1
|
Pérez-Cova M, Bedia C, Checa A, Meister I, Tauler R, Wheelock CE, Jaumot J. Metabolomic and sphingolipidomic profiling of human hepatoma cells exposed to widely used pharmaceuticals. J Pharm Biomed Anal 2024; 249:116378. [PMID: 39074424 DOI: 10.1016/j.jpba.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 07/21/2024] [Indexed: 07/31/2024]
Abstract
Pharmaceutical compounds have become one of the main contaminants of emerging concern (CECs) due to their high usage and increased release into the environment. This study aims to assess the effects caused by three widely consumed hepatotoxic pharmaceutical compounds: an antibiotic (amoxicillin), an antiepileptic (carbamazepine), and an antidepressant (trazodone), on human health when indirectly exposed to toxicologically relevant concentrations (30, 15, and 7.5 μM for amoxicillin and carbamazepine, and 4, 2, and 1 μM for trazodone). A combination of semi-targeted metabolomic and targeted sphingolipid analyses was chosen to unravel the metabolic alterations in human hepatic cells exposed to these CECs at three concentrations for 24 h. HepG2 hepatoma cells were encapsulated in sodium alginate spheroids to improve the physiological relevance of this in vitro approach. Statistical analysis was used to identify the most affected metabolites and sphingolipids for each drug exposure. The results revealed small but significant changes in response to carbamazepine and trazodone exposures, affecting sphingolipid, glycerophospholipid precursors, and amino acid metabolism. Under both drug treatments, a decrease in various ceramide species (related to cell signaling) was observed, along with reduced taurine levels (related to the biosynthesis of bile acid conjugates) and carnitine levels (suggesting an impact on energy production). These and other drug-specific changes indicate that cellular functions in liver cells might be altered under low doses of these CECs, potentially affecting the health of other organs.
Collapse
Affiliation(s)
- Miriam Pérez-Cova
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona E08034, Spain; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 647, Barcelona, Barcelona E08028, Spain
| | - Carmen Bedia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona E08034, Spain
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Isabel Meister
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona E08034, Spain
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm 141-86, Sweden
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona E08034, Spain.
| |
Collapse
|
2
|
Oliviero B, Dei Cas M, Zulueta A, Maiello R, Villa A, Martinelli C, Del Favero E, Falleni M, Montavoci L, Varchetta S, Mele D, Donadon M, Soldani C, Franceschini B, Maestri M, Piccolo G, Barabino M, Bianchi PP, Banales JM, Mantovani S, Mondelli MU, Caretti A. Ceramide present in cholangiocarcinoma-derived extracellular vesicle induces a pro-inflammatory state in monocytes. Sci Rep 2023; 13:7766. [PMID: 37173330 PMCID: PMC10182100 DOI: 10.1038/s41598-023-34676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer characterized by a global increasing incidence. Extracellular vesicles (EV) contribute to many of the hallmarks of cancer through transfer of their cargo molecules. The sphingolipid (SPL) profile of intrahepatic CCA (iCCA)-derived EVs was characterized by liquid chromatography-tandem mass spectrometry analysis. The effect of iCCA-derived EVs as mediators of inflammation was assessed on monocytes by flow cytometry. iCCA-derived EVs showed downregulation of all SPL species. Of note, poorly-differentiated iCCA-derived EVs showed a higher ceramide and dihydroceramide content compared with moderately-differentiated iCCA-derived EVs. Of note, higher dihydroceramide content was associated with vascular invasion. Cancer-derived EVs induced the release of pro-inflammatory cytokines in monocytes. Inhibition of synthesis of ceramide with Myriocin, a specific inhibitor of the serine palmitoyl transferase, reduced the pro-inflammatory activity of iCCA-derived EVs, demonstrating a role for ceramide as mediator of inflammation in iCCA. In conclusion, iCCA-derived EVs may promote iCCA progression by exporting the excess of pro-apoptotic and pro-inflammatory ceramides.
Collapse
Affiliation(s)
- Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Aida Zulueta
- Neurorehabilitation Unit of Milan Institute, Istituti Clinici Scientifici Maugeri IRCCS, Milan, Italy
| | - Roberta Maiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Carla Martinelli
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Monica Falleni
- Pathology Division, Health Sciences Department, University of Milan, Milan, Italy
| | - Linda Montavoci
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Donadon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cristiana Soldani
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Barbara Franceschini
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marcello Maestri
- Division of General Surgery 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Piccolo
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Matteo Barabino
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Paolo Pietro Bianchi
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- SC Immunologia clinica - Malattie infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy.
| | - Mario U Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- SC Immunologia clinica - Malattie infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
| | - Anna Caretti
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
5
|
Galvagnion C, Marlet FR, Cerri S, Schapira AHV, Blandini F, Di Monte DA. Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. Brain 2022; 145:1038-1051. [PMID: 35362022 PMCID: PMC9050548 DOI: 10.1093/brain/awab371] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson’s disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent Parkinson’s disease risk factor. They are associated with loss of activity of a key enzyme involved in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal α-synuclein–lipid interactions and the development of Parkinson pathology. In this study, the lipid membrane composition of fibroblasts isolated from control subjects, patients with idiopathic Parkinson’s disease and Parkinson's disease patients carrying the L444P GBA mutation (PD-GBA) was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed significantly from that of control and idiopathic Parkinson’s disease cells. It was characterized by an overall increase in sphingolipid levels. It also featured a significant increase in the proportion of ceramide, sphingomyelin and hexosylceramide molecules with shorter chain length and a decrease in the percentage of longer-chain sphingolipids. The extent of this shift was correlated to the degree of reduction of fibroblast glucocerebrosidase activity. Lipid extracts from control and PD-GBA fibroblasts were added to recombinant α-synuclein solutions. The kinetics of α-synuclein aggregation were significantly accelerated after addition of PD-GBA extracts as compared to control samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-synuclein–lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched by shorter-chain sphingolipids. In a final set of experiments, control and PD-GBA fibroblasts were incubated in the presence of the small molecule chaperone ambroxol. This treatment restored glucocerebrosidase activity and sphingolipid levels and composition of PD-GBA cells. It also reversed the pro-aggregation effect that lipid extracts from PD-GBA fibroblasts had on α-synuclein. Taken together, the findings of this study indicate that the L444P GBA mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered lipid profile could also be an indicator of increased risk for α-synuclein aggregate pathology.
