysfunction, as determined by increased sperm count and motility, and decreased abnormally shaped spermatozoa. In addition, treatment with MYOMI formulations reduced cyclophosphamide-induced apoptosis of germ cells and oxidative stress. MYOMI-treated mice also showed improved spermatogenesis as shown by the increased expression of spermatogenesis-related genes, as cAMP-responsive element modulator (CREM) and cAMP response element-binding (CREB) protein. Among the MYOMI formulations, MYOMI-7 showed better results in terms of recovering CP-induced damages to testis and improving the fertility. Taken together, this study is expected to make significant contribution to the literature by exploring various formulations that reduced constituents of MYOMI-14, a Korean herbal medicine, in treating CP-induced male infertility.
Collapse
Affiliation(s)
- Arum Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yunjeong Yang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Biochemistry, College of pharmacy, Chungnam National University, Daejeon, Korea
| | - Junyoung Jo
- Department of Korean Obstetrics and Gynecology, Conmaul Hospital of Korean Medicine, Seoul, Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
17
|
Tandon S, Sarkar S. The S6k/4E-BP mediated growth promoting sub-pathway of insulin signalling cascade is essential to restrict pathogenesis of poly(Q) disorders in Drosophila. Life Sci 2021; 275:119358. [PMID: 33744321 DOI: 10.1016/j.lfs.2021.119358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 01/05/2023]
Abstract
Human neurodegenerative polyglutamine [poly(Q)] disorders, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA), are characterised by an abnormal expansion of CAG repeats in the affected gene. The mutated proteins misfold and aggregate to form inclusion bodies that sequester important factors involved in cellular transcription, growth, stress and autophagic response and other essential functions. The insulin signalling pathway has been demonstrated as a major modifier and a potential drug target to ameliorate the poly(Q) mediated neurotoxicity in various model systems. Insulin signalling cascade harbours several downstream sub-pathways, which are synergistically involved in discharging indispensable biological functions such as growth and proliferation, metabolism, autophagy, regulation of cell death pathways etc. Hence, it is difficult to conclude whether the mitigation of poly(Q) neurotoxicity is an accumulative outcome of the insulin cascade, or the result of a specific sub-pathway. For the first time, we report that the ligand binding domain of insulin receptor mediated downstream growth promoting sub-pathway plays the pivotal role in operating the rescue event. We show that the growth promoting activity of insulin cascade is essential to minimize the abundance of inclusion bodies, to restrict neurodegeneration, and to restore the cellular transcriptional balance. Subsequently, we noted the involvement of the mTOR/S6k/4E-BP candidates in mitigating poly(Q) mediated neurotoxicity. Due to the conserved cellular functioning of the insulin cascade across species, and availability of several growth promoting molecules, our results in Drosophila poly(Q) models indicate towards a possibility of designing novel therapeutic strategies to restrict the pathogenesis of devastating human poly(Q) disorders.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
18
|
Fan Z, Zhang J, Wang D, Shen J. T-box transcription factors Dorsocross and optomotor-blind control Drosophila leg patterning in a functionally redundant manner. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103516. [PMID: 33412239 DOI: 10.1016/j.ibmb.2020.103516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
The T-box genes are essential transcription factors during limb development. In Drosophila, Dorsocross (Doc) and optomotor-blind (omb), members of the Tbx2 and Tbx6 families, are best studied in the Drosophila wing development. Despite prominently expressed in leg discs, the specific function of these genes in leg growth is still not revealed. Here we demonstrated that Doc and omb regulated the morphogenesis of leg intermediate regions in a functionally redundant manner. Loss of Doc or omb individually did not result in any developmental defects of the legs, but loss of both genes induced significant defects in femur and proximal tibia of the adult legs. These genes located in the dorsal domain, where the Doc region expanded and cross-overlapped with the omb region corresponding to the presumptive leg intermediate region. We detected that the normal epithelial folds in the leg discs were disrupted along with dorsal repression of cell proliferation and activation of cell apoptosis when Doc and omb were both reduced. Furthermore, the dorsal expression of dachshund (dac), a canonical leg developmental gene specifying the leg intermediate region, was maintained by Doc and omb. Meanwhile, the Notch pathway was compromised in the dorsal domain when these genes were reduced, which might contribute to the joint defect of the adult leg intermediate regions. Our study provides cytological and genetic evidence for understanding the redundant function of Doc and omb in leg morphogenesis.
Collapse
Affiliation(s)
- Zongyang Fan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - JunZheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Nandi A, Chowdhuri DK. Cadmium mediated redox modulation in germline stem cells homeostasis affects reproductive health of Drosophila males. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123737. [PMID: 33254766 DOI: 10.1016/j.jhazmat.2020.123737] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 06/12/2023]
Abstract
Maintenance of male germline stem cells (GSCs) homeostasis is crucial for successful reproductive life of adults. New insights gained on dysfunction in stem cell maintenance could be the basis of stem cell dependent ailment during adulthood. Cadmium (Cd), a reported male reproductive toxicant, has been explored inadequately for its impact on male GSCs maintenance. The present study, therefore, has been aimed to evaluate the adverse effect of Cd on the homeostasis of GSCs by using Drosophila testis as an in vivo model. Following developmental exposure of environmentally relevant concentrations of Cd (5.0, 10.0 and 20.0 μg/mL) to Drosophila, we showed that a significantly increased level of reactive oxygen species (ROS) at 20.0 μg/mL of Cd resulted in alteration of GSCs number accompanied by inappropriate differentiation leading to reduced sperm number and eventually poor reproductive performance in exposed organism. Rescuing effect was evident by overexpressing sod in the early germ cell stage. The study suggests that an alteration in GSCs homeostasis due to redox imbalance plays a pivotal role in Cd induced failure in male fertility. The study further advocates for the use of Drosophila as an alternative animal model for in vivo evaluation of male GSCs toxicity with minimal ethical concern.
