1
|
Rajagopalan K, Selvan Christyraj JD, Chelladurai KS, Kalimuthu K, Das P, Chandrasekar M, Balamurugan N, Murugan K. Understanding the molecular mechanism of regeneration through apoptosis-induced compensatory proliferation studies - updates and future aspects. Apoptosis 2024:10.1007/s10495-024-01958-1. [PMID: 38581530 DOI: 10.1007/s10495-024-01958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
AICP is a crucial process that maintaining tissue homeostasis and regeneration. In the past, cell death was perceived merely as a means to discard cells without functional consequences. However, during regeneration, effector caspases orchestrate apoptosis, releasing signals that activate stem cells, thereby compensating for tissue loss across various animal models. Despite significant progress, the activation of Wnt3a by caspase-3 remains a focal point of research gaps in AICP mechanisms, spanning from lower to higher regenerative animals. This inquiry into the molecular intricacies of caspase-3-induced Wnt3a activation contributes to a deeper understanding of the links between regeneration and cancer mechanisms. Our report provides current updates on AICP pathways, delineating research gaps and highlighting the potential for future investigations aimed at enhancing our comprehension of this intricate process.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India.
| | - Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | | | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Karthikeyan Murugan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, India
| |
Collapse
|
2
|
Nano M, Montell DJ. Apoptotic signaling: Beyond cell death. Semin Cell Dev Biol 2024; 156:22-34. [PMID: 37988794 DOI: 10.1016/j.semcdb.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Apoptosis is the best described form of regulated cell death, and was, until relatively recently, considered irreversible once particular biochemical points-of-no-return were activated. In this manuscript, we examine the mechanisms cells use to escape from a self-amplifying death signaling module. We discuss the role of feedback, dynamics, propagation, and noise in apoptotic signaling. We conclude with a revised model for the role of apoptosis in animal development, homeostasis, and disease.
Collapse
Affiliation(s)
- Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
3
|
Shen J, Wang Z, Liu M, Zhu YJ, Zheng L, Wang LL, Cheng JL, Liu TT, Zhang GD, Yang TY, Wang X, Zhang L. LincRNA-ROR/miR-145/ZEB2 regulates liver fibrosis by modulating HERC5-mediated p53 ISGylation. FASEB J 2023; 37:e22936. [PMID: 37144417 DOI: 10.1096/fj.202201182rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The tumor suppressor p53 has been implicated in the pathogenesis of liver fibrosis. HERC5-mediated posttranslational ISG modification of the p53 protein is critical for controlling its activity. Here, we demonstrated that the expression of HERC5 and ISG15 is highly elevated, whereas p53 is downregulated, in fibrotic liver tissues of mice and transforming growth factor-β1 (TGF-β1)-induced LX2 cells. HERC5 siRNA clearly increased the protein expression of p53, but the mRNA expression of p53 was not obviously changed. The inhibition of lincRNA-ROR (ROR) downregulated HERC5 expression and elevated p53 expression in TGF-β1-stimulated LX-2 cells. Furthermore, the expression of p53 was almost unchanged after TGF-β1-stimulated LX-2 cells were co-transfected with a ROR-expressing plasmid and HERC5 siRNA. We further confirmed that miR-145 is a target gene of ROR. In addition, we also showed that ROR regulates the HERC5-mediated ISGylation of p53 through mir-145/ZEB2. Together, we propose that ROR/miR-145/ZEB2 might be involved in the course of liver fibrosis by regulating ISGylation of the p53 protein.
Collapse
Affiliation(s)
- Jie Shen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zhu Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Mei Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yu-Jie Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Zheng
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Li-Li Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jie-Ling Cheng
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Tong-Tong Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Guo-Dong Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Tian-Yu Yang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao Wang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
4
|
Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules 2022; 12:biom12070901. [PMID: 35883457 PMCID: PMC9313292 DOI: 10.3390/biom12070901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.
Collapse
|
5
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|
6
|
Chakravarti A, Thirimanne HN, Brown S, Calvi BR. Drosophila p53 isoforms have overlapping and distinct functions in germline genome integrity and oocyte quality control. eLife 2022; 11:61389. [PMID: 35023826 PMCID: PMC8758136 DOI: 10.7554/elife.61389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.
Collapse
Affiliation(s)
| | | | - Savanna Brown
- Department of Biology, Indiana University, Bloomington, United States
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, United States
| |
Collapse
|
7
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Nguyen TTN, Shim J, Song YH. Chk2-p53 and JNK in irradiation-induced cell death of hematopoietic progenitors and differentiated cells in Drosophila larval lymph gland. Biol Open 2021; 10:271116. [PMID: 34328173 PMCID: PMC8411456 DOI: 10.1242/bio.058809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation (IR) induces DNA double-strand breaks that activate the DNA damage response (DDR), which leads to cell cycle arrest, senescence, or apoptotic cell death. Understanding the DDR of stem cells is critical to tissue homeostasis and the survival of the organism. Drosophila hematopoiesis serves as a model system for sensing stress and environmental changes; however, their response to DNA damage remains largely unexplored. The Drosophila lymph gland is the larval hematopoietic organ, where stem-like progenitors proliferate and differentiate into mature blood cells called hemocytes. We found that apoptotic cell death was induced in progenitors and hemocytes after 40 Gy irradiation, with progenitors showing more resistance to IR-induced cell death compared to hemocytes at a lower dose. Furthermore, we found that Drosophila ATM (tefu), Chk2 (lok), p53, and reaper were necessary for IR-induced cell death in the progenitors. Notably, IR-induced cell death in mature hemocytes required tefu, Drosophila JNK (bsk), and reaper, but not lok or p53. In summary, we found that DNA damage induces apoptotic cell death in the late third instar larval lymph gland and identified lok/p53-dependent and -independent cell death pathways in progenitors and mature hemocytes, respectively.