Collapse
Affiliation(s)
- Céline Galvagnion
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Frederik Ravnkilde Marlet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Silvia Cerri
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Fabio Blandini
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
6
|
Wittenbecher C, Cuadrat R, Johnston L, Eichelmann F, Jäger S, Kuxhaus O, Prada M, Del Greco M F, Hicks AA, Hoffman P, Krumsiek J, Hu FB, Schulze MB. Dihydroceramide- and ceramide-profiling provides insights into human cardiometabolic disease etiology. Nat Commun 2022; 13:936. [PMID: 35177612 PMCID: PMC8854598 DOI: 10.1038/s41467-022-28496-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic alterations precede cardiometabolic disease onset. Here we present ceramide- and dihydroceramide-profiling data from a nested case-cohort (type 2 diabetes [T2D, n = 775]; cardiovascular disease [CVD, n = 551]; random subcohort [n = 1137]) in the prospective EPIC-Potsdam study. We apply the novel NetCoupler-algorithm to link a data-driven (dihydro)ceramide network to T2D and CVD risk. Controlling for confounding by other (dihydro)ceramides, ceramides C18:0 and C22:0 and dihydroceramides C20:0 and C22:2 are associated with higher and ceramide C20:0 and dihydroceramide C26:1 with lower T2D risk. Ceramide C16:0 and dihydroceramide C22:2 are associated with higher CVD risk. Genome-wide association studies and Mendelian randomization analyses support a role of ceramide C22:0 in T2D etiology. Our results also suggest that (dh)ceramides partly mediate the putative adverse effect of high red meat consumption and benefits of coffee consumption on T2D risk. Thus, (dihydro)ceramides may play a critical role in linking genetic predisposition and dietary habits to cardiometabolic disease risk.
Collapse
Affiliation(s)
- C Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - R Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - L Johnston
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - F Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - S Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - O Kuxhaus
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Prada
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - F Del Greco M
- Institute for Biomedicine, Eurac Research, Bolzano/Bozen, Italy, affiliated with the University of Lübeck, Lübeck, Germany
| | - A A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano/Bozen, Italy, affiliated with the University of Lübeck, Lübeck, Germany
| | - P Hoffman
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - J Krumsiek
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - F B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
7
|
Fritsch J, Frankenheim J, Marischen L, Vadasz T, Troeger A, Rose-John S, Schmidt-Arras D, Schneider-Brachert W. Roles for ADAM17 in TNF-R1 Mediated Cell Death and Survival in Human U937 and Jurkat Cells. Cells 2021; 10:3100. [PMID: 34831323 PMCID: PMC8620378 DOI: 10.3390/cells10113100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/04/2022] Open
Abstract
Signaling via death receptor family members such as TNF-R1 mediates pleiotropic biological outcomes ranging from inflammation and proliferation to cell death. Pro-survival signaling is mediated via TNF-R1 complex I at the cellular plasma membrane. Cell death induction requires complex IIa/b or necrosome formation, which occurs in the cytoplasm. In many cell types, full apoptotic or necroptotic cell death induction requires the internalization of TNF-R1 and receptosome formation to properly relay the signal inside the cell. We interrogated the role of the enzyme A disintegrin and metalloprotease 17 (ADAM17)/TACE (TNF-α converting enzyme) in death receptor signaling in human hematopoietic cells, using pharmacological inhibition and genetic ablation. We show that in U937 and Jurkat cells the absence of ADAM17 does not abrogate, but rather increases TNF mediated cell death. Likewise, cell death triggered via DR3 is enhanced in U937 cells lacking ADAM17. We identified ADAM17 as the key molecule that fine-tunes death receptor signaling. A better understanding of cell fate decisions made via the receptors of the TNF-R1 superfamily may enable us, in the future, to more efficiently treat infectious and inflammatory diseases or cancer.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital of Regensburg, 93053 Regensburg, Germany; (J.F.); (T.V.); (W.S.-B.)
| | - Julia Frankenheim
- Department of Infection Prevention and Infectious Diseases, University Hospital of Regensburg, 93053 Regensburg, Germany; (J.F.); (T.V.); (W.S.-B.)
| | - Lothar Marischen
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, 93053 Regensburg, Germany; (L.M.); (A.T.)
| | - Timea Vadasz
- Department of Infection Prevention and Infectious Diseases, University Hospital of Regensburg, 93053 Regensburg, Germany; (J.F.); (T.V.); (W.S.-B.)
| | - Anja Troeger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, 93053 Regensburg, Germany; (L.M.); (A.T.)
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany;
| | - Dirk Schmidt-Arras
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital of Regensburg, 93053 Regensburg, Germany; (J.F.); (T.V.); (W.S.-B.)
| |
Collapse
|
8
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
9
|
Avni D, Harikumar KB, Sanyal AJ, Spiegel S. Deletion or inhibition of SphK1 mitigates fulminant hepatic failure by suppressing TNFα-dependent inflammation and apoptosis. FASEB J 2021; 35:e21415. [PMID: 33566377 PMCID: PMC8491138 DOI: 10.1096/fj.202002540r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Acute liver failure (ALF) causes severe liver dysfunction that can lead to multi-organ failure and death. Previous studies suggest that sphingosine kinase 1 (SphK1) protects against hepatocyte injury, yet not much is still known about its involvement in ALF. This study examines the role of SphK1 in D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced ALF, which is a well-established experimental mouse model that mimics the fulminant hepatitis. Here we report that deletion of SphK1, but not SphK2, dramatically decreased GalN/LPS-induced liver damage, hepatic apoptosis, serum alanine aminotransferase levels, and mortality rate compared to wild-type mice. Whereas GalN/LPS treatment-induced hepatic activation of NF-κB and JNK in wild-type and SphK2-/- mice, these signaling pathways were reduced in SphK1-/- mice. Moreover, repression of ALF in SphK1-/- mice correlated with decreased expression of the pro-inflammatory cytokine TNFα. Adoptive transfer experiments indicated that SphK1 in bone marrow-derived infiltrating immune cells but not in host liver-resident cells, contribute to the development of ALF. Interestingly, LPS-induced TNFα production was drastically suppressed in SphK1-deleted macrophages, whereas IL-10 expression was markedly enhanced, suggesting a switch to the anti-inflammatory phenotype. Finally, treatment with a specific SphK1 inhibitor ameliorated inflammation and protected mice from ALF. Our findings suggest that SphK1 regulates TNFα secretion from macrophages and inhibition or deletion of SphK1 mitigated ALF. Thus, a potent inhibitor of SphK1 could potentially be a therapeutic agent for fulminant hepatitis.