Collapse
Affiliation(s)
- Abik Nandi
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
20
|
Krautz R, Khalili D, Theopold U. Tissue-autonomous immune response regulates stress signaling during hypertrophy. eLife 2020; 9:64919. [PMID: 33377870 PMCID: PMC7880693 DOI: 10.7554/elife.64919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Postmitotic tissues are incapable of replacing damaged cells through proliferation, but need to rely on buffering mechanisms to prevent tissue disintegration. By constitutively activating the Ras/MAPK-pathway via RasV12-overexpression in the postmitotic salivary glands (SGs) of Drosophila larvae, we overrode the glands adaptability to growth signals and induced hypertrophy. The accompanied loss of tissue integrity, recognition by cellular immunity, and cell death are all buffered by blocking stress signaling through a genuine tissue-autonomous immune response. This novel, spatio-temporally tightly regulated mechanism relies on the inhibition of a feedback-loop in the JNK-pathway by the immune effector and antimicrobial peptide Drosomycin. While this interaction might allow growing SGs to cope with temporary stress, continuous Drosomycin expression in RasV12-glands favors unrestricted hypertrophy. These findings indicate the necessity to refine therapeutic approaches that stimulate immune responses by acknowledging their possible, detrimental effects in damaged or stressed tissues. Tissues and organs work hard to maintain balance in everything from taking up nutrients to controlling their growth. Ageing, wounding, sickness, and changes in the genetic code can all alter this balance, and cause the tissue or organ to lose some of its cells. Many tissues restore this loss by dividing their remaining cells to fill in the gaps. But some – like the salivary glands of fruit fly larvae – have lost this ability. Tissues like these rely on being able to sense and counteract problems as they arise so as to not lose their balance in the first place. The immune system and stress responses are crucial for this process. They trigger steps to correct the problem and interact with each other to find a common decision about the fate of the affected tissue. To better understand how the immune system and stress response work together, Krautz, Khalili and Theopold genetically manipulated cells in the salivary gland of fruit fly larvae. These modifications switched on signals that stimulate cells to keep growing, causing the salivary gland’s tissue to slowly lose its balance and trigger the stress and immune response. The experiments showed that while the stress response instructed the cells in the gland to die, a peptide released by the immune system called Drosomycin blocked this response and prevented the tissue from collapsing. The cells in the part of the gland not producing this immune peptide were consequently killed by the stress response. When all the cells in the salivary gland were forced to produce Drosomycin, none of the cells died and the whole tissue survived. But it also allowed the cells in the gland to grow uncontrollably, like a tumor, threatening the health of the entire organism. Mapping the interactions between immune and stress pathways could help to fine-tune treatments that can prevent tissue damage. Fruit flies share many genetic features and molecular pathways with humans. So, the next step towards these kinds of treatments would be to screen for similar mechanisms that block stress activation in damaged human tissues. But this research carries a warning: careless activation of the immune system to protect stressed tissues could lead to uncontrolled tissue growth, and might cause more harm than good.
Collapse
Affiliation(s)
- Robert Krautz
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Dilan Khalili
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Saini S, Rani L, Shukla N, Banerjee M, Chowdhuri DK, Gautam NK. Development of a Drosophila melanogaster based model for the assessment of cadmium and mercury mediated renal tubular toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110811. [PMID: 32544744 DOI: 10.1016/j.ecoenv.2020.110811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Xenobiotic mediated renal toxicity is one of the major health concerns to the organisms, including humans. New chemicals with nephrotoxic potential are continuously being added to the list of existing nephrotoxicants. To predict the nephrotoxicity of these new chemicals, reliable and cost-effective alternative animal models are required. It is a prerequisite for the identification and assessment of these compounds as potential nephrotoxicants to prevent renal toxicity in the exposed population. Drosophila melanogaster, a genetically tractable invertebrate animal model, has a renal system functionally analogous to humans. The Malpighian tubules (MTs) of D. melanogaster are similar to the tubular part of nephron of the human kidney. Besides, it recapitulates the renal toxicity hallmark with mammals when exposed to known nephrotoxicants. In this study, first instar larvae of D. melanogaster (Oregon R) were exposed to different concentrations of two well-known nephrotoxicants, cadmium (Cd) and mercury (Hg). Akin to higher organisms, Cd and Hg exposure to D. melanogaster produce similar phenotypes. MTs of exposed D. melanogaster larvae exhibited increased oxidative stress, activated cellular antioxidant defense mechanism, GSH depletion, increased cleaved caspase-3 expression, increased DEVDase activity and increased cell death. The functional status of MTs was assessed by fluid secretion rate (FSR), efflux activity of transporter protein, mitochondrial membrane potential (MMP), ATP level and expression of junctional protein (Dlg). All the phenotypes observed in MTs of D. melanogaster larvae recapitulate the phenotypes observed in higher organisms. Increased uric acid level, the hallmark of renal dysfunction, was also observed in exposed larvae. Taken together, the study suggests that MTs of D. melanogaster may be used as a functional model to evaluate xenobiotic mediated nephrotoxicity.
Collapse
Affiliation(s)
- Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Lavi Rani
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Neha Shukla
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
22
|
Ho LK, Daniel-Ivad M, Jeedigunta SP, Li J, Iliadi KG, Boulianne GL, Hurd TR, Smibert CA, Nodwell JR. Chemical entrapment and killing of insects by bacteria. Nat Commun 2020; 11:4608. [PMID: 32929085 PMCID: PMC7490686 DOI: 10.1038/s41467-020-18462-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Actinobacteria produce antibacterial and antifungal specialized metabolites. Many insects harbour actinobacteria on their bodies or in their nests and use these metabolites for protection. However, some actinobacteria produce metabolites that are toxic to insects and the evolutionary relevance of this toxicity is unknown. Here we explore chemical interactions between streptomycetes and the fruit fly Drosophila melanogaster. We find that many streptomycetes produce specialized metabolites that have potent larvicidal effects against the fly; larvae that ingest spores of these species die. The mechanism of toxicity is specific to the bacterium's chemical arsenal: cosmomycin D producing bacteria induce a cell death-like response in the larval digestive tract; avermectin producing bacteria induce paralysis. Furthermore, low concentrations of volatile terpenes like 2-methylisoborneol that are produced by streptomycetes attract fruit flies such that they preferentially deposit their eggs on contaminated food sources. The resulting larvae are killed during growth and development. The phenomenon of volatile-mediated attraction and specialized metabolite toxicity suggests that some streptomycetes pose an evolutionary risk to insects in nature.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Martin Daniel-Ivad
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jing Li
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Konstantin G Iliadi
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Gabrielle L Boulianne
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
23
|
Liang Q, Ma P, Zhang Q, Yin Y, Wang P, Wang S, Zhang Y, Han R, Deng H. A gum Arabic assisted sustainable drug delivery system for adult Drosophila. Biol Open 2020; 9:bio052241. [PMID: 32487516 PMCID: PMC7328006 DOI: 10.1242/bio.052241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/11/2020] [Indexed: 01/26/2023] Open
Abstract
Large-scale compound screening in adult flies is hampered by the lack of continuous drug delivery systems and poor solubility of numerous compounds. Here we found that gum Arabic (Acacia/Senegal gum), a widely used stabilizer, can also emulsify lipophilic compounds and profoundly increase their accessibility to target tissues in Drosophila and mice. We further developed a gum Arabic-based drug delivery system, wherein the drug was ground into gum Arabic and emulsified in liquid food fed to flies by siphoning through a U-shape glass capillary. This system did not affect food intake nor cell viability. Since drugs were continuously delivered by siphoning, minimal compound waste and less frequent food changes make this system ideal for large-scale long-term screenings. In our pilot screening for antitumor drugs in the NCI DTP library, we used a Drosophila model of colorectal cancer and identified two drugs that are especially hydrophobic and were not identified in previous screenings. Our data demonstrated that gum Arabic facilitates drug delivery in animal models and the system is suitable for long-term high-throughput drug screening in Drosophila This system would accelerate drug discovery for chronic and cognitive conditions.