Collapse
Affiliation(s)
- Tram Thi Ngoc Nguyen
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.,Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Han Song
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.,Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea
| |
Collapse
|
9
|
Abstract
Drosophila melanogaster remains a foremost genetic model to study basic cell biological processes in the context of multi-cellular development. In such context, the behavior of one cell can influence another. Non-autonomous signaling among cells occurs throughout metazoan development and disease, and is too vast to be covered by a single review. I will focus here on non-autonomous signaling events that occur in response to cell death in the larval epithelia and affect the life-death decision of surviving cells. I will summarize the use of Drosophila to study cell death-induced proliferation, apoptosis-induced apoptosis, and apoptosis-induced survival signaling. Key insights from Drosophila will be discussed in the context of analogous processes in mammalian development and cancer biology.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
10
|
Su TT. Non-autonomous consequences of cell death and other perks of being metazoan. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.1.54] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Drosophila melanogaster remains a foremost genetic model to study basic cell biological processes in the context of multi-cellular development. In such context, the behavior of one cell can influence another. Non-autonomous signaling among cells occurs throughout metazoan development and disease, and is too vast to be covered by a single review. I will focus here on non-autonomous signaling events that occur in response to cell death in the larval epithelia and affect the life-death decision of surviving cells. I will summarize the use of Drosophila to study cell death-induced proliferation, apoptosis-induced apoptosis, and apoptosis-induced survival signaling. Key insights from Drosophila will be discussed in the context of analogous processes in mammalian development and cancer biology.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
11
|
Tare M, Chimata AV, Gogia N, Narwal S, Deshpande P, Singh A. An E3 ubiquitin ligase, cullin-4 regulates retinal differentiation in Drosophila eye. Genesis 2020; 58:e23395. [PMID: 32990387 PMCID: PMC9277906 DOI: 10.1002/dvg.23395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 11/12/2022]
Abstract
During organogenesis, cell proliferation is followed by the differentiation of specific cell types to form an organ. Any aberration in differentiation can result in developmental defects, which can result in a partial to a near-complete loss of an organ. We employ the Drosophila eye model to understand the genetic and molecular mechanisms involved in the process of differentiation. In a forward genetic screen, we identified, cullin-4 (cul-4), which encodes an E3 ubiquitin ligase, to play an important role in retinal differentiation. During development, cul-4 is known to be involved in protein degradation, regulation of genomic stability, and regulation of cell cycle. Previously, we have reported that cul-4 regulates cell death during eye development by downregulating Wingless (Wg)/Wnt signaling pathway. We found that loss-of-function of cul-4 results in a reduced eye phenotype, which can be due to onset of cell death. However, we found that loss-of-function of cul-4 also affects retinal development by downregulating retinal determination (RD) gene expression. Early markers of retinal differentiation are dysregulated in cul-4 loss of function conditions, indicating that cul-4 is necessary for differentiation. Furthermore, loss-of-function of cul-4 ectopically induces expression of negative regulators of eye development like Wg and Homothorax (Hth). During eye development, Wg is known to block the progression of a synchronous wave of differentiation referred to as Morphogenetic furrow (MF). In cul-4 loss-of-function background, expression of dpp-lacZ, a MF marker, is significantly downregulated. Our data suggest a new role of cul-4 in retinal differentiation. These studies may have significant bearings on our understanding of early eye development.
Collapse
Affiliation(s)
- Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, India
| | | | - Neha Gogia
- Department of Biology, University of Dayton, 300 College Park Drive, Dayton, OH, USA
| | - Sonia Narwal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, India
| | - Prajakta Deshpande
- Department of Biology, University of Dayton, 300 College Park Drive, Dayton, OH, USA
| | - Amit Singh
- Department of Biology, University of Dayton, 300 College Park Drive, Dayton, OH, USA
- Premedical Program, University of Dayton, 300 College Park Drive, Dayton, OH, USA
- Center for Tissue Regeneration & Engineering (TREND), University of Dayton, 300 College Park Drive, Dayton, OH, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
12
|
Wang XC, Liu Z, Jin LH. Drosophila jumu modulates apoptosis via a JNK-dependent pathway and is required for other processes in wing development. Apoptosis 2020; 24:465-477. [PMID: 30796611 DOI: 10.1007/s10495-019-01527-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies in several model organisms have revealed that members of the Forkhead (Fkh) transcription factor family have multiple functions. Drosophila Jumeau (Jumu), a member of this family, participates in cardiogenesis, hematopoiesis and immune system homeostasis. Here, we show that loss of jumu function positively regulates or triggers apoptosis via a JNK-dependent pathway in wing development. jumu mutants showed reduced wing size and increased apoptosis. Moreover, we observed a loss of the anterior cross vein (ACV) phenotype that was similar to that observed in wings in which JNK signaling has been ectopically activated. The JNK signaling markers puckered (puc) and p-JNK were also significantly increased in the wing discs of jumu mutants. In addition, apoptosis induced by the loss of jumu was rescued by knocking down JNK, indicating a role for JNK in reducing jumu-induced apoptosis. Jumu could also control wing margin development via the positive regulation of cut expression, and the observed wing margin defect did not result from a loss of jumu-induced apoptosis. Further, jumu deficiency in the pupal wing could induce multiple wing hairs via a Rho1-mediated planar cell polarity pathway, but abnormal Rho1 expression was not why jumu loss induced apoptosis via a JNK-dependent pathway in wing discs.
Collapse
Affiliation(s)
- Xiao Chun Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ziguang Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150040, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
13
|
The Emerging Landscape of p53 Isoforms in Physiology, Cancer and Degenerative Diseases. Int J Mol Sci 2019; 20:ijms20246257. [PMID: 31835844 PMCID: PMC6941119 DOI: 10.3390/ijms20246257] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
p53, first described four decades ago, is now established as a master regulator of cellular stress response, the “guardian of the genome”. p53 contributes to biological robustness by behaving in a cellular-context dependent manner, influenced by several factors (e.g., cell type, active signalling pathways, the type, extent and intensity of cellular damage, cell cycle stage, nutrient availability, immune function). The p53 isoforms regulate gene transcription and protein expression in response to the stimuli so that the cell response is precisely tuned to the cell signals and cell context. Twelve isoforms of p53 have been described in humans. In this review, we explore the interactions between p53 isoforms and other proteins contributing to their established cellular functions, which can be both tumour-suppressive and oncogenic in nature. Evidence of p53 isoform in human cancers is largely based on RT-qPCR expression studies, usually investigating a particular type of isoform. Beyond p53 isoform functions in cancer, it is implicated in neurodegeneration, embryological development, progeroid phenotype, inflammatory pathology, infections and tissue regeneration, which are described in this review.
