1
|
Wei YS, Liu HR, Yang Q, Zhi Z, Yu Y. Anp32b Deficiency Suppresses Ocular Development by Repression of Pax6. Ophthalmic Res 2024; 67:644-653. [PMID: 39504945 DOI: 10.1159/000542447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION This study aimed to elucidate the role and molecular mechanisms of acidic leucine-rich nuclear phosphoprotein 32 kDa B (Anp32b) deficiency in ocular development. METHODS We used constitutive C57BL/6-derived Anp32b-/- mice to elucidate the role of Anp32b in ocular development, including the phenotype and proportion of eye malformation in different genotypes. RNA-seq analysis and rescue experiments were performed to investigate the underlying mechanisms of Anp32b. RESULTS Deletion of Anp32b contributes to severe defects in ocular development, including anophthalmia and microphthalmia. Moreover, Anp32b is highly expressed in the lens, and Anp32b-/- embryos with microphthalmia often exhibit severely impaired lens development. Mechanistically, ANP32B directly interacts with paired box protein 6 (PAX6), a master transcriptional regulator, and enhances its transcriptional activity. Overexpression of PAX6 partially but significantly reverses the inhibition of proliferation observed in ANP32B knockdown lens epithelial cells. CONCLUSIONS Our findings indicate that Anp32b deficiency suppresses ocular development by repressing Pax6 and identify that Anp32b is a viable therapeutic target for ocular developmental defects.
Collapse
Affiliation(s)
- Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Qian Yang
- Medical School of Chinese PLA, Beijing, China
| | - Zhe Zhi
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yun Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
2
|
Zhou C, Ma H, Yu W, Zhou Y, Zhang X, Meng Y, Chen C, Zhang J, Shi G. ANP32B inhibition suppresses the growth of prostate cancer cells by regulating c-Myc signaling. Biochem Biophys Res Commun 2024; 698:149543. [PMID: 38266312 DOI: 10.1016/j.bbrc.2024.149543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
ANP32B is a histone chaperone that interacts with various transcription factors that regulate cancer cell proliferation, immigration, and apoptosis. c-Myc, a well-known oncogenic protein, is a principal player in the initiation and progression of prostate cancer (PC). The means by which ANP32B and c-Myc act remain unknown. We downloaded clinical data from the GEO, TCGA, and other databases to explore ANP32B expression and its effects on the survival of PC and normal tissues. ANP32B-knockdown cell lines were used to evaluate how ANP32B affected cell proliferation in vitro and in vivo. Gene set enrichment analysis and RNAseq were employed to define how ANP32B regulated PC pathways. Immunohistochemical measures were used to detect the expression levels of relevant proteins in xenografts and PC tissues. ANP32B expression increased in PC tissues; ANP32B knockdown inhibited cell growth but this was rescued by c-Myc signaling. ANP32B is thus a PC oncogene and may serve as a valuable therapeutic target when seeking to treat PC.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| | - Hangbin Ma
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| | - Wandong Yu
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Yinghao Zhou
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Xuehu Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Yibo Meng
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Chenchen Chen
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Jun Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| | - Guowei Shi
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| |
Collapse
|
3
|
Yang LL, Li M, Huang W, Ren PT, Yan QH, Hao YH. ANP32B promotes colorectal cancer cell progression and reduces cell sensitivity to PRAP1 inhibitor through up-regulating HPF1. Heliyon 2024; 10:e23829. [PMID: 38192816 PMCID: PMC10772160 DOI: 10.1016/j.heliyon.2023.e23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
ANP32B, a member of the acidic leucine-rich nuclear phosphoprotein 32 family member B, is aberrantly expressed in various cancers, including colorectal cancer. However, the function and mechanism of action of ANP32B in colorectal cancer remain unclear. The present study therefore analyzed the expression of ANP32B and its activity in colorectal cancer patient samples and colorectal cancer cell lines. ANP32B expression was found to be significantly upregulated in colorectal cancer patient samples and cell lines. Upregulation of ANP32B enhanced colorectal cancer cell proliferation and migration, whereas downregulation of ANP32B suppressed colorectal cancer cell proliferation. RNA sequencing analysis of differentially expressed genes in ANP32B silenced colorectal cancer cells showed that histone PARylation factor 1 (HPF1), which protects against DNA damage by interacting with the anti-tumor target PARP1, was significantly downregulated. Luciferase promoter assays testing the regulatory association between ANP32B and HPF1 showed that ANP32B interacted with the HPF1 promoter. Analysis of colorectal cancer samples from The Cancer Genome Atlas showed that ANP32B and HPF1 expression were positively correlated, and recovery assays showed that ANP32B promoted colorectal cancer progression by up-regulating HPF1. Overexpression of ANP32B also reduced the sensitivity of colorectal cancer cells to PARP1 inhibitor, consistent with the oncogenic role of ANP32B. ANP32B may alter the sensitivity of colorectal cancer cells to PARP1 inhibitor via a mechanism associated with the HPF1 gene. In summary, these findings showed that ANP32B acted as a tumor promoter, potentiating both colorectal cancer malignancy and drug resistance. Targeting the ANP32B/HPF1 axis may have benefit for patients with colorectal cancer.
