1
|
Yu X, Wu G, Cai P, Ding Y, Cui J, Wu J, Shen Y, Song J, Yuan Z, El-Newehy M, Abdulhameed MM, Chen H, Mo X, Sun B, Yu Y. Carbon Fiber-Mediated Electrospinning Scaffolds Can Conduct Electricity for Repairing Defective Tendon. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52104-52115. [PMID: 39288100 DOI: 10.1021/acsami.4c12245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Partial or complete rupture of the tendon can damage the collagen structure, resulting in the disruption of the electrical signal pathway. It is a great challenge to reconstruct the original electrical signal pathway of the tendon and promote the regeneration and functional recovery of defective tendon. In this study, carbon fiber-mediated electrospinning scaffolds were fabricated by wrapping conductive, high-strength, loose single-bundle carbon fibers with nanofiber membranes. Due to the presence of nanofiber membranes, the maximum tensile force of the scaffolds was 2.4 times higher than that of carbon fibers, while providing excellent temporal and spatial prerequisites for tenocytes to adapt to electrical stimulation to accelerate proliferation and expression. The diameter of the carbon fiber monofilaments used in this study was 5.07 ± 1.20 μm, which matched the diameter of tendon collagen, allowing for quickly establishing the connection between the tendon tissue and the scaffold, and better promoting the recovery of the electrical signal pathway. In a rabbit Achilles tendon defect repair model, the carbon fiber-mediated electrospinning scaffold was almost filled with collagen fibers compared to a nonconductive polyethylene glycol terephthalate scaffold. Transcriptome sequencing revealed that fibromodulin and tenomodulin expression were upregulated, and their related proteoglycans and glycosaminoglycan binding proteins pathways were enhanced, which could regulate the TGF-β signaling pathway and optimize the extracellular matrix assembly, thus promoting tendon repair. Therefore, the scaffold in this study makes up for the shortage of conductive scaffolds for repairing tendon defects, revealing the potential impact of conductivity on the signaling pathway of tendon repair and providing a new approach for future clinical studies.
Collapse
Affiliation(s)
- Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Genbin Wu
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Pengfei Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yangfan Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jiahui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Huifang Chen
- College of Materials Science and Engineering and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yinxian Yu
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
2
|
Matsubara J, Kumagai K, Ishikawa K, Choe H, Ike H, Kobayashi N, Inaba Y. Increased vascular endothelial growth factor expression is associated with cruciate ligament degeneration in patients with osteoarthritis of the knee. BMC Musculoskelet Disord 2024; 25:759. [PMID: 39354436 PMCID: PMC11445985 DOI: 10.1186/s12891-024-07886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND This study aimed to investigate the expression of vascular endothelial growth factor (VEGF) in cruciate ligaments from patients with osteoarthritis (OA). It was hypothesized that the expression level of VEGF is associated with the extent of degeneration of the cruciate ligaments. METHODS Remnants of anterior cruciate ligaments (ACLs) from patients with acute ACL injury due to trauma, and ACLs and posterior cruciate ligaments (PCLs) from patients with primary OA were assessed histologically. Samples were immunohistochemically stained with VEGF and tenomodulin, and immunopositive cells were quantitatively assessed by the histological grades of ligament degeneration. RESULTS Histological analysis showed significant degeneration of the ACLs from OA patients compared with trauma patients, with increased expression of VEGF correlating with higher grades of degeneration. Conversely, tenomodulin expression was lower in more degenerated cruciate ligaments. The percentage of VEGF-positive cells was correlated inversely with that of tenomodulin-positive cells. CONCLUSIONS Increased VEGF expression is associated with degeneration of cruciate ligaments in patients with osteoarthritis of the knee.
Collapse
Affiliation(s)
- Joji Matsubara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ken Kumagai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Kimi Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hyonmin Choe
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiroyuki Ike
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naomi Kobayashi
- Department of Orthopaedic Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
3
|
Darrieutort-Laffite C, Blanchard F, Soslowsky LJ, Le Goff B. Biology and physiology of tendon healing. Joint Bone Spine 2024; 91:105696. [PMID: 38307405 DOI: 10.1016/j.jbspin.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Tendon disorders affect people of all ages, from elite and recreational athletes and workers to elderly patients. After an acute injury, 3 successive phases are described to achieve healing: an inflammatory phase followed by a proliferative phase, and finally by a remodeling phase. Despite this process, healed tendon fails to recover its original mechanical properties. In this review, we proposed to describe the key factors involved in the process such as cells, transcription factors, extracellular matrix components, cytokines and growth factors and vascularization among others. A better understanding of this healing process could help provide new therapeutic approaches to improve patients' recovery while tendon disorders management remains a medical challenge.
Collapse
Affiliation(s)
- Christelle Darrieutort-Laffite
- Service de rhumatologie, CHU de Nantes, Nantes, France; Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France.
| | - Frédéric Blanchard
- Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoit Le Goff
- Service de rhumatologie, CHU de Nantes, Nantes, France; Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France
| |
Collapse
|
4
|
Haidar-Montes AA, Mauro A, El Khatib M, Prencipe G, Pierdomenico L, Tosi U, Wouters G, Cerveró-Varona A, Berardinelli P, Russo V, Barboni B. Mechanobiological Strategies to Enhance Ovine ( Ovis aries) Adipose-Derived Stem Cells Tendon Plasticity for Regenerative Medicine and Tissue Engineering Applications. Animals (Basel) 2024; 14:2233. [PMID: 39123758 PMCID: PMC11310997 DOI: 10.3390/ani14152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) hold promise for tendon repair, even if their tenogenic plasticity and underlying mechanisms remain only partially understood, particularly in cells derived from the ovine animal model. This study aimed to characterize oADSCs during in vitro expansion to validate their phenotypic properties pre-transplantation. Moreover, their tenogenic potential was assessed using two in vitro-validated approaches: (1) teno-inductive conditioned media (CM) derived from a co-culture between ovine amniotic stem cells and fetal tendon explants, and (2) short- (48 h) and long-term (14 days) seeding on highly aligned PLGA (ha-PLGA) electrospun scaffold. Our findings indicate that oADSCs can be expanded without senescence and can maintain the expression of stemness (Sox2, Oct4, Nanog) and mesenchymal (CD29, CD166, CD44, CD90) markers while remaining negative for hematopoietic (CD31, CD45) and MHC-II antigens. Of note, oADSCs' tendon differentiation potential greatly depended on the in vitro strategy. oADSCs exposed to CM significantly upregulated tendon-related genes (COL1, TNMD, THBS4) but failed to accumulate TNMD protein at 14 days of culture. Conversely, oADSCs seeded on ha-PLGA fleeces quickly upregulated the tendon-related genes (48 h) and in 14 days accumulated high levels of the TNMD protein into the cytoplasm of ADSCs, displaying a tenocyte-like morphology. This mechano-sensing cellular response involved a complete SOX9 downregulation accompanied by YAP activation, highlighting the efficacy of biophysical stimuli in promoting tenogenic differentiation. These findings underscore oADSCs' long-term self-renewal and tendon differentiative potential, thus opening their use in a preclinical setting to develop innovative stem cell-based and tissue engineering protocols for tendon regeneration, applied to the veterinary field.