Collapse
Affiliation(s)
- Dorit Avni
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kuzhuvelil B. Harikumar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
10
|
Heck AL, Mishra S, Prenzel T, Feulner L, Achhammer E, Särchen V, Blagg BSJ, Schneider-Brachert W, Schütze S, Fritsch J. Selective HSP90β inhibition results in TNF and TRAIL mediated HIF1α degradation. Immunobiology 2021; 226:152070. [PMID: 33639524 DOI: 10.1016/j.imbio.2021.152070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/23/2020] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
Signaling via TNF-R1 mediates pleiotropic biological outcomes ranging from inflammation and proliferation to cell death. Previous reports demonstrated that pro-survival signaling emanates from membrane resident TNF-R1 complexes (complex I) while only internalized TNF-R1 complexes are capable for DISC formation (complex II) and thus, apoptosis induction. Internalized TNF-R1 containing endosomes undergo intracellular maturation towards lysosomes, resulting in activation and release of Cathepsin D (CtsD) into the cytoplasm. We recently revealed HSP90 as target for proteolytic cleavage by CtsD, resulting in cell death amplification. In this study, we show that extrinsic cell death activation via TNF or TRAIL results in HSP90β degradation. Co-incubation of cells with either TNF or TRAIL in combination with the HSP90β inhibitor KUNB105 but not HSP90α selective inhibition promotes apoptosis induction. In an attempt to reveal further downstream targets of combined TNF-R1 or TRAIL-R1/-R2 activation with HSP90β inhibition, we identify HIF1α and validate its ligand:inhibitor triggered degradation. Together, these findings suggest that selective inhibition of HSP90 isoforms together with death ligand stimulation may provide novel strategies for therapy of inflammatory diseases or cancer, in future.
Collapse
Affiliation(s)
- A L Heck
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - S Mishra
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - T Prenzel
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - L Feulner
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - E Achhammer
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - V Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - B S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - W Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - S Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - J Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
11
|
Li L, Wang H, Jones JW. Sphingolipid metabolism as a marker of hepatotoxicity in drug-induced liver injury. Prostaglandins Other Lipid Mediat 2020; 151:106484. [PMID: 33007444 PMCID: PMC7669681 DOI: 10.1016/j.prostaglandins.2020.106484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/09/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) has a substantial impact on human health and is a major monetary burden on the drug development process. Presently, there is a lack of robust and analytically validated markers for predicting and early diagnosis of DILI. Sphingolipid metabolism and subsequent disruption of sphingolipid homeostasis has been documented to play a key role contributing to hepatocellular death and subsequent liver injury. A more comprehensive understanding of sphingolipid metabolism in response to liver toxicity has great potential to gain mechanistic insight into hepatotoxicity and define molecular markers that are responsible for hepatocyte dysfunction. Here, we present an analytical platform that provides multidimensional mass spectrometry-based datasets for comprehensive structure characterization of sphingolipids extracted from human primary hepatocytes (HPH) exposed to toxic levels of acetaminophen (APAP). Sphingolipid metabolism as measured by characterization of individual sphingolipid structure was sensitive to APAP toxicity displaying a concentration-dependent response. A number of sphingolipid structures were differentially expressed across varying APAP exposures highlighting the unique role sphingolipid metabolism has in response to hepatotoxicity and its potential use as a molecular marker in DILI.
Collapse
Affiliation(s)
- Linhao Li
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Hongbing Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States.
| |
Collapse
|
12
|
Hanafusa K, Hotta T, Iwabuchi K. Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains. Front Cell Dev Biol 2020; 8:589799. [PMID: 33195253 PMCID: PMC7658261 DOI: 10.3389/fcell.2020.589799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane microdomains, also called lipid rafts, are areas on membrane enriched in glycolipids, sphingolipids, and cholesterol. Although membrane microdomains are thought to play key roles in many cellular functions, their structures, properties, and biological functions remain obscure. Cellular membranes contain several types of glycoproteins, glycolipids, and other lipids, including cholesterol, glycerophospholipids, and sphingomyelin. Depending on their physicochemical properties, especially the characteristics of their glycolipids, various microdomains form on these cell membranes, providing structural or functional contextures thought to be essential for biological activities. For example, the plasma membranes of human neutrophils are enriched in lactosylceramide (LacCer) and phosphatidylglucoside (PtdGlc), each of which forms different membrane microdomains with different surrounding molecules and is involved in different functions of neutrophils. Specifically, LacCer forms Lyn-coupled lipid microdomains, which mediate neutrophil chemotaxis, phagocytosis, and superoxide generation, whereas PtdGlc-enriched microdomains mediate neutrophil differentiation and spontaneous apoptosis. However, the mechanisms by which these glycolipids form different nano/meso microdomains and mediate their specialized functions remain incompletely understood. This review describes current understanding of the roles of glycolipids and sphingolipids in their enriched contextures on cellular membranes, including their mechanisms of facilitation and regulation of intracellular signaling. This review also introduces new concepts about the roles of glycolipid and sphingolipid-dependent contextures in immunological functions.
Collapse
Affiliation(s)
- Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| |
Collapse
|
13
|
Zingler P, Särchen V, Glatter T, Caning L, Saggau C, Kathayat RS, Dickinson BC, Adam D, Schneider-Brachert W, Schütze S, Fritsch J. Palmitoylation is required for TNF-R1 signaling. Cell Commun Signal 2019; 17:90. [PMID: 31382980 PMCID: PMC6683503 DOI: 10.1186/s12964-019-0405-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Binding of tumor necrosis factor (TNF) to TNF-receptor 1 (TNF-R1) can induce either cell survival or cell death. The selection between these diametrically opposed effects depends on the subcellular location of TNF-R1: plasma membrane retention leads to survival, while endocytosis leads to cell death. How the respective TNF-R1 associated signaling complexes are recruited to the distinct subcellular location is not known. Here, we identify palmitoylation of TNF-R1 as a molecular mechanism to achieve signal diversification. METHODS Human monocytic U937 cells were analyzed. Palmitoylated proteins were enriched by acyl resin assisted capture (AcylRAC) and analyzed by western blot and mass spectrometry. Palmitoylation of TNF-R1 was validated by metabolic labeling. TNF induced depalmitoylation and involvement of APT2 was analyzed by enzyme activity assays, pharmacological inhibition and shRNA mediated knock-down. TNF-R1 palmitoylation site analysis was done by mutated TNF-R1 expression in TNF-R1 knock-out cells. Apoptosis (nuclear DNA fragmentation, caspase 3 assays), NF-κB activation and TNF-R1 internalization were used as biological readouts. RESULTS We identify dynamic S-palmitoylation as a new mechanism that controls selective TNF signaling. TNF-R1 itself is constitutively palmitoylated and depalmitoylated upon ligand binding. We identified the palmitoyl thioesterase APT2 to be involved in TNF-R1 depalmitoylation and TNF induced NF-κB activation. Mutation of the putative palmitoylation site C248 interferes with TNF-R1 localization to the plasma membrane and thus, proper signal transduction. CONCLUSIONS Our results introduce palmitoylation as a new layer of dynamic regulation of TNF-R1 induced signal transduction at a very early step of the TNF induced signaling cascade. Understanding the underlying mechanism may allow novel therapeutic options for disease treatment in future.
