1
|
Liu Y, Yu D, Ge X, Huang L, Pan PY, Shen H, Pettigrew RI, Chen SH, Mai J. Novel platinum therapeutics induce rapid cancer cell death through triggering intracellular ROS storm. Biomaterials 2025; 314:122835. [PMID: 39276409 PMCID: PMC11560510 DOI: 10.1016/j.biomaterials.2024.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Induction of reactive oxygen species (ROS) production in cancer cells plays a critical role for cancer treatment. However, therapeutic efficiency remains challenging due to insufficient ROS production of current ROS inducers. We designed a novel platinum (Pt)-based drug named "carrier-platin" that integrates ultrasmall Pt-based nanoparticles uniformly confined within a poly(amino acids) carrier. Carrier-platin dramatically triggered a burst of ROS in cancer cells, leading to cancer cell death as quick as 30 min. Unlike traditional Pt-based drugs which induce cell apoptosis through DNA intercalation, carrier-platin with superior ROS catalytic activities induces a unique pattern of cancer cell death that is neither apoptosis nor ferroptosis and operates independently of DNA damage. Importantly, carrier-platin demonstrates superior anti-tumor efficacy against a broad spectrum of cancers, particularly those with multidrug resistance, while maintaining minimal systemic toxicity. Our findings reveal a distinct mechanism of action of Pt in cancer cell eradication, positioning carrier-platin as a novel category of anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| | - Dongfang Yu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Xueying Ge
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Lingyi Huang
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Roderic I Pettigrew
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA; Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Dooley SA, Kolobova E, Burman A, Kaji I, Digrazia JR, Stubler R, Goldstein A, Packirisamy C, Coutts AW, Saqui-Salces M, Gao N, Engevik MA, Shub MD, Goldenring JR, Engevik AC. Myosin Vb Traffics P-Glycoprotein to the Apical Membrane of Intestinal Epithelial Cells. Gastroenterology 2025; 168:84-98.e9. [PMID: 39299401 DOI: 10.1053/j.gastro.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND & AIMS The xenobiotic efflux pump P-glycoprotein is highly expressed on the apical membrane of the gastrointestinal tract, where it regulates the levels of intracellular substrates. P-glycoprotein is altered in disease, but the mechanisms that regulate the levels of P-glycoprotein are still being explored. The molecular motor myosin Vb (Myo5b) traffics diverse cargo to the apical membrane of intestinal epithelial cells. We hypothesized that Myo5b was responsible for the delivery of P-glycoprotein to the apical membrane of enterocytes. METHODS We used multiple murine models that lack functional Myo5b or the myosin binding partner Rab11a to analyze P-glycoprotein localization. Pig and human tissue were analyzed to determine P-glycoprotein localization in the setting of MYO5B mutations. Intestinal organoids were used to examine P-glycoprotein trafficking and to assay P-glycoprotein function when MYO5 is inhibited. RESULTS In mice lacking Myo5b or the binding partner Rab11a, P-glycoprotein was improperly trafficked and had decreased presence in the brush border of enterocytes. Immunostaining of a pig model lacking functional Myo5b and human biopsies from a patient with an inactivating mutation in Myo5b also showed altered localization of intestinal P-glycoprotein. Human intestinal organoids expressing the motorless MYO5B tail domain had colocalization with P-glycoprotein, confirming that P-glycoprotein was trafficked by MYO5B in human enterocytes. Inhibition of MYO5 in human intestinal cell lines and organoids resulted in decreased P-glycoprotein capacity. Additionally, inhibition of MYO5 in human colon cancer cells diminished P-glycoprotein activity and increased cell death in response to a chemotherapeutic drug. CONCLUSIONS Collectively, these data demonstrate that Myo5b is necessary for the apical delivery of P-glycoprotein.
Collapse
Affiliation(s)
- Sarah A Dooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Elena Kolobova
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andreanna Burman
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jessica R Digrazia
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Rachel Stubler
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Anna Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charulekha Packirisamy
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | | | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | - Nan Gao
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Melinda A Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mitchell D Shub
- Division of Gastroenterology, Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | - Amy C Engevik
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
3
|
He L, Javid Anbardan Z, Habibovic P, van Rijt S. Doxorubicin- and Selenium-Incorporated Mesoporous Silica Nanoparticles as a Combination Therapy for Osteosarcoma. ACS APPLIED NANO MATERIALS 2024; 7:25400-25411. [PMID: 39606122 PMCID: PMC11590048 DOI: 10.1021/acsanm.4c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Doxorubicin (Dox) is a promising anticancer chemotherapeutic, which has been widely investigated in osteosarcoma (OS) treatment. However, there are several disadvantages regarding its clinical use. Specifically, Dox has low specificity toward cancer cells, which can lead to serious side effects. In addition, cancer cells can develop resistance toward Dox, reducing its therapeutic efficiency. Combination therapy (CT) facilitated by nanoparticle delivery systems is a promising strategy to overcome these drawbacks. In this study, we investigated the effectiveness of Dox and selenium (Se) CT using mesoporous silica nanoparticles (MSN) coated with hyaluronic acid (HA) as drug carriers. We hypothesized that combining Se as a second agent can increase Dox anti-OS effectiveness and that MSN can be used to facilitate dual drug delivery. In our system, HA was used as a gatekeeper to control the intracellular release of Se/Dox by means of its pH-responsive degradation. CT therapy using MSNs coated with HA led to a higher OS inhibitory efficiency in vitro compared to MSNs carrying either Se or Dox alone. This study demonstrates that using MSNs for the dual delivery of Se and Dox is a promising method for OS therapy.
Collapse
Affiliation(s)
- Lei He
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Zahra Javid Anbardan
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
4
|
Kaya B, Smith H, Chen Y, Azad MG, Russell TM, Richardson V, Dharmasivam M, Richardson DR. Innovative N-Acridine Thiosemicarbazones and Their Zn(II) Complexes Transmetallate with Cu(II): Redox Activity and Suppression of Detrimental Oxy-Myoglobin Oxidation. Inorg Chem 2024; 63:20840-20858. [PMID: 39404641 DOI: 10.1021/acs.inorgchem.4c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The coordination chemistry and electrochemistry of novel N-acridine thiosemicarbazones (NATs) were investigated along with their redox activity, antiproliferative efficacy, transmetalation, and dissociation properties. The ability of NAT Fe(III) complexes to inhibit detrimental oxy-myoglobin (oxy-Mb) oxidation was also examined. The NATs act as tridentate ligands with a 2:1 L/Zn(II) complex crystal structure, revealing a distorted octahedral geometry, where both ligands bind Zn(II) in a meridional conformation. The NAT Fe(III) complexes exhibited fully reversible one-electron FeIII/II couples with more positive potentials than the Fe(III) complexes of a related clinically trialed thiosemicarbazone (e.g., [Fe(DpC)2]+) due to the electron-donating capacity of acridine. Surprisingly, the NAT-Zn(II) complexes showed generally greater or similar antiproliferative activity than their ligands, Cu(II), or Fe(III) complexes. This may be explained by (1) formation of a highly lipophilic Zn(II) complex that acts as a chaperone to promote cellular uptake and (2) the capacity of the Zn(II) complex to dissociate or undergo transmetalation to the redox-active Cu(II) complex. Of the NAT-Fe(III) complexes, [Fe(AOBP)2]+ demonstrated a significant (p < 0.0001) improvement in preventing oxy-Mb oxidation than the Fe(III) complex of the clinically trialed thiosemicarbazone, DpC. This article advances our understanding of NAT coordination chemistry, electrochemistry, and the intriguing biological activity of their complexes.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Henry Smith
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Yanbing Chen
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tiffany M Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Liu X, Li M, Woo S. Subcellular Drug Distribution: Exploring Organelle-Specific Characteristics for Enhanced Therapeutic Efficacy. Pharmaceutics 2024; 16:1167. [PMID: 39339204 PMCID: PMC11434838 DOI: 10.3390/pharmaceutics16091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The efficacy and potential toxicity of drug treatments depends on the drug concentration at its site of action, intricately linked to its distribution within diverse organelles of mammalian cells. These organelles, including the nucleus, endosome, lysosome, mitochondria, endoplasmic reticulum, Golgi apparatus, lipid droplets, exosomes, and membrane-less structures, create distinct sub-compartments within the cell, each with unique biological features. Certain structures within these sub-compartments possess the ability to selectively accumulate or exclude drugs based on their physicochemical attributes, directly impacting drug efficacy. Under pathological conditions, such as cancer, many cells undergo dynamic alterations in subcellular organelles, leading to changes in the active concentration of drugs. A mechanistic and quantitative understanding of how organelle characteristics and abundance alter drug partition coefficients is crucial. This review explores biological factors and physicochemical properties influencing subcellular drug distribution, alongside strategies for modulation to enhance efficacy. Additionally, we discuss physiologically based computational models for subcellular drug distribution, providing a quantifiable means to simulate and predict drug distribution at the subcellular level, with the potential to optimize drug development strategies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| | - Miaomiao Li
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210-1267, USA;
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| |
Collapse
|
6
|