Collapse
Affiliation(s)
- Li-Li Yang
- Department of Radiology, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Meng Li
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Huang
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Peng-Tao Ren
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing-Hui Yan
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ying-Hao Hao
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Yang Q, Liu HR, Yang S, Wei YS, Zhu XN, Zhi Z, Zhu D, Chen GQ, Yu Y. ANP32B suppresses B-cell acute lymphoblastic leukemia through activation of PU.1 in mice. Cancer Sci 2023. [PMID: 37137487 DOI: 10.1111/cas.15822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
ANP32B, a member of the acidic leucine-rich nuclear phosphoprotein 32 kDa (ANP32) family of proteins, is critical for normal development because its constitutive knockout mice are perinatal lethal. It is also shown that ANP32B acts as a tumor-promoting gene in some kinds of cancer such as breast cancer and chronic myelogenous leukemia. Herein, we observe that ANP32B is lowly expressed in B-cell acute lymphoblastic leukemia (B-ALL) patients, which correlates with poor prognosis. Furthermore, we utilized the N-myc or BCR-ABLp190 -induced B-ALL mouse model to investigate the role of ANP32B in B-ALL development. Intriguingly, conditional deletion of Anp32b in hematopoietic cells significantly promotes leukemogenesis in two B-ALL mouse models. Mechanistically, ANP32B interacts with purine rich box-1 (PU.1) and enhances the transcriptional activity of PU.1 in B-ALL cells. Overexpression of PU.1 dramatically suppresses B-ALL progression, and highly expressed PU.1 significantly reverses the accelerated leukemogenesis in Anp32b-deficient mice. Collectively, our findings identify ANP32B as a suppressor gene and provide novel insight into B-ALL pathogenesis.
Collapse
Affiliation(s)
- Qian Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Shuo Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiao-Na Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zhe Zhi
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Di Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yun Yu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
5
|
Li T, Wang N, Li S, Yan H, Gao S, Gao W, Xu R. ANP32B promotes lung cancer progression by regulating VDAC1. Gene 2023; 859:147200. [PMID: 36642319 DOI: 10.1016/j.gene.2023.147200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
It has been reported before that acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) plays roles in many cancers, yet no report of its role in lung cancer exists. In this study, we documented an elevation of ANP32B within lung cancer tissues and cells. Knockdown of ANP32B hindered the proliferation as well as migration of lung cancer cells, whereas overexpression of ANP32B helps to promote the malignant progression of lung cancer. ANP32B also regulates lung cancer cells' apoptosis and cell cycling. In addition, voltage-dependent anion channel 1 (VDAC1) has been found to be a downstream targeted gene of ANP32B and is positively regulated by ANP32B in lung cancer cells. According to our research, the expression of VDAC1 was positively associated with ANP32B expression in lung adenocarcinoma (r = 0.61, P < 0.001) samples by Pearson's correlation coefficient analysis. Furthermore, rescue experiments demonstrated that VDAC1 could rescue the effect of ANP32B expression on lung cancer cell proliferation and migration. Our results suggest that ANP32B overexpression facilitates lung cancer progression by increasing the expression of VDAC1. As such, we have revealed a novel mechanism regulating the connection between ANP32B and VDAC1 and a potential role of ANP32B as an oncogene and a clinical therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Tiezhi Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Na Wang
- Department of Pediatrics, The First Hospital of Hebei Medical University. Shijiazhuang, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjiang Yan
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shaolin Gao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weinian Gao
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University. Shijiazhuang, China
| | - Ruoxuan Xu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Barboza BR, Thomaz SMDO, Junior ADC, Espreafico EM, Miyamoto JG, Tashima AK, Camacho MF, Zelanis A, Roque-Barreira MC, da Silva TA. ArtinM Cytotoxicity in B Cells Derived from Non-Hodgkin's Lymphoma Depends on Syk and Src Family Kinases. Int J Mol Sci 2023; 24:ijms24021075. [PMID: 36674590 PMCID: PMC9863955 DOI: 10.3390/ijms24021075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Receptors on the immune cell surface have a variety of glycans that may account for the immunomodulation induced by lectins, which have a carbohydrate recognition domain (CRD) that binds to monosaccharides or oligosaccharides in a specific manner. ArtinM, a D-mannose-binding lectin obtained from Artocarpus heterophyllus, has affinity for the N-glycans core. Immunomodulation by ArtinM toward the Th1 phenotype occurs via its interaction with TLR2/CD14 N-glycans on antigen-presenting cells, as well as recognition of CD3γ N-glycans on murine CD4+ and CD8+ T cells. ArtinM exerts a cytotoxic effect on Jurkat human leukemic T-cell line and human myeloid leukemia cell line (NB4). The current study evaluated the effects of ArtinM on murine and human B cells derived from non-Hodgkin’s lymphoma. We found that murine B cells are recognized by ArtinM via the CRD, and the ArtinM stimulus did not augment the proliferation rate or production of IL-2. However, murine B cell incubation with ArtinM augmented the rate of apoptosis, and this cytotoxic effect of ArtinM was also seen in human B cell-lines sourced from non-Hodgkin’s lymphoma Raji cell line. This cytotoxic effect was inhibited by the phosphatase activity of CD45 on Lck, and the protein kinases of the Src family contribute to cell death triggered by ArtinM.