Collapse
Affiliation(s)
- Philipp Zingler
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vinzenz Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Timo Glatter
- Facility for Mass Spectrometry and Proteomics, MPI for Terrestrial Microbiology, Marburg, Germany
| | - Lotta Caning
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Kurz J, Barthelmes J, Blum L, Ulshöfer T, Wegner MS, Ferreirós N, Roser L, Geisslinger G, Grösch S, Schiffmann S. Role of ceramide synthase 2 in G-CSF signaling and G-CSF-R translocation into detergent-resistant membranes. Sci Rep 2019; 9:747. [PMID: 30679689 PMCID: PMC6345911 DOI: 10.1038/s41598-018-37342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023] Open
Abstract
Ceramides are sphingolipids with defined acyl chain lengths, which are produced by corresponding ceramide synthases (CerS1-6). In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), the ablation of CerS2 suppresses EAE-pathology by reducing neutrophil migration into the central nervous system. This migration is induced by granulocyte-colony stimulating factor (G-CSF) signaling. G-CSF signaling leads to a signal cascade including the phosphorylation of Lyn kinase and STAT3. This in turn regulates expression of the neutrophil surface receptor chemokine receptor 2 (CXCR2) and causes translocation of the receptor into detergent-resistant membranes (DRMs). In this study we investigated the role of ceramides in G-CSF signaling. We found, that G-CSF treatment of wild type bone marrow cells (BMCs) leads to translocation of G-CSF-receptor (G-CSF-R) into DRMs. G-CSF also induces downregulation of ceramides in WT and CerS2 null BMCs, as well as upregulation of very long chain lactosylceramides. However, in CerS2 null BMCs, G-CSF failed to induce translocation of G-CSF-R into DRMs, leading to reduced phosphorylation of Lyn and reduced CXCR2 expression. Interestingly, G-CSF signaling in CerS6 null BMCs was not affected. In conclusion, very long chain ceramides are important for G-CSF signaling and translocation of G-CSF-R into DRMs.
Collapse
Affiliation(s)
- Jennifer Kurz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Julia Barthelmes
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Leonard Blum
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Thomas Ulshöfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Nerea Ferreirós
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Luise Roser
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Fritsch J, Tchikov V, Hennig L, Lucius R, Schütze S. A toolbox for the immunomagnetic purification of signaling organelles. Traffic 2019; 20:246-258. [PMID: 30569578 DOI: 10.1111/tra.12631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Homeostasis and the complex functions of organisms and cells rely on the sophisticated spatial and temporal regulation of signaling in different intra- and extracellular compartments and via different mediators. We here present a set of fast and easy to use protocols for the target-specific immunomagnetic enrichment of receptor containing endosomes (receptosomes), plasma membranes, lysosomes and exosomes. Isolation of subcellular organelles and exosomes is prerequisite for and will advance their detailed subsequent biochemical and functional analysis. Sequential application of the different subprotocols allows isolation of morphological and functional intact organelles from one pool of cells. The enrichment is based on a selective labelling using receptor ligands or antibodies together with superparamagnetic microbeads followed by separation in a patented matrix-free high-gradient magnetic purification device. This unique magnetic chamber is based on a focusing system outside of the empty separation column, generating an up to 3 T high-gradient magnetic field focused at the wall of the column.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany.,Institute for Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Vladimir Tchikov
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lena Hennig
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Jiang YY, Zheng SJ. Progress in research of sphingolipids in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2018; 26:2109-2114. [DOI: 10.11569/wcjd.v26.i36.2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids are a class of novel lipid bioregulatory molecules that play important roles in regulating cell growth, differentiation, proliferation, and apoptosis. Sphingolipid metabolism disorders could induce the development of various diseases including hepatocellular carcinoma (HCC). With the development of lipidomics, it has been demonstrated that sphingolipids play an increasingly essential role in the occurrence, development, and outcome of HCC. Studies have shown that sphingolipids can be used as a new biomarker for the diagnosis of HCC, and regulation of the sphingolipid metabolism pathway may be a potential target for the treatment of HCC. This paper reviews the current progress in research of sphingolipids with regard to their classification, metabolic pathways, role in the development of HCC, and the possibility as a target for diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Ying-Ying Jiang
- Complicated Liver Disease and Artificial Liver Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Su-Jun Zheng
- Complicated Liver Disease and Artificial Liver Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
17
|
Ali M, Roback L, Mocarski ES. Herpes simplex virus 1 ICP6 impedes TNF receptor 1-induced necrosome assembly during compartmentalization to detergent-resistant membrane vesicles. J Biol Chem 2018; 294:991-1004. [PMID: 30504227 DOI: 10.1074/jbc.ra118.004651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
Receptor-interacting protein (RIP) kinase 3 (RIPK3)-dependent necroptosis directs inflammation and tissue injury, as well as anti-viral host defense. In human cells, herpes simplex virus 1 (HSV1) UL39-encoded ICP6 blocks RIP homotypic interacting motif (RHIM) signal transduction, preventing this leakage form of cell death and sustaining viral infection. TNF receptor 1 (TNFR1)-induced necroptosis is known to require the formation of a RIPK1-RIPK3-mixed lineage kinase domain-like pseudokinase (MLKL) signaling complex (necrosome) that we find compartmentalizes exclusively to caveolin-1-associated detergent-resistant membrane (DRM) vesicles in HT-29 cells. Translocation proceeds in the presence of RIPK3 kinase inhibitor GSK'840 or MLKL inhibitor necrosulfonomide but requires the kinase activity, as well as RHIM signaling of RIPK1. ICP6 impedes the translocation of RIPK1, RIPK3, and MLKL to caveolin-1-containing DRM vesicles without fully blocking the activation of RIPK3 or phosphorylation of MLKL. Consistent with the important contribution of RIPK1 RHIM-dependent recruitment of RIPK3, overexpression of RHIM-deficient RIPK3 results in phosphorylation of MLKL, but this does not lead to either translocation or necroptosis. Combined, these data reveal a critical role of RHIM signaling in the recruitment of the MLKL-containing necrosome to membrane vesicle-associated sites of aggregation. A similar mechanism is predicted for other RHIM-containing signaling adaptors, Z-nucleic acid-binding protein 1 (ZBP1) (also called DAI and DLM1), and TIR domain-containing adapter-inducing interferon-β (TRIF).