Collapse
|
14
|
Sanchez JA, Mesquita D, Ingaramo MC, Ariel F, Milán M, Dekanty A. Eiger/TNFα-mediated Dilp8 and ROS production coordinate intra-organ growth in Drosophila. PLoS Genet 2019; 15:e1008133. [PMID: 31425511 PMCID: PMC6715248 DOI: 10.1371/journal.pgen.1008133] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/29/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Coordinated intra- and inter-organ growth during animal development is essential to ensure a correctly proportioned individual. The Drosophila wing has been a valuable model system to reveal the existence of a stress response mechanism involved in the coordination of growth between adjacent cell populations and to identify a role of the fly orthologue of p53 (Dmp53) in this process. Here we identify the molecular mechanisms used by Dmp53 to regulate growth and proliferation in a non-autonomous manner. First, Dmp53-mediated transcriptional induction of Eiger, the fly orthologue of TNFα ligand, leads to the cell-autonomous activation of JNK. Second, two distinct signaling events downstream of the Eiger/JNK axis are induced in order to independently regulate tissue size and cell number in adjacent cell populations. Whereas expression of the hormone dILP8 acts systemically to reduce growth rates and tissue size of adjacent cell populations, the production of Reactive Oxygen Species—downstream of Eiger/JNK and as a consequence of apoptosis induction—acts in a non-cell-autonomous manner to reduce proliferation rates. Our results unravel how local and systemic signals act concertedly within a tissue to coordinate growth and proliferation, thereby generating well-proportioned organs and functionally integrated adults. The coordination of growth between the parts of a given developing organ is an absolute requirement for the generation of functionally integrated structures during animal development. Although this question has fascinated biologists for centuries, the molecular mechanisms responsible have remained elusive to date. In this work, we used the developing wing primordium of Drosophila to identify the molecular mechanisms and signaling molecules that mediate communication between adjacent cell populations upon a targeted reduction of growth rate. We first present evidence that the activation of Dmp53 in the growth-depleted territory induces the expression of the fly TNF ligand Eiger, which activates the JNK stress signaling pathway in a cell-autonomous manner. While JNK-dependent expression of the systemic hormone dILP8 reduces the growth and final size of adjacent territories, the production of Reactive Oxygen Species downstream of JNK and the apoptotic machinery act locally to regulate the proliferation of adjacent epithelial cells. Our data reveal how different signals, acting both locally and systemically, can regulate tissue growth and cell proliferation in an independent manner to coordinate the tissue size and cell number of different parts of an organ, ultimately giving rise to well-proportioned adult structures.
Collapse
Affiliation(s)
- Juan A. Sanchez
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Santa Fe, Argentina
| | - Duarte Mesquita
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María C. Ingaramo
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Santa Fe, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (MM); (AD)
| | - Andrés Dekanty
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- * E-mail: (MM); (AD)
| |
Collapse
|
15
|
The microRNA-306/abrupt regulatory axis controls wing and haltere growth in Drosophila. Mech Dev 2019; 158:103555. [PMID: 31112748 DOI: 10.1016/j.mod.2019.103555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Growth control relies on extrinsic and intrinsic mechanisms that regulate and coordinate the size and pattern of organisms. This control is crucial for a homeostatic development and healthy physiology. The gene networks acting in this process are large and complex: factors involved in growth control are also important in diverse biological processes and these networks include multiple regulators that interact and respond to intra- and extra-cellular inputs that may ultimately converge in the control of the cell cycle. In this work we have studied the function of the Drosophila abrupt gene, coding for a BTB-ZF protein and previously reported to be required for wing vein pattern, in the control of haltere and wing growth. We have found that inactivation of abrupt reduces the size of the wing and haltere. We also found that the microRNA miR-306 controls abrupt expression and that miR-306 and abrupt genetically interact to control wing size. Moreover, the reduced appendage size due to abrupt inactivation is rescued by overexpression of Cyclin-E and by inactivation of dacapo. These findings define a miR-306-abrupt regulatory axis that controls wing and haltere size, whereby miR-306 maintains appropriate levels of abrupt expression which, in turn, regulates the cell cycle. Thus, our results uncover a novel function of abrupt in the regulation of the size of Drosophila appendages during development and contribute to the understanding of the coordination between growth and pattern as well as to the understanding of abrupt oncogenic function in flies.
Collapse
|
16
|
Yu J, Yan Y, Luan X, Qiao C, Liu Y, Zhao D, Xie B, Zheng Q, Wang M, Chen W, Shen C, He Z, Hu X, Huang X, Li H, Shao Q, Chen X, Zheng B, Fang J. Srlp is crucial for the self-renewal and differentiation of germline stem cells via RpL6 signals in Drosophila testes. Cell Death Dis 2019; 10:294. [PMID: 30931935 PMCID: PMC6443671 DOI: 10.1038/s41419-019-1527-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022]
Abstract
Self-renewal and differentiation in germline stem cells (GSCs) are tightly regulated by the stem cell niche and via multiple approaches. In our previous study, we screened the novel GSC regulatory gene Srlp in Drosophila testes. However, the underlying mechanistic links between Srlp and the stem cell niche remain largely undetermined. Here, using genetic manipulation of the Drosophila model, we systematically analyze the function and mechanism of Srlp in vivo and in vitro. In Drosophila, Srlp is an essential gene that regulates the self-renewal and differentiation of GSCs in the testis. In the in vitro assay, Srlp is found to control the proliferation ability and cell death in S2 cells, which is consistent with the phenotype observed in Drosophila testis. Furthermore, results of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) reveal that RpL6 binds to Srlp. Srlp also regulates the expression of spliceosome and ribosome subunits and controls spliceosome and ribosome function via RpL6 signals. Collectively, our findings uncover the genetic causes and molecular mechanisms underlying the stem cell niche. This study provides new insights for elucidating the pathogenic mechanism of male sterility and the formation of testicular germ cell tumor.