Collapse
Affiliation(s)
- Bruno Rafael Barboza
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Sandra Maria de Oliveira Thomaz
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Airton de Carvalho Junior
- Laboratory of Cell and Molecular Biology of Cancer, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Enilza Maria Espreafico
- Laboratory of Cell and Molecular Biology of Cancer, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Jackson Gabriel Miyamoto
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), Sao Paulo 04021-001, SP, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), Sao Paulo 04021-001, SP, Brazil
| | - Maurício Frota Camacho
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos 04021-001, SP, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos 04021-001, SP, Brazil
| | - Maria Cristina Roque-Barreira
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Thiago Aparecido da Silva
- Laboratory of Immunotherapy of Invasive Fungal Infections, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
- Correspondence: or ; Tel.: +55-16-3315-3049
| |
Collapse
|
7
|
Ma L, Wang J, Zhang Y, Fang F, Ling J, Chu X, Zhang Z, Tao Y, Li X, Tian Y, Li Z, Sang X, Zhang K, Lu L, Wan X, Chen Y, Yu J, Zhuo R, Wu S, Lu J, Pan J, Hu S. BRD4 PROTAC degrader MZ1 exerts anticancer effects in acute myeloid leukemia by targeting c-Myc and ANP32B genes. Cancer Biol Ther 2022; 23:1-15. [PMID: 36170346 PMCID: PMC9543111 DOI: 10.1080/15384047.2022.2125748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly cancerous and aggressive hematologic disease with elevated levels of drug resistance and relapse resulting in high mortality. Recently, bromodomains and extra-terminal (BET) protein inhibitors have been extensively researched in hematological tumors as potential anticancer agents. MZ1 is a novel BET inhibitor that mediates selective proteins degradation and suppression of tumor growth through proteolysis-targeting chimeras (PROTAC) technology. Accordingly, this study aimed to investigate the role and therapeutic potential of MZ1 in AML. In this study, we first identified that AML patients with high BRD4 expression had poor overall survival than those with low expression group. MZ1 inhibited AML cell growth and induced apoptosis and cycle arrest in vitro. MZ1 induced degradation of BRD4, BRD3 and BRD2 in AML cell strains. Additionally, MZ1 also initiated the cleavage of poly-ADP-ribose polymerase (PARP), which showed cytotoxic effects on NB4 (PML-RARa), K562 (BCR-ABL), Kasumi-1 (AML1-ETO), and MV4-11 (MLL-AF4) cell lines representing different molecular subtypes of AML. In AML mouse leukemia model, MZ1 significantly decreased leukemia cell growth and increased the mouse survival time. According to the RNA-sequencing analysis, MZ1 led to c-Myc and ANP32B genes significant downregulation in AML cell lines. Knockdown of ANP32B promoted AML cell apoptosis and inhibited cell growth. Overall, our data indicated that MZ1 had broad anti-cancer effects on AML cell lines with different molecular lesions, which might be exploited as a novel therapeutic strategy for AML patients.
Collapse
Affiliation(s)
- Li Ma
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yongping Zhang
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xinran Chu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Tian
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhiheng Li
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xu Sang
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Kunlong Zhang
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Lihui Lu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaomei Wan
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Yanling Chen
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Juanjuan Yu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Shuiyan Wu
- Intensive Care Unit, Children’s Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
- CONTACT Shaoyan HuChildren’s Hospital of Soochow University, Suzhou, 215003, China
| |
Collapse
|
8
|
Sanada A, Yamada T, Hasegawa S, Ishii Y, Hasebe Y, Iwata Y, Arima M, Sugiura K, Akamatsu H. Enhanced Type I Collagen Synthesis in Fibroblasts by Dermal Stem/Progenitor Cell-Derived Exosomes. Biol Pharm Bull 2022; 45:872-880. [PMID: 35786595 DOI: 10.1248/bpb.b21-01084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The self-duplication and differentiation of dermal stem cells are essential for the maintenance of dermal homeostasis. Fibroblasts are derived from dermal stem cells and produce components of connective tissue, such as collagen, which maintains the structure of the dermis. Cell-cell communication is required for the maintenance of tissue homeostasis, and the role of exosomes in this process has recently been attracting increasing attention. Dermal stem cells and fibroblasts have been suggested to communicate with each other in the dermis; however, the underlying mechanisms remain unclear. In the present study, we investigated communication between dermal stem/progenitor cells (DSPCs) and fibroblasts via exosomes. We collected exosomes from DSPCs and added them to a culture of fibroblasts. With the exosomes, COL1A1 mRNA expression was up-regulated and dependent on the Akt phosphorylation. Exosomes collected from fibroblasts did not show the significant up-regulation of COL1A1 mRNA expression. We then performed a proteomic analysis and detected 74 proteins specific to DSPC-derived exosomes, including ANP32B related to Akt phosphorylation. We added exosomes in which ANP32B was knocked down to a fibroblast culture and observed neither Akt phosphorylation nor enhanced type I collagen synthesis. Additionally, an immunohistochemical analysis of skin tissues revealed that ANP32B expression levels in CD271-positive dermal stem cells were lower in old subjects than in young subjects. These results suggest that DSPCs promote type I collagen synthesis in fibroblasts by secreting exosomes containing ANP32B, which may contribute to the maintenance of skin homeostasis; however, this function of DSPCs may decrease with aging.