Collapse
Affiliation(s)
- Arlette A. Haidar-Montes
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Laura Pierdomenico
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Guy Wouters
- FAT STEM Company, Erembodegem, 9300 Aalst, Belgium;
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| |
Collapse
|
5
|
Rajalekshmi R, Agrawal DK. Understanding Fibrous Tissue in the Effective Healing of Rotator Cuff Injury. JOURNAL OF SURGERY AND RESEARCH 2024; 7:215-228. [PMID: 38872898 PMCID: PMC11174978 DOI: 10.26502/jsr.10020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The rotator cuff is a crucial group of muscles and tendons in the shoulder complex that plays a significant role in the stabilization of the glenohumeral joint and enabling a wide range of motion. Rotator cuff tendon tears can occur due to sudden injuries or degenerative processes that develop gradually over time, whether they are partial or full thickness. These injuries are common causes of shoulder pain and functional impairment, and their complex nature highlights the essential role of the rotator cuff in shoulder function. Scar formation is a crucial aspect of the healing process initiated following a rotator cuff tendon tear, but excessive fibrous tissue development can potentially lead to stiffness, discomfort, and movement limitations. Age is a critical risk factor, with the prevalence of these tears increasing among older individuals. This comprehensive review aims to delve deeper into the anatomy and injury mechanisms of the rotator cuff. Furthermore, it will inspect the signaling pathways involved in fibrous tissue development, evaluate the various factors affecting the healing environment, and discuss proactive measures aimed at reducing excessive fibrous tissue formation. Lastly, this review identifed gaps within existing knowledge to advance methods for better management of rotator cuff tendon injuries.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| | - Devendra K Agrawal
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| |
Collapse
|
6
|
Xie L, Ma C, Li X, Chen H, Han P, Lin L, Huang W, Xu M, Lu H, Du Z. Efficacy of Glycyrrhetinic Acid in the Treatment of Acne Vulgaris Based on Network Pharmacology and Experimental Validation. Molecules 2024; 29:2345. [PMID: 38792208 PMCID: PMC11123902 DOI: 10.3390/molecules29102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Glycyrrhetinic acid (GA) is a saponin compound, isolated from licorice (Glycyrrhiza glabra), which has been wildly explored for its intriguing pharmacological and medicinal effects. GA is a triterpenoid glycoside displaying an array of pharmacological and biological activities, including anti-inflammatory, anti-bacterial, antiviral and antioxidative properties. In this study, we investigated the underlying mechanisms of GA on acne vulgaris through network pharmacology and proteomics. After the intersection of the 154 drug targets and 581 disease targets, 37 therapeutic targets for GA against acne were obtained. A protein-protein interaction (PPI) network analysis highlighted TNF, IL1B, IL6, ESR1, PPARG, NFKB1, STAT3 and TLR4 as key targets of GA against acne, which is further verified by molecular docking. The experimental results showed that GA inhibited lipid synthesis in vitro and in vivo, improved the histopathological damage of skin, prevented mast cell infiltration and decreased the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6. This study indicates that GA may regulate multiple pathways to improve acne symptoms, and the beneficial effects of GA against acne vulgaris might be through the regulation of sebogenesis and inflammatory responses.
Collapse
Affiliation(s)
- Lingna Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Congwei Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Xinyu Li
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Huixiong Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Cité, 45 Rue des Saints-Pères, CEDEX 06, 75270 Paris, France
| | - Ping Han
- Foshan Allan Conney Biotechnology Co., Ltd., Foshan 528231, China; (P.H.); (L.L.)
| | - Li Lin
- Foshan Allan Conney Biotechnology Co., Ltd., Foshan 528231, China; (P.H.); (L.L.)
| | - Weiqiang Huang
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Menglu Xu
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Hailiang Lu
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
| |
Collapse
|
7
|
Sun Y, Sheng R, Cao Z, Liu C, Li J, Zhang P, Du Y, Mo Q, Yao Q, Chen J, Zhang W. Bioactive fiber-reinforced hydrogel to tailor cell microenvironment for structural and functional regeneration of myotendinous junction. SCIENCE ADVANCES 2024; 10:eadm7164. [PMID: 38657071 PMCID: PMC11042749 DOI: 10.1126/sciadv.adm7164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Myotendinous junction (MTJ) injuries are prevalent in clinical practice, yet the treatment approaches are limited to surgical suturing and conservative therapy, exhibiting a high recurrence rate. Current research on MTJ tissue engineering is scarce and lacks in vivo evaluation of repair efficacy. Here, we developed a three-dimensional-printed bioactive fiber-reinforced hydrogel containing mesenchymal stem cells (MSCs) and Klotho for structural and functional MTJ regeneration. In a rat MTJ defect model, the bioactive fiber-reinforced hydrogel promoted the structural restoration of muscle, tendon, and muscle-tendon interface and enhanced the functional recovery of injured MTJ. In vivo proteomics and in vitro cell cultures elucidated the regenerative mechanisms of the bioactive fiber-reinforced hydrogel by modulating oxidative stress and inflammation, thus engineering an optimized microenvironment to support the survival and differentiation of transplanted MSCs and maintain the functional phenotype of resident cells within MTJ tissues, including tendon/muscle cells and macrophages. This strategy provides a promising treatment for MTJ injuries.