Chen X, Bao Y, Sun G, Wang X, Zhu J. UNC13B regulates the sensitivity of Wilms' tumor cells to doxorubicin by modulating lysosomes. Oncol Lett 2024; 28:446. [PMID: 39091580 PMCID: PMC11292464 DOI: 10.3892/ol.2024.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Wilms' tumor is a malignant neoplasm where current medical advancements have significantly improved survival rates; however, challenges persist such as the resistance of the tumor to chemotherapy drugs like doxorubicin. This necessitates higher dosages, leading to decreased sensitivity. However, using high doses of doxorubicin can have late effects on the heart. Unc-13 homolog B (UNC13B) may be involved in the drug resistance in several tumors, yet its role in modulating drug sensitivity in Wilms' tumor remains unexplored. UNC13B levels were quantified using reverse transcription-qPCR and Western blotting. The half-maximal inhibitory concentration for doxorubicin, vincristine, and actinomycin-D was determined using CCK-8 assays. Cell cycle and apoptosis were analyzed using flow cytometry, and lysosomal changes were observed using Lyso-Tracker staining. The present study initially evaluated UNC13B expression levels in the Wilms' tumor 17.94 cell line. Additionally, through short hairpin RNA-mediated knockdown, changes in doxorubicin sensitivity in 17.94 Wilms' tumor cells were assessed. Concurrently, preliminary investigations into the role of UNC13B in regulating lysosomes was performed, revealing a significant positive association between UNC13B levels and lysosome formation in the 17.94 cell line. Lysosomes likely serve a role in the sensitivity of Wilms' tumor cell lines to drugs. Elevated UNC13B expression was observed in the 17.94 Wilms' tumor cell line compared to normal kidney cells. UNC13B knockdown also resulted in increased apoptosis levels upon doxorubicin treatment. Immunofluorescence revealed UNC13B localization within cellular vesicles, and its knockdown significantly decreased lysosome levels. Overall, the findings of the present study demonstrate that UNC13B regulates the sensitivity of the Wilms' tumor 17.94 cell line to doxorubicin by modulating lysosome formation within cells. The results suggest that UNC13B is likely an enriched target involved in lysosomal regulation in certain tumors, offering a new approach for optimizing chemotherapy in Wilms' tumor and other cancers with high UNC13B expression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yingying Bao
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ge Sun
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Jiajun Zhu
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
7
|
Hwang J, Park A, Kim C, Kim CG, Kwak J, Kim B, Shin H, Ku M, Yang J, Baek A, Choi J, Lim H, No KT, Zhao X, Choi U, Kim TI, Jeong KS, Lee H, Shin SJ. Inhibition of IRP2-dependent reprogramming of iron metabolism suppresses tumor growth in colorectal cancer. Cell Commun Signal 2024; 22:412. [PMID: 39180081 PMCID: PMC11342626 DOI: 10.1186/s12964-024-01769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Dysregulation of iron metabolism is implicated in malignant transformation, cancer progression, and therapeutic resistance. Here, we demonstrate that iron regulatory protein 2 (IRP2) preferentially regulates iron metabolism and promotes tumor growth in colorectal cancer (CRC). METHODS IRP2 knockdown and knockout cells were generated using RNA interference and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 methodologies, respectively. Cell viability was evaluated using both CCK-8 assay and cell counting techniques. Furthermore, IRP2 inhibition was determined by surface plasmon resonance (SPR) and RNA immunoprecipitation (IP). The suppressive effects of IRP2 were also corroborated in both organoid and mouse xenograft models, providing a comprehensive validation of IRP2's role. RESULTS We have elucidated the role of IRP2 as a preferential regulator of iron metabolism, actively promoting tumorigenesis within CRC. Elevated levels of IRP2 expression in patient samples are correlated with diminished overall survival, thereby reinforcing its potential role as a prognostic biomarker. The functional suppression of IRP2 resulted in a pronounced delay in tumor growth. Building on this proof of concept, we have developed IRP2 inhibitors that significantly reduce IRP2 expression and hinder its interaction with iron-responsive elements in key iron-regulating proteins, such as ferritin heavy chain 1 (FTH1) and transferrin receptor (TFRC), culminating in iron depletion and a marked reduction in CRC cell proliferation. Furthermore, these inhibitors are shown to activate the AMPK-ULK1-Beclin1 signaling cascade, leading to cell death in CRC models. CONCLUSIONS Collectively, these findings highlight the therapeutic potential of targeting IRP2 to exploit the disruption of iron metabolism in CRC, presenting a strategic advancement in addressing a critical area of unmet clinical need.
Collapse
Affiliation(s)
- Jieon Hwang
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Areum Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Chinwoo Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Byungil Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Hyunjin Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722, Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, 03722, Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722, Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, 03722, Korea
| | - Ayoung Baek
- Bioinformatics and Molecular Design Research Center, Incheon, 21983, Korea
| | - Jiwon Choi
- College of Pharmacy, Dongduk Women's University, Seoul, 02748, Korea
| | - Hocheol Lim
- Bioinformatics and Molecular Design Research Center, Incheon, 21983, Korea
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center, Incheon, 21983, Korea
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei Unversity, Incheon, 21983, Korea
| | - Xianghua Zhao
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Uyeong Choi
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Tae Il Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Hyuk Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
| | - Sang Joon Shin
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
8
|
Kaya B, Smith H, Chen Y, Azad MG, M Russell T, Richardson V, Bernhardt PV, Dharmasivam M, Richardson DR. Targeting lysosomes by design: novel N-acridine thiosemicarbazones that enable direct detection of intracellular drug localization and overcome P-glycoprotein (Pgp)-mediated resistance. Chem Sci 2024:d4sc04339a. [PMID: 39165729 PMCID: PMC11331336 DOI: 10.1039/d4sc04339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Innovative N-acridine thiosemicarbazones (NATs) were designed along with their iron(iii), copper(ii), and zinc(ii) complexes. Lysosomal targeting was promoted by specifically incorporating the lysosomotropic Pgp substrate, acridine, into the thiosemicarbazone scaffold to maintain the tridentate N, N, S-donor system. The acridine moiety enables a significant advance in thiosemicarbazone design, since: (1) it enables tracking of the drugs by confocal microscopy using its inherent fluorescence; (2) it is lysosomotropic enabling lysosomal targeting; and (3) as acridine is a P-glycoprotein (Pgp) substrate, it facilitates lysosomal targeting, resulting in the drug overcoming Pgp-mediated resistance. These new N-acridine analogues are novel, and this is the first time that acridine has been specifically added to the thiosemicarbazone framework to achieve the three important properties above. These new agents displayed markedly greater anti-proliferative activity against resistant Pgp-expressing cells than very low Pgp-expressing cells. The anti-proliferative activity of NATs against multiple Pgp-positive cancer cell-types (colon, lung, and cervical carcinoma) was abrogated by the third generation Pgp inhibitor, Elacridar, and also Pgp siRNA that down-regulated Pgp. Confocal microscopy demonstrated that low Pgp in KB31 (-Pgp) cells resulted in acridine's proclivity for DNA intercalation promoting NAT nuclear-targeting. In contrast, high Pgp in KBV1 (+Pgp) cells led to NAT lysosomal sequestration, preventing its nuclear localisation. High Pgp expression in KBV1 (+Pgp) cells resulted in co-localization of NATs with the lysosomal marker, LysoTracker™, that was significantly (p < 0.001) greater than the positive control, the di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) Zn(ii) complex, [Zn(DpC)2]. Incorporation of acridine into the thiosemicarbazone scaffold led to Pgp-mediated transport into lysosomes to overcome Pgp-resistance.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Henry Smith
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Yanbing Chen
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Tiffany M Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine Nagoya 466-8550 Japan
| |
Collapse
|
9
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
10
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
11
|
Yang C, Ding Y, Mao Z, Wang W. Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors. Int J Nanomedicine 2024; 19:917-944. [PMID: 38293604 PMCID: PMC10826716 DOI: 10.2147/ijn.s445578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The overall cancer incidence and death toll have been increasing worldwide. However, the conventional therapies have some obvious limitations, such as non-specific targeting, systemic toxic effects, especially the multidrug resistance (MDR) of tumors, in which, autophagy plays a vital role. Therefore, there is an urgent need for new treatments to reduce adverse reactions, improve the treatment efficacy and expand their therapeutic indications more effectively and accurately. Combination therapy based on autophagy regulators is a very feasible and important method to overcome tumor resistance and sensitize anti-tumor drugs. However, the less improved efficacy, more systemic toxicity and other problems limit its clinical application. Nanotechnology provides a good way to overcome this limitation. Co-delivery of autophagy regulators combined with anti-tumor drugs through nanoplatforms provides a good therapeutic strategy for the treatment of tumors, especially drug-resistant tumors. Notably, the nanomaterials with autophagy regulatory properties have broad therapeutic prospects as carrier platforms, especially in adjuvant therapy. However, further research is still necessary to overcome the difficulties such as the safety, biocompatibility, and side effects of nanomedicine. In addition, clinical research is also indispensable to confirm its application in tumor treatment.