Collapse
Affiliation(s)
- Ayumi Sanada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine.,Department of Dermatology, Fujita Health University School of Medicine
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Department of Dermatology, Fujita Health University School of Medicine.,Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine
| | - Yoshie Ishii
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine
| |
Collapse
|
9
|
ANP32 Family as Diagnostic, Prognostic, and Therapeutic Biomarker Related to Immune Infiltrates in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:5791471. [PMID: 35280441 PMCID: PMC8913125 DOI: 10.1155/2022/5791471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, with high incidence and mortality rate. There is an urgent need to identify effective diagnostic and prognostic biomarkers for HCC. Members of the acidic leucine-rich nucleophosphoprotein 32 (ANP32) family, which mainly includes ANP32A, ANP32B, and ANP32E, are abnormally expressed and have prognostic value in certain cancers. However, the diagnostic, prognostic, and therapeutic value of ANP32 family members in HCC has not yet been fully studied. In this study, we identified the diagnostic and prognostic value of ANP32 family members in HCC. Transcriptome data from public databases, such as the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, suggested that ANP32A, ANP32B, and ANP32E were upregulated in HCC tissues, and high expression of ANP32 family members was associated with advanced pathologic stage and histologic grade. Our immunohistochemistry and western blot results further verified the differential expression of ANP32 family members. ANP32A, ANP32B, and ANP32E had an outstanding diagnostic potential. Survival analysis of HCC patients in TCGA databases demonstrated that ANP32A, ANP32B, and ANP32E were associated with poor overall survival (OS) and disease-specific survival (DSS). Univariate and multivariate Cox analyses suggested the capability of ANP32B and ANP32E to independently predict the OS and DSS of HCC patients. Gene set enrichment analysis (GSEA) showed that ANP32 family members were associated with immune response, epidermal cell differentiation, and stem cell proliferation. Expression of ANP32 family members was associated with immune cell infiltration and immune status in the tumor microenvironment of HCC, and patients with high ANP32 family expression had poor sensitivity to immunotherapy. Finally, we identified potential chemotherapy drugs for HCC patients with high ANP32 family expression by CellMiner database. This study suggested the diagnostic, prognostic, and therapeutic roles of the ANP32 family in HCC patients, providing potential therapeutic targets for HCC.
Collapse
|
10
|
Khatun A, Hasan M, Abd El-Emam MM, Fukuta T, Mimura M, Tashima R, Yoneda S, Yoshimi S, Kogure K. Effective Anticancer Therapy by Combination of Nanoparticles Encapsulating Chemotherapeutic Agents and Weak Electric Current. Biol Pharm Bull 2022; 45:194-199. [PMID: 35110506 DOI: 10.1248/bpb.b21-00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Delivery of medicines using nanoparticles via the enhanced permeability and retention (EPR) effect is a common strategy for anticancer chemotherapy. However, the extensive heterogeneity of tumors affects the applicability of the EPR effect, which needs to overcome for effective anticancer therapy. Previously, we succeeded in the noninvasive transdermal delivery of nanoparticles by weak electric current (WEC) and confirmed that WEC regulates the intercellular junctions in the skin by activating cell signaling pathways (J. Biol. Chem., 289, 2014, Hama et al.). In this study, we applied WEC to tumors and investigated the EPR effect with polyethylene glycol (PEG)-modified doxorubicin (DOX) encapsulated nanoparticles (DOX-NP) administered via intravenous injection into melanoma-bearing mice. The application of WEC resulted in a 2.3-fold higher intratumor accumulation of nanoparticles. WEC decreased the amount of connexin 43 in tumors while increasing its phosphorylation; therefore, the enhancing of intratumor delivery of DOX-NP is likely due to the opening of gap junctions. Furthermore, WEC combined with DOX-NP induced a significant suppression of tumor growth, which was stronger than with DOX-NP alone. In addition, WEC alone showed tumor growth inhibition, although it was not significant compared with non-treated group. These results are the first to demonstrate that effective anticancer therapy by combination of nanoparticles encapsulating chemotherapeutic agents and WEC.
Collapse
Affiliation(s)
- Anowara Khatun
- Graduate School of Biomedical Sciences, Tokushima University
| | - Mahadi Hasan
- Graduate School of Biomedical Sciences, Tokushima University.,Tokyo Biochemical Research Foundation
| | - Mahran Mohamed Abd El-Emam
- Graduate School of Pharmaceutical Sciences, Tokushima University.,Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University
| | - Tatsuya Fukuta
- Graduate School of Biomedical Sciences, Tokushima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Miyuki Mimura
- Faculty of Pharmaceutical Sciences, Tokushima University
| | - Riho Tashima
- Faculty of Pharmaceutical Sciences, Tokushima University
| | - Shintaro Yoneda
- Graduate School of Pharmaceutical Sciences, Tokushima University
| | | | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
11
|
Shimada R, Koike H, Hirano T, Kato Y, Saga Y. NANOS2 suppresses the cell cycle by repressing mTORC1 activators in embryonic male germ cells. iScience 2021; 24:102890. [PMID: 34401671 PMCID: PMC8350546 DOI: 10.1016/j.isci.2021.102890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
During murine germ cell development, male germ cells enter the mitotically arrested G0 stage, which is an initial step of sexually dimorphic differentiation. The male-specific RNA-binding protein NANOS2 has a key role in suppressing the cell cycle in germ cells. However, the detailed mechanism of how NANOS2 regulates the cell cycle remains unclear. Using single-cell RNA sequencing (scRNA-seq), we extracted the cell cycle state of each germ cell in wild-type and Nanos2-KO testes and revealed that Nanos2 expression starts in mitotic cells and induces mitotic arrest. We identified Rheb, a regulator of mTORC1, and Ptma as possible targets of NANOS2. We propose that repression of the cell cycle is a primary function of NANOS2 and that it is mediated via the suppression of mTORC1 activity through the repression of Rheb in a post-transcriptional manner.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroko Koike
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takamasa Hirano
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yuzuru Kato
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yumiko Saga
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Division for the Development of Genetically Engineered Mouse Resources, Genetic Resource Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
ANP32B-mediated repression of p53 contributes to maintenance of normal and CML stem cells. Blood 2021; 138:2485-2498. [PMID: 34359074 DOI: 10.1182/blood.2020010400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Proper regulation of p53 signaling is critical for the maintenance of hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs). The hematopoietic cell-specific mechanisms regulating p53 activity remain largely unknown. Here, we demonstrate that conditional deletion of acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) in hematopoietic cells impairs repopulation capacity and post-injury regeneration of HSCs. Mechanistically, ANP32B forms a repressive complex with and thus inhibits the transcriptional activity of p53 in hematopoietic cells, and p53 deletion rescues the functional defect in Anp32b-deficient HSCs. Of great interest, ANP32B is highly expressed in leukemic cells from chronic myelogenous leukemia (CML) patients. Anp32b deletion enhances p53 transcriptional activity to impair LSCs function in a murine CML model, and exhibits synergistic therapeutic effects with tyrosine kinase inhibitors in inhibiting CML propagation. In summary, our findings provide a novel strategy to enhance p53 activity in LSCs by inhibiting ANP32B, and identify ANP32B as a potential therapeutic target in treating CML.