Collapse
Affiliation(s)
- Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Chuanquan Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jiaxiang Li
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Po Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Yan Du
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
| |
Collapse
|
8
|
Russo V, Prencipe G, Mauro A, El Khatib M, Haidar-Montes AA, Cambise N, Turriani M, Stöckl J, Steinberger P, Lancia L, Schnabelrauch M, Berardinelli P, Barboni B. Assessing the functional potential of conditioned media derived from amniotic epithelial stem cells engineered on 3D biomimetic scaffolds: An in vitro model for tendon regeneration. Mater Today Bio 2024; 25:101001. [PMID: 38420144 PMCID: PMC10899023 DOI: 10.1016/j.mtbio.2024.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
Tendon diseases pose a significant challenge in regenerative medicine due to the limited healing capacity of this tissue. Successful tendon regeneration requires a combination of angiogenesis, immune response, and tenogenesis processes. An effective tendon engineering (TE) strategy must finely tune this systems' interplay toward homeostasis. This study explores in vitro the paracrine influence of amniotic epithelial stem cells (AECs) engineered on a validated 3D electrospun PLGA scaffolds on HUVECs (angiogenesis), PBMCs/Jurkat (immune response), and AECs (tenogenic stem cell activation). The results revealed the role of scaffold's topology and topography in significantly modulating the paracrine profile of the cells. In detail, AECs basal release of bioactive molecules was boosted in the cells engineered on 3D scaffolds, in particular VEGF-D, b-FGF, RANTES, and PDGF-BB (p < 0.0001 vs. CMCTR). Moreover, biological tests demonstrated 3D scaffolds' proactive role in potentiating AECs' paracrine inhibition on PBMCs proliferation (CM3Dvs. CTR, p < 0.001) and LPS-mediated Jurkat activation with respect to controls (CM3D and CM2Dvs. CTR, p < 0.01 and p < 0.05, respectively), without exerting any in vitro pro-angiogenic role in promoting HUVECs proliferation and tubule formation. Teno-inductive paracrine ability of AECs engineered on 3D scaffolds was assessed on co-cultured ones, which formed tendon-like structures. These latter demonstrated an upregulation of tendon-related genes (SCX, THBS4, COL1, and TNMD) and the expression TNMD and COL1 proteins. Overall, this research underscores the pivotal role of the 3D topology and topography of PLGA tendon mimetic scaffolds in orchestrating effective tendon regeneration through modulating cell behavior and crosstalk between engineered stem cells and different subpopulations in the damaged tendon.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Arlette A Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Nico Cambise
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
- Research & Development Department, Assut Europe S.p.A., Magliano dei Marsi, 67062 L'Aquila, Italy
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
9
|
Xuri Chen, Yang Y, Gu Y, Yi J, Yao W, Sha Z, Wu H, Zhou Y, Wu Z, Bao F, Wang J, Wang Y, Xie Y, Gao C, Heng BC, Liu H, Yin Z, Chen X, Zhou J, Ouyang H. Inhibition of PI3K/AKT signaling pathway prevents blood-induced heterotopic ossification of the injured tendon. J Orthop Translat 2024; 44:139-154. [PMID: 38328343 PMCID: PMC10847949 DOI: 10.1016/j.jot.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Objective It is a common clinical phenomenon that blood infiltrates into the injured tendon caused by sports injuries, accidental injuries, and surgery. However, the role of blood infiltration into the injured tendon has not been investigated. Methods A blood-induced rat model was established and the impact of blood infiltration on inflammation and HO of the injured tendon was assessed. Cell adhesion, viability, apoptosis, and gene expression were measured to evaluate the effect of blood treatment on tendon stem/progenitor cells (TSPCs). Then RNA-seq was used to assess transcriptomic changes in tendons in a blood infiltration environment. At last, the small molecule drug PI3K inhibitor LY294002 was used for in vivo and in vitro HO treatment. Results Blood caused acute inflammation in the short term and more severe HO in the long term. Then we found that blood treatment increased cell apoptosis and decreased cell adhesion and tenonic gene expression of TSPCs. Furthermore, blood treatment promoted osteochondrogenic differentiation of TSPCs. Next, we used RNA-seq to find that the PI3K/AKT signaling pathway was activated in blood-treated tendon tissues. By inhibiting PI3K with a small molecule drug LY294002, the expression of osteochondrogenic genes was markedly downregulated while the expression of tenonic genes was significantly upregulated. At last, we also found that LY294002 treatment significantly reduced the tendon HO in the rat blood-induced model. Conclusion Our findings indicate that the upregulated PI3K/AKT signaling pathway is implicated in the aggravation of tendon HO. Therefore, inhibitors targeting the PI3K/AKT pathway would be a promising approach to treat blood-induced tendon HO.
Collapse
Affiliation(s)
- Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Yuwei Yang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Yuqing Gu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Junzhi Yi
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Wenyu Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhuomin Sha
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Yunting Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhonglin Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Fangyuan Bao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Jiasheng Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Ying Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Yuanhao Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Chenlu Gao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Hua Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Zi Yin
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
10
|
Deng X, Li Q, Yuan H, Hu H, Fan S. Galangin Promotes Tendon Repair Mediated by Tendon-Derived Stem Cells through Activating the TGF-β1/Smad3 Signaling Pathway. Chem Pharm Bull (Tokyo) 2024; 72:669-675. [PMID: 39010213 DOI: 10.1248/cpb.c24-00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Tendon injury is a prevalent orthopedic disease that currently lacks effective treatment. Galangin (GLN) is a vital flavonoid found abundantly in galangal and is known for its natural activity. This study aimed to investigate the GLN-mediated molecular mechanism of tendon-derived stem cells (TDSCs) in tendon repair. The TDSCs were characterized using alkaline phosphatase staining, alizarin red S staining, oil red O staining, and flow cytometry. The effect of GLN treatment on collagen deposition was evaluated using Sirius red staining and quantitative (q)PCR, while a Western bot was used to assess protein levels and analyze pathways. Results showed that GLN treatment not only increased the collagen deposition but also elevated the mRNA expression and protein levels of multiple tendon markers like collagen type I alpha 1 (COL1A1), decorin (DCN) and tenomodulin (TNMD) in TDSCs. Moreover, GLN was also found to upregulate the protein levels of transforming growth factor β1 (TGF-β1) and p-Smad3 to activate the TGF-β1/Smad3 signaling pathway, while GLN mediated collagen deposition in TDSCs was reversed by LY3200882, a TGF-β receptor inhibitor. The study concluded that GLN-mediated TDSCs enhanced tendon repair by activating the TGF-β1/Smad3 signaling pathway, suggesting a novel therapeutic option in treating tendon repair.
