1
|
Wang L, Li Y, Niu T, Deng J, Shi Y, Liu Y, Tong B, Qi X, Cao D, Tao Y, Li Y. Simvastatin-Induced Ferroptosis in Orbital Fibroblasts in Graves' Ophthalmopathy. Invest Ophthalmol Vis Sci 2025; 66:56. [PMID: 39854011 PMCID: PMC11760275 DOI: 10.1167/iovs.66.1.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Purpose Graves' ophthalmopathy (GO), the most common extrathyroidal manifestation of Graves' disease, is disabling and disfiguring. Recent studies have shown that statins have a protective effect on individuals with GO. Statins were reported to trigger ferroptosis in some disorders, but little is known about whether statins protect against GO via ferroptosis. The aim of this study was to explore whether ferroptosis is involved in the protective effect of simvastatin on GO. Methods GO-OFs, which are orbital fibroblasts (OFs) derived from individuals with GO, were analyzed for lipogenesis by RT-qPCR and Red Oil O staining posttreatment with simvastatin. CCK-8 assays, flow cytometric analysis, and transmission electron microscopy (TEM) were used to compare the sensitivity of GO-OFs and control-OFs to erastin-induced ferroptosis. The ferroptosis levels in the GO-OFs were evaluated by measuring cell viability, reactive oxygen species (ROS) levels, and lipid peroxidation levels and performing TEM analysis after treatment with simvastatin and Fer-1. Results The GO-OFs were resistant to erastin-induced ferroptosis. The viability and lipogenesis of the GO-OFs were significantly decreased, while the levels of ROS, lipid peroxidation, and the ferroptosis marker ACLS4 were increased upon treatment with simvastatin. Conclusions Our study indicated that ferroptosis plays an important role in the pathogenesis of GO and that simvastatin may induce ferroptosis, suggesting that this drug could serve as a novel therapeutic agent for GO.
Collapse
Affiliation(s)
- Lujue Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Guizhou Provincial People's Hospital, Guiyang, China
| | - Tongxin Niu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuxian Shi
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yating Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Qi
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dan Cao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Cancer Research Institute, School of Basic Medicine, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Central South University, Changsha, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Lee C, Lee JE, Kim K, Woo KI. Effect of intravenous methylprednisolone on serum antibody levels in thyroid eye disease. Br J Ophthalmol 2024:bjo-2024-325180. [PMID: 39251337 DOI: 10.1136/bjo-2024-325180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND/AIMS We evaluated longitudinal autoantibody changes after intravenous methylprednisolone (IVMP), compared them with those in untreated patients and identified prognostic factors for treatment response. METHODS In this single-centre, retrospective, observational study, a total of 163 individuals diagnosed with moderate-to-severe thyroid eye disease were enrolled and followed for 12 months. Depending on whether IVMP was administered, we divided the patients into treatment and control groups. Based on the effect of IVMP on TSH receptor (TSH Rc) antibody level, we divided the patients into Ab declined and Ab not declined groups.We evaluated the time, group and interaction associations with the longitudinal autoantibody titres over 12 months using generalised estimating equations. Using multivariable logistic regression, we investigated the prognostic factors for a poor response to IVMP. RESULTS In the IVMP group, the TSH Rc antibody (Ab) titre decreased rapidly for 6 months and then decreased slowly until 12 months, becoming similar to the control group at 12 months. This suggests a difference in the decreasing pattern over time between the IVMP and control groups (group and time interaction p=0.029). Total cholesterol (OR 1.0217 (95% CI 1.0068 to 1.0370), p=0.0043) was a significant prognostic factor for the steroid response. The threshold total cholesterol value to distinguish between Ab declined and Ab not declined was 186 mg/dL. CONCLUSION IVMP significantly decreased the TSH Rc Ab level for the 3 months after treatment, compared with the no-treatment group, but the groups did not differ significantly after 12 months. Patients with high total cholesterol levels generally showed a poor response to IVMP.
Collapse
Affiliation(s)
- Chaeyeon Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| | - Kyunga Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, Korea (the Republic of)
| | - Kyung In Woo
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
3
|
Huang A, Wu X, Lin J, Wei C, Xu W. Genetic insights into repurposing statins for hyperthyroidism prevention: a drug-target Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1331031. [PMID: 38425755 PMCID: PMC10902122 DOI: 10.3389/fendo.2024.1331031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background Current therapeutic measures for thyroid dysfunction are limited and often accompanied by adverse effects. The use of lipid-lowering drugs like statins has recently been associated with lower thyroid eye diseases risk. Objective To investigate the implications of genetically proxied lipid-lowering drugs on thyroid dysfunction. Methods In this drug-target Mendelian randomization (MR) study, we utilized genetic variants within drug target genes associated with low-density lipoprotein (LDL) or triglyceride (TG), derived from a genome-wide association study (GWAS) meta-analysis (N ≤ 188,577), to simulate lifelong drug interventions. Genetic summary statistics for thyroid dysfunction outcomes were retrieved from GWAS datasets of Thyroid Omics Consortium (N ≤ 54,288) and UK Biobank (N = 484,598). Inverse-variance-weighted MR (IVW-MR) method was performed as primary analysis, followed by validation in colocalization analysis. A subsequent two-step MR analysis was conducted to identify biomarkers mediating the identified drug-outcome association. Results In IVW-MR analysis, genetic mimicry of 3-hydroxy-3-methylglutarylcoenzyme reductase (HMGCR) inhibitors (e.g. statins) was significantly associated with lower risk of hyperthyroidism in two independent datasets (OR1, 0.417 per 1-mmol/L lower in LDL-C; 95% CI 0.262 to 0.664; P1 = 2.262 × 10-4; OR2 0.996; 95% CI 0.993-0.998; P2 = 0.002). Two-step MR analysis revealed eighteen biomarkers linked to genetic mimicry of HMGCR inhibition, and identified insulin-like growth factor 1 (IGF-1) levels mediating 2.108% of the negative causal relationship between HMGCR inhibition and hyperthyroidism. Conclusion This study supports HMGCR inhibition as a promising therapeutic strategy for hyperthyroidism and suggests its underlying mechanisms may extend beyond lipid metabolism. Further investigations through laboratory studies and clinical trials are necessary to confirm and elucidate these findings.
Collapse
Affiliation(s)
- Anqi Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Xinyi Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Jiaqi Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Chiju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, China
| | - Wencan Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Rowland MB, Moore PE, Correll RN. Regulation of cardiac fibroblast cell death by unfolded protein response signaling. Front Physiol 2024; 14:1304669. [PMID: 38283278 PMCID: PMC10811265 DOI: 10.3389/fphys.2023.1304669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The endoplasmic reticulum (ER) is a tightly regulated organelle that requires specific environmental properties to efficiently carry out its function as a major site of protein synthesis and folding. Embedded in the ER membrane, ER stress sensors inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) serve as a sensitive quality control system collectively known as the unfolded protein response (UPR). In response to an accumulation of misfolded proteins, the UPR signals for protective mechanisms to cope with the cellular stress. Under prolonged unstable conditions and an inability to regain homeostasis, the UPR can shift from its original adaptive response to mechanisms leading to UPR-induced apoptosis. These UPR signaling pathways have been implicated as an important feature in the development of cardiac fibrosis, but identifying effective treatments has been difficult. Therefore, the apoptotic mechanisms of UPR signaling in cardiac fibroblasts (CFs) are important to our understanding of chronic fibrosis in the heart. Here, we summarize the maladaptive side of the UPR, activated downstream pathways associated with cell death, and agents that have been used to modify UPR-induced apoptosis in CFs.
Collapse
Affiliation(s)
- Mary B. Rowland
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Patrick E. Moore
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Robert N. Correll
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- Center for Convergent Bioscience and Medicine, University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
5
|
El Khoury M, Naim HY. Lipid rafts disruption by statins negatively impacts the interaction between SARS-CoV-2 S1 subunit and ACE2 in intestinal epithelial cells. Front Microbiol 2024; 14:1335458. [PMID: 38260879 PMCID: PMC10800905 DOI: 10.3389/fmicb.2023.1335458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The causative agent of the COVID-19 pandemic, SARS-CoV-2, is a virus that targets mainly the upper respiratory tract. However, it can affect other systems such as the gastrointestinal (GI) tract. Therapeutic strategies for this virus are still inconclusive and understanding its entry mechanism is important for finding effective treatments. Cholesterol is an important constituent in the structure of cellular membranes that plays a crucial role in a variety of cellular events. In addition, it is important for the infectivity and pathogenicity of several viruses. ACE2, the main receptor of SARS-CoV-2, is associated with lipid rafts which are microdomains composed of cholesterol and sphingolipids. In this study, we investigate the role of statins, lipid-lowering drugs, on the trafficking of ACE2 and the impact of cholesterol modulation on the interaction of this receptor with S1 in Caco-2 cells. The data show that fluvastatin and simvastatin reduce the expression of ACE2 to variable extents, impair its association with lipid rafts and sorting to the brush border membrane resulting in substantial reduction of its interaction with the S1 subunit of the spike protein. By virtue of the substantial effects of statins demonstrated in our study, these molecules, particularly fluvastatin, represent a promising therapeutic intervention that can be used off-label to treat SARS-CoV-2.
Collapse
Affiliation(s)
| | - Hassan Y. Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
6
|
Xing Z, Jiang X, Wu Y, Yu Z. Targeted Mevalonate Pathway and Autophagy in Antitumor Immunotherapy. Curr Cancer Drug Targets 2024; 24:890-909. [PMID: 38275055 DOI: 10.2174/0115680096273730231206054104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024]
Abstract
Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance. The mevalonate pathway and autophagy play important roles in cancer biology, antitumor immunity, and regulation of the TME. In addition, there is metabolic crosstalk between the two pathways. However, their role in promoting immune tolerance in digestive system tumors has not previously been summarized. Therefore, this review focuses on the cancer biology of the mevalonate pathway and autophagy, the regulation of the TME, metabolic crosstalk between the pathways, and the evaluation of their efficacy as targeted inhibitors in clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| |
Collapse
|
7
|
Lanzolla G, Comi S, Cosentino G, Pakdel F, Marinò M. Statins in Graves Orbitopathy: A New Therapeutic Tool. Ophthalmic Plast Reconstr Surg 2023; 39:S29-S39. [PMID: 38054983 DOI: 10.1097/iop.0000000000002525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE Graves orbitopathy (GO) is the most common extrathyroidal manifestation of Graves disease. Although its pathogenesis is not fully elucidated, GO is commonly considered an autoimmune disease due to loss of self-tolerance against autoantigens shared by thyroid epithelial cells and orbital fibroblasts. High-dose intravenous glucocorticoids (ivGCs) are the most used treatment for moderate-to-severe, active GO, but the addition of other immunomodulating treatments can improve the efficacy of ivGCs. Among the various risk factors that can affect the occurrence of GO, cholesterol may be worthy of interest. Since 2015 the role of cholesterol and cholesterol-lowering medications has been investigated. The purpose of this review is to discuss this topic, thereby offering new therapeutic opportunities for patients with GO. METHODS We searched PubMed for studies published between January 1, 1980 and June 1, 2023, using the search terms "Graves orbitopathy," "thyroid eye disease," "Graves ophthalmopathy," "thyroid ophthalmopathy," "thyroid-associated ophthalmopathy," "endocrine ophthalmopathy," "cholesterol," "lipids," "statins," "low-density lipoprotein," "atorvastatin," and "cholesterol-lowering drugs." Only English-language articles were included. RESULTS A correlation between low-density lipoprotein cholesterol and the risk of GO development has been reported. Furthermore, low-density lipoprotein cholesterol has been proposed as a risk factor that can affect the course of GO and the response to ivGCs. The protective role of cholesterol-lowering medications in preventing GO has been also investigated. Statin treatment was found to have potential benefits in reducing the risk of GO in patients with Graves disease. Given these findings, measurement of low-density lipoprotein cholesterol and treatment of hypercholesterolemia in patients with moderate-to-severe, active GO may be considered before starting ivGCs administration. Recently, a randomized clinical trial aimed at investigating the effects of statins in GO suggested that the addition of oral atorvastatin to ivGCs improves the overall outcome of moderate-to-severe, active GO in hypercholesterolemic patients given ivGCs. CONCLUSIONS Overall, statins seem to have a preventive and therapeutic role in moderate-to-severe active GO. Their efficacy can be related to cholesterol-lowering activity, pleiotropic actions, and interaction with methylprednisolone.