Collapse
|
13
|
Hupfer A, Brichkina A, Adhikary T, Lauth M. The mammalian Hedgehog pathway is modulated by ANP32 proteins. Biochem Biophys Res Commun 2021; 553:78-84. [PMID: 33761414 DOI: 10.1016/j.bbrc.2021.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Transcriptional profiling has so far delineated four major MB subgroups of which one is driven by uncontrolled Hedgehog (Hh) signaling (SHH-MB). This pathway is amenable to drug targeting, yet clinically approved compounds exclusively target the transmembrane component Smoothened (SMO). Unfortunately, drug resistance against SMO inhibitors is encountered frequently, making the identification of novel Hh pathway components mandatory, which could serve as novel drug targets in the future. Here, we have used MB as a tool to delineate novel modulators of Hh signaling and have identified the Acidic Nuclear Phosphoprotein 32 (ANP32) family of proteins as novel regulators. The expression of all three family members (ANP32A, ANP32B, ANP32E) is increased in Hh-induced MB and their expression level is negatively associated with overall survival in SHH-MB patients. Mechanistically, we could find that ANP32 proteins function as positive modulators of mammalian Hh signaling upstream of GLI transcription factors. These findings add hitherto unknown regulators to the mammalian Hh signaling cascade and might spur future translational efforts to combat Hh-driven malignancies.
Collapse
Affiliation(s)
- Anna Hupfer
- Philipps University Marburg, Center for Tumor- and Immune Biology (ZTI), Clinics of Gastroenterology, Endocrinology, Metabolism and Infectiology, Germany
| | - Anna Brichkina
- Philipps University Marburg, Center for Tumor- and Immune Biology (ZTI), Clinics of Gastroenterology, Endocrinology, Metabolism and Infectiology, Germany
| | - Till Adhikary
- Philipps University Marburg, Center for Tumor Biology and Immunology (ZTI), Institute of Medical Bioinformatics and Biostatistics, Institute of Molecular Biology and Tumor Research, Germany
| | - Matthias Lauth
- Philipps University Marburg, Center for Tumor- and Immune Biology (ZTI), Clinics of Gastroenterology, Endocrinology, Metabolism and Infectiology, Germany.
| |
Collapse
|
14
|
Beck S, Zickler M, Pinho Dos Reis V, Günther T, Grundhoff A, Reilly PT, Mak TW, Stanelle-Bertram S, Gabriel G. ANP32B Deficiency Protects Mice From Lethal Influenza A Virus Challenge by Dampening the Host Immune Response. Front Immunol 2020; 11:450. [PMID: 32231671 PMCID: PMC7083139 DOI: 10.3389/fimmu.2020.00450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 01/13/2023] Open
Abstract
Deciphering complex virus-host interactions is crucial for pandemic preparedness. In this study, we assessed the impact of recently postulated cellular factors ANP32A and ANP32B of influenza A virus (IAV) species specificity on viral pathogenesis in a genetically modified mouse model. Infection of ANP32A−/− and ANP32A+/+ mice with a seasonal H3N2 IAV or a highly pathogenic H5N1 human isolate did not result in any significant differences in virus tropism, innate immune response or disease outcome. However, infection of ANP32B−/− mice with H3N2 or H5N1 IAV revealed significantly reduced virus loads, inflammatory cytokine response and reduced pathogenicity compared to ANP32B+/+ mice. Genome-wide transcriptome analyses in ANP32B+/+ and ANP32B−/− mice further uncovered novel immune-regulatory pathways that correlate with reduced pathogenicity in the absence of ANP32B. These data show that ANP32B but not ANP32A promotes IAV pathogenesis in mice. Moreover, ANP32B might possess a yet unknown immune-modulatory function during IAV infection. Targeting ANP32B or its regulated pathways might therefore pose a new strategy to combat severe influenza.