Collapse
Affiliation(s)
- Caixia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
12
|
Dharmasivam M, Kaya B, Wijesinghe TP, Richardson V, Harmer JR, Gonzalvez MA, Lewis W, Azad MG, Bernhardt PV, Richardson DR. Differential transmetallation of complexes of the anti-cancer thiosemicarbazone, Dp4e4mT: effects on anti-proliferative efficacy, redox activity, oxy-myoglobin and oxy-hemoglobin oxidation. Chem Sci 2024; 15:974-990. [PMID: 38239703 PMCID: PMC10793205 DOI: 10.1039/d3sc05723b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
The di-2-pyridylthiosemicarbazone (DpT) analogs demonstrate potent and selective anti-proliferative activity against human tumors. The current investigation reports the synthesis and chemical and biological characterization of the Fe(iii), Co(iii), Ni(ii), Cu(ii), Zn(ii), Ga(iii), and Pd(ii) complexes of the promising second generation DpT analog, di-2-pyridylketone-4-ethyl-4-methyl-3-thiosemicarbazone (Dp4e4mT). These studies demonstrate that the Dp4e4mT Co(iii), Ni(ii), and Pd(ii) complexes display distinct biological activity versus those with Cu(ii), Zn(ii), and Ga(iii) regarding anti-proliferative efficacy against cancer cells and a detrimental off-target effect involving oxidation of oxy-myoglobin (oxy-Mb) and oxy-hemoglobin (oxy-Hb). With regards to anti-proliferative activity, the Zn(ii) and Ga(iii) Dp4e4mT complexes demonstrate facile transmetallation with Cu(ii), resulting in efficacy against tumor cells that is strikingly similar to the Dp4e4mT Cu(ii) complex (IC50: 0.003-0.006 μM and 72 h). Relative to the Zn(ii) and Ga(iii) Dp4e4mT complexes, the Dp4e4mT Ni(ii) complex demonstrates kinetically slow transmetallation with Cu(ii) and intermediate anti-proliferative effects (IC50: 0.018-0.076 μM after 72 h). In contrast, the Co(iii) and Pd(ii) complexes demonstrate poor anti-proliferative activity (IC50: 0.262-1.570 μM after 72 h), probably due to a lack of transmetallation with Cu(ii). The poor efficacy of the Dp4e4mT Co(iii), Ni(ii), and Pd(ii) complexes to transmetallate with Fe(iii) markedly suppresses the oxidation of oxy-Mb and oxy-Hb. In contrast, the 2 : 1 Dp4e4mT: Cu(ii), Zn(ii), and Ga(iii) complexes demonstrate facile reactions with Fe(iii), leading to the redox active Dp4e4mT Fe(iii) complex and oxy-Mb and oxy-Hb oxidation. This study demonstrates the key role of differential transmetallation of Dp4e4mT complexes that has therapeutic ramifications for their use as anti-cancer agents.
Collapse
Affiliation(s)
- Mahendiran Dharmasivam
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney Sydney New South Wales 2006 Australia
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
| | - Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland Brisbane Queensland 4072 Australia
| | - Miguel A Gonzalvez
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane Queensland 4072 Australia
| | - William Lewis
- Department of Chemistry, University of Sydney New South Wales 2006 Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane Queensland 4072 Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney Sydney New South Wales 2006 Australia
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine Nagoya 466-8550 Japan
| |
Collapse
|
13
|
Shirbhate E, Singh V, Mishra A, Jahoriya V, Veerasamy R, Tiwari AK, Rajak H. Targeting Lysosomes: A Strategy Against Chemoresistance in Cancer. Mini Rev Med Chem 2024; 24:1449-1468. [PMID: 38343053 DOI: 10.2174/0113895575287242240129120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024]
Abstract
Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
14
|
Wijesinghe TP, Kaya B, Gonzálvez MA, Harmer JR, Gholam Azad M, Bernhardt PV, Dharmasivam M, Richardson DR. Steric Blockade of Oxy-Myoglobin Oxidation by Thiosemicarbazones: Structure-Activity Relationships of the Novel PPP4pT Series. J Med Chem 2023; 66:15453-15476. [PMID: 37922410 DOI: 10.1021/acs.jmedchem.3c01612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 μM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
15
|
Dharmasivam M, Kaya B, Wijesinghe T, Gholam Azad M, Gonzálvez MA, Hussaini M, Chekmarev J, Bernhardt PV, Richardson DR. Designing Tailored Thiosemicarbazones with Bespoke Properties: The Styrene Moiety Imparts Potent Activity, Inhibits Heme Center Oxidation, and Results in a Novel "Stealth Zinc(II) Complex". J Med Chem 2023; 66:1426-1453. [PMID: 36649565 DOI: 10.1021/acs.jmedchem.2c01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel, potent, and selective antitumor agent, namely (E)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one 4,4-dimethyl-3-thiosemicarbazone (PPP44mT), and its analogues were synthesized and characterized and displayed strikingly distinctive properties. This activity was mediated by the inclusion of a styrene moiety, which through steric and electrochemical mechanisms prevented deleterious oxy-myoglobin or oxy-hemoglobin oxidation relative to other potent thiosemicarbazones, i.e., di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Structure-activity relationship analysis demonstrated specific tuning of PPP44mT electrochemistry further inhibited oxy-myoglobin or oxy-hemoglobin oxidation. Both PPP44mT and its Cu(II) complexes showed conspicuous almost immediate cytotoxicity against SK-N-MC tumor cells (within 3 h). In contrast, [Zn(PPP44mT)2] demonstrated a pronounced delay in activity, taking 48 h before marked antiproliferative efficacy was apparent. As such, [Zn(PPP44mT)2] was designated as a "stealth Zn(II) complex" that overcomes the near immediate cytotoxicity of PPP44mT or its copper complexes. Upon examination of the suppression of oncogenic signaling, [Zn(PPP44mT)2] was superior at inhibiting cyclin D1 expression compared to DpC or Dp44mT.
Collapse
Affiliation(s)
- Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia.,Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, 34320Istanbul, Turkey
| | - Tharushi Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Australia
| | - Mohammad Hussaini
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Jason Chekmarev
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| |
Collapse
|
16
|
Wang G, Wang JJ, Zhi-Min Z, Xu XN, Shi F, Fu XL. Targeting critical pathways in ferroptosis and enhancing antitumor therapy of Platinum drugs for colorectal cancer. Sci Prog 2023; 106:368504221147173. [PMID: 36718538 PMCID: PMC10450309 DOI: 10.1177/00368504221147173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Colorectal cancer (CRC) can be resistant to platinum drugs, possibly through ferroptosis suppression, albeit the need for further work to completely understand this mechanism. This work aimed to sum up current findings pertaining to oxaliplatin resistance (OR) or resistance to ascertain the potential of ferroptosis to regulate oxaliplatin effects. In this review, tumor development relating to iron homeostasis, which includes levels of iron that ascertain cells' sensitivity to ferroptosis, oxidative stress, or lipid peroxidation in colorectal tumor cells that are connected with ferroptosis initiation, especially the role of c-Myc/NRF2 signaling in regulating iron homeostasis, coupled with NRF2/GPX4-mediated ferroptosis are discussed. Importantly, ferroptosis plays a key role in OR and ferroptotic induction may substantially reverse OR in CRC cells, which in turn could inhibit the imbalance of intracellular redox induced by oxaliplatin and ferroptosis, as well as cause chemotherapeutic resistance in CRC. Furthermore, fundamental research of small molecules, ferroptosis inducers, GPX4 inhibitors, or natural products for OR coupled with their clinical applications in CRC have also been summarized. Also, potential molecular targets and mechanisms of small molecules or drugs are discussed as well. Suggestively, OR of CRC cells could significantly be reversed by ferroptosis induction, wherein this result is discussed in the current review. Prospectively, the existing literature discussed in this review will provide a solid foundation for scientists to research the potential use of combined anticancer drugs which can overcome OR via targeting various mechanisms of ferroptosis. Especially, promising therapeutic strategies, challenges ,and opportunities for CRC therapy will be discussed.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Zhu Zhi-Min
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xiao-Na Xu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
17
|
Zhang H, Meng L, Yin L, Fan T, Yu L, Han S, Wang L, Liang W, Yang X, Sun S. ClC-3 silencing mediates lysosomal acidification arrest and autophagy inhibition to sensitize chemo-photothermal therapy. Int J Pharm 2022; 628:122297. [DOI: 10.1016/j.ijpharm.2022.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/18/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
|
18
|
Pósa V, Stefanelli A, Nunes JHB, Hager S, Mathuber M, May NV, Berger W, Keppler BK, Kowol CR, Enyedy ÉA, Heffeter P. Thiosemicarbazone Derivatives Developed to Overcome COTI-2 Resistance. Cancers (Basel) 2022; 14:4455. [PMID: 36139615 PMCID: PMC9497102 DOI: 10.3390/cancers14184455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
COTI-2 is currently being evaluated in a phase I clinical trial for the treatment of gynecological and other solid cancers. As a thiosemicarbazone, this compound contains an N,N,S-chelating moiety and is, therefore, expected to bind endogenous metal ions. However, besides zinc, the metal interaction properties of COTI-2 have not been investigated in detail so far. This is unexpected, as we have recently shown that COTI-2 forms stable ternary complexes with copper and glutathione, which renders this drug a substrate for the resistance efflux transporter ABCC1. Herein, the complex formation of COTI-2, two novel terminal N-disubstituted derivatives (COTI-NMe2 and COTI-NMeCy), and the non-substituted analogue (COTI-NH2) with iron, copper, and zinc ions was characterized in detail. Furthermore, their activities against drug-resistant cancer cells was investigated in comparison to COTI-2 and Triapine. These data revealed that, besides zinc, also iron and copper ions need to be considered to play a role in the mode of action and resistance development of these thiosemicarbazones. Moreover, we identified COTI-NMe2 as an interesting new drug candidate with improved anticancer activity and resistance profile.