Collapse
Affiliation(s)
- Mohammad Ali
- From the Department of Microbiology & Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Linda Roback
- From the Department of Microbiology & Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Edward S Mocarski
- From the Department of Microbiology & Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
18
|
Fritsch J, Fickers R, Klawitter J, Särchen V, Zingler P, Adam D, Janssen O, Krause E, Schütze S. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death. Oncotarget 2018; 7:75774-75789. [PMID: 27716614 PMCID: PMC5342777 DOI: 10.18632/oncotarget.12411] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022] Open
Abstract
During apoptosis induction by TNF, the extrinsic and intrinsic apoptosis pathways converge at the lysosomal-mitochondrial interface. Earlier studies showed that the lysosomal aspartic protease Cathepsin D (CtsD) cleaves Bid to tBid, resulting in the amplification of the initial apoptotic cascade via mitochondrial outer membrane permeabilization (MOMP). The goal of this study was to identify further targets for CtsD that might be involved in activation upon death receptor ligation. Using a proteomics screen, we identified the heat shock protein 90 (HSP90) to be cleaved by CtsD after stimulation of U937 or other cell lines with TNF, FasL and TRAIL. HSP90 cleavage corresponded to apoptosis sensitivity of the cell lines to the different stimuli. After mutation of the cleavage site, HSP90 partially prevented apoptosis induction in U937 and Jurkat cells. Overexpression of the cleavage fragments in U937 and Jurkat cells showed no effect on apoptosis, excluding a direct pro-apoptotic function of these fragments. Pharmacological inhibition of HSP90 with 17AAG boosted ligand mediated apoptosis by enhancing Bid cleavage and caspase-9 activation. Together, we demonstrated that HSP90 plays an anti-apoptotic role in death receptor signalling and that CtsD-mediated cleavage of HSP90 sensitizes cells for apoptosis. These findings identify HSP90 as a potential target for cancer therapy in combination with death ligands (e.g. TNF or TRAIL).
Collapse
Affiliation(s)
- Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ricarda Fickers
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jan Klawitter
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vinzenz Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philipp Zingler
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
19
|
Holdbrooks AT, Britain CM, Bellis SL. ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor. J Biol Chem 2017; 293:1610-1622. [PMID: 29233887 DOI: 10.1074/jbc.m117.801480] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/05/2017] [Indexed: 12/20/2022] Open
Abstract
Activation of the tumor necrosis factor receptor 1 (TNFR1) death receptor by TNF induces either cell survival or cell death. However, the mechanisms mediating these distinct outcomes remain poorly understood. In this study, we report that the ST6Gal-I sialyltransferase, an enzyme up-regulated in numerous cancers, sialylates TNFR1 and thereby protects tumor cells from TNF-induced apoptosis. Using pancreatic and ovarian cancer cells with ST6Gal-I knockdown or overexpression, we determined that α2-6 sialylation of TNFR1 had no effect on early TNF-induced signaling events, including the rapid activation of NF-κB, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and Akt (occurring within 15 min). However, upon extended TNF treatment (6-24 h), cells with high ST6Gal-I levels exhibited resistance to TNF-induced apoptosis, as indicated by morphological evidence of cell death and decreased activation of caspases 8 and 3. Correspondingly, at these later time points, high ST6Gal-I expressers displayed sustained activation of the survival molecules Akt and NF-κB. Additionally, extended TNF treatment resulted in the selective enrichment of clonal variants with high ST6Gal-I expression, further substantiating a role for ST6Gal-I in cell survival. Given that TNFR1 internalization is known to be essential for apoptosis induction, whereas survival signaling is initiated by TNFR1 at the plasma membrane, we examined TNFR1 localization. The α2-6 sialylation of TNFR1 was found to inhibit TNF-induced TNFR1 internalization. Thus, by restraining TNFR1 at the cell surface via sialylation, ST6Gal-I acts as a functional switch to divert signaling toward survival. These collective findings point to a novel glycosylation-dependent mechanism that regulates the cellular response to TNF and may promote cancer cell survival within TNF-rich tumor microenvironments.
Collapse
Affiliation(s)
- Andrew T Holdbrooks
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Colleen M Britain
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Susan L Bellis
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
20
|
Saroha A, Pewzner-Jung Y, Ferreira NS, Sharma P, Jouan Y, Kelly SL, Feldmesser E, Merrill AH, Trottein F, Paget C, Lang KS, Futerman AH. Critical Role for Very-Long Chain Sphingolipids in Invariant Natural Killer T Cell Development and Homeostasis. Front Immunol 2017; 8:1386. [PMID: 29163475 PMCID: PMC5672022 DOI: 10.3389/fimmu.2017.01386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
The role of sphingolipids (SLs) in the immune system has come under increasing scrutiny recently due to the emerging contributions that these important membrane components play in regulating a variety of immunological processes. The acyl chain length of SLs appears particularly critical in determining SL function. Here, we show a role for very-long acyl chain SLs (VLC-SLs) in invariant natural killer T (iNKT) cell maturation in the thymus and homeostasis in the liver. Ceramide synthase 2-null mice, which lack VLC-SLs, were susceptible to a hepatotropic strain of lymphocytic choriomeningitis virus, which is due to a reduction in the number of iNKT cells. Bone marrow chimera experiments indicated that hematopoietic-derived VLC-SLs are essential for maturation of iNKT cells in the thymus, whereas parenchymal-derived VLC-SLs are crucial for iNKT cell survival and maintenance in the liver. Our findings suggest a critical role for VLC-SL in iNKT cell physiology.