Collapse
Affiliation(s)
- Giulia Lanzolla
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Simone Comi
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Giada Cosentino
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Farzad Pakdel
- Department of Ophthalmic Plastic and Reconstructive Surgery, Farabi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Michele Marinò
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Chaulin AM. The Essential Strategies to Mitigate Cardiotoxicity Caused by Doxorubicin. Life (Basel) 2023; 13:2148. [PMID: 38004288 PMCID: PMC10672543 DOI: 10.3390/life13112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 11/26/2023] Open
Abstract
The study of mechanisms underlying cardiotoxicity of doxorubicin and the development of strategies to mitigate doxorubicin-induced cardiotoxicity are the most relevant issues of modern cardio-oncology. This is due to the high prevalence of cancer in the population and the need for frequent use of highly effective chemotherapeutic agents, in particular anthracyclines, for optimal management of cancer patients. However, while being a potent agent to counteract cancer, doxorubicin also affects the cardiovascular systems of patients undergoing chemotherapy in a significant and unfavorable fashion. Consecutively reviewed in this article are risk factors and mechanisms of doxorubicin cardiotoxicity, and the essential strategies to mitigate cardiotoxic effects of doxorubicin treatment in cancer patients are discussed.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia;
- Department of Clinical Chemistry, Samara State Medical University, Samara 443099, Russia
| |
Collapse
|
9
|
Temozolomide, Simvastatin and Acetylshikonin Combination Induces Mitochondrial-Dependent Apoptosis in GBM Cells, Which Is Regulated by Autophagy. BIOLOGY 2023; 12:biology12020302. [PMID: 36829578 PMCID: PMC9953749 DOI: 10.3390/biology12020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest cancers. Temozolomide (TMZ) is the most common chemotherapy used for GBM patients. Recently, combination chemotherapy strategies have had more effective antitumor effects and focus on slowing down the development of chemotherapy resistance. A combination of TMZ and cholesterol-lowering medications (statins) is currently under investigation in in vivo and clinical trials. In our current investigation, we have used a triple-combination therapy of TMZ, Simvastatin (Simva), and acetylshikonin, and investigated its apoptotic mechanism in GBM cell lines (U87 and U251). We used viability, apoptosis, reactive oxygen species, mitochondrial membrane potential (MMP), caspase-3/-7, acridine orange (AO) and immunoblotting autophagy assays. Our results showed that a TMZ/Simva/ASH combination therapy induced significantly more apoptosis compared to TMZ, Simva, ASH, and TMZ/Simva treatments in GBM cells. Apoptosis via TMZ/Simva/ASH treatment induced mitochondrial damage (increase of ROS, decrease of MMP) and caspase-3/7 activation in both GBM cell lines. Compared to all single treatments and the TMZ/Simva treatment, TMZ/Simva/ASH significantly increased positive acidic vacuole organelles. We further confirmed that the increase of AVOs during the TMZ/Simva/ASH treatment was due to the partial inhibition of autophagy flux (accumulation of LC3β-II and a decrease in p62 degradation) in GBM cells. Our investigation also showed that TMZ/Simva/ASH-induced cell death was depended on autophagy flux, as further inhibition of autophagy flux increased TMZ/Simva/ASH-induced cell death in GBM cells. Finally, our results showed that TMZ/Simva/ASH treatment potentially depends on an increase of Bax expression in GBM cells. Our current investigation might open new avenues for a more effective treatment of GBM, but further investigations are required for a better identification of the mechanisms.
Collapse
|
10
|
Rashid MU, Lorzadeh S, Gao A, Ghavami S, Coombs KM. PSMA2 knockdown impacts expression of proteins involved in immune and cellular stress responses in human lung cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166617. [PMID: 36481484 DOI: 10.1016/j.bbadis.2022.166617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Proteasome subunit alpha type-2 (PSMA2) is a critical component of the 20S proteasome, which is the core particle of the 26S proteasome complex and is involved in cellular protein quality control by recognizing and recycling defective proteins. PSMA2 expression dysregulation has been detected in different human diseases and viral infections. No study yet has reported PSMA2 knockdown (KD) effects on the cellular proteome. METHODS We used SOMAScan, an aptamer-based multiplexed technique, to measure >1300 human proteins to determine the impact of PSMA2 KD on A549 human lung epithelial cells. RESULTS PSMA2 KD resulted in significant dysregulation of 52 cellular proteins involved in different bio-functions, including cellular movement and development, cell death and survival, and cancer. The immune system and signal transduction were the most affected cellular functions. PSMA2 KD caused dysregulation of several signaling pathways involved in immune response, cytokine signaling, organismal growth and development, cellular stress and injury (including autophagy and unfolded protein response), and cancer responses. CONCLUSIONS In summary, this study helps us better understand the importance of PSMA2 in different cellular functions, signaling pathways, and human diseases.
Collapse
Affiliation(s)
- Mahamud-Ur Rashid
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kevin M Coombs
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada; Children's Hospital Research Institute of Manitoba, Room 513, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
11
|
Chaulin AM. The Negative Effects of Statin Drugs on Cardiomyocytes: Current Review of Laboratory and Experimental Data (Mini-Review). Cardiovasc Hematol Agents Med Chem 2023; 22:7-16. [PMID: 36918788 DOI: 10.2174/1871525721666230314101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 03/16/2023]
Abstract
Statin drugs have long been used as a key component of lipid-lowering therapy, which is necessary for the prevention and treatment of atherosclerosis and cardiovascular diseases. Many studies focus on finding and refining new effects of statin drugs. In addition to the main lipidlowering effect (blocking cholesterol synthesis), statin drugs have a number of pleiotropic effects, including negative effects. The main beneficial effects of statin drugs on the components of the cardiovascular system are: anti-ischemic, antithrombotic, anti-apoptotic, antioxidant, endothelioprotective, anti-inflammatory properties, and a number of other beneficial effects. Due to these effects, statin drugs are considered one of the main therapeutic agents for the management of patients with cardiovascular pathologies. To date, many review manuscripts have been published on the myotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity and diabetogenic effects of statins. However, there are no review manuscripts considering the negative effect of statin drugs on myocardial contractile cells (cardiomyocytes). The purpose of this review is to discuss the negative effects of statin drugs on cardiomyocytes. Special attention is paid to the cardiotoxic action of statin drugs on cardiomyocytes and the mechanisms of increased serum levels of cardiac troponins. In the process of preparing this review, a detailed analysis of laboratory and experimental data devoted to the study of the negative effects of statin drugs on cardiomyocytes was carried out. The literature search was carried out with the keywords: statin drugs, negative effects, mechanisms, cardiac troponins, oxidative stress, apoptosis. Thus, statin drugs can have a number of negative effects on cardiomyocytes, in particular, increased oxidative stress, endoplasmic reticulum stress, damage to mitochondria and intercalated discs, and inhibition of glucose transport into cardiomyocytes. Additional studies are needed to confirm and clarify the mechanisms and clinical consequences of the negative effects of statin drugs on cardiomyocytes.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara, 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara, 443099, Russia
| |
Collapse
|
12
|
Chaulin A. Cardiotoxicity as a Possible Side Effect of Statins. Rev Cardiovasc Med 2023; 24:22. [PMID: 39076865 PMCID: PMC11270446 DOI: 10.31083/j.rcm2401022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 07/31/2024] Open
Abstract
According to current views, statins have a wide range of beneficial effects (lipid and non-lipid) on the cardiovascular system, so they are one of the most commonly used drugs for the prevention and management of patients with cardiovascular diseases. However, it is important to note that information about many beneficial effects of statins is contradictory. In addition, a number of side effects of statins, in particular, myotoxicity, hepatotoxicity, diabetogenic property, etc., may limit the possibility of using statins or even force doctors to cancel these drugs. Also, some concerns are caused by recent studies reporting cardiotoxicity of statins and increased serum concentrations of biomarkers of myocardial damage (highly sensitive cardiac troponins (hs-cTns)) in patients taking statins. This article discusses in detail the possible mechanisms of cardiotoxicity of statins and outlines the directions for further research in this area.
Collapse
Affiliation(s)
- Aleksey Chaulin
- Department of Histology and Embryology, Samara State Medical University,
443099 Samara, Samara Region, Russia
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical
University, 443099 Samara, Samara Region, Russia
- Research Institute of Cardiology, Samara State Medical University, 443099
Samara, Samara Region, Russia
| |
Collapse
|
13
|
Pharmacological Activities of Ginkgolic Acids in Relation to Autophagy. Pharmaceuticals (Basel) 2022; 15:ph15121469. [PMID: 36558920 PMCID: PMC9785683 DOI: 10.3390/ph15121469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Plant-derived natural compounds are widely used as alternative medicine in healthcare throughout the world. Ginkgolic acids, the phenolic compounds isolated from the leaves and seeds of Ginkgo biloba, are among the chemicals that have been explored the most. Ginkgolic acids exhibit cytotoxic activity against a vast number of human cancers in various preclinical models in vitro and in vivo. Additionally, the pharmacological activities of ginkgolic acids are also involved in antidiabetic, anti-bacteria, anti-virus, anti-fibrosis, and reno/neuroprotection. Autophagy as a highly conserved self-cleaning process that plays a crucial role in maintaining cellular and tissue homeostasis and has been proven to serve as a protective mechanism in the pathogenesis of many diseases, including neurodegenerative diseases, cancer, and infectious diseases. In this review, we surveyed the pharmacological activities of the major three forms of ginkgolic acids (C13:0, C15:1, and C17:1) that are linked to autophagic activity and the mechanisms to which these compounds may participate. A growing body of studies in last decade suggests that ginkgolic acids may represent promising chemical compounds in future drug development and an alternative remedy in humans.
Collapse
|
14
|
Chaulin AM. Review of Recent Laboratory and Experimental Data on Cardiotoxicity of Statins. J Cardiovasc Dev Dis 2022; 9:403. [PMID: 36421938 PMCID: PMC9696927 DOI: 10.3390/jcdd9110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the fact that statins are among the most high-demand therapeutic agents used for the treatment and prevention of the most common cardiovascular diseases, a significant amount of research is focused on these drugs. As a result, the study and discovery of new effects in statin drugs continues. Research methods are constantly being improved in terms of their sensitivity and specificity, which leads to a change in ideas. In addition to the main lipid-lowering effect, statins have a number of additional effects, which can be conditionally divided into positive (pleiotropic) and negative (side effects). Moreover, information about many of the pleiotropic effects of statins is controversial and may subsequently change as new data become available. To a large extent, this is due to the introduction of new and the improvement of old methods of study: clinical, laboratory and morphological ones. Recent studies report the possibility of statins having potential cardiotoxic properties, which is expressed by an increase in the concentration of highly sensitive cardiac troponins, as well as various adverse changes in cardiac myocytes at the ultrastructural and molecular levels. This paper discusses possible mechanisms of statin cardiotoxicity. This narrative review is based on an analysis of publications in the Medline, PubMed, PubMed Central and Embase databases. The terms "statins", "troponin", "troponin I", "troponin T" in combination with "cardiotoxicity", "false positive", "mechanisms of increase", "pathophysiological mechanisms", "oxidative stress" and "cardiomyocyte apoptosis" were used to search publications.