Collapse
Affiliation(s)
- Vivien Pósa
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Alessia Stefanelli
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Julia H. Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Inorganic Chemistry Department, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-970, SP, Brazil
| | - Sonja Hager
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Christian R. Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Éva A. Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| |
Collapse
|
19
|
Krchniakova M, Paukovcekova S, Chlapek P, Neradil J, Skoda J, Veselska R. Thiosemicarbazones and selected tyrosine kinase inhibitors synergize in pediatric solid tumors: NDRG1 upregulation and impaired prosurvival signaling in neuroblastoma cells. Front Pharmacol 2022; 13:976955. [PMID: 36160437 PMCID: PMC9490180 DOI: 10.3389/fphar.2022.976955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are frequently used in combined therapy to enhance treatment efficacy and overcome drug resistance. The present study analyzed the effects of three inhibitors, sunitinib, gefitinib, and lapatinib, combined with iron-chelating agents, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) or di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). Simultaneous administration of the drugs consistently resulted in synergistic and/or additive activities against the cell lines derived from the most frequent types of pediatric solid tumors. The results of a detailed analysis of cell signaling in the neuroblastoma cell lines revealed that TKIs inhibited the phosphorylation of the corresponding receptor tyrosine kinases, and thiosemicarbazones downregulated the expression of epidermal growth factor receptor, platelet-derived growth factor receptor, and insulin-like growth factor-1 receptor, leading to a strong induction of apoptosis. Marked upregulation of the metastasis suppressor N-myc downstream regulated gene-1 (NDRG1), which is known to be activated and upregulated by thiosemicarbazones in adult cancers, was also detected in thiosemicarbazone-treated neuroblastoma cells. Importantly, these effects were more pronounced in the cells treated with drug combinations, especially with the combinations of lapatinib with thiosemicarbazones. Therefore, these results provide a rationale for novel strategies combining iron-chelating agents with TKIs in therapy of pediatric solid tumors.
Collapse
Affiliation(s)
- Maria Krchniakova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Silvia Paukovcekova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- *Correspondence: Jan Skoda, ; Renata Veselska,
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- *Correspondence: Jan Skoda, ; Renata Veselska,
| |
Collapse
|
20
|
Thiosemicarbazones Can Act Synergistically with Anthracyclines to Downregulate CHEK1 Expression and Induce DNA Damage in Cell Lines Derived from Pediatric Solid Tumors. Int J Mol Sci 2022; 23:ijms23158549. [PMID: 35955683 PMCID: PMC9369312 DOI: 10.3390/ijms23158549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Anticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin, daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating cell types derived from the most frequent pediatric solid tumors. Our results showed synergistic effects for all combinations of treatments in all tested cell types. Nevertheless, further experiments revealed that this synergism was independent of Pgp expression but rather resulted from impaired DNA repair control leading to cell death via mitotic catastrophe. The downregulation of checkpoint kinase 1 (CHEK1) expression by thiosemicarbazones and the ability of both types of agents to induce double-strand breaks in DNA may explain the Pgp-independent synergism between anthracyclines and thiosemicarbazones. Moreover, the concomitant application of these agents was found to be the most efficient approach, achieving the strongest synergistic effect with lower concentrations of these drugs. Overall, our study identified a new mechanism that offers an avenue for combining thiosemicarbazones with anthracyclines to treat tumors regardless the Pgp status.
Collapse
|
21
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
22
|
Pandey P, Khan F, Qari HA, Upadhyay TK, Alkhateeb AF, Oves M. Evidence of Metallic and Polyether Ionophores as Potent Therapeutic Drug Candidate in Cancer Management. Molecules 2022; 27:4708. [PMID: 35897885 PMCID: PMC9329979 DOI: 10.3390/molecules27154708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most crucial human malignancies with a higher mortality rate globally, and is predicted to escalate soon. Dysregulated ion homeostasis in cancerous cells prompted the researchers to investigate further ion homeostasis impeding agents as potent anticancerous agents. Reutilization of FDA-approved non-cancerous drugs has emerged as a practical approach to developing potent, cost-effective drugs for cancer treatment. Across the globe, most nations are incapable of fulfilling the medical demands of cancer patients due to costlier cancerous drugs. Therefore, we have inclined our review towards emphasizing recent advancements in cancer therapies involving ionophores utilization in exploring potent anticancer drugs. Numerous research reports have established the significant anticancerous potential of ionophores in several pre-clinical reports via modulating aberrant cell signaling pathways and enhancing antitumor immunity in immune cells. This review has mainly summarized the most significant ion homeostasis impeding agents, including copper, zinc, calcium, and polyether, that presented remarkable potential in cancer therapeutics via enhanced antitumor immunity and apoptosis induction. Altogether, this study could provide a robust future perspective for developing cost-effective anticancerous drugs rapidly and cost-effectively, thereby combating the limitations of currently available drugs used in cancer treatment.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Huda A. Qari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India;
| | - Abdulhameed F. Alkhateeb
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
23
|
Jain P, Pandey V, Soni V. Bioconjugate-loaded solid lipid nanoparticles for enhanced anticancer drug delivery to brain cancer cells: An in vitro evaluation. Indian J Med Res 2022; 156:139-148. [PMID: 36510906 PMCID: PMC9903388 DOI: 10.4103/ijmr.ijmr_514_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background & objectives The treatment of brain cancer is still challenging for an oncologist due to the presence of the blood-brain barrier (BBB) which inhibits the entry of more than 98 per cent of drugs used during the treatment of brain disease. The cytotoxic drugs used in chemotherapy for brain cancer treatment also affect the normal cells due to lack of targeting. Therefore, the objective of the study was to develop tween 80-coated solid lipid nanoparticles (SLNs) loaded with folic acid-doxorubicin (FAD) conjugate for site-specific drug delivery to brain cancer cells. Methods The FAD conjugate was synthesized by the conjugation of folic acid with doxorubicin and characterized by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. SLNs loaded with FAD were prepared by the solvent injection method. The SLNs were characterized by the particle size, zeta potential, surface morphology, entrapment efficiency, etc. Results The average particle size of FAD conjugate-loaded SLNs (SLN-C) was found to be 220.4±2.2 nm, with 36.2±0.6 per cent entrapment efficiency. The cytotoxicity and cellular uptake were determined on U87 MG cell lines. Half maximal inhibitory concentration value of the SLN-C was found to be 2.5 μg/ml, which confirmed the high antitumour activity against brain cancer cells. Interpretation & conclusions The cell line studies confirmed the cytotoxicity and internalization of SLN-C in U87 MG brain cancer cells. The results confirmed that tween 80-coated SLNs have the potential to deliver the doxorubicin selectively in the brain cancer cells.
Collapse
Affiliation(s)
- Priyanka Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh, India
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh, India,For correspondence: Dr Vandana Soni, Department of Pharmaceutical Sciences, Dr Hari Singh Gour Central University, Sagar 470 003, Madhya Pradesh, India e-mail:
| |
Collapse
|
24
|
Richardson DR, Azad MG, Afroz R, Richardson V, Dharmasivam M. Thiosemicarbazones reprogram pancreatic cancer bidirectional oncogenic signaling between cancer cells and stellate cells to suppress desmoplasia. Future Med Chem 2022; 14:1005-1017. [PMID: 35670251 DOI: 10.4155/fmc-2022-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Standard treatments have shown dismal activity against pancreatic cancer (PC), due in part to the development of a dense stroma (desmoplasia). This perspective discusses the development of the di-2-pyridylketone thiosemicarbazones that overcomes bidirectional oncogenic signaling between PC cells and pancreatic stellate cells (PSCs), which is critical for desmoplasia development. This activity is induced by the up-regulation of the metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which inhibits oncogenic signaling via HGF, IGF-1 and Sonic Hedgehog pathway. More recent studies have deciphered additional pathways including those mediated by Wnt and tenascin C that are secreted by PSCs to activate β-catenin and YAP/TAZ signaling in PC cells. Suppression of bidirectional signaling between cell types presents a unique therapeutic opportunity.