Collapse
Affiliation(s)
- Ashish Saroha
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Pewzner-Jung
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia S Ferreira
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Piyush Sharma
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Youenn Jouan
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France
| | - Samuel L Kelly
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ester Feldmesser
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alfred H Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France.,Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, Lille, France
| | - Karl S Lang
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Fritsch J, Zingler P, Särchen V, Heck AL, Schütze S. Role of ubiquitination and proteolysis in the regulation of pro- and anti-apoptotic TNF-R1 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2138-2146. [PMID: 28765050 DOI: 10.1016/j.bbamcr.2017.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Tumor Necrosis Factor Receptor 1 (TNF-R1) transmits various intracellular signaling cascades leading to diverse biological outcomes, ranging from proliferation, differentiation, survival to the induction of various forms of cell death (i.e. apoptosis, necrosis, necroptosis). These signaling pathways have to be tightly regulated. Proteolysis is an important regulatory mechanism in TNF-R1 pro-apoptotic as well as anti-apoptotic/pro-inflammatory signaling. Some key players in these signaling cascades are known (mainly the caspase-family of proteases and a previously unrecognized "lysosomal death pathway" involving cathepsins), however the interaction of proteases in the regulation of TNF signaling is still enigmatic. Ubiquitination of proteins, both non-degradative degradative, which either results in proteolytic degradation of target substrates or regulates their biological function, represents another layer of regulation in this signaling cascade. We and others found out that the differences in signal quality depend on the localization of the receptors. Plasma membrane resident receptors activate survival signals, while endocytosed receptors can induce cell death. In this article we will review the role of ubiquitination and proteolysis in these diverse events focusing on our own contributions to the lysosomal apoptotic pathway linked to the subcellular compartmentalization of TNF-R1. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philipp Zingler
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vinzenz Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Laura Heck
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany.
| |
Collapse
|
22
|
Hermanns HM, Wohlfahrt J, Mais C, Hergovits S, Jahn D, Geier A. Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction. Biol Chem 2017; 397:695-708. [PMID: 27071147 DOI: 10.1515/hsz-2015-0277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn's disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines' signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction.
Collapse
|
23
|
Volpert G, Ben-Dor S, Tarcic O, Duan J, Saada A, Merrill AH, Pewzner-Jung Y, Futerman AH. Oxidative stress elicited by modifying the ceramide acyl chain length reduces the rate of clathrin-mediated endocytosis. J Cell Sci 2017; 130:1486-1493. [PMID: 28280117 DOI: 10.1242/jcs.199968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/28/2017] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids modulate clathrin-mediated endocytosis (CME) by altering the biophysical properties of membranes. We now examine CME in astrocytes cultured from ceramide synthase 2 (CerS2) null mice, which have an altered sphingolipid acyl chain composition. The rate of endocytosis of low-density lipoprotein and transferrin, which are internalized via CME, was reduced in CerS2 null astrocytes, although the rate of caveolin-mediated endocytosis was unaltered. Levels of clathrin heavy chain were increased, which was due to decreased levels of Hsc70 (also known as HSPA8), a protein involved in clathrin uncoating. Hsc70 levels were decreased because of lower levels of binding of Sp1 to position -68 in the Hsc70 promoter. Levels of Sp1 were downregulated due to oxidative stress, which was elevated fourfold in CerS2 null astrocytes. Furthermore, induction of oxidative stress in wild-type astrocytes decreased the rate of CME, whereas amelioration of oxidative stress in CerS2 null astrocytes reversed the decrease. Our data are consistent with the notion that sphingolipids not only change membrane biophysical properties but also that changes in their composition can result in downstream effects that indirectly impinge upon a number of cellular pathways, such as CME.
Collapse
Affiliation(s)
- Giora Volpert
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shifra Ben-Dor
- Department of Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ohad Tarcic
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jingjing Duan
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel.,The Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel
| | - Alfred H Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Yael Pewzner-Jung
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
24
|
Kim MH, Ahn HK, Lee EJ, Kim SJ, Kim YR, Park JW, Park WJ. Hepatic inflammatory cytokine production can be regulated by modulating sphingomyelinase and ceramide synthase 6. Int J Mol Med 2016; 39:453-462. [PMID: 28035360 DOI: 10.3892/ijmm.2016.2835] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/19/2016] [Indexed: 11/06/2022] Open
Abstract
Chronic inflammation is associated with the pathogenesis of type 2 diabetes and diabetic complications, and palmitate has been nominated as a candidate for the molecular link between these disorders. Recently, a crucial role of ceramide in inflammation and metabolic diseases has been reported. Therefore, in this study, we investigated whether ceramide formation is involved in palmitate‑induced hepatic inflammation in vitro and in vivo. Ceramide can be generated either by the de novo pathway or by sphingomyelin degradation, and six different ceramide synthases (CerS) determine the specific acyl chain length of ceramide in mammals. We examined the roles of CerS and sphingomyelinases (SMases) in the secretion of inflammatory cytokines, such as tumour necrosis factor (TNF)‑α, interleukin (IL)‑1β, and IL‑6 in Hep3B cells. Among the six CerS, CerS6 overexpression uniquely elevated TNF‑α secretion via p38 mitogen‑activated protein kinase (MAPK) activation. In addition, the treatment of CerS6 overexpressing cells with palmitate synergistically increased cytokine secretion. However, neither palmitate treatment nor CerS6 overexpression altered lipopolysaccharide (LPS)-induced cytokine secretion. Instead, the activation of acidic (A)‑SMase was involved in LPS‑induced cytokine secretion via the MAPK/NF‑κB pathway. Finally, the suppression of ceramide generation via A‑SMase inhibition or de novo ceramide synthesis decreased high‑fat diet‑induced hepatic cytokine production in vivo. On the whole, our results revealed that CerS6 played a role in TNF‑α secretion, and palmitate augmented inflammatory responses in pathophysiological conditions in which CerS6 is overexpressed. In addition, A‑SMase activation was shown to be involved in LPS‑induced inflammatory processes, suggesting that the modulation of CerS6 and A‑SMase may be a therapeutic target for controlling hepatic inflammation.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 406‑799, Republic of Korea
| | - Hee Kyung Ahn
- Division of Haematology and Oncology, Department of Internal Medicine, Gachon University Gil Medical Centre, Incheon 405‑760, Republic of Korea
| | - Eun-Ji Lee
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 406‑799, Republic of Korea
| | - Su-Jeong Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 406‑799, Republic of Korea
| | - Ye-Ryung Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158‑710, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158‑710, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 406‑799, Republic of Korea
| |
Collapse
|
25
|
Köberlin MS, Heinz LX, Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol 2016; 39:28-36. [PMID: 26895312 DOI: 10.1016/j.ceb.2016.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) are important transmembrane proteins of the innate immune system that detect invading pathogens and subsequently orchestrate an immune response. The ensuing inflammatory processes are connected to lipid metabolism at multiple levels. Here, we describe different aspects of how membrane lipids can shape the response of TLRs. Recent reports have uncovered the role of individual lipid species on membrane protein function and mouse models have contributed to the understanding of how changes in lipid metabolism alter TLR signaling, endocytosis, and cytokine secretion. Finally, we discuss the importance of systematic approaches to identify the function of individual lipid species or the composition of membrane lipids in TLR-related processes.