Collapse
Affiliation(s)
- Aleksey M. Chaulin
- Department of Histology and Embryology, Samara State Medical University, 443099 Samara, Russia; ; Tel.: +7-(927)-770-25-87
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, 443099 Samara, Russia
- Research Institute of Cardiology, Samara State Medical University, 443099 Samara, Russia
| |
Collapse
|
15
|
Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals (Basel) 2022; 15:ph15060648. [PMID: 35745567 PMCID: PMC9228383 DOI: 10.3390/ph15060648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the main causes of death globally. Most of the molecular mechanisms underlying cancer are marked by complex aberrations that activate the critical cell-signaling pathways that play a pivotal role in cell metabolism, tumor development, cytoskeletal reorganization, and metastasis. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway is one of the main signaling pathways involved in carcinogenesis and metastasis. Autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation, plays a dual role in cancer, as either a tumor promoter or a tumor suppressor, depending on the stage of the carcinogenesis. Statins are the group of drugs of choice to lower the level of low-density lipoprotein (LDL) cholesterol in the blood. Experimental and clinical data suggest the potential of statins in the treatment of cancer. In vitro and in vivo studies have demonstrated the molecular mechanisms through which statins inhibit the proliferation and metastasis of cancer cells in different types of cancer. The anticancer properties of statins have been shown to result in the suppression of tumor growth, the induction of apoptosis, and autophagy. This literature review shows the dual role of the autophagic process in cancer and the latest scientific evidence related to the inducing effect exerted by statins on autophagy, which could explain their anticancer potential.
Collapse
|
16
|
Chen J, Han G, Liu Z, Wang H, Wang D, Zhao J, Liu B, Zhang R, Zhang Z. Recovery Mechanism of Endoplasmic Reticulum Revealed by Fluorescence Lifetime Imaging in Live Cells. Anal Chem 2022; 94:5173-5180. [PMID: 35245042 DOI: 10.1021/acs.analchem.2c00216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Endoplasmic reticulum (ER) is an important organelle of a membranous tubule network in cells for the synthesis, assembly, and modification of peptides, proteins, and enzymes. Autophagy and destruction of ER commonly occur during normal cellular activities. These processes have been studied extensively, but the spontaneous ER regeneration process is poorly understood because of the lack of molecular tools capable of distinguishing the intact, damaged, autophagic, and regenerative ER in live cells. Herein, we report a dual-localizing, environment-responsive, and lifetime-sensitive fluorescent probe for real-time monitoring ER autophagy and regeneration in live cells. Using this tool, the fluorescence lifetime imaging can quantitatively determine the degrees of ER destruction and spontaneous recovery. Significantly, we show that triglycerides supplied in lipid droplets can efficiently repair ER via the two critical pathways: (i) supplying materials for ER repair by converting triglycerides into fatty acids and diglycerides and (ii) partially inhibiting autophagy for stressed ER.
Collapse
Affiliation(s)
- Juan Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Guangmei Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zhengjie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Hong Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Dong Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jun Zhao
- Institute of Solid State Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Bianhua Liu
- Institute of Solid State Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Ruilong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zhongping Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
17
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
18
|
Endoplasmic Reticulum Stress in Colonic Mucosa of Ulcerative Colitis Patients Is Mediated by PERK and IRE1 Pathway Activation. Mediators Inflamm 2022; 2022:6049500. [PMID: 35185383 PMCID: PMC8849912 DOI: 10.1155/2022/6049500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023] Open
Abstract
Ulcerative colitis (UC) is characterized by a chronic overproduction of proinflammatory cytokines. During an acute phase, the endoplasmic reticulum (ER) is overloaded and the protein folding process is impaired, a condition named ER stress. This state induces a response (unfolded protein response (UPR)), initiated by the activation of IRE1/Xbp-1, PERK/eIF2α, and ATF6 pathways, which has previously been linked to intestinal inflammation in experimental models. ER stress and UPR activation trigger the activation of proinflammatory, autophagy, and apoptosis genes, in addition to promoting protein degradation. Therefore, the goal of this study was to evaluate the activation of ER stress and UPR in colonic mucosa of UC patients. Patient and Methods. Transcriptional analysis of ER stress- and UPR-related genes was performed by qPCR from intestinal mucosa of patients with UC. We also performed in situ hybridization (ISH) and immunohistochemistry (IHQ) of PERK/eIF2α and IRE1/Xbp-1 pathways and UPR-related chaperones. Results. We first evaluated inflammatory genes via qPCR, and we observed that all analyzed proinflammatory transcripts were upregulated in UC patients. ISH and IHQ images showed that ER stress is activated via PERK/eIF2α and IRE1/Xbp-1 pathways not only in intestinal epithelial cells but also in cells of the lamina propria of UC colonic mucosa. Transcriptional analysis confirmed that EIF2AK3 was upregulated in UC patients. UPR-related genes, such as ATF3, STC2, and DDIT3, along with the chaperones and cochaperones DNAJC3, CALR, HSP90B1, and HSPA5, were also upregulated in UC patients. In addition, we observed that proapoptotic and autophagy genes (Bax and ATG6L1, respectively) were also upregulated. Conclusion. Our results suggest that ER stress and UPR are indeed activated in UC patients and this may contribute to the chronic inflammatory process seen in UC. The increased apoptosis and autophagy markers further support the activation of these findings once they are activated to counterbalance tissue damage. These findings provide new insights into the molecular mechanisms that maintain UC activity and open new possibilities to attenuate intestinal inflammation.
Collapse
|
19
|
Habibzadeh P, Dastsooz H, Eshraghi M, Łos MJ, Klionsky DJ, Ghavami S. Autophagy: The Potential Link between SARS-CoV-2 and Cancer. Cancers (Basel) 2021; 13:cancers13225721. [PMID: 34830876 PMCID: PMC8616402 DOI: 10.3390/cancers13225721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Coronavirus disease 2019 (COVID-19) has led to a global crisis. With the increasing number of individuals infected worldwide, the long-term consequences of this disease have become an active area of research. The constellation of symptoms COVID-19 survivors suffer from is commonly referred to as post-acute COVID-19 syndrome in the scientific literature. In this paper, we discuss the potential long-term complications of this infection resulting from the persistence of the viral particles in body tissues interacting with host cells’ autophagy machinery in the context of the development of cancer, cancer progression and metastasis, as well as response to treatment. We also propose a structured framework for future studies to investigate the potential impact of COVID-19 infection on cancer. Abstract COVID-19 infection survivors suffer from a constellation of symptoms referred to as post-acute COVID-19 syndrome. However, in the wake of recent evidence highlighting the long-term persistence of SARS-CoV-2 antigens in tissues and emerging information regarding the interaction between SARS-CoV-2 proteins and various components of the host cell macroautophagy/autophagy machinery, the unforeseen long-term consequences of this infection, such as increased risk of malignancies, should be explored. Although SARS-CoV-2 is not considered an oncogenic virus, the possibility of increased risk of cancer among COVID-19 survivors cannot be ruled out. Herein, we provide an overview of the possible mechanisms leading to cancer development, particularly obesity-related cancers (e.g., colorectal cancer), resulting from defects in autophagy and the blockade of the autophagic flux, and also immune escape in COVID-19 survivors. We also highlight the potential long-term implications of COVID-19 infection in the prognosis of patients with cancer and their response to different cancer treatments. Finally, we consider future directions for further investigations on this matter.
Collapse
Affiliation(s)
- Parham Habibzadeh
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Hassan Dastsooz
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia, Albertina, 13, 10123 Torino, Italy;
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, 10126 Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Torino, Italy
| | - Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: (M.J.Ł.); (S.G.)
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, ul. Rolna 43, 40-555 Katowice, Poland
- Correspondence: (M.J.Ł.); (S.G.)
| |
Collapse
|
20
|
Lanzolla G, Sabini E, Leo M, Menconi F, Rocchi R, Sframeli A, Piaggi P, Nardi M, Marcocci C, Marinò M. Statins for Graves' orbitopathy (STAGO): a phase 2, open-label, adaptive, single centre, randomised clinical trial. Lancet Diabetes Endocrinol 2021; 9:733-742. [PMID: 34592164 DOI: 10.1016/s2213-8587(21)00238-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND A protective action of statins on development of Graves' orbitopathy suggests that statins might be used for treatment of the disease. We aimed to assess the efficacy of the addition of a statin, atorvastatin, to intravenous glucocorticoids (ivGCs) on Graves' orbitopathy outcomes in patients with hypercholesterolaemia. METHODS We did a randomised, open-label, phase 2, adaptive, clinical trial at a single, tertiary, referral hospital in Pisa, Italy. Patients with moderate-to-severe, active Graves' orbitopathy, with a low-density lipoprotein cholesterol concentration between 2·97 and 4·88 mmol/L were eligible for inclusion. Patients were randomly assigned (1:1) in 11 blocks of eight, using a computer-based system, to the ST group or the NST group. The ST group received ivGCs (methylprednisolone 500 mg once a week for 6 weeks followed by 250 mg once a week for an additional six weeks) for 12 weeks and oral atorvastatin (20 mg once a day) for 24 weeks. The NST group only received the ivGC regimen. Patients were unmasked to group allocation; however, the ophthalmological investigator was masked to randomisation. The primary endpoint was the Graves' orbitopathy outcome (composite evaluation of exophthalmos, clinical activity score, eyelid aperture, and diplopia) at 24 weeks in the modified intention-to-treat (ITT) population (patients who attended the week 12 visit). Patients were considered responders when at least two of the following criteria were fulfilled in the most affected eye, without worsening in any of the same measures in both eyes: (1) reduction in exophthalmos of 2 mm or more, with no increase by 2 mm or more in the other eye; (2) reduction of clinical activity score by two or more points; (3) reduction in eyelid aperture by 2 mm or more, with no increase by 2 mm or more in the other eye; and (4) disappearance or improvement (change from constant to inconstant, intermittent, or absent, or from inconstant to intermittent or absent) of diplopia, and (5) improvement in visual acuity by 0·2 decimals or more. The trial is registered with EUDRACT, 2018-001317-33, and ClinicalTrials.gov, NCT03110848. FINDINGS Between June 1, 2020, and Nov 30, 2020, 119 patients were screened for inclusion, of whom 88 (74%) patients were enrolled and randomly assigned to one of the two treatment groups (44 [50%] to the ST group and 44 [50%] to the NST group). Eight (9%) patients did not attend the 12 week visit; 80 (91%) patients (18 [23%] men and 62 [78%] women) were included in the modified ITT population (41 [51%] in the ST group and 39 [49%] in the NST group]. The proportion of Graves' orbitopathy composite evaluation responders at 24 weeks was higher in the ST group (21 [51%] of 41 patients) than the NST group (11 [28%] of 39 patients; attributable risk 0·23 [95% CI 0·02-0·44]; p=0·042). 26 adverse events occurred in 21 (24%) of 88 patients in the safety population. One (2%) of 44 patients in each group required treatment discontinuation, with no serious adverse events and no difference between groups. INTERPRETATION Addition of oral atorvastatin to an ivGC regimen improved Graves' orbitopathy outcomes in patients with moderate-to-severe, active eye disease who were hypercholesterolaemic. Future phase 3 studies, which could potentially recruit patients regardless of low-density lipoprotein cholesterol concentration, are required to confirm this association. FUNDING Associazione Allievi Endocrinologia Pisana.