Collapse
Affiliation(s)
- Jun Yu
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Yidan Yan
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Xiaojin Luan
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Chen Qiao
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Yuanyuan Liu
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Jiangsu, 215002, China
| | - Dan Zhao
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Center for Reproduction, The Fourth People's Hospital of Zhenjiang, Zhenjiang Jiangsu, 212013, China
| | - Bing Xie
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Qianwen Zheng
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Min Wang
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Wanyin Chen
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Cong Shen
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Jiangsu, 215002, China
| | - Zeyu He
- Department of Clinical Medicine, China Medical University, Shenyang Liaoning, 110001, China
| | - Xing Hu
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing Jiangsu, 211166, China
| | - Hong Li
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Jiangsu, 215002, China
| | - Qixiang Shao
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China.,Department of Immunology and Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu, 212013, China
| | - Xia Chen
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China. .,Reproductive Sciences Institute of Jiangsu University, Zhenjiang Jiangsu, 212001, China.
| | - Bo Zheng
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Jiangsu, 215002, China.
| | - Jie Fang
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang Jiangsu, 212001, China.
| |
Collapse
|
17
|
Lei J, Qi R, Tang Y, Wang W, Wei G, Nussinov R, Ma B. Conformational stability and dynamics of the cancer-associated isoform Δ133p53β are modulated by p53 peptides and p53-specific DNA. FASEB J 2019; 33:4225-4235. [PMID: 30540922 PMCID: PMC6404584 DOI: 10.1096/fj.201801973r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
p53 is a tumor suppressor protein that maintains genome stability, but its Δ133p53β and Δ160p53β isoforms promote breast cancer cell invasion. The sequence truncations in the p53 core domain raise key questions related to their physicochemical properties, including structural stabilities, interaction mechanisms, and DNA-binding abilities. Herein, we investigated the conformational dynamics of Δ133p53β and Δ160p53β with and without binding to p53-specific DNA by using molecular dynamics simulations. We observed that the core domains of the 2 truncated isoforms are much less stable than wild-type (wt) p53β, and the increased solvent exposure of their aggregation-triggering segment indicates their higher aggregation propensities than wt p53. We also found that Δ133p53β stability is modulable by peptide or DNA interactions. Adding a p53 peptide (derived from truncated p53 sequence 107-129) may help stabilize Δ133p53. Most importantly, our simulations of p53 isomer-DNA complexes indicate that Δ133p53β dimer, but not Δ160p53β dimer, could form a stable complex with p53-specific DNA, which is consistent with recent experiments. This study provides physicochemical insight into Δ133p53β, Δ133p53β-DNA complexes, Δ133p53β's pathologic mechanism, and peptide-based inhibitor design against p53-related cancers.-Lei, J., Qi, R., Tang, Y., Wang, W., Wei, G., Nussinov, R., Ma, B. Conformational stability and dynamics of the cancer-associated isoform Δ133p53β are modulated by p53 peptides and p53-specific DNA.
Collapse
Affiliation(s)
- Jiangtao Lei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences–Ministry of Education, Department of Physics, Fudan University, Shanghai, China
| | - Ruxi Qi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences–Ministry of Education, Department of Physics, Fudan University, Shanghai, China
| | - Yegen Tang
- Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences–Ministry of Education, Department of Physics, Fudan University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA; and
- Department of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA; and
| |
Collapse
|
18
|
Zhou L. P53 and Apoptosis in the Drosophila Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:105-112. [PMID: 31520351 DOI: 10.1007/978-3-030-23629-8_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human P53 (HsP53) is the most frequently mutated gene associated with cancers. Despite heightened research interest over the last four decades, a clear picture of how wild type HsP53 functions as the guardian against malignant transformation remains elusive. Studying the ortholog of P53 in the genetic model organism Drosophila melanogaster (DmP53) has revealed many interesting insights. This chapter focuses on recent findings that have shed light on how DmP53 -mediated apoptosis plays an important role in maintaining genome integrity, and how the immediate output of activated DmP53 is determined by the epigenetic landscape of individual cells.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Robin M, Issa AR, Santos CC, Napoletano F, Petitgas C, Chatelain G, Ruby M, Walter L, Birman S, Domingos PM, Calvi BR, Mollereau B. Drosophila p53 integrates the antagonism between autophagy and apoptosis in response to stress. Autophagy 2018; 15:771-784. [PMID: 30563404 DOI: 10.1080/15548627.2018.1558001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor suppressor TP53/p53 is a known regulator of apoptosis and macroautophagy/autophagy. However, the molecular mechanism by which TP53 regulates 2 apparently incompatible processes remains unknown. We found that Drosophila lacking p53 displayed impaired autophagic flux, higher caspase activation and mortality in response to oxidative stress compared with wild-type flies. Moreover, autophagy and apoptosis were differentially regulated by the p53 (p53B) and ΔNp53 (p53A) isoforms: while the former induced autophagy in differentiated neurons, which protected against cell death, the latter inhibited autophagy by activating the caspases Dronc, Drice, and Dcp-1. Our results demonstrate that the differential use of p53 isoforms combined with the antagonism between apoptosis and autophagy ensures the generation of an appropriate p53 biological response to stress.