Collapse
Affiliation(s)
- Marielle S Köberlin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
27
|
Ali M, Saroha A, Pewzner-Jung Y, Futerman AH. LPS-mediated septic shock is augmented in ceramide synthase 2 null mice due to elevated activity of TNFα-converting enzyme. FEBS Lett 2015; 589:2213-7. [PMID: 26183206 DOI: 10.1016/j.febslet.2015.06.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor α (TNFα) is an inflammatory cytokine that plays an intimate role in septic shock. Injection of high levels of lipopolysaccharide induces septic shock and death in mice within 30 h, whereas ceramide synthase 2 (CerS2) null mice, defective in the synthesis of very-long acyl chain ceramides, die within ∼10 h. The augmented rate of death of CerS2 null mice is due to elevated levels of TNFα secretion as a result of enhanced activity of TNFα-converting enzyme (TACE). We discuss the relationship between the sphingolipid acyl chain length and TACE activity and the relevance of this data to septic shock.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ashish Saroha
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Pewzner-Jung
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Luttgeharm KD, Cahoon EB, Markham JE. A mass spectrometry-based method for the assay of ceramide synthase substrate specificity. Anal Biochem 2015; 478:96-101. [PMID: 25725359 DOI: 10.1016/j.ab.2015.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 01/24/2023]
Abstract
The acyl composition of sphingolipids is determined by the specificity of the enzyme ceramide synthase (EC 2.3.1.24). Ceramide contains a long-chain base (LCB) linked to a variety of fatty acids to produce a lipid class with potentially hundreds of structural variants. An optimized procedure for the assay of ceramide synthase in yeast microsomes is reported that uses mass spectrometry to detect any possible LCB and fatty acid combination synthesized from unlabeled substrates provided in the reaction. The assay requires the delivery of substrates with bovine serum albumin for maximum activity within defined limits of substrate concentration and specific methods to stop the reaction and extract the lipid that avoid the non-enzymatic synthesis of ceramide. The activity of ceramide synthase in yeast microsomes is demonstrated with the four natural LCBs found in yeast along with six saturated and two unsaturated fatty acyl-coenzyme As from 16 to 26 carbons in length. The procedure allows for the determination of substrate specificity and kinetic parameters toward natural substrates for ceramide synthase from potentially any organism.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jennifer E Markham
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
29
|
Barthelmes J, de Bazo AM, Pewzner-Jung Y, Schmitz K, Mayer CA, Foerch C, Eberle M, Tafferner N, Ferreirós N, Henke M, Geisslinger G, Futerman AH, Grösch S, Schiffmann S. Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils. Brain Behav Immun 2015; 46:280-92. [PMID: 25697397 DOI: 10.1016/j.bbi.2015.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022] Open
Abstract
Ceramide synthases (CerS) synthesise ceramides of defined acyl chain lengths, which are thought to mediate cellular processes in a chain length-dependent manner. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we observed a significant elevation of CerS2 and its products, C24-ceramides, in CD11b(+) cells (monocytes and neutrophils) isolated from blood. This result correlates with the clinical finding that CerS2 mRNA expression and C24-ceramide levels were significantly increased by 2.2- and 1.5-fold, respectively, in white blood cells of MS patients. The increased CerS2 mRNA/C24-ceramide expression in neutrophils/monocytes seems to mediate pro-inflammatory effects, since a specific genetic deletion of CerS2 in blood cells or a total genetic deletion of CerS2 significantly delayed the onset of clinical symptoms, due to a reduced infiltration of immune cells, in particular neutrophils, into the central nervous system. CXCR2 chemokine receptors, expressed on neutrophils, promote the migration of neutrophils into the central nervous system, which is a prerequisite for the recruitment of further immune cells and the inflammatory process that leads to the development of MS. Interestingly, neutrophils isolated from CerS2 null EAE mice, as opposed to WT EAE mice, were characterised by significantly lower CXCR2 receptor mRNA expression resulting in their reduced migratory capacity towards CXCL2. Most importantly, G-CSF-induced CXCR2 expression was significantly reduced in CerS2 null neutrophils and their migratory capacity was significantly impaired. In conclusion, our data strongly indicate that G-CSF-induced CXCR2 expression is regulated in a CerS2-dependent manner and that CerS2 thereby promotes the migration of neutrophils, thus, contributing to inflammation and the development of EAE and MS.
Collapse
Affiliation(s)
- Julia Barthelmes
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Anika Männer de Bazo
- Department of Neurology, Goethe-University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt/Main, Germany
| | - Yael Pewzner-Jung
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Katja Schmitz
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Christoph A Mayer
- Department of Neurology, Goethe-University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt/Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe-University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt/Main, Germany
| | - Max Eberle
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Nadja Tafferner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Nerea Ferreirós
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Marina Henke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sabine Grösch
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Susanne Schiffmann
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
30
|
Hepatic fatty acid uptake is regulated by the sphingolipid acyl chain length. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1754-66. [PMID: 25241943 DOI: 10.1016/j.bbalip.2014.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022]
Abstract
Ceramide synthase 2 (CerS2) null mice cannot synthesize very-long acyl chain (C22-C24) ceramides resulting in significant alterations in the acyl chain composition of sphingolipids. We now demonstrate that hepatic triacylglycerol (TG) levels are reduced in the liver but not in the adipose tissue or skeletal muscle of the CerS2 null mouse, both before and after feeding with a high fat diet (HFD), where no weight gain was observed and large hepatic nodules appeared. Uptake of both BODIPY-palmitate and [VH]-palmitate was also abrogated in the hepa- tocytes and liver. The role of a number of key proteins involved in fatty acid uptake was examined, including FATP5, CD36/FAT, FABPpm and cytoplasmic FABP1. Levels of FATP5 and FABP1 were decreased in the CerS2 null mouse liver, whereas CD36/FAT levels were significantly elevated and CD36/FAT was also mislocalized upon insulin treatment. Moreover, treatment of hepatocytes with C22-C24-ceramides down-regulated CD36/FAT levels. Infection of CerS2 null mice with recombinant adeno-associated virus (rAAV)-CerS2 restored normal TG levels and corrected the mislocalization of CD36/FAT, but had no effect on the intracellular localization or levels of FATP5 or FABP1. Together, these results demonstrate that hepatic fatty acid uptake via CD36/FAT can be regulated by altering the acyl chain composition of sphingolipids.