Collapse
Affiliation(s)
- Giulia Lanzolla
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Elena Sabini
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Marenza Leo
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Francesca Menconi
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Roberto Rocchi
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Angela Sframeli
- Department of Surgical, Medical and Molecular Pathology, Ophthalmopathy Unit I, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Marco Nardi
- Department of Surgical, Medical and Molecular Pathology, Ophthalmopathy Unit I, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Michele Marinò
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
21
|
Hinton M, Eltayeb E, Ghavami S, Dakshinamurti S. Effect of pulsatile stretch on unfolded protein response in a new model of the pulmonary hypertensive vascular wall. Biochem Biophys Rep 2021; 27:101080. [PMID: 34368469 PMCID: PMC8326203 DOI: 10.1016/j.bbrep.2021.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is characterized by hypoxemia and arterial remodeling. Dynamic stretch and recoil of the arterial wall during pulsation (in normal conduit arteries, stretch 20% above diastolic diameter) maintains homeostasis; a static arterial wall is associated with remodeling. PPHN is diagnosed by echocardiography as decreased pulmonary artery wall displacement during systole, causing decreased pulmonary arterial pressure acceleration time in a stiff artery. We hypothesized that a 'normal' amplitude of pulsatile stretch is protective against ER stress, while the loss of stretch is a trigger for hypoxia-induced stress responses. Using a novel in vitro model of pulmonary arterial myocytes subject to repetitive stretch-relaxation cycles within a normoxic or hypoxic environment, we examined the relative impact of hypoxia (pulmonary circuit during unresolved PPHN) and cyclic mechanical stretch (diminished in PPHN) on myocyte homeostasis, specifically on signaling proteins for autophagy and endoplasmic reticulum (ER) stress. Stretch induced autophagosome abundance under electron microscopy. Hypoxia, in presence or absence of pulsatile stretch, decreased unfolded protein response (UPR) hallmark BIP (GRP78) in contractile phenotype pulmonary arterial myocytes. Inositol requiring enzyme-1 α (IRE1α) was not activated; but hypoxia induced eif2α phosphorylation, increasing expression of ATF4 (activating transcription factor-4). This was sensitive to inhibition by autophagy inhibitor bafilomycin A1. We conclude that in the pulmonary circuit, hypoxia induces one arm of the UPR pathway and causes ER stress. Pulsatile stretch ameliorates the hypoxic UPR response, and while increasing presence of autophagosomes, does not activate canonical autophagy signaling pathways. We propose that simultaneous application of hypoxia and graded levels of cyclic stretch can be used to distinguish myocyte signaling in the deformable pulmonary artery of early PPHN, versus the inflexible late stage PPHN artery.
Collapse
Affiliation(s)
- Martha Hinton
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, 513 – 715 McDermot Avenue, Winnipeg, Canada, R3E 3P4
- Department of Physiology and Pathophysiology, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Canada, R3E 0J9
| | - Elwasila Eltayeb
- Section of Neonatology, Department of Pediatrics, University of Manitoba, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Canada, R3A 1R9
| | - Saeid Ghavami
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, 513 – 715 McDermot Avenue, Winnipeg, Canada, R3E 3P4
- Department of Human Anatomy and Cell Science, University of Manitoba, 130 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Canada, R3E 0J9
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, 513 – 715 McDermot Avenue, Winnipeg, Canada, R3E 3P4
- Section of Neonatology, Department of Pediatrics, University of Manitoba, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Canada, R3A 1R9
- Department of Physiology and Pathophysiology, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Canada, R3E 0J9
| |
Collapse
|
22
|
Xu F, Wang Z, Zhang H, Chen J, Wang X, Cui L, Xie C, Li M, Wang F, Zhou P, Liu J, Huang P, Xia X, Xia X. Mevalonate Blockade in Cancer Cells Triggers CLEC9A + Dendritic Cell-Mediated Antitumor Immunity. Cancer Res 2021; 81:4514-4528. [PMID: 34266895 DOI: 10.1158/0008-5472.can-20-3977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/11/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Hyperactive mevalonate (MVA) metabolic activity is often observed in cancer cells, and blockade of this pathway inhibits tumor cell lipid synthesis and cell growth and enhances tumor immunogenicity. How tumor cell MVA metabolic blockade promotes antitumor immune responses, however, remains unclear. Here we show that inhibition of the MVA metabolic pathway in tumor cells elicits type 1 classical dendritic cells (cDC1)-mediated tumor recognition and antigen cross-presentation for antitumor immunity. Mechanistically, MVA blockade disrupted prenylation of the small GTPase Rac1 and induced cancer cell actin filament exposure, which was recognized by CLEC9A, a C-lectin receptor specifically expressed on cDC1s, in turn activating antitumor T cells. MVA pathway blockade or Rac1 knockdown in tumor cells induced CD8+ T-cell-mediated antitumor immunity in immunocompetent mice but not in Batf3 -/- mice lacking CLEC9A+ dendritic cells. These findings demonstrate tumor MVA metabolic blockade stimulates a cDC1 response through CLEC9A-mediated immune recognition of tumor cell cytoskeleton, illustrating a new immune surveillance mechanism by which dendritic cells monitor tumor metabolic dysregulation and providing insight into how MVA pathway inhibition may potentiate anticancer immunity. SIGNIFICANCE: These findings suggest that mevalonate blockade in cancer cells disrupts Rac1 prenylation to increase recognition and cross-presentation by conventional dendritic cells, suggesting this axis as a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Feifei Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiemin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengyun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Fang Wang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
23
|
Sharma P, Alizadeh J, Juarez M, Samali A, Halayko AJ, Kenyon NJ, Ghavami S, Zeki AA. Autophagy, Apoptosis, the Unfolded Protein Response, and Lung Function in Idiopathic Pulmonary Fibrosis. Cells 2021; 10:1642. [PMID: 34209019 PMCID: PMC8307368 DOI: 10.3390/cells10071642] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, apoptosis, and the unfolded protein response (UPR) are fundamental biological processes essential for manifold cellular functions in health and disease. Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal pulmonary disorder associated with aging that has limited therapies, reflecting our incomplete understanding. We conducted an observational study linking molecular markers of cell stress response pathways (UPR: BiP, XBP1; apoptosis: cleaved caspase-3; autophagy: LC3β) in lung tissues from IPF patients and correlated the expression of these protein markers to each subject's lung function measures. We hypothesized that changes in lung tissue expression of apoptosis, autophagy, and UPR markers correlate with lung function deficits in IPF. The cell stress markers BiP, XBP1, LC3β puncta, and cleaved caspase-3 were found to be elevated in IPF lungs compared to non-IPF lungs, and, further, BiP and cleaved caspase-3 co-localized in IPF lungs. Considering lung function independently, we observed that increased XBP1, BiP, and cleaved caspase-3 were each associated with reduced lung function (FEV1, FVC, TLC, RV). However, increased lung tissue expression of LC3β puncta was significantly associated with increased diffusion capacity (DLCO), an indicator of alveolar-capillary membrane function. Similarly, the co-localization of UPR (XBP1, BiP) and autophagy (LC3β puncta) markers was positively correlated with increased lung function (FEV1, FVC, TLC, DLCO). However, the presence of LC3β puncta can indicate either autophagy flux inhibition or activation. While the nature of our observational cross-sectional study design does not allow conclusions regarding causal links between increased expression of these cell stress markers, lung fibrosis, and lung function decline, it does provide some insights that are hypothesis-generating and suggests that within the milieu of active UPR, changes in autophagy flux may play an important role in determining lung function. Further research is necessary to investigate the mechanisms linking UPR and autophagy in IPF and how an imbalance in these cell stress pathways can lead to progressive fibrosis and loss of lung function. We conclude by presenting five testable hypotheses that build on the research presented here. Such an understanding could eventually lead to the development of much-needed therapies for IPF.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - Maya Juarez
- Davis Lung Center, School of Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, CA 95616, USA; (M.J.); (N.J.K.)
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland;
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - Nicholas J. Kenyon
- Davis Lung Center, School of Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, CA 95616, USA; (M.J.); (N.J.K.)
- Veterans Affairs Medical Center, Mather, CA 95655, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Amir A. Zeki
- Davis Lung Center, School of Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, CA 95616, USA; (M.J.); (N.J.K.)
- Veterans Affairs Medical Center, Mather, CA 95655, USA
| |
Collapse
|
24
|
Lucantoni F, Martínez-Cerezuela A, Gruevska A, Moragrega ÁB, Víctor VM, Esplugues JV, Blas-García A, Apostolova N. Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet? J Pathol 2021; 254:216-228. [PMID: 33834482 DOI: 10.1002/path.5678] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023]
Abstract
Liver fibrosis (LF) occurs as a result of persistent liver injury and can be defined as a pathologic, chronic, wound-healing process in which functional parenchyma is progressively replaced by fibrotic tissue. As a phenomenon involved in the majority of chronic liver diseases, and therefore prevalent, it exerts a significant impact on public health. This impact becomes even more patent given the lack of a specific pharmacological therapy, with LF only being ameliorated or prevented through the use of agents that alleviate the underlying causes. Hepatic stellate cells (HSCs) are fundamental mediators of LF, which, activated in response to pro-fibrotic stimuli, transdifferentiate from a quiescent phenotype into myofibroblasts that deposit large amounts of fibrotic tissue and mediate pro-inflammatory effects. In recent years, much effort has been devoted to understanding the mechanisms through which HSCs are activated or inactivated. Using cell culture and/or different animal models, numerous studies have shown that autophagy is enhanced during the fibrogenic process and have provided specific evidence to pinpoint the fundamental role of autophagy in HSC activation. This effect involves - though may not be limited to - the autophagic degradation of lipid droplets. Several hepatoprotective agents have been shown to reverse the autophagic alteration present in LF, but clinical confirmation of these effects is pending. On the other hand, there is evidence that implicates autophagy in several anti-fibrotic mechanisms in HSCs that stimulate HSC cell cycle arrest and cell death or prevent the generation of pro-fibrotic mediators, including excess collagen accumulation. The objective of this review is to offer a comprehensive analysis of published evidence of the role of autophagy in HSC activation and to provide hints for possible therapeutic targets for the treatment and/or prevention of LF related to autophagy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Federico Lucantoni
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
| | | | - Aleksandra Gruevska
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
| | - Ángela B Moragrega
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
| | - Víctor M Víctor
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
| | - Ana Blas-García
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
| |
Collapse
|
25
|
Marikawa Y, Menor M, Deng Y, Alarcon VB. Regulation of endoplasmic reticulum stress and trophectoderm lineage specification by the mevalonate pathway in the mouse preimplantation embryo. Mol Hum Reprod 2021; 27:6156636. [PMID: 33677573 DOI: 10.1093/molehr/gaab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Early embryos are vulnerable to environmental insults, such as medications taken by the mother. Due to increasing prevalence of hypercholesterolemia, more women of childbearing potential are taking cholesterol-lowering medications called statins. Previously, we showed that inhibition of the mevalonate pathway by statins impaired mouse preimplantation development, by modulating HIPPO signaling, a key regulator for trophectoderm (TE) lineage specification. Here, we further evaluated molecular events that are altered by mevalonate pathway inhibition during the timeframe of morphogenesis and cell lineage specification. Whole transcriptome analysis revealed that statin treatment dysregulated gene expression underlying multiple processes, including cholesterol biosynthesis, HIPPO signaling, cell lineage specification and endoplasmic reticulum (ER) stress response. We explored mechanisms that link the mevalonate pathway to ER stress, because of its potential impact on embryonic health and development. Upregulation of ER stress-responsive genes was inhibited when statin-treated embryos were supplemented with the mevalonate pathway product, geranylgeranyl pyrophosphate (GGPP). Inhibition of geranylgeranylation was sufficient to upregulate ER stress-responsive genes. However, ER stress-responsive genes were not upregulated by inhibition of ras homolog family member A (RHOA), a geranylgeranylation target, although it interfered with TE specification and blastocyst cavity formation. In contrast, inhibition of Rac family small GTPase 1 (RAC1), another geranylgeranylation target, upregulated ER stress-responsive genes, while it did not impair TE specification or cavity formation. Thus, our study suggests that the mevalonate pathway regulates cellular homeostasis (ER stress repression) and differentiation (TE lineage specification) in preimplantation embryos through GGPP-dependent activation of two distinct small GTPases, RAC1 and RHOA, respectively. Translation of the findings to human embryos and clinical settings requires further investigations.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Mark Menor
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Vernadeth B Alarcon
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
26
|
Olivares-Silva F, Espitia-Corredor J, Letelier A, Vivar R, Parra-Flores P, Olmedo I, Montenegro J, Pardo-Jiménez V, Díaz-Araya G. TGF-β1 decreases CHOP expression and prevents cardiac fibroblast apoptosis induced by endoplasmic reticulum stress. Toxicol In Vitro 2021; 70:105041. [PMID: 33127435 DOI: 10.1016/j.tiv.2020.105041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta 1 (TGF-β1) is a cytokine with marked pro-fibrotic action on cardiac fibroblasts (CF). TGF-β1 induces CF-to-cardiac myofibroblast (CMF) differentiation, defined by an increase in α-smooth muscle cells (α-SMA), collagen secretion and it has a cytoprotective effect against stimuli that induce apoptosis. In the Endoplasmic Reticulum (ER) lumen, misfolded protein accumulation triggers ER stress and induces apoptosis, and this process plays a critical role in cell death mediated by Ischemia/Reperfusion (I/R) injury and by ER stress inducers, such as Tunicamycin (Tn). Here, we studied the regulation of CHOP, a proapoptotic ER-stress-related transcription factor in CF under simulated I/R (sI/R) or exposed to Tn. Even though TGF-β1 has been shown to participate in ER stress, its regulatory effect on CF apoptosis and ER stress-induced by sI/R or TN has not been evaluated yet. CF from neonatal rats were exposed to sI/R, and cell death was evaluated by cell count and apoptosis by flow cytometry. ER stress was assessed by western blot against CHOP. Our results evidenced that sI/R (8/24) h or Tn triggers CF apoptosis and an increase in CHOP protein levels. TGF-β1 pre-treatment partially prevented apoptosis induced by sI/R or Tn. Furthermore, TGF-β1 pre-treatment completely prevented CHOP increase by sI/R or Tn. Additionally, we found a decrease in α-SMA expression induced by sI/R and in collagen secretion induced by Tn, which were not prevented by TGF-β1 treatment. In conclusion, TGF-β1 partially protects CF apoptosis induced by sI/R or Tn, through a mechanism that would involve ER stress.