Collapse
Affiliation(s)
- Marion Robin
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Abdul Raouf Issa
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France.,e Department of Life Sciences , University of Trieste c/o CIB National Laboratory , Area Science Park , Trieste , Italy
| | - Cristiana C Santos
- c Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Francesco Napoletano
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France.,e Department of Life Sciences , University of Trieste c/o CIB National Laboratory , Area Science Park , Trieste , Italy
| | - Céline Petitgas
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France
| | - Gilles Chatelain
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Mathilde Ruby
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Ludivine Walter
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Serge Birman
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France
| | - Pedro M Domingos
- c Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Brian R Calvi
- d Department of Biology , Indiana University , Bloomington , IN , USA
| | - Bertrand Mollereau
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| |
Collapse
|
20
|
Wang B, Li D, Rodriguez-Juarez R, Farfus A, Storozynsky Q, Malach M, Carpenter E, Filkowski J, Lykkesfeldt AE, Kovalchuk O. A suppressive role of guanine nucleotide-binding protein subunit beta-4 inhibited by DNA methylation in the growth of anti-estrogen resistant breast cancer cells. BMC Cancer 2018; 18:817. [PMID: 30103729 PMCID: PMC6090602 DOI: 10.1186/s12885-018-4711-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women worldwide. Although the endocrine therapy that targets estrogen receptor α (ERα) signaling has been well established as an effective adjuvant treatment for patients with ERα-positive breast cancers, long-term exposure may eventually lead to the development of acquired resistance to the anti-estrogen drugs, such as fulvestrant and tamoxifen. A better understanding of the mechanisms underlying antiestrogen resistance and identification of the key molecules involved may help in overcoming antiestrogen resistance in breast cancer. METHODS The whole-genome gene expression and DNA methylation profilings were performed using fulvestrant-resistant cell line 182R-6 and tamoxifen-resistant cell line TAMR-1 as a model system. In addition, qRT-PCR and Western blot analysis were performed to determine the levels of mRNA and protein molecules. MTT, apoptosis and cell cycle analyses were performed to examine the effect of either guanine nucleotide-binding protein beta-4 (GNB4) overexpression or knockdown on cell proliferation, apoptosis and cell cycle. RESULTS Among 9 candidate genes, GNB4 was identified and validated by qRT-PCR as a potential target silenced by DNA methylation via DNA methyltransferase 3B (DNMT3B). We generated stable 182R-6 and TAMR-1 cell lines that are constantly expressing GNB4 and determined the effect of the ectopic GNB4 on cell proliferation, cell cycle, and apoptosis of the antiestrogen-resistant cells in response to either fulvestrant or tamoxifen. Ectopic expression of GNB4 in two antiestrogen resistant cell lines significantly promoted cell growth and shortened cell cycle in the presence of either fulvestrant or tamoxifen. The ectopic GNB4 induced apoptosis in 182R-6 cells, whereas it inhibited apoptosis in TAMR-1 cells. Many regulators controlling cell cycle and apoptosis were aberrantly expressed in two resistant cell lines in response to the enforced GNB4 expression, which may contribute to GNB4-mediated biologic and/or pathologic processes. Furthermore, knockdown of GNB4 decreased growth of both antiestrogen resistant and sensitive breast cancer cells. CONCLUSION GNB4 is important for growth of breast cancer cells and a potential target for treatment.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | | | - Allison Farfus
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Quinn Storozynsky
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Megan Malach
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Emily Carpenter
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Jody Filkowski
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Anne E. Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden, Copenhagen, Denmark
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
- Hepler Hall, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4 Canada
| |
Collapse
|
21
|
Regulation and function of p53: A perspective from Drosophila studies. Mech Dev 2018; 154:82-90. [PMID: 29800619 DOI: 10.1016/j.mod.2018.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 11/23/2022]
Abstract
Tp53 is a central regulator of cellular responses to stress and one of the most frequently mutated genes in human cancers. P53 is activated by a myriad of stress signals and drives specific cellular responses depending on stress nature, cell type and cellular context. Additionally to its classical functions in regulating cell cycle arrest, apoptosis and senescence, newly described non-canonical functions of p53 are increasingly coming under the spotlight as important functions not only for its role as a tumour suppressor but also for its non-cancer associated activities. Drosophila melanogaster is a valuable model to study multiple aspects of normal animal physiology, stress response and disease. In this review, we discuss the contribution of Drosophila studies to the current knowledge on p53 and highlight recent evidences pointing to p53 novel roles in promoting tissue homeostasis and metabolic adaptation.
Collapse
|
22
|
Contreras EG, Sierralta J, Glavic A. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development. PLoS One 2018; 13:e0194344. [PMID: 29621246 PMCID: PMC5886404 DOI: 10.1371/journal.pone.0194344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. RESULTS Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. CONCLUSIONS Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.
Collapse
Affiliation(s)
- Esteban G. Contreras
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Independencia Santiago-Chile
- Center for Genome Regulation, Department of Biology, Faculty of Science, Universidad of Chile, Las Palmeras Nuñoa, Santiago-Chile
| | - Jimena Sierralta
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Independencia Santiago-Chile
- * E-mail: (AG); (JS)
| | - Alvaro Glavic
- Center for Genome Regulation, Department of Biology, Faculty of Science, Universidad of Chile, Las Palmeras Nuñoa, Santiago-Chile
- * E-mail: (AG); (JS)
| |
Collapse
|
23
|
When dying is not the end: Apoptotic caspases as drivers of proliferation. Semin Cell Dev Biol 2017; 82:86-95. [PMID: 29199139 DOI: 10.1016/j.semcdb.2017.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
Caspases are well known for their role as executioners of apoptosis. However, recent studies have revealed that these lethal enzymes also have important mitogenic functions. Caspases can promote proliferation through autonomous regulation of the cell cycle, as well as by induction of secreted signals, which have a profound impact in neighboring tissues. Here, I review the proliferative role of caspases during development and homeostasis, in addition to their key regenerative function during tissue repair upon injury. Furthermore, the emerging properties of apoptotic caspases as drivers of carcinogenesis are discussed, as well as their involvement in other diseases. Finally, I examine further effects of caspases regulating death and survival in a non-autonomous manner.
Collapse
|
24
|
Napoletano F, Gibert B, Yacobi-Sharon K, Vincent S, Favrot C, Mehlen P, Girard V, Teil M, Chatelain G, Walter L, Arama E, Mollereau B. p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis. PLoS Genet 2017; 13:e1007024. [PMID: 28945745 PMCID: PMC5629030 DOI: 10.1371/journal.pgen.1007024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/05/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis.
Collapse
Affiliation(s)
- Francesco Napoletano
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Stéphane Vincent
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Clémentine Favrot
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Victor Girard
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Margaux Teil
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Gilles Chatelain
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
25
|
Simoes da Silva CJ, Fereres S, Simón R, Busturia A. Drosophila SCE/dRING E3-ligase inhibits apoptosis in a Dp53 dependent manner. Dev Biol 2017; 429:81-91. [DOI: 10.1016/j.ydbio.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/22/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
26
|
Charni M, Aloni-Grinstein R, Molchadsky A, Rotter V. p53 on the crossroad between regeneration and cancer. Cell Death Differ 2016; 24:8-14. [PMID: 27768121 PMCID: PMC5260496 DOI: 10.1038/cdd.2016.117] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Regeneration and tumorigenesis share common molecular pathways, nevertheless the outcome of regeneration is life, whereas tumorigenesis leads to death. Although the process of regeneration is strictly controlled, malignant transformation is unrestrained. In this review, we discuss the involvement of TP53, the major tumor-suppressor gene, in the regeneration process. We point to the role of p53 as coordinator assuring that regeneration will not shift to carcinogenesis. The fluctuation in p53 activity during the regeneration process permits a tight control. On one hand, its inhibition at the initial stages allows massive proliferation, on the other its induction at advanced steps of regeneration is essential for preservation of robustness and fidelity of the regeneration process. A better understanding of the role of p53 in regulation of regeneration may open new opportunities for implementation of TP53-based therapies, currently available for cancer patients, in regenerative medicine.