Collapse
Affiliation(s)
- Xiongwei Deng
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Qiang Li
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Haitao Yuan
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Hejun Hu
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Shaoyong Fan
- Department of Foot and Ankle Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine
| |
Collapse
|
11
|
Ge Z, Yang M, Wei D, Wang D, Zhao R, Deng X, Tang Y, Fang Q, Xiong Z, Wang C, Wang G, Li W, Tang K. Inhibition of IKKβ via a DNA-Based In Situ Delivery System Improves Achilles Tendinopathy Healing in a Rat Model. Am J Sports Med 2023; 51:3533-3545. [PMID: 37804159 DOI: 10.1177/03635465231198501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
BACKGROUND The inhibition of IKKβ by the inhibitor 2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-piperidinyl)-3-pyridine carbonitrile (ACHP) is a promising strategy for the treatment of Achilles tendinopathy. However, the poor water solubility of ACHP severely hinders its in vivo application. Moreover, the effective local delivery of ACHP to the tendon and its therapeutic effects have not been reported. PURPOSE To investigate the therapeutic effects of IKKβ inhibition via injection of ACHP incorporated into a DNA supramolecular hydrogel in a collagenase-induced tendinopathy rat model. STUDY DESIGN Controlled laboratory study. METHODS Dendritic DNA, a Y-shaped monomer, and a crosslinking monomer were mixed with ACHP and self-assembled into an ACHP-DNA supramolecular hydrogel (ACHP-Gel). The effects of ACHP-Gel in tendon stem/progenitor cells were investigated via RNA sequencing and validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR). A total of 120 collagenase-induced rats were randomly assigned to 5 groups: blank, phosphate-buffered saline (PBS), DNA-Gel, ACHP, and ACHP-Gel. Healing outcomes were evaluated using biomechanic and histologic evaluations at 4 and 8 weeks. RESULTS ACHP-Gel enhanced the solubility of ACHP and sustained its release for ≥21 days in vivo, which significantly increased the retention time of ACHP and markedly reduced the frequency of administration. RNA sequencing and qRT-PCR showed that ACHP effectively downregulated genes related to inflammation and extracellular matrix remodeling and upregulated genes related to tenogenic differentiation. The cross-sectional area (P = .024), load to failure (P = .002), stiffness (P = .039), and elastic modulus (P = .048) significantly differed between the ACHP-Gel and PBS groups at 8 weeks. The ACHP-Gel group had better histologic scores than the ACHP group at 4 (P = .042) and 8 weeks (P = .009). Type I collagen expression (COL-I; P = .034) and the COL-I/collagen type III ratio (P = .015) increased while interleukin 6 expression decreased (P < .001) in the ACHP-Gel group compared with the ACHP group at 8 weeks. CONCLUSION DNA supramolecular hydrogel significantly enhanced the aqueous solubility of ACHP and increased its release-retention time. Injection frequency was markedly reduced. ACHP-Gel suppressed inflammation in Achilles tendinopathy and promoted tendon healing in a rat model. CLINICAL RELEVANCE ACHP-Gel injection is a promising strategy for the treatment of Achilles tendinopathy in clinical practice.
Collapse
Affiliation(s)
- Zilu Ge
- Trauma Medical Center, Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyu Yang
- Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Third Military Medical University [Army Medical University], Chongqing, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danfeng Wei
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Wang
- Trauma Medical Center, Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Renliang Zhao
- Trauma Medical Center, Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangtian Deng
- Trauma Medical Center, Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunfeng Tang
- Trauma Medical Center, Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Fang
- Trauma Medical Center, Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhencheng Xiong
- Trauma Medical Center, Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kanglai Tang
- Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Third Military Medical University [Army Medical University], Chongqing, China
- Investigation performed at Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Huang AH, Galloway JL. Current and emerging technologies for defining and validating tendon cell fate. J Orthop Res 2023; 41:2082-2092. [PMID: 37211925 DOI: 10.1002/jor.25632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tendon field has been flourishing in recent years with the advent of new tools and model systems. The recent ORS 2022 Tendon Section Conference brought together researchers from diverse disciplines and backgrounds, showcasing studies in biomechanics and tissue engineering to cell and developmental biology and using models from zebrafish and mouse to humans. This perspective aims to summarize progress in tendon research as it pertains to understanding and studying tendon cell fate. The successful integration of new technologies and approaches have the potential to further propel tendon research into a new renaissance of discovery. However, there are also limitations with the current methodologies that are important to consider when tackling research questions. Altogether, we will highlight recent advances and technologies and propose new avenues to explore tendon biology.