Collapse
Affiliation(s)
- D R Richardson
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
- Department of Pathology & Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - M Gholam Azad
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - R Afroz
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - V Richardson
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - M Dharmasivam
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| |
Collapse
|
25
|
Shao N, Yuan L, Ma P, Zhou M, Xiao X, Cong Z, Wu Y, Xiao G, Fei J, Liu R. Heterochiral β-Peptide Polymers Combating Multidrug-Resistant Cancers Effectively without Inducing Drug Resistance. J Am Chem Soc 2022; 144:7283-7294. [PMID: 35420800 DOI: 10.1021/jacs.2c00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multidrug resistance to chemotherapeutic drugs is one of the major causes for the failure of cancer treatment. Therefore, there is an urgent need to develop anticancer agents that can combat multidrug-resistant cancers effectively and mitigate drug resistance. Here, we report a rational design of anticancer heterochiral β-peptide polymers as synthetic mimics of host defense peptides to combat multidrug-resistant cancers. The optimal polymer shows potent and broad-spectrum anticancer activities against multidrug-resistant cancer cells and is insusceptible to anticancer drug resistance owing to its membrane-damaging mechanism. The in vivo study indicates that the optimal polymer efficiently inhibits the growth and distant transfer of solid tumors and the metastasis and seeding of circulating tumor cells. Moreover, the polymer shows excellent biocompatibility during anticancer treatment on animals. In addition, the β-peptide polymers address those prominent shortcomings of anticancer peptides and have superior stability against proteolysis, easy synthesis in large scale, and low cost. Collectively, the structural diversity and superior anticancer performance of β-peptide polymers imply an effective strategy in designing and finding anticancer agents to combat multidrug-resistant cancers effectively while mitigating drug resistance.
Collapse
Affiliation(s)
- Ning Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengcheng Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guohui Xiao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
26
|
Mechanism of vitamin B6 benzoyl hydrazone platinum(II) complexes overcomes multidrug resistance in lung cancer. Eur J Med Chem 2022; 237:114415. [DOI: 10.1016/j.ejmech.2022.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
|
27
|
Dharmasivam M, Azad MG, Afroz R, Richardson V, Jansson PJ, Richardson DR. The thiosemicarbazone, DpC, broadly synergizes with multiple anti-cancer therapeutics and demonstrates temperature- and energy-dependent uptake by tumor cells. Biochim Biophys Acta Gen Subj 2022; 1866:130152. [DOI: 10.1016/j.bbagen.2022.130152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022]
|
28
|
Jiang M, Yang T, Chu Y, Zhang Z, Sun H, Liang H, Yang F. Design of a novel Pt(II) complex to reverse cisplatin-induced resistance in lung cancer via a multi-mechanism. Dalton Trans 2022; 51:5257-5270. [PMID: 35285843 DOI: 10.1039/d1dt03964d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In order to develop a novel platinum (Pt) complex aiming to overcome cisplatin resistance, we synthesised a series of novel Pt complexes (C1-C6). These Pt complexes displayed potent cytotoxicity activity against resistant lung cancer cells (A549cisR) in vitro and efficiently inhibited tumour growth in vivo. The Pt complexes can target DNA, lead to DNA platination and cause cell cycle arrest in the S phase, thus impeding precise DNA synthesis. C6, in particular, induced not only apoptosis but also lethal autophagy in A549cisR cells. In addition, these novel Pt complexes reversed cisplatin-induced resistance via inhibiting the expression of P-glycoprotein and decreasing the level of glutathione in A549cisR cells. Moreover, the ERK pathway was involved in C6-induced overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China. .,School of food and biochemical engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Yong Chu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China.
| |
Collapse
|
29
|
Jain V, Bose S, Arya AK, Arif T. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:1618. [PMID: 35406389 PMCID: PMC8996909 DOI: 10.3390/cancers14071618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that regulate essential biological processes such as cellular homeostasis, development, and aging. They are primarily connected to the degradation/recycling of cellular macromolecules and participate in cellular trafficking, nutritional signaling, energy metabolism, and immune regulation. Therefore, lysosomes connect cellular metabolism and signaling pathways. Lysosome's involvement in the critical biological processes has rekindled clinical interest towards this organelle for treating various diseases, including cancer. Recent research advancements have demonstrated that lysosomes also regulate the maintenance and hemostasis of hematopoietic stem cells (HSCs), which play a critical role in the progression of acute myeloid leukemia (AML) and other types of cancer. Lysosomes regulate both HSCs' metabolic networks and identity transition. AML is a lethal type of blood cancer with a poor prognosis that is particularly associated with aging. Although the genetic landscape of AML has been extensively described, only a few targeted therapies have been produced, warranting the need for further research. This review summarizes the functions and importance of targeting lysosomes in AML, while highlighting the significance of lysosomes in HSCs maintenance.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center, Department of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA;
| | - Swaroop Bose
- Department of Dermatology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA;
| | - Awadhesh K. Arya
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
30
|
Palmerini E, Meazza C, Tamburini A, Bisogno G, Ferraresi V, Asaftei SD, Milano GM, Coccoli L, Manzitti C, Luksch R, Serra M, Gambarotti M, Donati DM, Scotlandi K, Bertulli R, Favre C, Longhi A, Abate ME, Perrotta S, Mascarin M, D'Angelo P, Cesari M, Staals EL, Marchesi E, Carretta E, Ibrahim T, Casali PG, Picci P, Fagioli F, Ferrari S. Phase 2 study for nonmetastatic extremity high-grade osteosarcoma in pediatric and adolescent and young adult patients with a risk-adapted strategy based on ABCB1/P-glycoprotein expression: An Italian Sarcoma Group trial (ISG/OS-2). Cancer 2022; 128:1958-1966. [PMID: 35201621 PMCID: PMC9305236 DOI: 10.1002/cncr.34131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022]
Abstract
Background According to retrospective osteosarcoma series, ABCB1/P‐glycoprotein (Pgp) overexpression predicts for poor outcomes. A prospective trial to assess a risk‐adapted treatment strategy using mifamurtide in Pgp+ patients was performed. Methods This was a phase 2, multicenter, uncontrolled trial including patients 40 years old or younger with nonmetastatic extremity high‐grade osteosarcoma stratified according to Pgp expression. All patients received high‐dose methotrexate, doxorubicin, and cisplatin (MAP) preoperatively. In Pgp+ patients, mifamurtide was added postoperatively and combined with MAP for a good histologic response (necrosis ≥ 90%; good responders [GRs]) or with high‐dose ifosfamide (HDIFO) at 3 g/m2/d on days 1 to 5 for a histologic response < 90% (poor responders [PRs]). Pgp– patients received MAP postoperatively. After an amendment, the cumulative dose of methotrexate was increased from 60 to 120 g/m2 (from 5 to 10 courses). The primary end point was event‐free survival (EFS). A postamendment analysis was performed. Results In all, 279 patients were recruited, and 194 were included in the postamendment analysis: 70 (36%) were Pgp–, and 124 (64%) were Pgp+. The median follow‐up was 51 months. For Pgp+ patients, 5‐year EFS after definitive surgery (null hypothesis, 40%) was 69.8% (90% confidence interval [CI], 62.2%‐76.2%): 59.8% in PRs and 83.7% in GRs. For Pgp– patients, the 5‐year EFS rate was 66.4% (90% CI, 55.6%‐75.1%). Conclusions This study showed that adjuvant mifamurtide, combined with HDIFO for a poor response to induction chemotherapy, could improve EFS in Pgp+ patients. Overall, the outcomes compared favorably with previous series. Mifamurtide and HDIFO as salvage chemotherapy are worth further study. The expression of ABCB1/P‐glycoprotein (Pgp) at diagnosis has been used to stratify patients with high‐grade osteosarcoma. Adjuvant mifamurtide, combined with high‐dose ifosfamide for a poor response to induction chemotherapy, can improve event‐free survival in Pgp+ patients.