Collapse
Affiliation(s)
- F Olivares-Silva
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - J Espitia-Corredor
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - A Letelier
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - R Vivar
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - P Parra-Flores
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - I Olmedo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - J Montenegro
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - V Pardo-Jiménez
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - G Díaz-Araya
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Centro FONDAP Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
27
|
Key Enzymes for the Mevalonate Pathway in the Cardiovascular System. J Cardiovasc Pharmacol 2021; 77:142-152. [PMID: 33538531 DOI: 10.1097/fjc.0000000000000952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Isoprenylation is an important post-transcriptional modification of small GTPases required for their activation and function. Isoprenoids, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate, are indispensable for isoprenylation by serving as donors of a prenyl moiety to small G proteins. In the human body, isoprenoids are mainly generated by the mevalonate pathway (also known as the cholesterol-synthesis pathway). The hydroxymethylglutaryl coenzyme A reductase catalyzes the first rate-limiting steps of the mevalonate pathway, and its inhibitor (statins) are widely used as lipid-lowering agents. In addition, the FPP synthase is also of critical importance for the regulation of the isoprenoids production, for which the inhibitor is mainly used in the treatment of osteoporosis. Synthetic FPP can be further used to generate geranylgeranyl pyrophosphate and cholesterol. Recent studies suggest a role for isoprenoids in the genesis and development of cardiovascular disorders, such as pathological cardiac hypertrophy, fibrosis, endothelial dysfunction, and fibrotic responses of smooth-muscle cells. Furthermore, statins and FPP synthase inhibitors have also been applied for the management of heart failure and other cardiovascular diseases rather than their clinical use for hyperlipidemia or bone diseases. In this review, we focus on the function of several critical enzymes, including hydroxymethylglutaryl coenzyme A reductase, FPP synthase, farnesyltransferase, and geranylgeranyltransferase in the mevalonate pathway which are involved in regulating the generation of isoprenoids and isoprenylation of small GTPases, and their pathophysiological role in the cardiovascular system. Moreover, we summarize recent research into applications of statins and the FPP synthase inhibitors to treat cardiovascular diseases, rather than for their traditional indications respectively.
Collapse
|
28
|
Simvastatin Inhibits CYR61 Expression in Orbital Fibroblasts in Graves' Ophthalmopathy through the Regulation of FoxO3a Signaling. Mediators Inflamm 2021; 2021:8888913. [PMID: 33542676 PMCID: PMC7843182 DOI: 10.1155/2021/8888913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 02/01/2023] Open
Abstract
Graves' ophthalmopathy (GO), which is characterized by orbital tissue inflammation, expansion, and fibrosis, is the ocular manifestation in 25% to 50% of patients with Graves' disease. As the pathology of GO is driven by autoimmune inflammation, many proinflammatory cytokines/chemokines, including TNF-α, IL-1β, IL-6, and CCL20, are crucial in the pathogenesis of GO to activate the orbital fibroblasts. Cysteine-rich protein 61 (CYR61), which is known to regulate cell proliferation, adhesion, and migration, plays a proinflammatory role in the pathogenesis of many inflammatory diseases, such as rheumatoid arthritis. CYR61 was considered a potential biomarker of GO in recent studies. Statins, which are cholesterol-lowering drugs, were found to reduce the risk of GO, probably through their anti-inflammatory and immunomodulatory effects. In this study, we established a link between CYR61 and statins in the pathogenesis and potential treatment for GO. Firstly, our data showed the overexpression of CYR61 in the orbital tissue (n = 4) and serum specimens (n = 6) obtained from the patients with inactive GO. CYR61 could induce the production of IL-6 and CCL20 in cultured GO orbital fibroblasts. The expression of CYR61 in cultured GO orbital fibroblasts was upregulated via TNF-α stimulation. Secondly, we pretreated cultured GO orbital fibroblasts using simvastatin, a statin, followed by TNF-α stimulation. The data revealed that simvastatin could inhibit TNF-α-induced CYR61 expression by modulating the activity of transcription factor FoxO3a. Our results provided insights into some cellular mechanisms that may explain the possible protective effects of simvastatin against the development of GO.
Collapse
|
29
|
Dastghaib S, Kumar PS, Aftabi S, Damera G, Dalvand A, Sepanjnia A, Kiumarsi M, Aghanoori MR, Sohal SS, Ande SR, Alizadeh J, Mokarram P, Ghavami S, Sharma P, Zeki AA. Mechanisms Targeting the Unfolded Protein Response in Asthma. Am J Respir Cell Mol Biol 2021; 64:29-38. [PMID: 32915643 DOI: 10.1165/rcmb.2019-0235tr] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Lung cells are constantly exposed to various internal and external stressors that disrupt protein homeostasis. To cope with these stimuli, cells evoke a highly conserved adaptive mechanism called the unfolded protein response (UPR). UPR stressors can impose greater protein secretory demands on the endoplasmic reticulum (ER), resulting in the development, differentiation, and survival of these cell types to meet these increasing functional needs. Dysregulation of the UPR leads to the development of the disease. The UPR and ER stress are involved in several human conditions, such as chronic inflammation, neurodegeneration, metabolic syndrome, and cancer. Furthermore, potent and specific compounds that target the UPR pathway are under development as future therapies. The focus of this review is to thoroughly describe the effects of both internal and external stressors on the ER in asthma. Furthermore, we discuss how the UPR signaling pathway is activated in the lungs to overcome cellular damage. We also present an overview of the pathogenic mechanisms, with a brief focus on potential strategies for pharmacological interventions.
Collapse
Affiliation(s)
- Sanaz Dastghaib
- Department of Clinical Biochemistry and
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - P Sravan Kumar
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sajjad Aftabi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine
- Medical Physics Department and
| | - Gautam Damera
- Personalized and Predictive Medicine (Respiratory), Global Research and Development, Teva Pharmaceuticals, Malvern, Pennsylvania
| | - Azadeh Dalvand
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine
| | - Adel Sepanjnia
- Department of Immunology, School of Medicine, Jiroft University of Medical Science, Jiroft, Iran
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine
| | - Mohamad-Reza Aghanoori
- Department of Human Genetics, School of Medicine, and
- Department of Pharmacology and Therapeutics
- Division of Neurodegenerative Disorders, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Manitoba, Canada
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | | | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pooneh Mokarram
- Department of Clinical Biochemistry and
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine
- Department of Internal Medicine, and
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan Sharma
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amir A Zeki
- Lung Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, California; and
- Veterans Affairs Medical Center, Mather, California
| |
Collapse
|
30
|
Aghaei M, Dastghaib S, Aftabi S, Aghanoori MR, Alizadeh J, Mokarram P, Mehrbod P, Ashrafizadeh M, Zarrabi A, McAlinden KD, Eapen MS, Sohal SS, Sharma P, Zeki AA, Ghavami S. The ER Stress/UPR Axis in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Life (Basel) 2020; 11:1. [PMID: 33374938 PMCID: PMC7821926 DOI: 10.3390/life11010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented.
Collapse
Affiliation(s)
- Mahmoud Aghaei
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Sanaz Dastghaib
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Sajjad Aftabi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Medical Physics Department, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Kielan Darcy McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Pawan Sharma
- Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Davis School of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, UC Davis Lung Center, University of California, Davis, CA 95616, USA;
- Veterans Affairs Medical Center, Mather, CA 95655, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
31
|
Simvastatin Induces Unfolded Protein Response and Enhances Temozolomide-Induced Cell Death in Glioblastoma Cells. Cells 2020; 9:cells9112339. [PMID: 33105603 PMCID: PMC7690447 DOI: 10.3390/cells9112339] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor with a very poor survival rate. Temozolomide (TMZ) is the common chemotherapeutic agent used for GBM treatment. We recently demonstrated that simvastatin (Simva) increases TMZ-induced apoptosis via the inhibition of autophagic flux in GBM cells. Considering the role of the unfolded protein response (UPR) pathway in the regulation of autophagy, we investigated the involvement of UPR in Simva–TMZ-induced cell death by utilizing highly selective IRE1 RNase activity inhibitor MKC8866, PERK inhibitor GSK-2606414 (PERKi), and eIF2α inhibitor salubrinal. Simva–TMZ treatment decreased the viability of GBM cells and significantly increased apoptotic cell death when compared to TMZ or Simva alone. Simva–TMZ induced both UPR, as determined by an increase in GRP78, XBP splicing, eukaryote initiation factor 2α (eIF2α) phosphorylation, and inhibited autophagic flux (accumulation of LC3β-II and inhibition of p62 degradation). IRE1 RNase inhibition did not affect Simva–TMZ-induced cell death, but it significantly induced p62 degradation and increased the microtubule-associated proteins light chain 3 (LC3)β-II/LC3β-I ratio in U87 cells, while salubrinal did not affect the Simva–TMZ induced cytotoxicity of GBM cells. In contrast, protein kinase RNA-like endoplasmic reticulum kinase (PERK) inhibition significantly increased Simva–TMZ-induced cell death in U87 cells. Interestingly, whereas PERK inhibition induced p62 accumulation in both GBM cell lines, it differentially affected the LC3β-II/LC3β-I ratio in U87 (decrease) and U251 (increase) cells. Simvastatin sensitizes GBM cells to TMZ-induced cell death via a mechanism that involves autophagy and UPR pathways. More specifically, our results imply that the IRE1 and PERK signaling arms of the UPR regulate Simva–TMZ-mediated autophagy flux inhibition in U251 and U87 GBM cells.