Collapse
Affiliation(s)
- Sebastian Beck
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martin Zickler
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Vinícius Pinho Dos Reis
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Günther
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Patrick T Reilly
- Institut Clinique de la Souris, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Tak W Mak
- University Health Network, Toronto, ON, Canada
| | - Stephanie Stanelle-Bertram
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gülşah Gabriel
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Institute for Virology, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
15
|
Maniero MÁ, Wuilloud RG, Callegari EA, Smichowski PN, Fanelli MA. Metalloproteomics analysis in human mammary cell lines treated with inorganic mercury. J Trace Elem Med Biol 2020; 58:126441. [PMID: 31812871 PMCID: PMC8061084 DOI: 10.1016/j.jtemb.2019.126441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022]
Abstract
The interest in inorganic Hg toxicity and carcinogenicity has been pointed to target organs such as kidney, brain or placenta, but only a few studies have focused on the mammary gland. In this work, analytical combination techniques (SDS-PAGE followed by CV-AFS, and nanoUPLC-ESI-MS/MS) were used to determine proteins that could bind Hg in three human mammary cell lines. Two of them were tumorigenic (MCF-7 and MDA-MB-231) and the other one was the non-tumorigenic cell line (MCF-10A). There are no studies that provide this kind of information in breast cell lines with IHg treatment. Previously, we described the viability, uptake and the subcellular distribution of Hg in human breast cells and analysis of RNA-seq about the genes that encode proteins which are related to cytotoxicity of Hg. This work provides important protein candidates for further studies of Hg toxicity in the mammary gland, thus expanding our understanding of how environmental contaminants might affect tumor progression and contribute with future therapeutic methods.
Collapse
Affiliation(s)
- Mariángeles Ávila Maniero
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Padre J. Contreras 1300, 5500, Mendoza, Argentina; Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Lateral Sur del Acceso Este 2245, M5519, Guaymallén, Mendoza, Argentina
| | - Rodolfo G Wuilloud
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Padre J. Contreras 1300, 5500, Mendoza, Argentina.
| | - Eduardo A Callegari
- BRIN-USDS SOM Proteomics Facility, University of South Dakota, 414 E Clark St, Vermillion, SD, 57069, USA
| | - Patricia N Smichowski
- Comisión Nacional de Energía Atómica, Gerencia Química, CONICET, Av. Gral. Paz 1499, B1650 Villa Maipú, Buenos Aires, Argentina
| | - Mariel A Fanelli
- Laboratorio de Oncología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-CONICET), Av. Dr. Adrian Ruiz Leal, Mendoza, Argentina
| |
Collapse
|
16
|
Identifying Methylation Pattern and Genes Associated with Breast Cancer Subtypes. Int J Mol Sci 2019; 20:ijms20174269. [PMID: 31480430 PMCID: PMC6747348 DOI: 10.3390/ijms20174269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is regarded worldwide as a severe human disease. Various genetic variations, including hereditary and somatic mutations, contribute to the initiation and progression of this disease. The diagnostic parameters of breast cancer are not limited to the conventional protein content and can include newly discovered genetic variants and even genetic modification patterns such as methylation and microRNA. In addition, breast cancer detection extends to detailed breast cancer stratifications to provide subtype-specific indications for further personalized treatment. One genome-wide expression–methylation quantitative trait loci analysis confirmed that different breast cancer subtypes have various methylation patterns. However, recognizing clinically applied (methylation) biomarkers is difficult due to the large number of differentially methylated genes. In this study, we attempted to re-screen a small group of functional biomarkers for the identification and distinction of different breast cancer subtypes with advanced machine learning methods. The findings may contribute to biomarker identification for different breast cancer subtypes and provide a new perspective for differential pathogenesis in breast cancer subtypes.
Collapse
|
17
|
Snezhkina AV, Lukyanova EN, Fedorova MS, Kalinin DV, Melnikova NV, Stepanov OA, Kiseleva MV, Kaprin AD, Pudova EA, Kudryavtseva AV. Novel Genes Associated with the Development of Carotid Paragangliomas. Mol Biol 2019. [DOI: 10.1134/s0026893319040137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Stoichiogenomics reveal oxygen usage bias, key proteins and pathways associated with stomach cancer. Sci Rep 2019; 9:11344. [PMID: 31383879 PMCID: PMC6683168 DOI: 10.1038/s41598-019-47533-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Stomach cancer involves hypoxia-specific microenvironments. Stoichiogenomics explores environmental resource limitation on biological macromolecules in terms of element usages. However, the patterns of oxygen usage by proteins and the ways that proteins adapt to a cancer hypoxia microenvironment are still unknown. Here we compared the oxygen and carbon contents ([C]) between proteomes of stomach cancer (hypoxia) and two stomach glandular cells (normal). Key proteins, genome locations, pathways, and functional dissection associated with stomach cancer were also studied. An association of oxygen content ([O]) and protein expression level was revealed in stomach cancer and stomach glandular cells. For differentially expressed proteins (DEPs), oxygen contents in the up regulated proteins were3.2%higherthan that in the down regulated proteins in stomach cancer. A total of 1,062 DEPs were identified; interestingly none of these proteins were coded on Y chromosome. The up regulated proteins were significantly enriched in pathways including regulation of actin cytoskeleton, cardiac muscle contraction, pathway of progesterone-mediated oocyte maturation, etc. Functional dissection of the up regulated proteins with high oxygen contents showed that most of them were cytoskeleton, cytoskeleton associated proteins, cyclins and signaling proteins in cell cycle progression. Element signature of resource limitation could not be detected in stomach cancer for oxygen, just as what happened in plants and microbes. Unsaved use of oxygen by the highly expressed proteins was adapted to the rapid growth and fast division of the stomach cancer cells. In addition, oxygen usage bias, key proteins and pathways identified in this paper laid a foundation for application of stoichiogenomics in precision medicine.