Collapse
Affiliation(s)
- Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Jenna L Galloway
- Department of Orthopaedic Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Kaneda G, Chan JL, Castaneda CM, Papalamprou A, Sheyn J, Shelest O, Huang D, Kluser N, Yu V, Ignacio GC, Gertych A, Yoshida R, Metzger M, Tawackoli W, Vernengo A, Sheyn D. iPSC-derived tenocytes seeded on microgrooved 3D printed scaffolds for Achilles tendon regeneration. J Orthop Res 2023; 41:2205-2220. [PMID: 36961351 PMCID: PMC10518032 DOI: 10.1002/jor.25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
Tendons and ligaments have a poor innate healing capacity, yet account for 50% of musculoskeletal injuries in the United States. Full structure and function restoration postinjury remains an unmet clinical need. This study aimed to assess the application of novel three dimensional (3D) printed scaffolds and induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) overexpressing the transcription factor Scleraxis (SCX, iMSCSCX+ ) as a new strategy for tendon defect repair. The polycaprolactone (PCL) scaffolds were fabricated by extrusion through a patterned nozzle or conventional round nozzle. Scaffolds were seeded with iMSCSCX+ and outcomes were assessed in vitro via gene expression analysis and immunofluorescence. In vivo, rat Achilles tendon defects were repaired with iMSCSCX+ -seeded microgrooved scaffolds, microgrooved scaffolds only, or suture only and assessed via gait, gene expression, biomechanical testing, histology, and immunofluorescence. iMSCSCX+ -seeded on microgrooved scaffolds showed upregulation of tendon markers and increased organization and linearity of cells compared to non-patterned scaffolds in vitro. In vivo gait analysis showed improvement in the Scaffold + iMSCSCX+ -treated group compared to the controls. Tensile testing of the tendons demonstrated improved biomechanical properties of the Scaffold + iMSCSCX+ group compared with the controls. Histology and immunofluorescence demonstrated more regular tissue formation in the Scaffold + iMSCSCX+ group. This study demonstrates the potential of 3D-printed scaffolds with cell-instructive surface topography seeded with iMSCSCX+ as an approach to tendon defect repair. Further studies of cell-scaffold constructs can potentially revolutionize tendon reconstruction by advancing the application of 3D printing-based technologies toward patient-specific therapies that improve healing and functional outcomes at both the cellular and tissue level.
Collapse
Affiliation(s)
- Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Julie L Chan
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chloe M Castaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Dave Huang
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Victoria Yu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Gian C Ignacio
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Arkadiusz Gertych
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ryu Yoshida
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Melodie Metzger
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
14
|
Ge Z, Li W, Zhao R, Xiong W, Wang D, Tang Y, Fang Q, Deng X, Zhang Z, Zhou Y, Chen X, Li Y, Lu Y, Wang C, Wang G. Programmable DNA Hydrogel Provides Suitable Microenvironment for Enhancing TSPCS Therapy in Healing of Tendinopathy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207231. [PMID: 37066733 DOI: 10.1002/smll.202207231] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Tendon stem/progenitor cells (TSPCs) therapy is a promising strategy for enhancing cell matrix and collagen synthesis, and regulating the metabolism of the tendon microenvironment during tendon injury repair. Nevertheless, the barren microenvironment and gliding shear of tendon cause insufficient nutrition supply, damage, and aggregation of injected TSPCs around tendon tissues, which severely hinders their clinical application in tendinopathy. In this study, a TSPCs delivery system is developed by encapsulating TSPCs within a DNA hydrogel (TSPCs-Gel) as the DNA hydrogel offers an excellent artificial extracellular matrix (ECM) microenvironment by providing nutrition for proliferation and protection against shear forces. This delivery method restricts TSPCs to the tendons, significantly extending their retention time. It is also found that TSPCs-Gel injections can promote the healing of rat tendinopathy in vivo, where cross-sectional area and load to failure of injured tendons in rats are significantly improved compared to the free TSPCs treatment group at 8 weeks. Furthermore, the potential healing mechanism of TSPCs-Gel is investigated by RNA-sequencing to identify a series of potential gene and signaling pathway targets for further clinical treatment strategies. These findings suggest the potential pathways of using DNA hydrogels as artificial ECMs to promote cell proliferation and protect TSPCs in TSPC therapy.
Collapse
Affiliation(s)
- Zilu Ge
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Renliang Zhao
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Xiong
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dong Wang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Tang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Fang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangtian Deng
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Zhang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaojia Zhou
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Li
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Karimi E, Vahedi N, Sarbandi RR, Parandakh A, Ganjoury C, Sigaroodi F, Najmoddin N, Tabatabaei M, Tafazzoli-Shadpour M, Ardeshirylajimi A, Khani MM. Nanoscale vibration could promote tenogenic differentiation of umbilical cord mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00780-4. [PMID: 37405626 DOI: 10.1007/s11626-023-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
Regulation of mesenchymal stem cell (MSC) fate for targeted cell therapy applications has been a subject of interest, particularly for tissues such as tendons that possess a marginal regenerative capacity. Control of MSCs' fate into the tendon-specific lineage has mainly been achieved by implementation of chemical growth factors. Mechanical stimuli or 3-dimensional (D) scaffolds have been used as an additional tool for the differentiation of MSCs into tenocytes, but oftentimes, they require a sophisticated bioreactor or a complex scaffold fabrication technique which reduces the feasibility of the proposed method to be used in practice. Here, we used nanovibration to induce the differentiation of MSCs toward the tenogenic fate solely by the use of nanovibration and without the need for growth factors or complex scaffolds. MSCs were cultured on 2D cell culture dishes that were connected to piezo ceramic arrays to apply nanovibration (30-80 nm and 1 kHz frequency) over 7 and 14 d. We observed that nanovibration resulted in significant overexpression of tendon-related markers in both gene expression and protein expression levels, while there was no significant differentiation into adipose and cartilage lineages. These findings could be of assistance in the mechanoregulation of MSCs for stem cell engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Elahe Karimi
- Department of Tissue Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Negin Vahedi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Reza Ramezani Sarbandi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Camellia Ganjoury
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Tabatabaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Abdolreza Ardeshirylajimi
- Sina Cell Research and Product Center, Tehran, Iran
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Chen D, Yi R, Hong W, Wang K, Chen Y. Anoikis resistance of small airway epithelium is involved in the progression of chronic obstructive pulmonary disease. Front Immunol 2023; 14:1155478. [PMID: 37090717 PMCID: PMC10113535 DOI: 10.3389/fimmu.2023.1155478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundAnoikis resistance is recognized as a crucial step in the metastasis of cancer cells. Most epithelial tumors are distinguished by the ability of epithelial cells to abscond anoikis when detached from the extracellular matrix. However, no study has investigated the involvement of anoikis in the small airway epithelium (SAE) of chronic obstructive pulmonary disease (COPD).MethodsAnoikis-related genes (ANRGs) exhibiting differential expression in COPD were identified using microarray datasets obtained from the Gene Expression Omnibus (GEO) database. Unsupervised clustering was performed to classify COPD patients into anoikis-related subtypes. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were used to annotate the functions between different subtypes. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were leveraged to identify key molecules. The relative proportion of infiltrating immune cells in the SAE was quantified using the CIBERSORT and ssGSEA computational algorithms, and the correlation between key molecules and immune cell abundance was analyzed. The expression of key molecules in BEAS-2B cells exposed to cigarette smoke extract (CSE) was validated using qRT-PCR.ResultsA total of 25 ANRGs exhibited differential expression in the SAE of COPD patients, based on which two subtypes of COPD patients with distinct anoikis patterns were identified. COPD patients with anoikis resistance had more advanced GOLD stages and cigarette consumption. Functional annotations revealed a different immune status between COPD patients with pro-anoikis and anoikis resistance. Tenomodulin (TNMD) and long intergenic non-protein coding RNA 656 (LINC00656) were subsequently identified as key molecules involved in this process, and a close correlation between TNMD and the infiltrating immune cells was observed, such as activated CD4+ memory T cells, M1 macrophages, and activated NK cells. Further enrichment analyses clarified the relationship between TNMD and the inflammatory and apoptotic signaling pathway as the potential mechanism for regulating anoikis. In vitro experiments showed a dramatic upregulation of TNMD and LINC00656 in BEAS-2B cells when exposed to 3% CSE for 48 hours.ConclusionTNMD contributes to the progression of COPD by inducing anoikis resistance in SAE, which is intimately associated with the immune microenvironment.