Collapse
Affiliation(s)
- Qiying Liang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
- College of Animal Sciences and Technology, Guangxi University, Nanning, 530004, China
| | - Peng Ma
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Qi Zhang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Youjie Yin
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Ping Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Saifei Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Yao Zhang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Ruolei Han
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Hansong Deng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| |
Collapse
|
24
|
Maccallini P, Bavasso F, Scatolini L, Bucciarelli E, Noviello G, Lisi V, Palumbo V, D'Angeli S, Cacchione S, Cenci G, Ciapponi L, Wakefield JG, Gatti M, Raffa GD. Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development. PLoS Genet 2020; 16:e1008815. [PMID: 32453722 PMCID: PMC7289441 DOI: 10.1371/journal.pgen.1008815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease. We explored the functional relationships between TGS1 and SMN using Drosophila as model organism. TGS1 is an enzyme that modifies the structure of the 5’-end of several RNAs, including telomerase RNA and the small nuclear RNAs (snRNAs) that are required for messenger RNA maturation. The SMN protein regulates snRNAs biogenesis and mutations in human SMN cause Spinal Muscular Atrophy (SMA), a devastating disorder characterized by neurodegeneration, progressive paralysis and death. We show that mutations in the Drosophila TGS1 (dTgs1) gene cause lethality, which is rescued by a human TGS1 transgene. We also show that the dTgs1 protein physically interacts with all subunits of the Smn complex, and that downregulation of either dTgs1 or Smn leads to a reduced Drosophila eye size. Notably, overexpression of dTgs1 partially rescues the eye defects caused by Smn knockdown, and vice versa, indicating that these genes cooperate in eye development. These results suggest that the eye model can be exploited for screens aimed at detection of chemical and genetic modifiers of the eye mutant phenotype elicited by dTgs1 and Smn deficiency, providing new clues about SMA pathogenesis and potential therapies.
Collapse
Affiliation(s)
- Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gemma Noviello
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Veronica Lisi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Simone D'Angeli
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - James G. Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, United Kingdom
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
- * E-mail: (MG); (GDR)
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- * E-mail: (MG); (GDR)
| |
Collapse
|
25
|
Park J, Lee JH, Lee Y, Lee D, Kim MJ, Choe KM. Necrotic cell death induces melanotic mass formation in Drosophila. Biochem Biophys Res Commun 2020; 526:1106-1111. [PMID: 32312516 DOI: 10.1016/j.bbrc.2020.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
The immune system protects its host from not only invading parasites and parasitoids, but also altered self tissue, including dying cells. Necrotic cells are strongly immunogenic, but in Drosophila this has not been directly addressed, due partially to the fact that knowledge about necrosis in Drosophila currently lags behind that for other models. Upon the loss of cell matrix attachment, endocycling polyploid tissues of the Drosophila larva undergo autophagy instead of apoptosis; we employed this system as a model to examine cell death modalities and immunity. Here, we report that larval fat body cells depleted of integrin undergo not only autophagy, but also necrotic cell death, and that a blockade of reaper, grim, hid, or the downstream caspases enhances necrosis. These cells elicit melanotic mass formation, an autoimmune-like response. We also show that necrosis is the main cause of melanotic mass formation in these anchorage-depleted polyploid cells.
Collapse
Affiliation(s)
- JinYoung Park
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Hyun Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Youngbin Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Donghoon Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Moon Jong Kim
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
26
|
Li Z, Wu C, Ding X, Li W, Xue L. Toll signaling promotes JNK-dependent apoptosis in Drosophila. Cell Div 2020; 15:7. [PMID: 32174999 PMCID: PMC7063707 DOI: 10.1186/s13008-020-00062-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Apoptosis plays pivotal roles in organ development and tissue homeostasis, with its major function to remove unhealthy cells that may compromise the fitness of the organism. Toll signaling, with the ancient evolutionary origin, regulates embryonic dorsal–ventral patterning, axon targeting and degeneration, and innate immunity. Using Drosophila as a genetic model, we characterized the role of Toll signaling in apoptotic cell death. Results We found that gain of Toll signaling is able to trigger caspase-dependent cell death in development. In addition, JNK activity is required for Toll-induced cell death. Furthermore, ectopic Toll expression induces the activation of JNK pathway. Moreover, physiological activation of Toll signaling is sufficient to produce JNK-dependent cell death. Finally, Toll signaling activates JNK-mediated cell death through promoting ROS production. Conclusions As Toll pathway has been evolutionarily conserved from Drosophila to human, this study may shed light on the mechanism of mammalian Toll-like receptors (TLRs) signaling in apoptotic cell death.
Collapse
Affiliation(s)
- Zhuojie Li
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Chenxi Wu
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China.,2College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210 China
| | - Xiang Ding
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Wenzhe Li
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Lei Xue
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China.,3Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000 China
| |
Collapse
|
27
|
Shi Y, Liu M, Huang Y, Zhang J, Yin L. Promotion of cell autophagy and apoptosis in cervical cancer by inhibition of long noncoding RNA LINC00511 via transcription factor RXRA-regulated PLD1. J Cell Physiol 2020; 235:6592-6604. [PMID: 32067228 DOI: 10.1002/jcp.29529] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
An increasing number of studies have explored the relationship of long noncoding RNAs (lncRNAs) with cervical cancer, yet the role of LINC00511 in cervical cancer still remains elusive. The current dissertation was intended to explore the effect of LINC00511 on cervical cancer development by regulating phospholipase D1 (PLD1) expression through transcription factor retinoic X receptor alpha (RXRA). Differentially expressed lncRNA and messenger RNA related to cervical cancer were screened by microarray-based expression profiling. Cervical cancer and paracancerous tissues were harvested to determine the LINC00511 expression using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The relationship among LINC00511, PLD1 promoter activity, and RXRA were determined via RNA immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays. Proliferation, autophagy, and apoptosis of cervical cancer cells were detected with a series of experiments. Tumor xenograft in nude mice was employed to determine the influence of LINC00511 and PLD1 on tumor formation and growth of cervical cancer in vivo. LINC00511 might influence the occurrence of cervical cancer by upregulating PLD1 expression via recruiting transcription factor RXRA. LINC00511 and PLD1 expressions were remarkably high in cervical cancer tissues and cells. LINC00511 combined with RXRA, and overexpression of LINC00511 in cervical cancer cells elevated PLD1 expression. Si-LINC00511, si-RXRA or si-PLD1 triggered repression of proliferation and promotion of autophagy and apoptosis of cervical cancer cells. In vivo experiment, si-LINC00511, or si-PLD1 inhibited the tumorigenic ability of nude mice. Collectively, this study suggests that LINC00511 acts as an oncogenic lncRNA in cervical cancer via the promotion of transcription factor RXRA-regulated PLD1.
Collapse
Affiliation(s)
- Yangyang Shi
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Mengran Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yan Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ling Yin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
28
|
Wu J, Zhu K, Luo X, Han Y, Zhang B, Wang Z, Dong S, Zou X, Chen X, Liu H, Wu T, Zheng Z, Xie Y, Zhao J, Liu Y, Wen Z, Liu D, Wang Y, Zheng S, Huang X, Jing C, Yang G. PM2.5 promotes replication of VSV by ubiquitination degradation of phospho-IRF3 in A549 cells. Toxicol In Vitro 2020; 62:104698. [DOI: 10.1016/j.tiv.2019.104698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023]
|
29
|
Wu C, Li Z, Ding X, Guo X, Sun Y, Wang X, Hu Y, Li T, La X, Li J, Li JA, Li W, Xue L. Snail modulates JNK-mediated cell death in Drosophila. Cell Death Dis 2019; 10:893. [PMID: 31772150 PMCID: PMC6879600 DOI: 10.1038/s41419-019-2135-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Cell death plays a pivotal role in animal development and tissue homeostasis. Dysregulation of this process is associated with a wide variety of human diseases, including developmental and immunological disorders, neurodegenerative diseases and tumors. While the fundamental role of JNK pathway in cell death has been extensively studied, its down-stream regulators and the underlying mechanisms remain largely elusive. From a Drosophila genetic screen, we identified Snail (Sna), a Zinc-finger transcription factor, as a novel modulator of ectopic Egr-induced JNK-mediated cell death. In addition, sna is essential for the physiological function of JNK signaling in development. Our genetic epistasis data suggest that Sna acts downstream of JNK to promote cell death. Mechanistically, JNK signaling triggers dFoxO-dependent transcriptional activation of sna. Thus, our findings not only reveal a novel function and the underlying mechanism of Sna in modulating JNK-mediated cell death, but also provide a potential drug target and therapeutic strategies for JNK signaling-related diseases.