Collapse
|
31
|
Vanden Berghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P. Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2015; 2:e975093. [PMID: 27308513 PMCID: PMC4905361 DOI: 10.4161/23723556.2014.975093] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
Our current knowledge of the molecular mechanisms regulating the signaling pathways leading to cell survival, cell death, and inflammation has shed light on the tight mutual interplays between these processes. Moreover, the fact that both apoptosis and necrosis can be molecularly controlled has greatly increased our interest in the roles that these types of cell death play in the control of general processes such as development, homeostasis, and inflammation. In this review, we provide a brief update on the different cell death modalities and describe in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors. An important concept is that the different cell death processes modulate each other by mutual inhibitory mechanisms, serve as alternative back-up death routes in the case of a defect in the first-line cell death response, and are controlled by multiple feedback loops. We conclude by discussing future perspectives and challenges in the field of cell death and inflammation research.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium
| | - William J Kaiser
- Department of Microbiology and Immunology; Emory Vaccine Center; Emory University School of Medicine ; Atlanta, GA, USA
| | - Mathieu Jm Bertrand
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium; Methusalem Program; Ghent University; Ghent, Belgium
| |
Collapse
|
32
|
Exacerbation of experimental autoimmune encephalomyelitis in ceramide synthase 6 knockout mice is associated with enhanced activation/migration of neutrophils. Immunol Cell Biol 2015; 93:825-36. [PMID: 25833068 DOI: 10.1038/icb.2015.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/17/2015] [Accepted: 03/28/2015] [Indexed: 01/03/2023]
Abstract
Ceramides are mediators of inflammatory processes. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we observed that CerS6 mRNA expression was upregulated 15-fold in peripheral blood leukocytes before the onset of EAE symptoms. In peripheral blood leukocytes from MS patients, a 3.9-fold upregulation was found. Total genetic deletion of CerS6 and the selective deletion of CerS6 in peripheral blood leucocytes exacerbated the progression of clinical symptoms in EAE mice. This was associated with enhanced leukocyte, predominantly neutrophil infiltration and enhanced demyelination in the lumbar spinal cord of EAE mice. Interferon-gamma/tumor necrosis factor alpha (IFN-γ/TNF-α) and granulocyte colony-stimulating factor (G-CSF) both drive EAE development and induce expression of the integrin CD11b and the chemokine receptor C-X-C motif chemokine receptor 2 (CXCR2), and we found they also induce CerS6 expression. In vivo, the genetic deletion of CerS6 enhanced the activation/migration of neutrophils, as reflected by an enhanced upregulation of CD11b and CXCR2. In vitro, the genetic deletion of CerS6 enhanced the activation status of IFN-γ/TNF-α-stimulated neutrophils, as shown by increased expression of nitric oxide and CD11b and an increased adhesion capacity. In G-CSF-stimulated neutrophils, the migration status was enhanced, as reflected by an elevated level of CXCR2 and an increased migration capacity. These data suggest that CerS6/C16-Cer mediates feedback regulation by inhibiting the formation of CD11b and CXCR2, which are induced either by IFN-γ/TNF-α or by G-CSF, respectively. We conclude that CerS6/C16-Cer mediates anti-inflammatory effects during the development of EAE and MS possibly by suppressing the migration and deactivation of neutrophils.
Collapse
|
33
|
Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol 2014; 92:326-35. [DOI: 10.1016/j.bcp.2014.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 12/16/2022]
|
34
|
LU XIAODONG, CHEN YUANYUAN, ZENG TIANTIAN, CHEN LUFANG, SHAO QIXIANG, QIN WENXIN. Knockout of the HCC suppressor gene Lass2 downregulates the expression level of miR-694. Oncol Rep 2014; 32:2696-702. [DOI: 10.3892/or.2014.3527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/02/2014] [Indexed: 11/06/2022] Open
|
35
|
Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature 2014; 510:58-67. [PMID: 24899305 DOI: 10.1038/nature13475] [Citation(s) in RCA: 953] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/01/2014] [Indexed: 12/18/2022]
Abstract
Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes. Progress in our understanding of sphingolipid metabolism, state-of-the-art sphingolipidomic approaches and animal models have generated a large body of evidence demonstrating that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate, are signalling molecules that regulate a diverse range of cellular processes that are important in immunity, inflammation and inflammatory disorders. Recent insights into the molecular mechanisms of action of sphingolipid metabolites and new perspectives on their roles in regulating chronic inflammation have been reported. The knowledge gained in this emerging field will aid in the development of new therapeutic options for inflammatory disorders.
Collapse
Affiliation(s)
- Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| |
Collapse
|
36
|
Cell fate decisions regulated by K63 ubiquitination of tumor necrosis factor receptor 1. Mol Cell Biol 2014; 34:3214-28. [PMID: 24980434 DOI: 10.1128/mcb.00048-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Signaling by tumor necrosis factor (TNF) receptor 1 (TNF-R1), a prototypic member of the death receptor family, mediates pleiotropic biological outcomes ranging from inflammation and cell proliferation to cell death. Although many elements of specific signaling pathways have been identified, the main question of how these selective cell fate decisions are regulated is still unresolved. Here we identified TNF-induced K63 ubiquitination of TNF-R1 mediated by the ubiquitin ligase RNF8 as an early molecular checkpoint in the regulation of the decision between cell death and survival. Downmodulation of RNF8 prevented the ubiquitination of TNF-R1, blocked the internalization of the receptor, prevented the recruitment of the death-inducing signaling complex and the activation of caspase-8 and caspase-3/7, and reduced apoptotic cell death. Conversely, recruitment of the adaptor proteins TRADD, TRAF2, and RIP1 to TNF-R1, as well as activation of NF-κB, was unimpeded and cell growth and proliferation were significantly enhanced in RNF8-deficient cells. Thus, K63 ubiquitination of TNF-R1 can be sensed as a new level of regulation of TNF-R1 signaling at the earliest stage after ligand binding.
Collapse
|