Collapse
Affiliation(s)
- Dian Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Rongbing Yi
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weifeng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
- *Correspondence: Yahong Chen,
| |
Collapse
|
17
|
Zhang Y, Xue Y, Ren Y, Li X, Liu Y. Biodegradable Polymer Electrospinning for Tendon Repairment. Polymers (Basel) 2023; 15:polym15061566. [PMID: 36987348 PMCID: PMC10054061 DOI: 10.3390/polym15061566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
With the degradation after aging and the destruction of high-intensity exercise, the frequency of tendon injury is also increasing, which will lead to serious pain and disability. Due to the structural specificity of the tendon tissue, the traditional treatment of tendon injury repair has certain limitations. Biodegradable polymer electrospinning technology with good biocompatibility and degradability can effectively repair tendons, and its mechanical properties can be achieved by adjusting the fiber diameter and fiber spacing. Here, this review first briefly introduces the structure and function of the tendon and the repair process after injury. Then, different kinds of biodegradable natural polymers for tendon repair are summarized. Then, the advantages and disadvantages of three-dimensional (3D) electrospun products in tendon repair and regeneration are summarized, as well as the optimization of electrospun fiber scaffolds with different bioactive materials and the latest application in tendon regeneration engineering. Bioactive molecules can optimize the structure of these products and improve their repair performance. Importantly, we discuss the application of the 3D electrospinning scaffold's superior structure in different stages of tendon repair. Meanwhile, the combination of other advanced technologies has greater potential in tendon repair. Finally, the relevant patents of biodegradable electrospun scaffolds for repairing damaged tendons, as well as their clinical applications, problems in current development, and future directions are summarized. In general, the use of biodegradable electrospun fibers for tendon repair is a promising and exciting research field, but further research is needed to fully understand its potential and optimize its application in tissue engineering.
Collapse
Affiliation(s)
- Yiming Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| | - Yueguang Xue
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yan Ren
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin Li
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Liu
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
18
|
Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther 2023; 243:108357. [PMID: 36764462 DOI: 10.1016/j.pharmthera.2023.108357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Skeletal muscle contraction is essential for the movement of our musculoskeletal system. Tendons and ligaments that connect the skeletal muscles to bones in the correct position at the appropriate time during development are also required for movement to occur. Since the musculoskeletal system is essential for maintaining basic bodily functions as well as enabling interactions with the environment, dysfunctions of these tissues due to disease can significantly reduce quality of life. Unfortunately, as people live longer, skeletal muscle and tendon/ligament diseases are becoming more common. Sarcopenia, a disease in which skeletal muscle function declines, and tendinopathy, which involves chronic tendon dysfunction, are particularly troublesome because there have been no significant advances in their treatment. In this review, we will summarize previous reports on the development and regeneration/healing of skeletal muscle and tendon tissues, including a discussion of the molecular and cellular mechanisms involved that may be used as potential therapeutic targets.
Collapse
|
19
|
Xu H, Zhu Y, Hsiao AWT, Xu J, Tong W, Chang L, Zhang X, Chen YF, Li J, Chen W, Zhang Y, Chan HF, Lee CW. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery. Biomaterials 2023; 294:121998. [PMID: 36641814 DOI: 10.1016/j.biomaterials.2023.121998] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Effective countermeasures for tendon injury remains unsatisfactory. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs)-based therapy via regulation of Mφ-mediated angiogenesis has emerged as a promising strategy for tissue regeneration. Still, approaches to tailor the functions of EVs to treat tendon injuries have been limited. We reported a novel strategy by applying MSC-EVs boosted with bioactive glasses (BG). BG-elicited EVs (EVB) showed up-regulation of medicinal miRNAs, including miR-199b-3p and miR-125a-5p, which play a pivotal role in M2 Mφ-mediated angiogenesis. EVB accelerated angiogenesis via the reprogrammed anti-inflammatory M2 Mφs compared with naïve MSC-EVs (EVN). In rodent Achilles tendon rupture model, EVB local administration activated anti-inflammatory responses via M2 polarization and led to a spatial correlation between M2 Mφs and newly formed blood vessels. Our results showed that EVB outperformed EVN in promoting tenogenesis and in reducing detrimental morphological changes without causing heterotopic ossification. Biomechanical test revealed that EVB significantly improved ultimate load, stiffness, and tensile modulus of the repaired tendon, along with a positive correlation between M2/M1 ratio and biomechanical properties. On the basis of the boosted nature to reprogram regenerative microenvironment, EVB holds considerable potential to be developed as a next-generation therapeutic modality for enhancing functional regeneration to achieve satisfying tendon regeneration.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Allen Wei-Ting Hsiao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xuerao Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Chen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, China.