Collapse
Affiliation(s)
- Chenxi Wu
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Zhuojie Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiang Ding
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaowei Guo
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ying Sun
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xingjun Wang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,Department of Neuroscience, Scripps Research Institute, 130 Scripps Way, Jupiter, Fl, 33458, USA
| | - Yujia Hu
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tongtong Li
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiaojin La
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Jianing Li
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Ji-An Li
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China. .,Center of Intervention Radiology, Zhuhai People's Hospital, Zhuhai, 519000, China.
| |
Collapse
|
30
|
Chiba M, Kamiya M, Tsuda-Sakurai K, Fujisawa Y, Kosakamoto H, Kojima R, Miura M, Urano Y. Activatable Photosensitizer for Targeted Ablation of lacZ-Positive Cells with Single-Cell Resolution. ACS CENTRAL SCIENCE 2019; 5:1676-1681. [PMID: 31660435 PMCID: PMC6813548 DOI: 10.1021/acscentsci.9b00678] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 05/08/2023]
Abstract
To achieve highly selective ablation of lacZ-positive cells in a biological milieu in vivo, we developed an activatable photosensitizer, SPiDER-killer-βGal, targeted to β-galactosidase encoded by the lacZ reporter gene. Hydrolysis of SPiDER-killer-βGal by β-galactosidase simultaneously activates both its photosensitizing ability and its reactivity to nucleophiles, so that the phototoxic products generated by light irradiation are trapped inside the lacZ-positive cells. The combination of SPiDER-killer-βGal and light irradiation specifically killed lacZ-positive cells in coculture with cells without lacZ expression. Furthermore, β-galactosidase-expressing cells in the posterior region of cultured Drosophila wing discs and in pupal notum of live Drosophila pupae were selectively killed with single-cell resolution. This photosensitizer should be useful for specific ablation of targeted cells in living organisms, for example, to investigate cellular functions in complex networks.
Collapse
Affiliation(s)
- Mayumi Chiba
- Graduate
School of Medicine and Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate
School of Medicine and Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- E-mail:
| | - Kayoko Tsuda-Sakurai
- Graduate
School of Medicine and Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuya Fujisawa
- Graduate
School of Medicine and Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hina Kosakamoto
- Graduate
School of Medicine and Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryosuke Kojima
- Graduate
School of Medicine and Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masayuki Miura
- Graduate
School of Medicine and Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate
School of Medicine and Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- CREST,
Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi,
Chiyoda-ku, Tokyo 100-0004, Japan
- E-mail:
| |
Collapse
|
31
|
Pan X, Neufeld TP, O'Connor MB. A Tissue- and Temporal-Specific Autophagic Switch Controls Drosophila Pre-metamorphic Nutritional Checkpoints. Curr Biol 2019; 29:2840-2851.e4. [PMID: 31422886 DOI: 10.1016/j.cub.2019.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 01/28/2023]
Abstract
Properly timed production of steroid hormones by endocrine tissues regulates juvenile-to-adult transitions in both mammals (puberty) and holometabolous insects (metamorphosis). Nutritional conditions influence the temporal control of the transition, but the mechanisms responsible are ill defined. Here we demonstrate that autophagy acts as an endocrine organ-specific, nutritionally regulated gating mechanism to help ensure productive metamorphosis in Drosophila. Autophagy in the endocrine organ is specifically stimulated by nutrient restriction at the early, but not the late, third-instar larva stage. The timing of autophagy induction correlates with the nutritional checkpoints, which inhibit precocious metamorphosis during nutrient restriction in undersized larvae. Suppression of autophagy causes dysregulated pupariation of starved larvae, which leads to pupal lethality, whereas forced autophagy induction results in developmental delay/arrest in well-fed animals. Induction of autophagy disrupts production of the steroid hormone ecdysone at the time of pupariation not by destruction of hormone biosynthetic capacity but rather by limiting the availability of the steroid hormone precursor cholesterol in the endocrine cells via a lipophagy mechanism. Interestingly, autophagy in the endocrine organ functions by interacting with the endolysosome system, yet shows multiple features not fully consistent with a canonical autophagy process. Taken together, our findings demonstrate an autophagy mechanism in endocrine cells that helps shape the nutritional checkpoints and guarantee a successful juvenile-to-adult transition in animals confronting nutritional stress.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Genetics, Cell Biology and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas P Neufeld
- Department of Genetics, Cell Biology and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Li M, Sun S, Priest J, Bi X, Fan Y. Characterization of TNF-induced cell death in Drosophila reveals caspase- and JNK-dependent necrosis and its role in tumor suppression. Cell Death Dis 2019; 10:613. [PMID: 31409797 PMCID: PMC6692325 DOI: 10.1038/s41419-019-1862-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
Abstract
Tumor-necrosis factor (TNF) and its superfamily members are pleiotropic cytokines. Activation of TNF can lead to distinct cellular outcomes including inflammation, cell survival, and different forms of cell death, such as apoptosis and necrosis in a context-dependent manner. However, our understanding of what determines the versatile functions of TNF is far from complete. Here, we examined the molecular mechanisms that distinguish the forms of cell death induced by Eiger (Egr), the sole homolog of TNF in Drosophila. We show that expression of Egr in the developing Drosophila eye simultaneously induces apoptosis and apoptosis-independent developmental defects indicated by cellular disorganization, both of which rely on the c-Jun N-terminal kinase (JNK) signaling activity. Intriguingly, when effector caspases DrICE and Dcp-1 are defective or inhibited, expression of Egr triggers necrosis which is characterized by loss of cell membrane integrity, translucent cytoplasm, and aggregation of cellular organelles. Moreover, such Egr-induced necrosis depends on the catalytic activity of the initiator caspase Dronc and the input from JNK signaling but is independent of their roles in apoptosis. Further mosaic analysis with mutants of scribble (scrib), an evolutionarily conserved tumor suppressor gene regulating cell polarity, suggests that Egr/JNK-mediated apoptosis and necrosis establish a two-layered defense system to inhibit the oncogenic growth of scrib mutant cells. Together, we have identified caspase- and JNK-dependent mechanisms underlying Egr-induced apoptosis versus necrosis and their fail-safe roles in tumor suppression in an intact organism in vivo.