Collapse
Affiliation(s)
- Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Meazza
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Gianni Bisogno
- Hematology Oncology Division, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | | | | | - Giuseppe M Milano
- Pediatric Oncology Department, Regina Margherita Children's Hospital, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luca Coccoli
- IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Carla Manzitti
- IRCCS Istituto G. Gaslini-Ospedale Pediatrico, Genoa, Italy
| | - Roberto Luksch
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Serra
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide M Donati
- Third Orthopedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rossella Bertulli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudio Favre
- Azienda Ospedaliera Universitaria A. Meyer, Florence, Italy
| | - Alessandra Longhi
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimo E Abate
- Pediatric Oncology, National Medical Specialization Center Santobono-Pausilipon, Napoli, Italy
| | - Silverio Perrotta
- Ematologia ed Oncologia Pediatrica, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Maurizio Mascarin
- AYA Oncology and Pediatric Radiotherapy Unit, IRCCS Centro di Riferimento Oncologico, Aviano, Italy
| | | | - Marilena Cesari
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Eric L Staals
- Third Orthopedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Elisa Carretta
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo G Casali
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Franca Fagioli
- Azienda Ospedaliero Universitaria Pisana, Pisa, Italy.,Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Stefano Ferrari
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
31
|
Zhou R, Hu Z, Pan J, Wang J, Pei Y. Current research status of alkaloids against breast cancer. CHINESE J PHYSIOL 2022; 65:12-20. [DOI: 10.4103/cjp.cjp_89_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
32
|
Jiang M, Chu Y, Yang T, Li W, Zhang Z, Sun H, Liang H, Yang F. Developing a Novel Indium(III) Agent Based on Liposomes to Overcome Cisplatin-Induced Resistance in Breast Cancer by Multitargeting the Tumor Microenvironment Components. J Med Chem 2021; 64:14587-14602. [PMID: 34609868 DOI: 10.1021/acs.jmedchem.1c01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To overcome the resistance of cancer cells to platinum-based drugs and effectively suppress tumor growth, we developed a novel indium (In) agent based on liposomes (Lips). Thus, we not only obtained an In(III) thiosemicarbazone agent (5b) with remarkable cytotoxicity by optimizing a series of In(III) thiosemicarbazone agents (1b-5b) but also successfully constructed a novel 5b-loaded Lip (5b-Lip) delivery system. Importantly, in vitro and in vivo results revealed that 5b/5b-Lip overcame the tumor cell resistance and effectively inhibited MCF-7/DDP tumor growth. In addition, Lips improved the intracellular accumulation of 5b. We also confirmed the mechanism by which 5b/5b-Lip overcomes breast cancer cell resistance. 5b/5b-Lip cannot act against DNA in cancer cells but attacks the two cell components in the tumor microenvironment, namely, by inducing apoptosis and lethal autophagy of cancer cells and resetting tumor-promoting M2 macrophages to the tumor-killing M1 phenotype.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China.,School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Yong Chu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
33
|
Wijesinghe TP, Dharmasivam M, Dai CC, Richardson DR. Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacol Res 2021; 173:105889. [PMID: 34536548 DOI: 10.1016/j.phrs.2021.105889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022]
Abstract
Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more significant is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Charles C Dai
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
34
|
Chekmarev J, Azad MG, Richardson DR. The Oncogenic Signaling Disruptor, NDRG1: Molecular and Cellular Mechanisms of Activity. Cells 2021; 10:cells10092382. [PMID: 34572031 PMCID: PMC8465210 DOI: 10.3390/cells10092382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
NDRG1 is an oncogenic signaling disruptor that plays a key role in multiple cancers, including aggressive pancreatic tumors. Recent studies have indicated a role for NDRG1 in the inhibition of multiple tyrosine kinases, including EGFR, c-Met, HER2 and HER3, etc. The mechanism of activity of NDRG1 remains unclear, but to impart some of its functions, NDRG1 binds directly to key effector molecules that play roles in tumor suppression, e.g., MIG6. More recent studies indicate that NDRG1s-inducing drugs, such as novel di-2-pyridylketone thiosemicarbazones, not only inhibit tumor growth and metastasis but also fibrous desmoplasia, which leads to chemotherapeutic resistance. The Casitas B-lineage lymphoma (c-Cbl) protein may be regulated by NDRG1, and is a crucial E3 ligase that regulates various protein tyrosine and receptor tyrosine kinases, primarily via ubiquitination. The c-Cbl protein can act as a tumor suppressor by promoting the degradation of receptor tyrosine kinases. In contrast, c-Cbl can also promote tumor development by acting as a docking protein to mediate the oncogenic c-Met/Crk/JNK and PI3K/AKT pathways. This review hypothesizes that NDRG1 could inhibit the oncogenic function of c-Cbl, which may be another mechanism of its tumor-suppressive effects.
Collapse
Affiliation(s)
- Jason Chekmarev
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
| | - Des R. Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +61-7-3735-7549
| |
Collapse
|
35
|
Rizzollo F, More S, Vangheluwe P, Agostinis P. The lysosome as a master regulator of iron metabolism. Trends Biochem Sci 2021; 46:960-975. [PMID: 34384657 DOI: 10.1016/j.tibs.2021.07.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Intracellular iron fulfills crucial cellular processes, including DNA synthesis and mitochondrial metabolism, but also mediates ferroptosis, a regulated form of cell death driven by lipid-based reactive oxygen species (ROS). Beyond their established role in degradation and recycling, lysosomes occupy a central position in iron homeostasis and integrate metabolic and cell death signals emanating from different subcellular sites. We discuss the central role of the lysosome in preserving iron homeostasis and provide an integrated outlook of the regulatory circuits coupling the lysosomal system to the control of iron trafficking, interorganellar crosstalk, and ferroptosis induction. We also discuss novel studies unraveling how deregulated lysosomal iron-handling functions contribute to cancer, neurodegeneration, and viral infection, and can be harnessed for therapeutic interventions.
Collapse
Affiliation(s)
- Francesca Rizzollo
- Laboratory of Cell Death and Research, Vlaams Instituut voor Biotechnologie (VIB)-Katholieke Universiteit (KU) Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cell Death and Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sanket More
- Laboratory of Cell Death and Research, Vlaams Instituut voor Biotechnologie (VIB)-Katholieke Universiteit (KU) Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cell Death and Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Patrizia Agostinis
- Laboratory of Cell Death and Research, Vlaams Instituut voor Biotechnologie (VIB)-Katholieke Universiteit (KU) Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cell Death and Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Sandoval-Acuña C, Torrealba N, Tomkova V, Jadhav SB, Blazkova K, Merta L, Lettlova S, Adamcová MK, Rosel D, Brábek J, Neuzil J, Stursa J, Werner L, Truksa J. Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Res 2021; 81:2289-2303. [PMID: 33685989 DOI: 10.1158/0008-5472.can-20-1628] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.
Collapse
Affiliation(s)
- Cristian Sandoval-Acuña
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Natalia Torrealba
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Veronika Tomkova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Sukanya B Jadhav
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Kristyna Blazkova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Ladislav Merta
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Miroslava K Adamcová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Rosel
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Jan Brábek
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.,School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jan Stursa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Lukas Werner
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.
| |
Collapse
|
37
|
Machado ER, Annunziata I, van de Vlekkert D, Grosveld GC, d’Azzo A. Lysosomes and Cancer Progression: A Malignant Liaison. Front Cell Dev Biol 2021; 9:642494. [PMID: 33718382 PMCID: PMC7952443 DOI: 10.3389/fcell.2021.642494] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
During primary tumorigenesis isolated cancer cells may undergo genetic or epigenetic changes that render them responsive to additional intrinsic or extrinsic cues, so that they enter a transitional state and eventually acquire an aggressive, metastatic phenotype. Among these changes is the alteration of the cell metabolic/catabolic machinery that creates the most permissive conditions for invasion, dissemination, and survival. The lysosomal system has emerged as a crucial player in this malignant transformation, making this system a potential therapeutic target in cancer. By virtue of their ubiquitous distribution in mammalian cells, their multifaced activities that control catabolic and anabolic processes, and their interplay with other organelles and the plasma membrane (PM), lysosomes function as platforms for inter- and intracellular communication. This is due to their capacity to adapt and sense nutrient availability, to spatially segregate specific functions depending on their position, to fuse with other compartments and with the PM, and to engage in membrane contact sites (MCS) with other organelles. Here we review the latest advances in our understanding of the role of the lysosomal system in cancer progression. We focus on how changes in lysosomal nutrient sensing, as well as lysosomal positioning, exocytosis, and fusion perturb the communication between tumor cells themselves and between tumor cells and their microenvironment. Finally, we describe the potential impact of MCS between lysosomes and other organelles in propelling cancer growth and spread.
Collapse
Affiliation(s)
- Eda R. Machado
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - Gerard C. Grosveld
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
38
|
Role of ABCB1 in mediating chemoresistance of triple-negative breast cancers. Biosci Rep 2021; 41:227788. [PMID: 33543229 PMCID: PMC7909869 DOI: 10.1042/bsr20204092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a group of breast cancers which neither express hormonal receptors nor human epidermal growth factor receptor. Hence, there is a lack of currently known targeted therapies and the only available line of systemic treatment option is chemotherapy or more recently immune therapy. However, in patients with relapsed disease after adjuvant or neoadjuvant therapy, resistance to chemotherapeutic agents has often developed, which results in poor treatment response. Multidrug resistance (MDR) has emerged as an important mechanism by which TNBCs mediate drug resistance and occurs primarily due to overexpression of ATP-binding cassette (ABC) transporter proteins such as P-glycoprotein (Pgp). Pgp overexpression had been linked to poor outcome, reduced survival rates and chemoresistance in patients. The aim of this mini-review is to provide a topical overview of the recent studies and to generate further interest in this critical research area, with the aim to develop an effective and safe approach for overcoming Pgp-mediated chemoresistance in TNBC.