Collapse
Affiliation(s)
- Meital Charni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Abstract
It is poorly understood how a single protein, p53, can be responsive to so many stress signals and orchestrates very diverse cell responses to maintain/restore cell/tissue functions. The uncovering that TP53 gene physiologically expresses, in a tissue-dependent manner, several p53 splice variants (isoforms) provides an explanation to its pleiotropic biological activities. Here, we summarize a decade of research on p53 isoforms. The clinical studies and the diverse cellular and animal models of p53 isoforms (zebrafish, Drosophila, and mouse) lead us to realize that a p53-mediated cell response is, in fact, the sum of the intrinsic activities of the coexpressed p53 isoforms and that unbalancing expression of different p53 isoforms leads to cancer, premature aging, (neuro)degenerative diseases, inflammation, embryo malformations, or defects in tissue regeneration. Cracking the p53 isoforms' code is, thus, a necessary step to improve cancer treatment. It also opens new exciting perspectives in tissue regeneration.
Collapse
Affiliation(s)
- Sebastien M Joruiz
- Dundee Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| |
Collapse
|
28
|
Pérez-Garijo A, Steller H. Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease. Development 2016; 142:3253-62. [PMID: 26443630 DOI: 10.1242/dev.127878] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis, in contrast to other forms of cell death such as necrosis, was originally regarded as a 'silent' mechanism of cell elimination designed to degrade the contents of doomed cells. However, during the past decade it has become clear that apoptotic cells can produce diverse signals that have a profound impact on neighboring cells and tissues. For example, apoptotic cells can release factors that influence the proliferation and survival of adjacent tissues. Apoptosis can also affect tissue movement and morphogenesis by modifying tissue tension in surrounding cells. As we review here, these findings reveal unexpected roles for apoptosis in tissue remodeling during development, as well as in regeneration and cancer.
Collapse
Affiliation(s)
- Ainhoa Pérez-Garijo
- Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
29
|
Mollereau B, Ma D. Rb-mediated apoptosis or proliferation: It's up to JNK. Cell Cycle 2016; 15:11-2. [PMID: 26588003 PMCID: PMC4825755 DOI: 10.1080/15384101.2015.1119492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Dali Ma
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS, University Claude Bernard Lyon-1, UMR 5242, Lyon, France
| |
Collapse
|
30
|
Zhang B, Rotelli M, Dixon M, Calvi BR. The function of Drosophila p53 isoforms in apoptosis. Cell Death Differ 2015; 22:2058-67. [PMID: 25882045 PMCID: PMC4816103 DOI: 10.1038/cdd.2015.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
The p53 protein is a major mediator of the cellular response to genotoxic stress and is a crucial suppressor of tumor formation. In a variety of organisms, p53 and its paralogs, p63 and p73, each encode multiple protein isoforms through alternative splicing, promoters, and translation start sites. The function of these isoforms in development and disease are still being defined. Here, we evaluate the apoptotic potential of multiple isoforms of the single p53 gene in the genetic model Drosophila melanogaster. Most previous studies have focused on the p53A isoform, but it has been recently shown that a larger p53B isoform can induce apoptosis when overexpressed. It has remained unclear, however, whether one or both isoforms are required for the apoptotic response to genotoxic stress. We show that p53B is a much more potent inducer of apoptosis than p53A when overexpressed. Overexpression of two newly identified short isoforms perturbed development and inhibited the apoptotic response to ionizing radiation. Analysis of physiological protein expression indicated that p53A is the most abundant isoform, and that both p53A and p53B can form a complex and co-localize to sub-nuclear compartments. In contrast to the overexpression results, new isoform-specific loss-of-function mutants indicated that it is the shorter p53A isoform, not full-length p53B, that is the primary mediator of pro-apoptotic gene transcription and apoptosis after ionizing radiation. Together, our data show that it is the shorter p53A isoform that mediates the apoptotic response to DNA damage, and further suggest that p53B and shorter isoforms have specialized functions.
Collapse
Affiliation(s)
- B Zhang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - M Rotelli
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - M Dixon
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - B R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
31
|
Santabárbara-Ruiz P, López-Santillán M, Martínez-Rodríguez I, Binagui-Casas A, Pérez L, Milán M, Corominas M, Serras F. ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration. PLoS Genet 2015; 11:e1005595. [PMID: 26496642 PMCID: PMC4619769 DOI: 10.1371/journal.pgen.1005595] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022] Open
Abstract
Upon apoptotic stimuli, epithelial cells compensate the gaps left by dead cells by activating proliferation. This has led to the proposal that dying cells signal to surrounding living cells to maintain homeostasis. Although the nature of these signals is not clear, reactive oxygen species (ROS) could act as a signaling mechanism as they can trigger pro-inflammatory responses to protect epithelia from environmental insults. Whether ROS emerge from dead cells and what is the genetic response triggered by ROS is pivotal to understand regeneration of Drosophila imaginal discs. We genetically induced cell death in wing imaginal discs, monitored the production of ROS and analyzed the signals required for repair. We found that cell death generates a burst of ROS that propagate to the nearby surviving cells. Propagated ROS activate p38 and induce tolerable levels of JNK. The activation of JNK and p38 results in the expression of the cytokines Unpaired (Upd), which triggers the JAK/STAT signaling pathway required for regeneration. Our findings demonstrate that this ROS/JNK/p38/Upd stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration. Regenerative biology pursues to unveil the genetic networks triggered by tissue damage. Regeneration can occur after damage by cell death or by injury. We used the imaginal disc of Drosophila in which we genetically activated apoptosis or physically removed some parts and monitored the capacity to repair the damage. We found that dying cells generate a burst of reactive oxygen species (ROS) necessary to activate JNK and p38 signaling pathways in the surrounding living cells. The action of these pathways is necessary for the activation of the cytokines Unpaired (Upd). Eventually, Upd will turn on the JAK/STAT signaling pathway to induce regenerative growth. Thus, we present here a module of signals that depends on oxidative stress and that, through the p38-JNK interplay, will activate cytokine-dependent regeneration.