Collapse
Affiliation(s)
- Mingli Li
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Shiyao Sun
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Jessica Priest
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Xiaolin Bi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
33
|
Sanuki R, Tanaka T, Suzuki F, Ibaraki K, Takano T. Normal aging hyperactivates innate immunity and reduces the medical efficacy of minocycline in brain injury. Brain Behav Immun 2019; 80:427-438. [PMID: 30986429 DOI: 10.1016/j.bbi.2019.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/08/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Symptoms of many neurodegenerative diseases appear later in human life. However, young animal models for penetrating traumatic brain injury (pTBI) have been used to study neurodegenerative diseases and evaluate the efficacy of neuroprotective medicines. Possibly because of this discordance, effective neuroprotective drugs have still not been developed. For patients suffering from pTBI, aging is known to be a significant prognostic factor of mortality. In this study, we aimed to establish a model of aged pTBI animals using Drosophila melanogaster. We successfully generated aged pTBI flies as a new pTBI model showing increased neurodegeneration and higher mortality. To elucidate the mechanism of increased vulnerability in aged pTBI animals, we analyzed the GenBank-deposited transcriptome data of young and aged flies, demonstrating the importance of innate immunity genes for higher mortality in aged pTBI models. We found that in the context of pTBI, normal aging strongly activated the expression of antimicrobial peptide genes and upregulated the nuclear factor-κB gene in the immune deficiency pathway, but not the Toll pathway. Moreover, we found that minocycline increased the survival of young pTBI flies, but not aged pTBI flies. These results suggested that immune system activation under neurodegenerative conditions was involved in normal aging, thereby inhibiting the medicinal efficacy of neuroprotective drugs effective for young flies in aged flies.
Collapse
Affiliation(s)
- Rikako Sanuki
- Department of Applied Biology, Kyoto Institute of Technology, Saga Campus, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan; Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan.
| | - Tomoya Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Saga Campus, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| | - Fumiko Suzuki
- Department of Applied Biology, Kyoto Institute of Technology, Saga Campus, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| | - Kimihide Ibaraki
- Department of Applied Biology, Kyoto Institute of Technology, Saga Campus, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| | - Toshiyuki Takano
- Department of Applied Biology, Kyoto Institute of Technology, Saga Campus, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan; Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| |
Collapse
|
34
|
La Marca JE, Diepstraten ST, Hodge AL, Wang H, Hart AH, Richardson HE, Somers WG. Strip and Cka negatively regulate JNK signalling during Drosophila spermatogenesis. Development 2019; 146:dev.174292. [PMID: 31164352 DOI: 10.1242/dev.174292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
One fundamental property of a stem cell niche is the exchange of molecular signals between its component cells. Niche models, such as the Drosophila melanogaster testis, have been instrumental in identifying and studying the conserved genetic factors that contribute to niche molecular signalling. Here, we identify jam packed (jam), an allele of Striatin interacting protein (Strip), which is a core member of the highly conserved Striatin-interacting phosphatase and kinase (STRIPAK) complex. In the developing Drosophila testis, Strip cell-autonomously regulates the differentiation and morphology of the somatic lineage, and non-cell-autonomously regulates the proliferation and differentiation of the germline lineage. Mechanistically, Strip acts in the somatic lineage with its STRIPAK partner, Connector of kinase to AP-1 (Cka), where they negatively regulate the Jun N-terminal kinase (JNK) signalling pathway. Our study reveals a novel role for Strip/Cka in JNK pathway regulation during spermatogenesis within the developing Drosophila testis.
Collapse
Affiliation(s)
- John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - Sarah T Diepstraten
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - Amy L Hodge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 169857.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Adam H Hart
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - W Gregory Somers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| |
Collapse
|
35
|
Tsogtbaatar O, Won JH, Kim GW, Han JH, Bae YK, Cho KO. An ADAMTS Sol narae is required for cell survival in Drosophila. Sci Rep 2019; 9:1270. [PMID: 30718556 PMCID: PMC6362049 DOI: 10.1038/s41598-018-37557-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Cell survival is essential for all living organisms to cope against multiple environmental insults. Intercellular signaling between dying and surviving cells plays an important role to ensure compensatory proliferation, preventing tissue loss after environmental stresses. Here, we show that Sol narae (Sona), a Disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in Drosophila is required for cell survival. sona exhibited a positive genetic interaction with Death-associated inhibitor of apoptosis 1 (Diap1), and a negative genetic interaction with reaper (rpr). Transcription patterns of sona, Diap1, and rpr genes in the pouch region of wing discs were coordinately changed after irradiation. Interestingly, there was a negative correlation in the expression levels of Sona and DIAP1, and both cell types, one with high Sona level and the other with high Diap1 level, were resistant to irradiation-induced cell death. The sona-expressing cells rarely entered into cell cycle themselves but promoted the nearby cells to proliferate in irradiation conditions. We found that these sona-expressing cells are able to upregulate Cyclin D (Cyc D) and increase tissue size. Furthermore, transient Sona overexpression increased survival rate and promoted development of flies in irradiation conditions. We propose that the two types of radiation-resistant cells, one with high Sona level and the other with high Diap1 level, communicate with dying cells and between each other for cell survival and proliferation in response to irradiation.
Collapse
Affiliation(s)
- Orkhon Tsogtbaatar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Go-Woon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Jeong-Hoon Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Young-Kyung Bae
- Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajung-ro, Yuseung-gu, Daejeon, Korea.
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
36
|
Robin M, Issa AR, Santos CC, Napoletano F, Petitgas C, Chatelain G, Ruby M, Walter L, Birman S, Domingos PM, Calvi BR, Mollereau B. Drosophila p53 integrates the antagonism between autophagy and apoptosis in response to stress. Autophagy 2018; 15:771-784. [PMID: 30563404 DOI: 10.1080/15548627.2018.1558001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor suppressor TP53/p53 is a known regulator of apoptosis and macroautophagy/autophagy. However, the molecular mechanism by which TP53 regulates 2 apparently incompatible processes remains unknown. We found that Drosophila lacking p53 displayed impaired autophagic flux, higher caspase activation and mortality in response to oxidative stress compared with wild-type flies. Moreover, autophagy and apoptosis were differentially regulated by the p53 (p53B) and ΔNp53 (p53A) isoforms: while the former induced autophagy in differentiated neurons, which protected against cell death, the latter inhibited autophagy by activating the caspases Dronc, Drice, and Dcp-1. Our results demonstrate that the differential use of p53 isoforms combined with the antagonism between apoptosis and autophagy ensures the generation of an appropriate p53 biological response to stress.