Collapse
|
19
|
The acidic protein rich in leucines Anp32b is an immunomodulator of inflammation in mice. Sci Rep 2019; 9:4853. [PMID: 30890743 PMCID: PMC6424966 DOI: 10.1038/s41598-019-41269-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
ANP32B belongs to a family of evolutionary conserved acidic nuclear phosphoproteins (ANP32A-H). Family members have been described as multifunctional regulatory proteins and proto-oncogenic factors affecting embryonic development, cell proliferation, apoptosis, and gene expression at various levels. Involvement of ANP32B in multiple processes of cellular life is reflected by the previous finding that systemic gene knockout (KO) of Anp32b leads to embryonic lethality in mice. Here, we demonstrate that a conditional KO of Anp32b is well tolerated in adult animals. However, after immune activation splenocytes isolated from Anp32b KO mice showed a strong commitment towards Th17 immune responses. Therefore, we further analyzed the respective animals in vivo using an experimental autoimmune encephalomyelitis (EAE) model. Interestingly, an exacerbated clinical score was observed in the Anp32b KO mice. This was accompanied by the finding that animal-derived T lymphocytes were in a more activated state, and RNA sequencing analyses revealed hyperactivation of several T lymphocyte-associated immune modulatory pathways, attended by significant upregulation of Tfh cell numbers that altogether might explain the observed strong autoreactive processes. Therefore, Anp32b appears to fulfill a role in regulating adequate adaptive immune responses and, hence, may be involved in dysregulation of pathways leading to autoimmune disorders and/or immune deficiencies.
Collapse
|
20
|
Peng H, Zeng X, Zhou Y, Zhang D, Nussinov R, Cheng F. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications. PLoS Comput Biol 2019; 15:e1006772. [PMID: 30779739 PMCID: PMC6396937 DOI: 10.1371/journal.pcbi.1006772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/01/2019] [Accepted: 01/09/2019] [Indexed: 11/28/2022] Open
Abstract
Recent advances in next-generation sequencing and computational technologies have enabled routine analysis of large-scale single-cell ribonucleic acid sequencing (scRNA-seq) data. However, scRNA-seq technologies have suffered from several technical challenges, including low mean expression levels in most genes and higher frequencies of missing data than bulk population sequencing technologies. Identifying functional gene sets and their regulatory networks that link specific cell types to human diseases and therapeutics from scRNA-seq profiles are daunting tasks. In this study, we developed a Component Overlapping Attribute Clustering (COAC) algorithm to perform the localized (cell subpopulation) gene co-expression network analysis from large-scale scRNA-seq profiles. Gene subnetworks that represent specific gene co-expression patterns are inferred from the components of a decomposed matrix of scRNA-seq profiles. We showed that single-cell gene subnetworks identified by COAC from multiple time points within cell phases can be used for cell type identification with high accuracy (83%). In addition, COAC-inferred subnetworks from melanoma patients' scRNA-seq profiles are highly correlated with survival rate from The Cancer Genome Atlas (TCGA). Moreover, the localized gene subnetworks identified by COAC from individual patients' scRNA-seq data can be used as pharmacogenomics biomarkers to predict drug responses (The area under the receiver operating characteristic curves ranges from 0.728 to 0.783) in cancer cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) database. In summary, COAC offers a powerful tool to identify potential network-based diagnostic and pharmacogenomics biomarkers from large-scale scRNA-seq profiles. COAC is freely available at https://github.com/ChengF-Lab/COAC.
Collapse
Affiliation(s)
- He Peng
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | - Xiangxiang Zeng
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | - Yadi Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States of America
| | - Defu Zhang
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States of America
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| |
Collapse
|
21
|
Dickinson A, Saraswat M, Mäkitie A, Silén R, Hagström J, Haglund C, Joenväärä S, Silén S. Label-free tissue proteomics can classify oral squamous cell carcinoma from healthy tissue in a stage-specific manner. Oral Oncol 2018; 86:206-215. [PMID: 30409303 DOI: 10.1016/j.oraloncology.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES No prognostic or predictive biomarkers for oral squamous cell carcinoma (OSCC) exist. We aimed to discover novel proteins, altered in OSCC, to be further investigated as potential biomarkers, and to improve understanding about pathways involved in OSCC. MATERIALS AND METHODS Proteomic signatures of seven paired healthy and OSCC tissue samples were identified using ultra-definition quantitative mass spectrometry, then analysed and compared using Anova, principal component analysis, hierarchical clustering and OPLS-DA modelling. A selection of significant proteins that were also altered in the serum from a previous study (PMID: 28632724) were validated immunohistochemically on an independent cohort (n = 66) to confirm immunopositivity and location within tumour tissue. Ingenuity Pathways Analysis was employed to identify altered pathways. RESULTS Of 829 proteins quantified, 257 were significant and 72 were able to classify healthy vs OSCC using OPLS-DA modelling. We identified 19 proteins not previously known to be upregulated in OSCC, including prosaposin and alpha-taxilin. KIAA1217 and NDRG1 were upregulated in stage IVa compared with stage I tumours. Altered pathways included calcium signalling, cellular movement, haematological system development and function, and immune cell trafficking, and involved NF-kB and MAPK networks. CONCLUSIONS We found a set of proteins reliably separating OSCC tumour from healthy tissue, and multiple proteins differing between stage I and stage IVa OSCC. These potential biomarkers can be studied and validated in larger cohorts.