Collapse
|
32
|
Samiei E, Seyfoori A, Toyota B, Ghavami S, Akbari M. Investigating Programmed Cell Death and Tumor Invasion in a Three-Dimensional (3D) Microfluidic Model of Glioblastoma. Int J Mol Sci 2020; 21:E3162. [PMID: 32365781 PMCID: PMC7246580 DOI: 10.3390/ijms21093162] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a rapidly progressive and deadly form of brain tumor with a median survival rate of ~15 months. GBMs are hard to treat and significantly affect the patient's physical and cognitive abilities and quality of life. Temozolomide (TMZ)-an alkylating agent that causes DNA damage-is the only chemotherapy choice for the treatment of GBM. However, TMZ also induces autophagy and causes tumor cell resistance and thus fails to improve the survival rate among patients. Here, we studied the drug-induced programmed cell death and invasion inhibition capacity of TMZ and a mevalonate cascade inhibitor, simvastatin (Simva), in a three-dimensional (3D) microfluidic model of GBM. We elucidate the role of autophagy in apoptotic cell death by comparing apoptosis in autophagy knockdown cells (Atg7 KD) against their scrambled counterparts. Our results show that the cells were significantly less sensitive to drugs in the 3D model as compared to monolayer culture systems. An immunofluorescence analysis confirmed that apoptosis is the mechanism of cell death in TMZ- and Simva-treated glioma cells. However, the induction of apoptosis in the 3D model is significantly lower than in monolayer cultures. We have also shown that autophagy inhibition (Atg7 KD) did not change TMZ and Simva-induced apoptosis in the 3D microfluidic model. Overall, for the first time in this study we have established the simultaneous detection of drug induced apoptosis and autophagy in a 3D microfluidic model of GBM. Our study presents a potential ex vivo platform for developing novel therapeutic strategies tailored toward disrupting key molecular pathways involved in programmed cell death and tumor invasion in glioblastoma.
Collapse
Affiliation(s)
- Ehsan Samiei
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 2C5, Canada; (E.S.); (A.S.)
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Amir Seyfoori
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 2C5, Canada; (E.S.); (A.S.)
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Brian Toyota
- Department of Surgery, Queens University, Kingston, ON K7L 2V7, Canada;
| | - Saeid Ghavami
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- The Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 2C5, Canada; (E.S.); (A.S.)
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
33
|
Characterization of Endoplasmic Reticulum (ER) in Human Pluripotent Stem Cells Revealed Increased Susceptibility to Cell Death upon ER Stress. Cells 2020; 9:cells9051078. [PMID: 32357563 PMCID: PMC7291192 DOI: 10.3390/cells9051078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have a well-orchestrated program for differentiation and self-renewal. However, the structural features of unique proteostatic-maintaining mechanisms in hPSCs and their features, distinct from those of differentiated cells, in response to cellular stress remain unclear. We evaluated and compared the morphological features and stress response of hPSCs and fibroblasts. Compared to fibroblasts, electron microscopy showed simpler/fewer structures with fewer networks in the endoplasmic reticulum (ER) of hPSCs, as well as lower expression of ER-related genes according to meta-analysis. As hPSCs contain low levels of binding immunoglobulin protein (BiP), an ER chaperone, thapsigargin treatment sharply increased the gene expression of the unfolded protein response. Thus, hPSCs with decreased chaperone function reacted sensitively to ER stress and entered apoptosis faster than fibroblasts. Such ER stress-induced apoptotic processes were abolished by tauroursodeoxycholic acid, an ER-stress reliever. Hence, our results revealed that as PSCs have an underdeveloped structure and express fewer BiP chaperone proteins than somatic cells, they are more susceptible to ER stress-induced apoptosis in response to stress.
Collapse
|
34
|
Mehdizadeh M, Ashtari N, Jiao X, Rahimi Balaei M, Marzban A, Qiyami-Hour F, Kong J, Ghavami S, Marzban H. Alteration of the Dopamine Receptors' Expression in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant (Naked-Ataxia ( NAX)) Mouse. Int J Mol Sci 2020; 21:E2914. [PMID: 32326360 PMCID: PMC7215910 DOI: 10.3390/ijms21082914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
A spontaneous mutation in the lysosomal acid phosphatase (Acp2) enzyme (nax: naked-ataxia) in experimental mice results in delayed hair appearance and severe cytoarchitectural impairments of the cerebellum, such as a Purkinje cell (PC) migration defect. In our previous investigation, our team showed that Acp2 expression plans a significant role in cerebellar development. On the other hand, the dopaminergic system is also a player in central nervous system (CNS) development, including cerebellar structure and function. In the current investigation, we have explored how Acp2 can be involved in the regulation of the dopaminergic pathway in the cerebellum via the regulation of dopamine receptor expression and patterning. We provided evidence about the distribution of different dopamine receptors in the developing cerebellum by comparing the expression of dopamine receptors on postnatal days (P) 5 and 17 between nax mice and wild-type (wt) littermates. To this aim, immunohistochemistry and Western blot analysis were conducted using five antibodies against dopamine receptors (DRD1, -2, -3, -4, and -5) accompanied by RNAseq data. Our results revealed that DRD1, -3, and -4 gene expressions significantly increased in nax cerebella but not in wt, while gene expressions of all 5 receptors were evident in PCs of both wt and nax cerebella. DRD3 was strongly expressed in the PCs' somata and cerebellar nuclei neurons at P17 in nax mice, which was comparable to the expression levels in the cerebella of wt littermates. In addition, DRD3 was expressed in scattered cells in a granular layer reminiscent of Golgi cells and was observed in the wt cerebella but not in nax mice. DRD4 was expressed in a subset of PCs and appeared to align with the unique parasagittal stripes pattern. This study contributes to our understanding of alterations in the expression pattern of DRDs in the cerebellum of nax mice in comparison to their wt littermates, and it highlights the role of Acp2 in regulating the dopaminergic system.
Collapse
Affiliation(s)
- Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Niloufar Ashtari
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Xiaodan Jiao
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Asghar Marzban
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran;
| | - Farshid Qiyami-Hour
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Jiming Kong
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Saeid Ghavami
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hassan Marzban
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| |
Collapse
|
35
|
Hassanpour M, Hajihassani F, Hiradfar A, Aghamohammadzadeh N, Rahbarghazi R, Safaie N, Nouri M, Panahi Y. Real-state of autophagy signaling pathway in neurodegenerative disease; focus on multiple sclerosis. JOURNAL OF INFLAMMATION-LONDON 2020; 17:6. [PMID: 32082082 PMCID: PMC7014934 DOI: 10.1186/s12950-020-0237-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
The occurrence of neurodegenerative disease is increasingly raised. From physiopathological aspect, the emergence of auto-reactive antibodies against the nervous system antigens contributes to de-myelination in Multiple sclerosis (MS). These features cause the nervous system dysfunction. The follow-up of molecular alterations could give us a real-state vision about intracellular status during pathological circumstances. In this review, we focus on the autophagic response during MS progression and further understand the relationship between autophagy and MS and its modulatory effect on the MS evolution. The authors reviewed studies published on the autophagy status in neurodegenerative disease and on the autophagy modulation in MS prognosis, diagnosis, and possible therapies. The inevitable role of autophagy was shown in the early-stage progression of MS. Due to critical role of autophagy in different stage of cell activity in nervous system, the distinct role of autophagy should not be neglected in the development, pathogenesis, and treatment of MS.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- 1Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, 5166614756, Imam Reza St., Golgasht St, Tabriz, Iran.,2Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,3Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, 1435916471 Iran
| | - Fateme Hajihassani
- 4Department of Health Management, School of Management and Medical informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirataollah Hiradfar
- 5Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- 7Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,8Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- 9Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- 1Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, 5166614756, Imam Reza St., Golgasht St, Tabriz, Iran.,2Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- 3Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, 1435916471 Iran
| |
Collapse
|
36
|
Liu X, Wang B, Jiang X, Zhang J, Tang Q, Zhang Y, Qin X, Chen C, Zou Z. Heterozygous Disruption of Beclin 1 Alleviates Zinc Oxide Nanoparticles-Induced Disturbance of Cholesterol Biosynthesis in Mouse Liver. Int J Nanomedicine 2019; 14:9865-9875. [PMID: 31849474 PMCID: PMC6913297 DOI: 10.2147/ijn.s224179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose Liver is regarded as one of the primary target organs for zinc oxide nanoparticles (ZnONPs) toxicity. Since liver represents the leading site for de novo cholesterol biosynthesis in mammals, the injuries of liver could result in the disruption of cholesterol biosynthesis. In this study, we aimed to investigate whether pulmonary ZnONPs exposure induces disturbance of cholesterol biosynthesis in mouse liver. Methods and results Our data demonstrated intratracheally instilled with a single dose of 3, 6, and 12 μg/animal ZnONPs could induce histopathological deterioration in mouse liver in a dose-related manner at 3 days, but remission was observed at 7 days after treatment. Moreover, ZnONPs caused the disturbance of cholesterol biosynthesis by increasing both 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and sterol regulatory element-binding protein 2 (SREBP2) protein expressions. To further reveal the underlying toxic mechanisms, we detected the biomarkers of autophagy and found that pulmonary ZnONPs exposure led to the elevation of LC3B-II and Beclin 1, suggesting ZnONPs might trigger autophagy in liver tissues. By using both beclin 1+/+ and beclin 1+/- mice, we demonstrated that inhibition of autophagy by heterozygous disruption of beclin 1 attenuated the disturbance of cholesterol biosynthesis induced by ZnONPs in liver. Conclusion Pulmonary exposure of ZnONPs would induce the cholesterol biosynthesis disturbance in mouse liver through Beclin-1-dependent autophagy activation, suggesting that inhibition of autophagy may contribute to preventing the cholesterol biosynthesis disturbance and its associated pathologies induced by ZnONPs in liver.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yujia Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
37
|
Wang L, Wang Y, Chen A, Teli M, Kondo R, Jalali A, Fan Y, Liu S, Zhao X, Siegel A, Minami K, Agarwal M, Li BY, Yokota H. Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway. FASEB J 2019; 33:13710-13721. [PMID: 31585508 PMCID: PMC6894072 DOI: 10.1096/fj.201901388r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
Bone is a frequent site of metastasis from breast cancer, and a desirable drug could suppress tumor growth as well as metastasis-linked bone loss. Currently, no drug is able to cure breast cancer-associated bone metastasis. In this study, we focused on statins that are known to inhibit cholesterol production and act as antitumor agents. After an initial potency screening of 7 U.S. Food and Drug Administration-approved statins, we examined pitavastatin as a drug candidate for inhibiting tumor and tumor-induced bone loss. In vitro analysis revealed that pitavastatin acted as an inhibitor of tumor progression by altering stress to the endoplasmic reticulum, down-regulating peroxisome proliferator-activated receptor γ, and reducing Snail and matrix metalloproteinase 9. In bone homeostasis, it blocked osteoclast development by suppressing transcription factors c-Fos and JunB, but stimulated osteoblast mineralization by regulating bone morphogenetic protein 2 and p53. In a mouse model, pitavastatin presented a dual role in tumor inhibition in the mammary fat pad, as well as in bone protection in the osteolytic tibia. In mass spectrometry-based analysis, volatile organic compounds (VOCs) that were linked to lipid metabolism and cholesterol synthesis were elevated in mice from the tumor-grown placebo group. Notably, pitavastatin-treated mice reduced specific VOCs that are linked to lipid metabolites in the mevalonate pathway. Collectively, the results lay a foundation for further investigation of pitavastatin's therapeutic efficacy in tumor-induced bone loss, as well as VOC-based diagnosis of tumor progression and treatment efficacy.-Wang, L., Wang, Y., Chen, A., Teli, M., Kondo, R., Jalali, A., Fan, Y., Liu, S., Zhao, X., Siegel, A., Minami, K., Agarwal, M., Li, B.-Y., Yokota, H. Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway.