Collapse
Affiliation(s)
- Marion Robin
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Abdul Raouf Issa
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France.,e Department of Life Sciences , University of Trieste c/o CIB National Laboratory , Area Science Park , Trieste , Italy
| | - Cristiana C Santos
- c Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Francesco Napoletano
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France.,e Department of Life Sciences , University of Trieste c/o CIB National Laboratory , Area Science Park , Trieste , Italy
| | - Céline Petitgas
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France
| | - Gilles Chatelain
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Mathilde Ruby
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Ludivine Walter
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Serge Birman
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France
| | - Pedro M Domingos
- c Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Brian R Calvi
- d Department of Biology , Indiana University , Bloomington , IN , USA
| | - Bertrand Mollereau
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| |
Collapse
|
37
|
Chen X, Xuan B, Xu D, Wang Q, Cheng M, Jin Y. Crocin supplementation during oocyte maturation enhances antioxidant defence and subsequent cleavage rate. Reprod Domest Anim 2018; 54:300-308. [PMID: 30325531 DOI: 10.1111/rda.13361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/05/2018] [Indexed: 01/05/2023]
Abstract
The purpose of the present study was to assess the effect of crocin supplementation during oocyte maturation on the antioxidant defence and anti-apoptotic ability and subsequent developmental competence of porcine oocytes. Oocytes were cultured in media containing 0, 300, 400 or 500 µg/ml of crocin. Upon maturation, the maturation rates, reactive oxygen species (ROS) and glutathione (GSH) levels, mRNA expression of genes (SOD, CAT, GPx, Bcl-2, BAX and Caspase3), expression of cleaved caspase3 and subsequent embryo cleavage rates were measured. Results indicated that the maturation rate of the 400 µg/ml group was 86.80% (p < 0.01). The ROS concentration of the 500 µg/ml group was the lowest (p < 0.01). The GSH concentration of the 400 µg/ml group was the highest (p < 0.01). The SOD, CAT and GPx mRNA expression levels were the highest in the 300, 400 and 500 µg/ml groups, respectively, with the expression levels of all genes being significantly higher than that of the control group (p < 0.01). The Bcl-2/BAX mRNA expression ratio in 400 and 500 µg/ml groups significantly higher than other groups and significantly decreased caspase3 expression level (p < 0.01). The expression level of cleaved caspase3 in the 500 µg/ml treatment group was the lowest, significantly lower than that of the control group (p < 0.01). The cleavage rate of the 400 µg/ml group was 62.50% (p < 0.01). These experimental results show that the supplementation of in vitro culture medium with 400 µg/ml of crocin significantly enhanced the antioxidant defence and anti-apoptotic ability and subsequent cleavage rate of porcine embryo.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Biao Xuan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Da Xu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Qiuyue Wang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Mimi Cheng
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Yi Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| |
Collapse
|
38
|
Wang XR, Wang C, Wang XW, Qian LX, Chi Y, Liu SS, Liu YQ, Wang XW. The functions of caspase in whitefly Bemisia tabaci apoptosis in response to ultraviolet irradiation. INSECT MOLECULAR BIOLOGY 2018; 27:739-751. [PMID: 29892978 DOI: 10.1111/imb.12515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whiteflies (Bemisia tabaci) are phloem feeders, and some invasive species are composed of cryptic species complexes that cause extensive crop damage, particularly via the direct transmission of plant viruses. Apoptosis is a type of programmed cell death essential for organismal development and tissue homeostasis. The caspases belong to a family of cysteine proteases that play a central role in the initiation of apoptosis in many organisms. Here, we employed a comprehensive genomics approach to identity caspases in B. tabaci Middle East Asia Minor 1 (MEAM1), an invasive whitefly that carries a cryptic species complex that is devastating to crops. Four caspase genes were identified, and their motif compositions were predicted. Structures were relatively conserved in both putative effector and initiator caspases. Expression patterns of caspase genes differed across insect developmental stages. Three caspase genes were induced immediately after ultraviolet (UV) treatment. Expression levels of Bt-caspase-1 and Bt-caspase-3b increased in the midgut and salivary glands during apoptosis induced by UV treatments, whereas silencing of both genes reduced UV-triggered apoptosis. Our study demonstrates that Bt-caspase-1 and Bt-caspase-3b, respectively, act as putative initiator and effector apoptotic caspases in the MEAM1 whitefly.
Collapse
Affiliation(s)
- X-R Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - C Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-W Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - L-X Qian
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - S-S Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-Q Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-W Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Nandy A, Lin L, Velentzas PD, Wu LP, Baehrecke EH, Silverman N. The NF-κB Factor Relish Regulates Atg1 Expression and Controls Autophagy. Cell Rep 2018; 25:2110-2120.e3. [PMID: 30463009 PMCID: PMC6329390 DOI: 10.1016/j.celrep.2018.10.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 08/01/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy and cell death both contribute to innate immunity, but little is known about how these processes integrate. Drosophila larval salivary glands require autophagy for developmentally programmed cell death, and innate immune signaling factors increase in these dying cells. Here, we show that the nuclear factor κB (NF-κB) factor Relish, a component of the immune deficiency (Imd) pathway, is required for salivary gland degradation. Surprisingly, of the classic Imd pathway components, only Relish and the PGRP receptors were involved in salivary gland degradation. Significantly, Relish controls salivary gland degradation by regulating autophagy but not caspases. In addition, expression of either Relish or PGRP-LC causes premature autophagy induction and subsequent gland degradation. Relish controls autophagy by regulating the expression of Atg1, a core component and activator of the autophagy pathway. Together these findings demonstrate that a NF-κB pathway regulates autophagy during developmentally programmed cell death.
Collapse
Affiliation(s)
- Anubhab Nandy
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lin Lin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Panagiotis D Velentzas
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Louisa P Wu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
40
|
The Role of Apoptotic Signaling in Axon Guidance. J Dev Biol 2018; 6:jdb6040024. [PMID: 30340315 PMCID: PMC6316149 DOI: 10.3390/jdb6040024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
Navigating growth cones are exposed to multiple signals simultaneously and have to integrate competing cues into a coherent navigational response. Integration of guidance cues is traditionally thought to occur at the level of cytoskeletal dynamics. Drosophila studies indicate that cells exhibit a low level of continuous caspase protease activation, and that axon guidance cues can activate or suppress caspase activity. We base a model for axon guidance on these observations. By analogy with other systems in which caspase signaling has non-apoptotic functions, we propose that caspase signaling can either reinforce repulsion or negate attraction in response to external guidance cues by cleaving cytoskeletal proteins. Over the course of an entire trajectory, incorrectly navigating axons may pass the threshold for apoptosis and be eliminated, whereas axons making correct decisions will survive. These observations would also explain why neurotrophic factors can act as axon guidance cues and why axon guidance systems such as Slit/Robo signaling may act as tumor suppressors in cancer.