Collapse
Affiliation(s)
- Amy Dickinson
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Mayank Saraswat
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland; HUSLAB, Helsinki University Hospital, Helsinki 00290, Finland.
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Robert Silén
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland.
| | - Jaana Hagström
- HUSLAB, Helsinki University Hospital, Helsinki 00290, Finland; Department of Pathology, University of Helsinki, Finland.
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki, University Hospital, Helsinki, Finland; Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland; HUSLAB, Helsinki University Hospital, Helsinki 00290, Finland.
| | - Suvi Silén
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Folgiero V, Sorino C, Pallocca M, De Nicola F, Goeman F, Bertaina V, Strocchio L, Romania P, Pitisci A, Iezzi S, Catena V, Bruno T, Strimpakos G, Passananti C, Mattei E, Blandino G, Locatelli F, Fanciulli M. Che-1 is targeted by c-Myc to sustain proliferation in pre-B-cell acute lymphoblastic leukemia. EMBO Rep 2018; 19:embr.201744871. [PMID: 29367285 DOI: 10.15252/embr.201744871] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Despite progress in treating B-cell precursor acute lymphoblastic leukemia (BCP-ALL), disease recurrence remains the main cause of treatment failure. New strategies to improve therapeutic outcomes are needed, particularly in high-risk relapsed patients. Che-1/AATF (Che-1) is an RNA polymerase II-binding protein involved in proliferation and tumor survival, but its role in hematological malignancies has not been clarified. Here, we show that Che-1 is overexpressed in pediatric BCP-ALL during disease onset and at relapse, and that its depletion inhibits the proliferation of BCP-ALL cells. Furthermore, we report that c-Myc regulates Che-1 expression by direct binding to its promoter and describe a strict correlation between Che-1 expression and c-Myc expression. RNA-seq analyses upon Che-1 or c-Myc depletion reveal a strong overlap of the respective controlled pathways. Genomewide ChIP-seq experiments suggest that Che-1 acts as a downstream effector of c-Myc. These results identify the pivotal role of Che-1 in the control of BCP-ALL proliferation and present the protein as a possible therapeutic target in children with relapsed BCP-ALL.
Collapse
Affiliation(s)
- Valentina Folgiero
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Sorino
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca De Nicola
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- Oncogenomic and Epigenetic, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Bertaina
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luisa Strocchio
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Romania
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Pitisci
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Iezzi
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria Catena
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Tiziana Bruno
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Georgios Strimpakos
- CNR-Institute of Cell Biology and Neurobiology CNR, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Elisabetta Mattei
- CNR-Institute of Cell Biology and Neurobiology CNR, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
23
|
Ohno Y, Koizumi M, Nakayama H, Watanabe T, Hirooka M, Tokumoto Y, Kuroda T, Abe M, Fukuda S, Higashiyama S, Kumagi T, Hiasa Y. Downregulation of ANP32B exerts anti-apoptotic effects in hepatocellular carcinoma. PLoS One 2017; 12:e0177343. [PMID: 28486557 PMCID: PMC5423643 DOI: 10.1371/journal.pone.0177343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/26/2017] [Indexed: 01/17/2023] Open
Abstract
The acidic (leucine-rich) nuclear phosphoprotein 32 family member B (ANP32B), a highly conserved member of the acidic nuclear phosphoprotein 32 (ANP32) family, is critical for the development of normal tissue. However, its role in the development of hepatocellular carcinoma (HCC) is controversial. In this study, we elucidated the role of ANP32B in HCC cell lines and tissues. ANP32B expression in HCC cell lines was modulated using siRNA and ANP32B expression plasmids and lentiviruses. The levels of apoptosis-related proteins were analyzed by real-time RT-PCR and Western blotting. The expression of ANP32B in tissues from patients with HCC was investigated using real-time RT-PCR and immunohistochemistry. ANP32B knockdown by siRNA altered the expression of apoptosis-related proteins in HCC cell lines and reduced the expression of cleaved forms of caspase 3 and caspase 9, but not that of caspase 8, in HCC cells cultured with the pro-apoptotic agent staurosporine. Phosphorylated Bad was upregulated, whereas Bak was downregulated. Moreover, ABT-737, which binds to and inhibits anti-apoptotic proteins of the Bcl-2 family, rendered HCC cells resistant to apoptosis induced by ANP32B silencing. Conversely, ANP32B overexpression decreased Bad phosphorylation and upregulated Bak, but did not induce apoptosis because Bax expression was downregulated. In tissues from patients with HCC, a low tumor/non-tumor ratio of ANP32B mRNA expression was related to advanced UICC stage (p = 0.032). TUNEL-positive cells were observed in parallel with ANP32B expression in HCC tissues. ANP32B modulates Bad phosphorylation as well as Bak and Bax expression, resulting in regulation of apoptosis in HCC. These findings indicate the potential value of ANP32B as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Mitsuhito Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hironao Nakayama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Taira Kuroda
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shinji Fukuda
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Teru Kumagi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| |
Collapse
|