Collapse
Affiliation(s)
- Paula Santabárbara-Ruiz
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Mireya López-Santillán
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Irene Martínez-Rodríguez
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Anahí Binagui-Casas
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Lídia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Montserrat Corominas
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Florenci Serras
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Querenet M, Danjoy ML, Mollereau B, Davoust N. Expression of dengue virus NS3 protein in Drosophila alters its susceptibility to infection. Fly (Austin) 2015; 9:1-6. [PMID: 26267447 DOI: 10.1080/19336934.2015.1072662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We developed a Drosophila model in which the dengue virus NS3 protein is expressed in a tissue specific and inducible manner. Dengue virus NS3 is a multifunctional protein playing a major role during viral replication. Both protease and helicase domains of NS3 are interacting with human and insect host proteins including innate immune components of the host machinery. We characterized the NS3 transgenic flies showing that NS3 expression did not affect fly development. To further study the links between NS3 and the innate immune response, we challenge the flies with gram-positive and gram-negative bacteria. Interestingly, the Drosophila transgenic flies expressing NS3 were more susceptible to bacterial infections than control flies. However ubiquitous or immune-specific NS3 expression affected neither the life span nor the response to a non-infectious stress of the flies. In conclusion, we generated a new in vivo system to study the functional impact of DENV NS3 protein on the innate immune response.
Collapse
Affiliation(s)
- Matthieu Querenet
- a Université de Lyon; Laboratory of Molecular Biology of the Cell; UMR5239 CNRS/Ecole Normale Supérieure de Lyon ; Lyon , France
| | | | | | | |
Collapse
|
33
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
34
|
Simón R, Aparicio R, Housden BE, Bray S, Busturia A. Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis 2015; 19:1430-43. [PMID: 24858703 DOI: 10.1007/s10495-014-1000-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A balance between cell proliferation and apoptosis is important for normal development and tissue homeostasis. Under stress conditions, the conserved tumor suppressor and transcription factor Dp53 induces apoptosis to contribute to the maintenance of homeostasis. However, in some cases Dp53-induced apoptosis results in the proliferation of surrounding non-apoptotic cells. To gain insight into the Dp53 function in the control of apoptosis and proliferation, we studied the interaction between the Drosophila Dp53 and Notch genes. We present evidence that simultaneous reduction of Dp53 and Notch function synergistically increases the wing phenotype of Notch heterozygous mutant flies. Further, we found that a Notch cis-regulatory element is responsive to loss and gain of Dp53 function and that over-expression of Dp53 up-regulates Notch mRNA and protein expression. These findings suggest not only that Dp53 and Notch act together to control wing development but also indicate that Dp53 transcriptionally regulates Notch expression. Moreover, using Notch gain and loss of function mutations we examined the relevance of Dp53 and Notch interactions in the process of Dp53-apoptosis induced proliferation. Results show that proliferation induced by Dp53 over-expression is dependent on Notch, thus identifying Notch as a new player in Dp53-induced proliferation. Interestingly, we found that Dp53-induced Notch activation and proliferation occurs even under conditions where apoptosis was inhibited. Our findings highlight the conservation between flies and vertebrates of the Dp53 and Notch cross-talk and suggest that Dp53 has a dual role regulating cell death and proliferation gene networks to control the homeostatic balance between apoptosis and proliferation.
Collapse
Affiliation(s)
- Rocío Simón
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c) Nicolás Cabrera 1, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
35
|
Abstract
The canonical role of p53 in preserving genome integrity and limiting carcinogenesis has been well established. In the presence of acute DNA-damage, oncogene deregulation and other forms of cellular stress, p53 orchestrates a myriad of pleiotropic processes to repair cellular damages and maintain homeostasis. Beside these well-studied functions of p53, recent studies in Drosophila have unraveled intriguing roles of Dmp53 in promoting cell division in apoptosis-induced proliferation, enhancing fitness and proliferation of the winner cell in cell competition and coordinating growth at the organ and organismal level in the presence of stress. In this review, we describe these new functions of Dmp53 and discuss their relevance in the context of carcinogenesis.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France,
| | | |
Collapse
|
36
|
Protruding structures on caterpillars are controlled by ectopic Wnt1 expression. PLoS One 2015; 10:e0121736. [PMID: 25815728 PMCID: PMC4376876 DOI: 10.1371/journal.pone.0121736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Spine-like or protruding structures, which may be aposematic for predators, are often observed in multiple segments of lepidopteran larvae (caterpillars). For example, the larvae of the Chinese wheel butterfly, Byasa alcinous, display many protrusions on their backs as a warning that they are toxic. Although these protrusions are formed by an integument lined with single-layered epidermal cells, the molecular mechanisms underlying their formation have remained unclear. In this study, we focused on a spontaneous mutant of the silkworm, Bombyx mori, Knobbed, which shows similar protrusions to B. alcinous and demonstrates that Wnt1 plays a crucial role in the formation of protrusion structures. Using both transgene expression and RNAi-based knockdown approaches, we showed that Wnt1 designates the position where epidermal cells excessively proliferate, leading to the generation of knobbed structures. Furthermore, in the B. alcinous larvae, Wnt1 was also specifically expressed in association with the protrusions. Our results suggest that Wnt1 plays a role in the formation of protrusions on the larval body, and is conserved broadly among diverse species in Lepidoptera.
Collapse
|
37
|
Apoptotic mechanisms during competition of ribosomal protein mutant cells: roles of the initiator caspases Dronc and Dream/Strica. Cell Death Differ 2015; 22:1300-12. [PMID: 25613379 DOI: 10.1038/cdd.2014.218] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/11/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022] Open
Abstract
Heterozygosity for mutations in ribosomal protein genes frequently leads to a dominant phenotype of retarded growth and small adult bristles in Drosophila (the Minute phenotype). Cells with Minute genotypes are subject to cell competition, characterized by their selective apoptosis and removal in mosaic tissues that contain wild-type cells. Competitive apoptosis was found to depend on the pro-apoptotic reaper, grim and head involution defective genes but was independent of p53. Rp/+ cells are protected by anti-apoptotic baculovirus p35 expression but lacked the usual hallmarks of 'undead' cells. They lacked Dronc activity, and neither expression of dominant-negative Dronc nor dronc knockdown by dsRNA prevented competitive apoptosis, which also continued in dronc null mutant cells or in the absence of the initiator caspases dredd and dream/strica. Only simultaneous knockdown of dronc and dream/strica by dsRNA was sufficient to protect Rp/+ cells from competition. By contrast, Rp/Rp cells were also protected by baculovirus p35, but Rp/Rp death was dronc-dependent, and undead Rp/Rp cells exhibited typical dronc-dependent expression of Wingless. Independence of p53 and unusual dependence on Dream/Strica distinguish competitive cell death from noncompetitive apoptosis of Rp/Rp cells and from many other examples of cell death.