Collapse
|
41
|
Benhra N, Barrio L, Muzzopappa M, Milán M. Chromosomal Instability Induces Cellular Invasion in Epithelial Tissues. Dev Cell 2018; 47:161-174.e4. [DOI: 10.1016/j.devcel.2018.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/19/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
|
42
|
Billes V, Kovács T, Manzéger A, Lőrincz P, Szincsák S, Regős Á, Kulcsár PI, Korcsmáros T, Lukácsovich T, Hoffmann G, Erdélyi M, Mihály J, Takács-Vellai K, Sass M, Vellai T. Developmentally regulated autophagy is required for eye formation in Drosophila. Autophagy 2018; 14:1499-1519. [PMID: 29940806 PMCID: PMC6135572 DOI: 10.1080/15548627.2018.1454569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 03/03/2018] [Accepted: 03/15/2018] [Indexed: 01/22/2023] Open
Abstract
The compound eye of the fruit fly Drosophila melanogaster is one of the most intensively studied and best understood model organs in the field of developmental genetics. Herein we demonstrate that autophagy, an evolutionarily conserved selfdegradation process of eukaryotic cells, is essential for eye development in this organism. Autophagic structures accumulate in a specific pattern in the developing eye disc, predominantly in the morphogenetic furrow (MF) and differentiation zone. Silencing of several autophagy genes (Atg) in the eye primordium severely affects the morphology of the adult eye through triggering ectopic cell death. In Atg mutant genetic backgrounds however genetic compensatory mechanisms largely rescue autophagic activity in, and thereby normal morphogenesis of, this organ. We also show that in the eye disc the expression of a key autophagy gene, Atg8a, is controlled in a complex manner by the anterior Hox paralog Lab (Labial), a master regulator of early development. Atg8a transcription is repressed in front of, while activated along, the MF by Lab. The amount of autophagic structures then remains elevated behind the moving MF. These results indicate that eye development in Drosophila depends on the cell death-suppressing and differentiating effects of the autophagic process. This novel, developmentally regulated function of autophagy in the morphogenesis of the compound eye may shed light on a more fundamental role for cellular self-digestion in differentiation and organ formation than previously thought. ABBREVIATIONS αTub84B, α-Tubulin at 84B; Act5C, Actin5C; AO, acridine orange; Atg, autophagy-related; Ato, Atonal; CASP3, caspase 3; Dcr-2; Dicer-2; Dfd, Deformed; DZ, differentiation zone; eGFP, enhanced green fluorescent protein; EM, electron microscopy; exd, extradenticle; ey, eyeless; FLP, flippase recombinase; FRT, FLP recognition target; Gal4, gene encoding the yeast transcription activator protein GAL4; GFP, green fluorescent protein; GMR, Glass multimer reporter; Hox, homeobox; hth, homothorax; lab, labial; L3F, L3 feeding larval stage; L3W, L3 wandering larval stage; lf, loss-of-function; MAP1LC3, microtubule-associated protein 1 light chain 3; MF, morphogenetic furrow; PE, phosphatidylethanolamine; PBS, phosphate-buffered saline; PI3K/PtdIns3K, class III phosphatidylinositol 3-kinase; PZ, proliferation zone; Ref(2)P, refractory to sigma P, RFP, red fluorescent protein; RNAi, RNA interference; RpL32, Ribosomal protein L32; RT-PCR, reverse transcription-coupled polymerase chain reaction; S.D., standard deviation; SQSTM1, Sequestosome-1, Tor, Target of rapamycin; TUNEL, terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay; UAS, upstream activation sequence; qPCR, quantitative real-time polymerase chain reaction; w, white.
Collapse
Affiliation(s)
- Viktor Billes
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Anna Manzéger
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Sára Szincsák
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Ágnes Regős
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter István Kulcsár
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Korcsmáros
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Tamás Lukácsovich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Gyula Hoffmann
- Department of Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
| | - Miklós Erdélyi
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | | | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
43
|
A virus-acquired host cytokine controls systemic aging by antagonizing apoptosis. PLoS Biol 2018; 16:e2005796. [PMID: 30036358 PMCID: PMC6072105 DOI: 10.1371/journal.pbio.2005796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/02/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Aging is characterized by degeneration of unique tissues. However, dissecting the interconnectedness of tissue aging remains a challenge. Here, we employ a muscle-specific DNA damage model in Drosophila to reveal secreted factors that influence systemic aging in distal tissues. Utilizing this model, we uncovered a cytokine—Diedel—that, when secreted from muscle or adipose, can attenuate age-related intestinal tissue degeneration by promoting proliferative homeostasis of stem cells. Diedel is both necessary and sufficient to limit tissue degeneration and regulate lifespan. Secreted homologs of Diedel are also found in viruses, having been acquired from host genomes. Focusing on potential mechanistic overlap between cellular aging and viral-host cell interactions, we found that Diedel is an inhibitor of apoptosis and can act as a systemic rheostat to modulate cell death during aging. These results highlight a key role for secreted antagonists of apoptosis in the systemic coordination of tissue aging. Aging in multicellular organisms is characterized by a progressive decline in the proper function of organs. This deterioration of organ function is a risk factor for many diseases. However, it is unlikely that organs age in isolation, as damage in one organ can presumably impact aging of other organs through either beneficial or detrimental cross-talk. Our work attempts to explore this aspect of aging using fruit flies as a model system. We uncovered that damaged fly muscle can protect against aging in other organs, such as the intestine, through the secretion of a blood-borne factor named Diedel. This blood-borne factor presumably allows damaged organs to communicate with each other during aging. Related factors are also found in certain viruses, which have been hijacked from insect genomes to promote viral spreading during infection. Using this information, we found that viral Diedel inhibits death of infected cells, allowing viruses to spread. Similarly, host (insect) Diedel also blocks cell death in organs during aging, thus limiting deterioration of organ function and extending the organism’s lifespan.
Collapse
|
44
|
Vishal K, Bawa S, Brooks D, Bauman K, Geisbrecht ER. Thin is required for cell death in the Drosophila abdominal muscles by targeting DIAP1. Cell Death Dis 2018; 9:740. [PMID: 29970915 PMCID: PMC6030163 DOI: 10.1038/s41419-018-0756-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022]
Abstract
In holometabolous insects, developmentally controlled programmed cell death (PCD) is a conserved process that destroys a subset of larval tissues for the eventual creation of new adult structures. This process of histolysis is relatively well studied in salivary gland and midgut tissues, while knowledge concerning larval muscle destruction is limited. Here, we have examined the histolysis of a group of Drosophila larval abdominal muscles called the dorsal external oblique muscles (DEOMs). Previous studies have defined apoptosis as the primary mediator of DEOM breakdown, whose timing is controlled by ecdysone signaling. However, very little is known about other factors that contribute to DEOM destruction. In this paper, we examine the role of thin (tn), which encodes for the Drosophila homolog of mammalian TRIM32, in the regulation of DEOM histolysis. We find that loss of Tn blocks DEOM degradation independent of ecdysone signaling. Instead, tn genetically functions in a pathway with the death-associated inhibitor of apoptosis (DIAP1), Dronc, and death-associated APAF1-related killer (Dark) to regulate apoptosis. Importantly, blocking Tn results in the absence of active Caspase-3 immunostaining, upregulation of DIAP1 protein levels, and inhibition of Dronc activation. DIAP1 and Dronc mRNA levels are not altered in tn mutants, showing that Tn acts post-transcriptionally on DIAP1 to regulate apoptosis. Herein, we also find that the RING domain of Tn is required for DEOM histolysis as loss of this domain results in higher DIAP1 levels. Together, our results suggest that the direct control of DIAP1 levels, likely through the E3 ubiquitin ligase activity of Tn, provides a mechanism to regulate caspase activity and to facilitate muscle cell death.