Collapse
Affiliation(s)
- Luqi Wang
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Yue Wang
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Meghana Teli
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Rika Kondo
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
- Osaka University Graduate School of Medicine, Suita, Japan
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Yao Fan
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Xinyu Zhao
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Amanda Siegel
- Integrated Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | | | - Mangilal Agarwal
- Integrated Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
- Department of Mechanical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Hiroki Yokota
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
- Integrated Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
- Department of Mechanical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
38
|
Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 2019; 10:376-413. [PMID: 30966844 PMCID: PMC6527025 DOI: 10.1080/21505594.2019.1605803] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/16/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Virus infection induces different cellular responses in infected cells. These include cellular stress responses like autophagy and unfolded protein response (UPR). Both autophagy and UPR are connected to programed cell death I (apoptosis) in chronic stress conditions to regulate cellular homeostasis via Bcl2 family proteins, CHOP and Beclin-1. In this review article we first briefly discuss arboviruses, influenza virus, and HIV and then describe the concepts of apoptosis, autophagy, and UPR. Finally, we focus upon how apoptosis, autophagy, and UPR are involved in the regulation of cellular responses to arboviruses, influenza virus and HIV infections. Abbreviation: AIDS: Acquired Immunodeficiency Syndrome; ATF6: Activating Transcription Factor 6; ATG6: Autophagy-specific Gene 6; BAG3: BCL Associated Athanogene 3; Bak: BCL-2-Anatagonist/Killer1; Bax; BCL-2: Associated X protein; Bcl-2: B cell Lymphoma 2x; BiP: Chaperon immunoglobulin heavy chain binding Protein; CARD: Caspase Recruitment Domain; cART: combination Antiretroviral Therapy; CCR5: C-C Chemokine Receptor type 5; CD4: Cluster of Differentiation 4; CHOP: C/EBP homologous protein; CXCR4: C-X-C Chemokine Receptor Type 4; Cyto c: Cytochrome C; DCs: Dendritic Cells; EDEM1: ER-degradation enhancing-a-mannosidase-like protein 1; ENV: Envelope; ER: Endoplasmic Reticulum; FasR: Fas Receptor;G2: Gap 2; G2/M: Gap2/Mitosis; GFAP: Glial Fibrillary Acidic Protein; GP120: Glycoprotein120; GP41: Glycoprotein41; HAND: HIV Associated Neurodegenerative Disease; HEK: Human Embryonic Kidney; HeLa: Human Cervical Epithelial Carcinoma; HIV: Human Immunodeficiency Virus; IPS-1: IFN-β promoter stimulator 1; IRE-1: Inositol Requiring Enzyme 1; IRGM: Immunity Related GTPase Family M protein; LAMP2A: Lysosome Associated Membrane Protein 2A; LC3: Microtubule Associated Light Chain 3; MDA5: Melanoma Differentiation Associated gene 5; MEF: Mouse Embryonic Fibroblast; MMP: Mitochondrial Membrane Permeabilization; Nef: Negative Regulatory Factor; OASIS: Old Astrocyte Specifically Induced Substrate; PAMP: Pathogen-Associated Molecular Pattern; PERK: Pancreatic Endoplasmic Reticulum Kinase; PRR: Pattern Recognition Receptor; Puma: P53 Upregulated Modulator of Apoptosis; RIG-I: Retinoic acid-Inducible Gene-I; Tat: Transactivator Protein of HIV; TLR: Toll-like receptor; ULK1: Unc51 Like Autophagy Activating Kinase 1; UPR: Unfolded Protein Response; Vpr: Viral Protein Regulatory; XBP1: X-Box Binding Protein 1.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Past eur Institute of IRAN, Tehran, Iran
| | - Sudharsana R. Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shahrzad Rahimizadeh
- Department of Medical Microbiology, Assiniboine Community College, School of Health and Human Services and Continuing Education, Winnipeg, MB, Canada
| | - Aryana Shariati
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hadis Malek
- Department of Biology, Islamic Azad University, Mashhad, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Affan A. Sher
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Health Policy Research Centre, Shiraz Medical University of Medical Science, Shiraz, Iran
| |
Collapse
|
39
|
Mechanisms of simvastatin myotoxicity: The role of autophagy flux inhibition. Eur J Pharmacol 2019; 862:172616. [DOI: 10.1016/j.ejphar.2019.172616] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
|
40
|
Shojaei S, Koleini N, Samiei E, Aghaei M, Cole LK, Alizadeh J, Islam MI, Vosoughi A, Albokashy M, Butterfield Y, Marzban H, Xu F, Thliveris J, Kardami E, Hatch GM, Eftekharpour E, Akbari M, Hombach‐Klonisch S, Klonisch T, Ghavami S. Simvastatin increases temozolomide‐induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J 2019; 287:1005-1034. [DOI: 10.1111/febs.15069] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 07/13/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shahla Shojaei
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Laboratory for Innovation in Microengineering (LiME) Department of Mechanical Engineering University of Victoria Canada
- Center for Biomedical Research University of Victoria Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria Canada
| | - Navid Koleini
- Institute of Cardiovascular Sciences St‐Boniface Hospital Albrechtsen Research Centre Winnipeg Canada
- Department of Physiology and Pathophysiology Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Ehsan Samiei
- Laboratory for Innovation in Microengineering (LiME) Department of Mechanical Engineering University of Victoria Canada
- Center for Biomedical Research University of Victoria Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria Canada
| | - Mahmoud Aghaei
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Department of Clinical Biochemistry School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Laura K. Cole
- Department of Pharmacology & Therapeutics, Center for Research and Treatment of Atherosclerosis Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Md Imamul Islam
- Regenerative Medicine Program Spinal Cord Research Centre Department of Physiology and Pathophysiology University of Manitoba Winnipeg Canada
| | - Amir‐reza Vosoughi
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Mohammed Albokashy
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Yaron Butterfield
- Genome Sciences Centre BC Cancer Vancouver Canada
- Patient Advocate and Research Committee Brain Tumour Foundation of Canada Ottawa Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Fred Xu
- Department of Pharmacology & Therapeutics, Center for Research and Treatment of Atherosclerosis Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - James Thliveris
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Institute of Cardiovascular Sciences St‐Boniface Hospital Albrechtsen Research Centre Winnipeg Canada
| | - Grant M. Hatch
- Department of Pharmacology & Therapeutics, Center for Research and Treatment of Atherosclerosis Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program Spinal Cord Research Centre Department of Physiology and Pathophysiology University of Manitoba Winnipeg Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME) Department of Mechanical Engineering University of Victoria Canada
- Center for Biomedical Research University of Victoria Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria Canada
| | - Sabine Hombach‐Klonisch
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Research Institute in Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Research Institute in Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg Canada
- Biology of Breathing Children Hospital Research Institute of Manitoba Max Rady College of Medicine Rady Faculty of Health Sciences Winnipeg Canada
- Health Policy Research Center Institute of Health Shiraz University of Medical Sciences Iran
| |
Collapse
|
41
|
Wang WL, Zhu DR, Chen C, Zhu TY, Han C, Liu FY, Li LN, Luo JG, Kong LY. Taicrypnacids A and B, a Pair of C 37 Heterodimeric Diterpenoid Stereoisomers from Taiwania cryptomerioides. JOURNAL OF NATURAL PRODUCTS 2019; 82:2087-2093. [PMID: 31347365 DOI: 10.1021/acs.jnatprod.8b00815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two uncommon C37 heterodimeric diterpenoids, taicrypnacids A (1) and B (2), and a known labdane-type diterpenoid (3) were isolated from the leaves of Taiwania cryptomerioides. Several techniques, such as comprehensive spectroscopic analysis, chemical conversion, X-ray crystallography, and ECD data, were employed to define the structures. The two new compounds displayed cytotoxicity against human breast cancer (MCF-7), osteosarcoma (U-2 OS), and human colon carcinoma (HCT-116) cell lines, while the methyl ester 1a showed no activity. Compound 1 induced Ca2+-ROS pathway-mediated endoplasmic reticulum stress, and excessive stress led to cell death by activating apoptosis and autophagy.
Collapse
Affiliation(s)
- Wen-Li Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Dong-Rong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Tian-Yu Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Fei-Yan Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Ling-Nan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| |
Collapse
|
42
|
Sheikholeslami K, Ali Sher A, Lockman S, Kroft D, Ganjibakhsh M, Nejati-Koshki K, Shojaei S, Ghavami S, Rastegar M. Simvastatin Induces Apoptosis in Medulloblastoma Brain Tumor Cells via Mevalonate Cascade Prenylation Substrates. Cancers (Basel) 2019; 11:cancers11070994. [PMID: 31319483 PMCID: PMC6678292 DOI: 10.3390/cancers11070994] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma is a common pediatric brain tumor and one of the main types of solid cancers in children below the age of 10. Recently, cholesterol-lowering “statin” drugs have been highlighted for their possible anti-cancer effects. Clinically, statins are reported to have promising potential for consideration as an adjuvant therapy in different types of cancers. However, the anti-cancer effects of statins in medulloblastoma brain tumor cells are not currently well-defined. Here, we investigated the cell death mechanisms by which simvastatin mediates its effects on different human medulloblastoma cell lines. Simvastatin is a lipophilic drug that inhibits HMG-CoA reductase and has pleotropic effects. Inhibition of HMG-CoA reductase prevents the formation of essential downstream intermediates in the mevalonate cascade, such as farnesyl pyrophosphate (FPP) and gernaylgerany parophosphate (GGPP). These intermediates are involved in the activation pathway of small Rho GTPase proteins in different cell types. We observed that simvastatin significantly induces dose-dependent apoptosis in three different medulloblastoma brain tumor cell lines (Daoy, D283, and D341 cells). Our investigation shows that simvastatin-induced cell death is regulated via prenylation intermediates of the cholesterol metabolism pathway. Our results indicate that the induction of different caspases (caspase 3, 7, 8, and 9) depends on the nature of the medulloblastoma cell line. Western blot analysis shows that simvastatin leads to changes in the expression of regulator proteins involved in apoptosis, such as Bax, Bcl-2, and Bcl-xl. Taken together, our data suggests the potential application of a novel non-classical adjuvant therapy for medulloblastoma, through the regulation of protein prenylation intermediates that occurs via inhibition of the mevalonate pathway.