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
20
|
Zhang H, Dai Y, Long H, Cao R, Shi L, Zhao J, Ma L, Diao N, Yin H, Guo A. Tendon Stem/Progenitor Cell-Laden Nanofiber Hydrogel Enhanced Functional Repair of Patellar Tendon. Tissue Eng Part A 2023; 29:150-160. [PMID: 36424823 DOI: 10.1089/ten.tea.2022.0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Functional repair of tendons remains a challenge to be overcome for both clinicians and scientists. We have previously reported a three-dimensional RADA peptide hydrogel that provides a suitable microenvironment for human tendon stem/progenitor cells (TSPCs) survival and tenogenesis. In this study, we explore the potential of in vivo patellar tendon repair by human TSPC-laden RADA hydrogel in rats, which were sacrificed at 4 and 8 weeks after operation. Hind limb function test, macroscopical and histological examination, tendon cell amount and alignment analysis, and radiographic assessments were performed at several time points. Our results demonstrated that human TSPC-laden RADA hydrogel (RADA+TSPC group) boosted in vivo patellar tendon repair with better ambulatory function recovery compared with the control groups, in which tendon defects were untreated (Defect group) or treated with RADA hydrogel alone (RADA group). In addition, better macroscopic appearance and improved matrix organization in the repaired tendon with less cell amount and reduced adipocyte accumulation and blood vessel formation were observed in the RADA+TSPC group. Moreover, tendon defect treated with TSPC-laden RADA hydrogel resulted in diminished heterotopic ossification (HO) at 8 weeks postoperation, which was indicated by both X-ray examination and micro-computed tomography scan. Taken together, the combination of TSPC and nanofiber hydrogel provide an optimistic alternative method to accelerate functional tendon repair with reduced HO. Impact statement Our study clearly demonstrates the combination of tendon stem/progenitor cell and nanofiber hydrogel provide a new and optimistic tissue engineering strategy to treat tendon injury by accelerating functional tendon repair with reduced heterotopic ossification. The clinical translation is also very promising, which can provide a minimally invasive, nonsurgical, or complementary treatment methods to treat human tendon injury.
Collapse
Affiliation(s)
- Hongrui Zhang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yike Dai
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huibin Long
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruiqi Cao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiaming Zhao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Naicheng Diao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Jiang Q, Wang L, Liu Z, Su J, Tang Y, Tan P, Zhu X, Zhang K, Ma X, Jiang J, Zhao J, Lin H, Zhang X. Canine ACL reconstruction with an injectable hydroxyapatite/collagen paste for accelerated healing of tendon-bone interface. Bioact Mater 2023; 20:1-15. [PMID: 35633878 PMCID: PMC9123091 DOI: 10.1016/j.bioactmat.2022.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
Healing of an anterior cruciate ligament (ACL) autologous graft in a bone tunnel occurs through the formation of fibrovascular scar tissue, which is structurally and compositionally inferior to normal fibrocartilaginous insertion and thus may increase the reconstruction failure and the rate of failure recurrence. In this study, an injectable hydroxyapatite/type I collagen (HAp/Col Ⅰ) paste was developed to construct a suitable local microenvironment to accelerate the healing of bone-tendon interface. Physicochemical characterization demonstrated that the HAp/Col Ⅰ paste was injectable, uniform and stable. The in vitro cell culture illustrated that the paste could promote MC3T3-E1 cells proliferation and osteogenic expression. The results of a canine ACL reconstruction study showed that the reconstructive ACL had similar texture and color as the native ACL. The average width of the tunnel, total bone volume, bone volume/tissue volume and trabecular number acquired from micro-CT analysis suggested that the healing of tendon-bone interface in experimental group was better than that in control group. The biomechanical test showed the maximal loads in experimental group achieved approximately half of native ACL's maximal load at 24 weeks. According to histological examination, Sharpey fibers could be observed as early as 12 weeks postoperatively while a typical four-layer transitional structure of insertion site was regenerated at 48 weeks in the experimental group. The injectable HAp/Col Ⅰ paste provided a biomimetic scaffold and microenvironment for early cell attachment and proliferation, further osteogenic expression and extracellular matrix deposition, and in vivo structural and functional regeneration of the tendon-bone interface. A stable and injectable HAp/Col I paste was designed, optimized and characterized. The paste was applied in ACL reconstruction with an established standard operation procedure. Provided the safety and efficacy evidence for ACL reconstruction, and healing of tendon-bone interface was accelerated.
Collapse
|
22
|
Graça AL, Gomez-Florit M, Gomes ME, Docheva D. Tendon Aging. Subcell Biochem 2023; 103:121-147. [PMID: 37120467 DOI: 10.1007/978-3-031-26576-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Tendons are mechanosensitive connective tissues responsible for the connection between muscles and bones by transmitting forces that allow the movement of the body, yet, with advancing age, tendons become more prone to degeneration followed by injuries. Tendon diseases are one of the main causes of incapacity worldwide, leading to changes in tendon composition, structure, and biomechanical properties, as well as a decline in regenerative potential. There is still a great lack of knowledge regarding tendon cellular and molecular biology, interplay between biochemistry and biomechanics, and the complex pathomechanisms involved in tendon diseases. Consequently, this reflects a huge need for basic and clinical research to better elucidate the nature of healthy tendon tissue and also tendon aging process and associated diseases. This chapter concisely describes the effects that the aging process has on tendons at the tissue, cellular, and molecular levels and briefly reviews potential biological predictors of tendon aging. Recent research findings that are herein reviewed and discussed might contribute to the development of precision tendon therapies targeting the elderly population.
Collapse
Affiliation(s)
- Ana Luísa Graça
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gomez-Florit
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Manuela Estima Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
23
|
Peserico A, Barboni B, Russo V, Bernabò N, El Khatib M, Prencipe G, Cerveró-Varona A, Haidar-Montes AA, Faydaver M, Citeroni MR, Berardinelli P, Mauro A. Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling. Front Vet Sci 2023; 10:1175346. [PMID: 37180059 PMCID: PMC10174257 DOI: 10.3389/fvets.2023.1175346] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.