Collapse
Affiliation(s)
- Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Kenneth Bauman
- Department of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas, Kansas City, MO, 64110, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
45
|
Tissue-Specific Upregulation of Drosophila Insulin Receptor (InR) Mitigates Poly(Q)-Mediated Neurotoxicity by Restoration of Cellular Transcription Machinery. Mol Neurobiol 2018; 56:1310-1329. [DOI: 10.1007/s12035-018-1160-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
|
46
|
Amcheslavsky A, Wang S, Fogarty CE, Lindblad JL, Fan Y, Bergmann A. Plasma Membrane Localization of Apoptotic Caspases for Non-apoptotic Functions. Dev Cell 2018; 45:450-464.e3. [PMID: 29787709 PMCID: PMC5972739 DOI: 10.1016/j.devcel.2018.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
Caspases are best characterized for their function in apoptosis. However, they also have non-apoptotic functions such as apoptosis-induced proliferation (AiP), where caspases release mitogens for compensatory proliferation independently of their apoptotic role. Here, we report that the unconventional myosin, Myo1D, which is known for its involvement in left/right development, is an important mediator of AiP in Drosophila. Mechanistically, Myo1D translocates the initiator caspase Dronc to the basal side of the plasma membrane of epithelial cells where Dronc promotes the activation of the NADPH-oxidase Duox for reactive oxygen species generation and AiP in a non-apoptotic manner. We propose that the basal side of the plasma membrane constitutes a non-apoptotic compartment for caspases. Finally, Myo1D promotes tumor growth and invasiveness of the neoplastic scrib RasV12 model. Together, we identified a new function of Myo1D for AiP and tumorigenesis, and reveal a mechanism by which cells sequester apoptotic caspases in a non-apoptotic compartment at the plasma membrane.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA
| | - Shiuan Wang
- Baylor College of Medicine, Program in Developmental Biology, Houston, TX 77030, USA
| | - Caitlin E Fogarty
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jillian L Lindblad
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA
| | - Yun Fan
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham B15 2TT, UK
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
47
|
Tang HM, Fung MC, Tang HL. Detecting Anastasis In Vivo by CaspaseTracker Biosensor. J Vis Exp 2018. [PMID: 29443051 DOI: 10.3791/54107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anastasis (Greek for "rising to life") is a recently discovered cell recovery phenomenon whereby dying cells can reverse late-stage cell death processes that are generally assumed to be intrinsically irreversible. Promoting anastasis could in principle rescue or preserve injured cells that are difficult to replace such as cardiomyocytes or neurons, thereby facilitating tissue recovery. Conversely, suppressing anastasis in cancer cells, undergoing apoptosis after anti-cancer therapies, may ensure cancer cell death and reduce the chances of recurrence. However, these studies have been hampered by the lack of tools for tracking the fate of cells that undergo anastasis in live animals. The challenge is to identify the cells that have reversed the cell death process despite their morphologically normal appearance after recovery. To overcome this difficulty, we have developed Drosophila and mammalian CaspaseTracker biosensor systems that can identify and permanently track the anastatic cells in vitro or in vivo. Here, we present in vivo protocols for the generation and use of the CaspaseTracker dual biosensor system to detect and track anastasis in Drosophila melanogaster after transient exposure to cell death stimuli. While conventional biosensors and protocols can label cells actively undergoing apoptotic cell death, the CaspaseTracker biosensor can permanently label cells that have recovered after caspase activation - a hallmark of late-stage apoptosis, and simultaneously identify active apoptotic processes. This biosensor can also track the recovery of the cells that attempted other forms of cell death that directly or indirectly involved caspase activity. Therefore, this protocol enables us to continuously track the fate of these cells and their progeny, facilitating future studies of the biological functions, molecular mechanisms, physiological and pathological consequences, and therapeutic implications of anastasis. We also discuss the appropriate controls to distinguish cells that undergo anastasis from those that display non-apoptotic caspase activity in vivo.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine; School of Life Sciences, Chinese University of Hong Kong;
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong;
| | - Ho Lam Tang
- Department of Neurosurgery, Johns Hopkins University School of Medicine;
| |
Collapse
|
48
|
Mondal T, Bag I, SNCVL P, Garikapati KR, Bhadra U, Pal Bhadra M. Two way controls of apoptotic regulators consign DmArgonaute-1 a better clasp on it. PLoS One 2018; 13:e0190548. [PMID: 29385168 PMCID: PMC5791970 DOI: 10.1371/journal.pone.0190548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/16/2017] [Indexed: 02/02/2023] Open
Abstract
Argonaute family proteins are well conserved among all organisms. Its role in mitotic cell cycle progression and apoptotic cell elimination is poorly understood. Earlier we have established the contribution of Ago-1 in cell cycle control related to G2/M cyclin in Drosophila. Here we have extended our study in understanding the relationship of Ago-1 in regulating apoptosis during Drosophila development. Apoptosis play a critical role in controlling organ shape and size during development of multi cellular organism. Multifarious regulatory pathways control apoptosis during development among which highly conserved JNK (c-Jun N-terminal kinase) pathway play a crucial role. Here we have over expressed Ago-1 in Drosophila eye and brain by employing UAS (upstream activation sequence)-GAL4 system under the expression of eye and brain specific driver. Over expression of Ago-1 resulted in reduced number of ommatidia in the eye and produced smaller size brain in adult and larval Drosophila. A drastic reversal of the phenotype towards normal was observed upon introduction of a single copy of the dominant negative mutation of basket (bsk, Drosophila homolog of JNK) indicating an active and physical involvement of the bsk with Ago-1 in inducing developmental apoptotic process. Further study showed that Ago-1 stimulates phosphorylation of JNK through transforming growth factor-β activated kinase 1- hemipterous (Tak1-hep) axis of JNK pathway. JNK phosphorylation results in up regulation of pro-apoptotic genes head involution defective (hid), grim & reaper (rpr) and induces activation of Drosophila caspases (cysteinyl aspartate proteinases);DRONC (Death regulator Nedd2-like caspase), ICE (alternatively Drice, Death related ICE-like caspase) and DCP1 (Death caspase-1) by inhibiting apoptotic inhibitor protein DIAP1 (Death-associated inhibitor of apoptosis 1). Further, Ago-1 also inhibits miR-14 expression to trigger apoptosis. Our findings propose that Ago-1 acts as a key regulator in controlling cell death, tumor regression and stress response in metazoan providing a constructive bridge between RNAi machinery and cell death.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Indira Bag
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Pushpavalli SNCVL
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Koteswara Rao Garikapati
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Utpal Bhadra
- Gene Silencing and Functional Genomics Group, CSIR-Centre For Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana State, India
| | - Manika Pal Bhadra
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
- * E-mail: ,
| |
Collapse
|
49
|
Clémot M, Molla-Herman A, Mathieu J, Huynh JR, Dostatni N. The replicative histone chaperone CAF-1 is essential for the maintenance of identity and genome integrity in adult stem cells. Development 2018; 145:dev.161190. [DOI: 10.1242/dev.161190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
Chromatin packaging and modifications are important to define the identity of stem cells. How chromatin properties are retained over multiple cycles of stem cell replication, while generating differentiating progeny at the same time, remains a challenging question. The chromatin assembly factor CAF-1 is a conserved histone chaperone, which assembles histones H3 and H4 onto newly synthesized DNA during replication and repair. Here, we investigated the role of CAF-1 in the maintenance of germline stem cells (GSCs) in Drosophila ovaries. We depleted P180, the large subunit of CAF-1, in germ cells and found that it was required in GSCs to maintain their identity. In the absence of P180, GSCs still harbor stem cell properties but concomitantly express markers of differentiation. In addition, P180-depleted germ cells exhibit elevated levels of DNA damage and de-repression of the transposable I-element. These DNA damages activate p53- and Chk2-dependent checkpoints pathways, leading to cell death and female sterility. Altogether, our work demonstrates that chromatin dynamics mediated by CAF-1 play an important role in both the regulation of stem cell identity and genome integrity.
Collapse
Affiliation(s)
- Marie Clémot
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| | - Anahi Molla-Herman
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Juliette Mathieu
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Jean-René Huynh
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| |
Collapse
|
50
|
Han XL, Li JD, Wang WL, Yang C, Li ZY. Sweroside eradicated leukemia cells and attenuated pathogenic processes in mice by inducing apoptosis. Biomed Pharmacother 2017; 95:477-486. [DOI: 10.1016/j.biopha.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
|