Collapse
Affiliation(s)
- Kimia Sheikholeslami
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Annan Ali Sher
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Sandhini Lockman
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Daniel Kroft
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Meysam Ganjibakhsh
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Kazem Nejati-Koshki
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
43
|
Sanvee GM, Bouitbir J, Krähenbühl S. Insulin prevents and reverts simvastatin-induced toxicity in C2C12 skeletal muscle cells. Sci Rep 2019; 9:7409. [PMID: 31092879 PMCID: PMC6520350 DOI: 10.1038/s41598-019-43938-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Simvastatin is an inhibitor of the 3-hydroxy-3-methylglutaryl-CoA reductase used for decreasing low density lipoprotein (LDL)-cholesterol in patients. It is well-tolerated but can cause myopathy. Our aims were to enlarge our knowledge regarding mechanisms and effects of insulin on simvastatin-associated myotoxicity in C2C12 myotubes. Simvastatin (10 µM) reduced membrane integrity and ATP content in myotubes treated for 24 hours, which could be prevented and partially reversed concentration- and time-dependently by insulin. Furthermore, simvastatin impaired the phosphorylation of Akt (Protein Kinase B) mainly at Ser473 and less at Thr308, indicating impaired activity of the mammalian Target of Rapamycin Complex 2 (mTORC2). Impaired activation of Akt increased mRNA expression of the muscle atrophy F-Box (MAFbx), decreased activation of the mammalian Target of Rapamycin Complex 1 (mTORC1) and stimulated apoptosis by impairing the Ser9 phosphorylation of glycogen synthase kinase 3β. Decreased phosphorylation of Akt at both phosphorylation sites and of downstream substrates as well as apoptosis were prevented concentration-dependently by insulin. In addition, simvastatin caused accumulation of the insulin receptor β-chain in the endoplasmic reticulum (ER) and increased cleavage of procaspase-12, indicating ER stress. Insulin reduced the expression of the insulin receptor β-chain but increased procaspase-12 activation in the presence of simvastatin. In conclusion, simvastatin impaired activation of Akt Ser473 most likely as a consequence of reduced activity of mTORC2. Insulin could prevent the effects of simvastatin on the insulin signaling pathway and on apoptosis, but not on the endoplasmic reticulum (ER) stress induction.
Collapse
Affiliation(s)
- Gerda M Sanvee
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Basel, Switzerland. .,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
44
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
45
|
Pirmoradi L, Seyfizadeh N, Ghavami S, Zeki AA, Shojaei S. Targeting cholesterol metabolism in glioblastoma: a new therapeutic approach in cancer therapy. J Investig Med 2019; 67:715-719. [PMID: 30765502 DOI: 10.1136/jim-2018-000962] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor known with a poor survival rate despite current advances in the field of cancer. Additional research into the pathophysiology of GBM is urgently needed given the devastating nature of this disease. Recent studies have revealed the unique cellular physiology of GBM cells as compared with healthy astrocytes. Intriguingly, GBM cells are incapable of de novo cholesterol synthesis via the mevalonate pathway. Thus, the survival of GBM cells depends on cholesterol uptake via low-density lipoprotein receptors (LDLRs) in the form of apolipoprotein-E-containing lipoproteins and ATP-binding cassette transporter A1 (ABCA1) that efflux surplus cholesterol out of cells. Liver X receptors regulate intracellular cholesterol levels in neurons and healthy astrocytes through changes in the expression of LDLR and ABCA1 in response to cholesterol and its derivatives. In GBM cells, due to the dysregulation of this surveillance pathway, there is an accumulation of intracellular cholesterol. Furthermore, intracellular cholesterol regulates temozolomide-induced cell death in glioblastoma cells via accumulation and activation of death receptor 5 in plasma membrane lipid rafts. The mevalonate pathway and autophagy flux are also fundamentally related with implications for cell health and death. Thus, via cholesterol metabolism, the mevalonate pathway may be a crucial player in the pathogenesis and treatment of GBM where our current understanding is still lacking. Targeting cholesterol metabolism in GBM may hold promise as a novel adjunctive clinical therapy for this devastating cancer.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Kurdistan, Iran
| | - Nayer Seyfizadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA.,Center for Comparative Respiratory Biology and Medicine, University of California, Davis, School of Medicine, Davis, California, USA
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Isfahan, Iran
| |
Collapse
|
46
|
Lanzolla G, Vannucchi G, Ionni I, Campi I, Sileo F, Lazzaroni E, Marinò M. Cholesterol Serum Levels and Use of Statins in Graves' Orbitopathy: A New Starting Point for the Therapy. Front Endocrinol (Lausanne) 2019; 10:933. [PMID: 32038490 PMCID: PMC6987298 DOI: 10.3389/fendo.2019.00933] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Graves' Orbitopathy (GO) is the most frequent extrathyroidal manifestation of Graves' disease (GD). Its ultimate cause remains unclear, but it is commonly considered an autoimmune disorder due to self recognition of autoantigens constitutively expressed by orbital fibroblasts (OFs), and thyroid epithelial cells. High dose intravenous glucocorticoids (ivGC) are the most commonly used treatment for moderately severe and active GO. However, based on the complex pathogenesis of GO, a number of factors may have a protective and maybe a therapeutic role. The use of other medications improving the effect of GC may increase the overall effectiveness of the therapy and reduce GC doses, thereby limiting side effects. Recently, a possible protective role of 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitors, the so-called statins, and perhaps of lowering cholesterol levels, has been proposed. Thus, statins have been reported to be associated with a reduced frequency of GO in GD patients and in recent cross-sectional and retrospective studies a significant correlation was found between the occurrence of GO and both total and LDL-cholesterol in patients with a GD of relatively recent onset, suggesting a role of cholesterol in the development of GO. Moreover, a correlation was found between the GO clinical activity score and total as well as LDL-cholesterol in untreated GO patients, depending on GO duration, indicating a role of cholesterol on GO activity. Therefore, statin treatment may be beneficial for GO. Here we review this subject, which offers new therapeutic perspectives for patients with GO.
Collapse
Affiliation(s)
- Giulia Lanzolla
- Endocrinology Units, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Guia Vannucchi
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Ilaria Ionni
- Endocrinology Units, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Irene Campi
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Federica Sileo
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elisa Lazzaroni
- Endocrinology and Metabolism Unit, Fondazione IRCCS Cà Granda, University of Milan, Milan, Italy
| | - Michele Marinò
- Endocrinology Units, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Pisa, Italy
- *Correspondence: Michele Marinò
| |
Collapse
|
47
|
Shojaei S, Alizadeh J, Thliveris J, Koleini N, Kardami E, Hatch GM, Xu F, Hombach-Klonisch S, Klonisch T, Ghavami S. Statins: a new approach to combat temozolomide chemoresistance in glioblastoma. J Investig Med 2018; 66:1083-1087. [PMID: 30368483 DOI: 10.1136/jim-2018-000874] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2018] [Indexed: 02/07/2023]
Abstract
Patients with glioblastoma multiforme (GBM) have an average life expectancy of approximately 15 months. Recently, statins have emerged as a potential adjuvant cancer therapy due to their ability to inhibit cell proliferation and induce apoptosis in many types of cancer. The exact mechanisms that mediate the inhibitory actions of statins in cancer cells are largely unknown. The purpose of this proceeding paper is to discuss some of the known anticancer effects of statins, while focusing on GBM therapy that includes adjunct therapy of statins with chemotherapeutic agents.
Collapse
Affiliation(s)
- Shahla Shojaei
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Alizadeh
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James Thliveris
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Navid Koleini
- Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital AlbrechtsenResearch Center, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital AlbrechtsenResearch Center, Winnipeg, Manitoba, Canada
| | - Grant M Hatch
- Pharmacology & Therapeutics, Max Rady College of Medicine, Rady Faculty of Helath Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fred Xu
- Pharmacology & Therapeutics, Max Rady College of Medicine, Rady Faculty of Helath Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas Klonisch
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Saeid Ghavami
- Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
48
|
Autophagy modulates temozolomide-induced cell death in alveolar Rhabdomyosarcoma cells. Cell Death Discov 2018; 4:52. [PMID: 30416757 PMCID: PMC6202374 DOI: 10.1038/s41420-018-0115-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a muscle-derived tumor. In both pre-clinical and clinical studies Temozolomide (TMZ) has been recently tested against RMS; however, the precise mechanism of action of TMZ in RMS remains unclear. Here we demonstrate that TMZ decreases the cell viability of the RH30 RMS and C2C12 cell line, where cells display evidence of mitochondrial outer membrane permeability. Interestingly, the C2C12 mouse myoblast line was relatively more resistant to TMZ-induced apoptosis. Moreover, we observed that TMZ activated biochemical and morphological markers of autophagy in both cell lines. Autophagy inhibition in both RH30 and C2C12 cells significantly increased TMZ-induced cell death. In RH30 cells, TMZ increased Mcl-1 and Bax protein expression compared to corresponding time match controls while in C2C12 Mcl-1, Bcl-2, Bcl-XL, and Bax protein expression were not changed. Baf-A1 co-treatment with TMZ significantly decrease Mcl-1 expression compared to TMZ while increase Bax expression in C2C12 cells (Bcl2 and Bcl-XL do not significantly change in Baf-A1/TMZ co-treatment). Using a three-dimensional (3D) C2C12 and RH30 culture model we demonstrated that TMZ is significantly more toxic in RH30 cells (live/dead assay). Additionally, we have observed in our 3D culture model that TMZ induced both apoptosis (cleavage of PARP) and autophagy (LC3-puncta and localization of LC3/p62). Therefore, our data demonstrate that TMZ induces simultaneous autophagy and apoptosis in both RH30 and C2C12 cells in 2D and 3D culture model, where RH30 cells are more sensitive to TMZ-induced death. Furthermore, autophagy serves to protect RH30 cells from TMZ-induced death.
Collapse
|
49
|
Zeki AA, Yeganeh B, Kenyon NJ, Ghavami S. Editorial: New Insights into a Classical Pathway: Key Roles of the Mevalonate Cascade in Different Diseases (Part II). Curr Mol Pharmacol 2018; 10:74-76. [PMID: 28440195 DOI: 10.2174/187446721002170301204357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amir A Zeki
- Assistant Professor of Medicine Division of Pulmonary, Critical Care and Sleep Medicine Department of Internal Medicine Center for Comparative Respiratory Biology and Medicine University of California, Davis School of Medicine Davis, CA 95616, United States
| | - Behzad Yeganeh
- Department of Physiology and Experimental Medicine Hospital for Sick Children Research Institute University of Toronto Toronto M5G 0A4, Canada
| | - Nicholas J Kenyon
- Gordon Wong Professor of Medicine Chief, Division of Pulmonary, Critical Care and Sleep Medicine Department of Internal Medicine Center for Comparative Respiratory Biology and Medicine University of California, Davis School of Medicine Davis, CA 95616, United States
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Rady College of Medicine Max Rady Faculty of Health Sciences University of Manitoba 130-745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
50
|
Ghavami S, Kenyon NJ, Yeganeh B, Zeki AA. Editorial (Thematic Issue: New Insights into a Classical Pathway: Key Roles of the Mevalonate Cascade in Different Diseases (Part I)). Curr Mol Pharmacol 2018; 10:3-5. [PMID: 26768962 DOI: 10.2174/1874467209999160114145952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, 130-745 Bannatyne Ave., Winnipeg, MB R3E 0J9. Canada
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, Sleep Medicine Department of Internal Medicine Center for Comparative Respiratory Biology and Medicine University of California, Davis School of Medicine Davis, CA 95616. United States
| | - Behzad Yeganeh
- Hospital for Sick Children & University of Toronto. Canada
| | - Amir A Zeki
- Division of Pulmonary, Critical Care and Sleep Medicine Department of Internal Medicine Center for Comparative Respiratory Biology and Medicine University of California, Davis School of Medicine Davis, CA 95616. United States
| |
Collapse
|