Collapse
|
38
|
Bourdon JC. p53 isoforms change p53 paradigm. Mol Cell Oncol 2014; 1:e969136. [PMID: 27308370 PMCID: PMC4905211 DOI: 10.4161/23723548.2014.969136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/11/2023]
Abstract
Although p53 defines cellular responses to cancer treatment it is not clear how p53 can be used to control cell fate outcome. Data demonstrate that so-called p53 does not exist as a single protein, but is in fact a group of p53 protein isoforms whose expression can be manipulated to control the cellular response to treatment.
Collapse
Affiliation(s)
- J C Bourdon
- University of Dundee; College of Medicine; Division of Cancer Research; Dundee Cancer Centre ; Dundee, United Kingdom
| |
Collapse
|
39
|
Zhang B, Mehrotra S, Ng WL, Calvi BR. Low levels of p53 protein and chromatin silencing of p53 target genes repress apoptosis in Drosophila endocycling cells. PLoS Genet 2014; 10:e1004581. [PMID: 25211335 PMCID: PMC4161308 DOI: 10.1371/journal.pgen.1004581] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/03/2014] [Indexed: 12/23/2022] Open
Abstract
Apoptotic cell death is an important response to genotoxic stress that prevents oncogenesis. It is known that tissues can differ in their apoptotic response, but molecular mechanisms are little understood. Here, we show that Drosophila polyploid endocycling cells (G/S cycle) repress the apoptotic response to DNA damage through at least two mechanisms. First, the expression of all the Drosophila p53 protein isoforms is strongly repressed at a post-transcriptional step. Second, p53-regulated pro-apoptotic genes are epigenetically silenced in endocycling cells, preventing activation of a paused RNA Pol II by p53-dependent or p53-independent pathways. Over-expression of the p53A isoform did not activate this paused RNA Pol II complex in endocycling cells, but over-expression of the p53B isoform with a longer transactivation domain did, suggesting that dampened p53B protein levels are crucial for apoptotic repression. We also find that the p53A protein isoform is ubiquitinated and degraded by the proteasome in endocycling cells. In mitotic cycling cells, p53A was the only isoform expressed to detectable levels, and its mRNA and protein levels increased after irradiation, but there was no evidence for an increase in protein stability. However, our data suggest that p53A protein stability is regulated in unirradiated cells, which likely ensures that apoptosis does not occur in the absence of stress. Without irradiation, both p53A protein and a paused RNA pol II were pre-bound to the promoters of pro-apoptotic genes, preparing mitotic cycling cells for a rapid apoptotic response to genotoxic stress. Together, our results define molecular mechanisms by which different cells in development modulate their apoptotic response, with broader significance for the survival of normal and cancer polyploid cells in mammals. In order to maintain genome integrity, eukaryotic cells have evolved multiple ways to respond to DNA damage stress. One of the major cellular responses is apoptosis, during which the cell undergoes programmed cell death in order to prevent the propagation of the damaged genome to daughter cells. Although clinical observations and other studies have shown that tissues can differ in their apoptotic response, the molecular mechanisms underlying these differences are largely unknown. We have shown in our model system, Drosophila, that endocycling cells do not initiate cell death in response to DNA damage. The endocycle is a cell cycle variation that is widely found in nature and conserved from plant to animals. During the endocycle, cells duplicate their genomic DNA but do not enter mitosis to segregate chromosomes, resulting in a polyploid genome content. In this study, we investigate how the apoptotic response to DNA damage is repressed in endocycling cells. We find that the Drosophila ortholog of the human p53 tumor suppressor protein is expressed at very low levels in endocycling cells. Moreover, the downstream pro-apoptotic genes that are regulated by p53 are epigenetically silenced in endocycling cells. Our results provide important insights into tissue-specific apoptotic responses in development, with possible broader impact on understanding radiation therapy response and cancer of different tissues.
Collapse
Affiliation(s)
- Bingqing Zhang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Sonam Mehrotra
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Wei Lun Ng
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Brian R. Calvi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
40
|
Fereres S, Simón R, Busturia A. A novel dRYBP–SCF complex functions to inhibit apoptosis in Drosophila. Apoptosis 2013; 18:1500-12. [DOI: 10.1007/s10495-013-0897-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Das S, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc. Mech Dev 2013; 130:577-601. [PMID: 23962751 DOI: 10.1016/j.mod.2013.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022]
Abstract
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis.
Collapse
Affiliation(s)
- Sudeshna Das
- The Department of Biological Sciences, University of Southern Mississippi, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Villicaña C, Cruz G, Zurita M. The genetic depletion or the triptolide inhibition of TFIIH in p53 deficient cells induce a JNK-dependent cell death in Drosophila. J Cell Sci 2013; 126:2502-15. [DOI: 10.1242/jcs.122721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
TFIIH participates in transcription, nucleotide excision repair and the control of the cell cycle. In this work, we demonstrate that the Dmp52 subunit of TFIIH in Drosophila physically interacts with the fly p53 homologue, Dp53. The depletion of Dmp52 in the wing disc generates chromosome fragility, increases apoptosis and produces wings with a reduced number of cells; cellular proliferation, however, is not affected. Interestingly, instead of suppressing the apoptotic phenotype, the depletion of Dp53 in Dmp52-depleted wing disc cells increases apoptosis and the number of cells that suffer from chromosome fragility. The apoptosis induced by the depletion of Dmp52 alone is partially dependent on the JNK pathway. In contrast, the enhanced apoptosis caused by the simultaneous depletion of Dp53 and Dmp52 is absolutely JNK-dependent. In this study, we also show that the anti-proliferative drug triptolide, which inhibits the ATPase activity of the XPB subunit of TFIIH, phenocopies the JNK-dependent massive apoptotic phenotype of Dp53-depleted wing disc cells; this observation suggests that the mechanism by which triptolide induces apoptosis in p53-deficient cancer cells involves the activation of the JNK death pathway.
Collapse
|