Collapse
|
39
|
Halcrow PW, Geiger JD, Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front Cell Dev Biol 2021; 9:627639. [PMID: 33634129 PMCID: PMC7900406 DOI: 10.3389/fcell.2021.627639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
40
|
Levi M, Salaroli R, Parenti F, De Maria R, Zannoni A, Bernardini C, Gola C, Brocco A, Marangio A, Benazzi C, Muscatello LV, Brunetti B, Forni M, Sarli G. Doxorubicin treatment modulates chemoresistance and affects the cell cycle in two canine mammary tumour cell lines. BMC Vet Res 2021; 17:30. [PMID: 33461558 PMCID: PMC7814552 DOI: 10.1186/s12917-020-02709-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Doxorubicin (DOX) is widely used in both human and veterinary oncology although the onset of multidrug resistance (MDR) in neoplastic cells often leads to chemotherapy failure. Better understanding of the cellular mechanisms that circumvent chemotherapy efficacy is paramount. The aim of this study was to investigate the response of two canine mammary tumour cell lines, CIPp from a primary tumour and CIPm, from its lymph node metastasis, to exposure to EC50(20h) DOX at 12, 24 and 48 h of treatment. We assessed the uptake and subcellular distribution of DOX, the expression and function of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), two important MDR mediators. To better understand this phenomenon the effects of DOX on the cell cycle and Ki67 cell proliferation index and the expression of p53 and telomerase reverse transcriptase (TERT) were also evaluated by immunocytochemistry (ICC). RESULTS Both cell lines were able to uptake DOX within the nucleus at 3 h treatment while at 48 h DOX was absent from the intracellular compartment (assessed by fluorescence microscope) in all the surviving cells. CIPm, originated from the metastatic tumour, were more efficient in extruding P-gp substrates. By ICC and qRT-PCR an overall increase in both P-gp and BCRP were observed at 48 h of EC50(20h) DOX treatment in both cell lines and were associated with a striking increase in the percentage of p53 and TERT expressing cells by ICC. The cell proliferation fraction was decreased at 48 h in both cell lines and cell cycle analysis showed a DOX-induced arrest in the S phase for CIPp, while CIPm had an increase in cellular death without arrest. Both cells lines were therefore composed by a fraction of cells sensible to DOX that underwent apoptosis/necrosis. CONCLUSIONS DOX administration results in interlinked modifications in the cellular population including a substantial effect on the cell cycle, in particular arrest in the S phase for CIPp and the selection of a subpopulation of neoplastic cells bearing MDR phenotype characterized by P-gp and BCRP expression, TERT activation, p53 accumulation and decrease in the proliferating fraction. Important information is given for understanding the dynamic and mechanisms of the onset of drug resistance in a neoplastic cell population.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dogs
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Mammary Neoplasms, Animal
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
Collapse
Affiliation(s)
- Michela Levi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Federico Parenti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Cecilia Gola
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Brocco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Asia Marangio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Cinzia Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy.
| |
Collapse
|
41
|
Kang YJ, Holley CK, Abidian MR, Madhankumar AB, Connor J, Majd S. Tumor Targeted Delivery of an Anti-Cancer Therapeutic: An In Vitro and In Vivo Evaluation. Adv Healthc Mater 2021; 10:e2001261. [PMID: 33191612 DOI: 10.1002/adhm.202001261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Indexed: 02/01/2023]
Abstract
The limited effectiveness of current therapeutics against malignant brain gliomas has led to an urgent need for development of new formulations against these tumors. Chelator Dp44mT (di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone) presents a promising candidate to defeat gliomas due to its exceptional anti-tumor activity and its unique ability to overcome multidrug resistance. The goal of this study is to develop a targeted nano-carrier for Dp44mT delivery to glioma tumors and to assess its therapeutic efficacy in vitro and in vivo. Dp44mT is loaded into poly(ethylene glycol) (PEG)ylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) decorated with glioma-targeting ligand Interlukin 13 (IL13). IL13-conjugation enhanced the NP uptake by glioma cells and also improved their transport across an in vitro blood-brain-barrier (BBB) model. This targeted formulation showed an outstanding toxicity towards glioma cell lines and patient-derived stem cells in vitro, with IC50 values less than 125 nM, and caused no significant death in healthy brain microvascular endothelial cells. In vivo, when tested on a xenograft mouse model, IL13-conjugated Dp44mT-NPs reduced the glioma tumor growth by ≈62% while their untargeted counterparts reduced the tumor growth by only ≈16%. Notably, this formulation does not cause any significant weight loss or kidney/liver toxicity in mice, demonstrating its great therapeutic potential.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Biomedical Engineering Pennsylvania State University University Park PA 16802 USA
| | - Claire K. Holley
- Department of Biomedical Engineering University of Houston Houston TX 77204 USA
| | | | | | - James Connor
- Department of Neurosurgery Penn State University College of Medicine Hershey PA 17033 USA
| | - Sheereen Majd
- Department of Biomedical Engineering University of Houston Houston TX 77204 USA
| |
Collapse
|
42
|
Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms. Cancers (Basel) 2020; 12:cancers12123781. [PMID: 33334021 PMCID: PMC7765366 DOI: 10.3390/cancers12123781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Combination of chemotherapeutics for the treatment of childhood cancer can lead to the use of lower cytotoxic drug doses and better therapeutic tolerability (i.e., lower side effects) for patients. We discovered novel molecular targets of two lead thiosemicarbazone agents of the di-2-pyridylketone thiosemicarbazone class. These molecular targets include: cyclooxygenase, the DNA repair protein, O6-methylguanine DNA methyltransferase, mismatch repair proteins, and topoisomerase 2α. This research also identifies promising synergistic interactions of these thiosemicarbazones particularly with the standard chemotherapeutic, celecoxib. Abstract Combining low-dose chemotherapies is a strategy for designing less toxic and more potent childhood cancer treatments. We examined the effects of combining the novel thiosemicarbazones, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), or its analog, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), with the standard chemotherapies, celecoxib (CX), etoposide (ETO), or temozolomide (TMZ). These combinations were analyzed for synergism to inhibit proliferation of three pediatric tumor cell-types, namely osteosarcoma (Saos-2), medulloblastoma (Daoy) and neuroblastoma (SH-SY5Y). In terms of mechanistic dissection, this study discovered novel thiosemicarbazone targets not previously identified and which are important for considering possible drug combinations. In this case, DpC and Dp44mT caused: (1) up-regulation of a major protein target of CX, namely cyclooxygenase-2 (COX-2); (2) down-regulation of the DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), which is known to affect TMZ resistance; (3) down-regulation of mismatch repair (MMR) proteins, MSH2 and MSH6, in Daoy and SH-SY5Y cells; and (4) down-regulation in all three cell-types of the MMR repair protein, MLH1, and also topoisomerase 2α (Topo2α), the latter of which is an ETO target. While thiosemicarbazones up-regulate the metastasis suppressor, NDRG1, in adult cancers, it is demonstrated herein for the first time that they induce NDRG1 in all three pediatric tumor cell-types, validating its role as a potential target. In fact, siRNA studies indicated that NDRG1 was responsible for MGMT down-regulation that may prevent TMZ resistance. Examining the effects of combining thiosemicarbazones with CX, ETO, or TMZ, the most promising synergism was obtained using CX. Of interest, a positive relationship was observed between NDRG1 expression of the cell-type and the synergistic activity observed in the combination of thiosemicarbazones and CX. These studies identify novel thiosemicarbazone targets relevant to childhood cancer combination chemotherapy.
Collapse
|
43
|
Zhai X, El Hiani Y. Getting Lost in the Cell-Lysosomal Entrapment of Chemotherapeutics. Cancers (Basel) 2020; 12:E3669. [PMID: 33297435 PMCID: PMC7762281 DOI: 10.3390/cancers12123669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research, resistance to chemotherapy still poses a major obstacle in clinical oncology. An exciting strategy to circumvent chemoresistance involves the identification and subsequent disruption of cellular processes that are aberrantly altered in oncogenic states. Upon chemotherapeutic challenges, lysosomes are deemed to be essential mediators that enable cellular adaptation to stress conditions. Therefore, lysosomes potentially hold the key to disarming the fundamental mechanisms of chemoresistance. This review explores modes of action of classical chemotherapeutic agents, adaptive response of the lysosomes to cell stress, and presents physiological and pharmacological insights pertaining to drug compartmentalization, sequestration, and extracellular clearance through the lens of lysosomes.
Collapse
Affiliation(s)
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
44
|
Bormio Nunes J, Hager S, Mathuber M, Pósa V, Roller A, Enyedy ÉA, Stefanelli A, Berger W, Keppler BK, Heffeter P, Kowol CR. Cancer Cell Resistance Against the Clinically Investigated Thiosemicarbazone COTI-2 Is Based on Formation of Intracellular Copper Complex Glutathione Adducts and ABCC1-Mediated Efflux. J Med Chem 2020; 63:13719-13732. [PMID: 33190481 PMCID: PMC7706001 DOI: 10.1021/acs.jmedchem.0c01277] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/12/2022]
Abstract
COTI-2 is a novel anticancer thiosemicarbazone in phase I clinical trial. However, the effects of metal complexation (a main characteristic of thiosemicarbazones) and acquired resistance mechanisms are widely unknown. Therefore, in this study, the copper and iron complexes of COTI-2 were synthesized and evaluated for their anticancer activity and impact on drug resistance in comparison to metal-free thiosemicarbazones. Investigations using Triapine-resistant SW480/Tria and newly established COTI-2-resistant SW480/Coti cells revealed distinct structure-activity relationships. SW480/Coti cells were found to overexpress ABCC1, and COTI-2 being a substrate for this efflux pump. This was unexpected, as ABCC1 has strong selectivity for glutathione adducts. The recognition by ABCC1 could be explained by the reduction kinetics of a ternary Cu-COTI-2 complex with glutathione. Thus, only thiosemicarbazones forming stable, nonreducible copper(II)-glutathione adducts are recognized and, in turn, effluxed by ABCC1. This reveals a crucial connection between copper complex chemistry, glutathione interaction, and the resistance profile of clinically relevant thiosemicarbazones.
Collapse
Affiliation(s)
- Julia
H. Bormio Nunes
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
- Inorganic
Chemistry Department, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Sonja Hager
- Institute
of Cancer Research, Medical University of
Vienna, Borschkegasse
8a, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| | - Marlene Mathuber
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
| | - Vivien Pósa
- Department
of Inorganic and Analytical Chemistry, Interdisciplinary Excellence
Centre and MTA-SZTE Lendület Functional Metal Complexes Research
Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Alexander Roller
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
| | - Éva A. Enyedy
- Department
of Inorganic and Analytical Chemistry, Interdisciplinary Excellence
Centre and MTA-SZTE Lendület Functional Metal Complexes Research
Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Alessia Stefanelli
- Institute
of Cancer Research, Medical University of
Vienna, Borschkegasse
8a, Vienna 1090, Austria
| | - Walter Berger
- Institute
of Cancer Research, Medical University of
Vienna, Borschkegasse
8a, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| | - Bernhard K. Keppler
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| | - Petra Heffeter
- Institute
of Cancer Research, Medical University of
Vienna, Borschkegasse
8a, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| | - Christian R. Kowol
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| |
Collapse
|
45
|
The anti-tumor agent, Dp44mT, promotes nuclear translocation of TFEB via inhibition of the AMPK-mTORC1 axis. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165970. [PMID: 32950675 DOI: 10.1016/j.bbadis.2020.165970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and its analogues are potent anti-cancer agents through their ability to target lysosomes. Considering this, it was important to understand the mechanisms involved in the Dp44mT-mediated induction of autophagy and the role of 5'-adenosine monophosphate-activated protein kinase (AMPK) as a critical autophagic regulator. As such, this investigation examined AMPK's role in the regulation of the transcription factor EB (TFEB), which transcribes genes involved in autophagy and lysosome biosynthesis. For the first time, this study demonstrated that Dp44mT induces translocation of TFEB to the nucleus. Furthermore, Dp44mT-mediated nuclear translocation of TFEB was AMPK-dependent. Considering that: (1) the mammalian target of rapamycin complex 1 (mTORC1) plays an important role in the regulation of TFEB; and (2) that AMPK is a known regulator of mTORC1, this study also elucidated the mechanisms through which Dp44mT regulates nuclear translocation of TFEB via AMPK. Silencing AMPK led to increased mTOR phosphorylation, that activates mTORC1. Since Dp44mT inhibits mTORC1 in an AMPK-dependent manner through raptor phosphorylation, Dp44mT is demonstrated to regulate TFEB translocation through dual mechanisms: AMPK activation, which inhibits mTOR, and inhibition of mTORC1 via phosphorylation of raptor. Collectively, Dp44mT-mediated activation of AMPK plays a crucial role in lysosomal biogenesis and TFEB function. As Dp44mT potently chelates copper and iron that are crucial for tumor growth, these studies provide insight into the regulatory mechanisms involved in intracellular clearance and energy metabolism that occur upon alterations in metal ion homeostasis.
Collapse
|
46
|
Zhao W, Cong Y, Li HM, Li S, Shen Y, Qi Q, Zhang Y, Li YZ, Tang YJ. Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat Prod Rep 2020; 38:470-488. [PMID: 32895676 DOI: 10.1039/d0np00041h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
48
|
Hager S, Pape VFS, Pósa V, Montsch B, Uhlik L, Szakács G, Tóth S, Jabronka N, Keppler BK, Kowol CR, Enyedy ÉA, Heffeter P. High Copper Complex Stability and Slow Reduction Kinetics as Key Parameters for Improved Activity, Paraptosis Induction, and Impact on Drug-Resistant Cells of Anticancer Thiosemicarbazones. Antioxid Redox Signal 2020; 33:395-414. [PMID: 32336116 DOI: 10.1089/ars.2019.7854] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Due to their significant biological activity, thiosemicarbazones (TSCs) are promising candidates for anticancer therapy. In part, the efficacy of TSCs is linked to their ability to chelate essential metal ions such as copper and iron. Triapine, the best-studied anticancer TSC, has been tested clinically with promising results in hematological diseases. During the past few years, a novel subclass of TSCs with improved anticancer activity was found to induce paraptosis, a recently characterized form of cell death. The aim of this study was to identify structural and chemical properties associated with anticancer activity and paraptosis induction of TSCs. Results: When testing a panel of structurally related TSCs, compounds with nanomolar anticancer activity and paraptosis-inducing properties showed higher copper(II) complex solution stability and a slower reduction rate, which resulted in reduced redox activity. In contrast, TSCs with lower anticancer activity induced higher levels of superoxide that rapidly stimulated superoxide dismutase expression in treated cells, effectively protecting the cells from drug-induced redox stress. Innovation: Consequently, we hypothesize that in the case of close Triapine derivatives, intracellular reduction leads to rapid dissociation of intracellularly formed copper complexes. In contrast, TSCs characterized by highly stable, slowly reducible copper(II) complexes are able to reach new intracellular targets such as the endoplasmic reticulum-resident protein disulfide isomerase. Conclusion: The additional modes of actions observed with highly active TSC derivatives are based on intracellular formation of stable copper complexes, offering a new approach to combat (drug-resistant) cancer cells.
Collapse
Affiliation(s)
- Sonja Hager
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
| | - Veronika F S Pape
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Vivien Pósa
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Szeged, Hungary
| | - Bianca Montsch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
| | - Lukas Uhlik
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
| | - Gergely Szakács
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett Jabronka
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bernhard K Keppler
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Szeged, Hungary
| | - Petra Heffeter
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
| |
Collapse
|
49
|
Lai H, Liu C, Hou L, Lin W, Chen T, Hong A. TRPM8-regulated calcium mobilization plays a critical role in synergistic chemosensitization of Borneol on Doxorubicin. Theranostics 2020; 10:10154-10170. [PMID: 32929340 PMCID: PMC7481425 DOI: 10.7150/thno.45861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Lung cancer has a high mortality rate and is resistant to multiple chemotherapeutics. Natural Borneol (NB) is a monoterpenoid compound that facilitates the bioavailability of drugs. In this study, we investigated the effects of NB on chemosensitivity in the A549 human lung adenocarcinoma cell line and to elucidate therapeutic molecular target of NB. Methods: The chemosensitivity effects of NB in A549 cells were examined by MTT assay. The mechanism of NB action was evaluated using flow cytometry and Western blotting assays. Surface plasmon resonance (SPR) and LC-MS combined analysis (MS-SPRi) was performed to elucidate the candidate molecular target of NB. The chemosensitizing capacity of NB in vivo was assessed in nude mice bearing A549 tumors. Results: NB pretreatment sensitized A549 cells to low doxorubicin (DOX) dosage, leading to a 15.7% to 41.5% increase in apoptosis. This increase was correlated with ERK and AKT inactivation and activation of phospho-p38 MAPK, phospho-JNK, and phosphor-p53. Furthermore, this synergism depends on reactive oxygen species (ROS) generation. MS-SPRi analysis revealed that transient receptor potential melastatin-8 (TRPM8) is the candidate target of NB in potentiating DOX killing potency. Genetically, TRPM8 knock-down significantly suppresses the chemosensitizing effects of NB and inhibits ROS generation through restraining calcium mobilization. Moreover, pretreatment with NB synergistically enhances the anticancer effects of DOX to delay tumor progression in vivo. Conclusions: These results suggest that TRPM8 may be a valid therapeutic target in the potential application of NB, and show that NB is a chemosensitizer for lung cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Lai
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Chang Liu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Liyuan Hou
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Wenwei Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
50
|
Geisslinger F, Müller M, Vollmar AM, Bartel K. Targeting Lysosomes in Cancer as Promising Strategy to Overcome Chemoresistance-A Mini Review. Front Oncol 2020; 10:1156. [PMID: 32733810 PMCID: PMC7363955 DOI: 10.3389/fonc.2020.01156] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
To date, cancer remains a worldwide leading cause of death, with a still rising incidence. This is essentially caused by the fact, that despite the abundance of therapeutic targets and treatment strategies, insufficient response and multidrug resistance frequently occur. Underlying mechanisms are multifaceted and extensively studied. In recent research, it became evident, that the lysosome is of importance in drug resistance phenotypes. While it has long been considered just as cellular waste bag, it is now widely known that lysosomes play an important role in important cellular signaling processes and are in the focus of cancer research. In that regard lysosomes are now considered as so-called "drug safe-houses" in which chemotherapeutics are trapped passively by diffusion or actively by lysosomal P-glycoprotein activity, which prevents them from reaching their intracellular targets. Furthermore, alterations in lysosome to nucleus signaling by the transcription factor EB (TFEB)-mTORC1 axis are implicated in development of chemoresistance. The identification of lysosomes as essential players in drug resistance has introduced novel strategies to overcome chemoresistance and led to innovate therapeutic approaches. This mini review gives an overview of the current state of research on the role of lysosomes in chemoresistance, summarizing underlying mechanisms and treatment strategies and critically discussing open questions and drawbacks.
Collapse
Affiliation(s)
- Franz Geisslinger
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Martin Müller
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angelika M Vollmar
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Karin Bartel
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|