Collapse
|
24
|
Xu H, Zhu Y, Xu J, Tong W, Hu S, Chen Y, Deng S, Yao H, Li J, Lee C, Chan HF. Injectable bioactive glass/sodium alginate hydrogel with immunomodulatory and angiogenic properties for enhanced tendon healing. Bioeng Transl Med 2023; 8:e10345. [PMID: 36684098 PMCID: PMC9842034 DOI: 10.1002/btm2.10345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023] Open
Abstract
Tendon healing is a complex process involving inflammation, proliferation, and remodeling, eventually achieving a state of hypocellularity and hypovascularity. Currently, few treatments can satisfactorily restore the structure and function of native tendon. Bioactive glass (BG) has been shown to possess immunomodulatory and angiogenic properties. In this study, we investigated whether an injectable hydrogel fabricated of BG and sodium alginate (SA) could be applied to enhance tenogenesis following suture repair of injured tendon. We demonstrated that BG/SA hydrogel significantly accelerated tenogenesis without inducing heterotopic ossification based on histological analysis. The therapeutic effect could attribute to increased angiogenesis and M1 to M2 phenotypic switch of macrophages within 7 days post-surgery. Morphological characterization demonstrated that BG/SA hydrogel partially reverted the pathological changes of Achilles tendon, including increased length and cross-sectional area (CSA). Finally, biomechanical test showed that BG/SA hydrogel significantly improved ultimate load, failure stress, and tensile modulus of the repaired tendon. In conclusion, administration of an injectable BG/SA hydrogel can be a novel and promising therapeutic approach to augment Achilles tendon healing in conjunction with surgical intervention.
Collapse
Affiliation(s)
- Hongtao Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Shiwen Hu
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
| | - Yi‐Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Translational Medicine, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- International Ph.D. Program for Translational Science, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Master Program in Clinical Genomics and Proteomics, School of PharmacyTaipei Medical UniversityTaipeiTaiwan
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chien‐Wei Lee
- Center for Translational Genomics ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| |
Collapse
|
25
|
Bai L, Han Q, Meng Z, Chen B, Qu X, Xu M, Su Y, Qiu Z, Xue Y, He J, Zhang J, Yin Z. Bioprinted living tissue constructs with layer-specific, growth factor-loaded microspheres for improved enthesis healing of a rotator cuff. Acta Biomater 2022; 154:275-289. [PMID: 36328126 DOI: 10.1016/j.actbio.2022.10.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Substantial challenges remain in constructing the native tendon-to-bone interface for rotator cuff healing owing to the enthesis tissues' highly organized structural and compositional gradients. Herein, we propose to bioprint living tissue constructs with layer-specific growth factors (GFs) to promote enthesis regeneration by guiding the zonal differentiation of the loaded stem cells in situ. The sustained release of tenogenic, chondrogenic, and osteogenic GFs was achieved via microsphere-based delivery carriers embedded in the bioprinted constructs. Compared to the basal construct without GFs, the layer-specific tissue analogs realized region-specific differentiation of stem cells in vitro. More importantly, bioprinted living tissue constructs with layer-specific GFs rapidly enhanced the enthesis regeneration in a rabbit rotator cuff tear model in terms of biomechanical restoration, collagen deposition, and alignment, showing gradient interface of fibrocartilage structures with aligned collagen fibrils and an ultimate load failure of 154.3 ± 9.5 N resembling those of native enthesis tissues in 12 weeks. This exploration provides a feasible strategy to engineer living tissue constructions with region-specific differentiation potentials for the functional repair of gradient enthesis tissues. STATEMENT OF SIGNIFICANCE: Previous studies that employed acellular layer-specific scaffolds or stem cells for the reconstruction of the rotator cuff faced challenges due to their insufficient capability to rebuild the anisotropic compositional and structural gradients of native enthesis tissues. This manuscript proposed a living tissue construct with layer-specific, GFs-loaded µS, which can direct in situ and region-specific differentiation of the embedded stem cells to tenogenic, chondrogenic, and osteogenic lineages for functional regeneration of the enthesis tissues. This bioprinted living tissue construct with the unique capability to reduce fibrovascular scar tissue formation and simultaneously facilitate enthesis tissue remodeling might provide a promising strategy to repair complex and gradient tissues in the future.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zijie Meng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, 450003, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanwen Su
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan Xue
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
26
|
Lai F, Wang J, Tang H, Huang P, Liu J, He G, Zhou M, Tao X, Tang K. VEGF promotes tendon regeneration of aged rats by inhibiting adipogenic differentiation of tendon stem/progenitor cells and promoting vascularization. FASEB J 2022; 36:e22433. [PMID: 35867348 DOI: 10.1096/fj.202200213r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Studies have shown that the stem cell microenvironment is a key factor for stem cell maintenance or differentiation. In this study, we compared the expression of 23 cytokines such as IL-6, IL-10, and TNFα between young and aged rats during patellar tendon repair by cytokine microarray, and found that significant difference between IL-10, G-CSF, and VEGF at 3, 7, or 14 days post-operatively. The effects of these factors on adipogenic differentiation of TPSCs were examined through western blot and oil red O experiments. It was shown that VEGF had an inhibitive effect on the adipogenic differentiation of TPSCs. SPP-1 was figured out as our target by RNA sequencing and confirmed by western blot in vitro. Further in vivo studies showed that adipocyte accumulation was also decreased in the tendons of aged rats after injection of VEGF and the histological score and biomechanical property were also improved via targeting SPP-1. Furthermore, histochemical results showed that vascularization of the injury sites was significantly elevated. In conclusion, VEGF not only plays an important role in decreasing adipocyte accumulation but also improves vascularization of the tendon during aged tendon healing. We believe active regulation of VEGF may improve the treatment of age-related tendon diseases and tendon injuries.
Collapse
Affiliation(s)
- Fan Lai
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jingjing Wang
- Department of Blood Transfusion, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Tang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pan Huang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Juan Liu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gang He
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mei Zhou
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xu Tao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Kanglai Tang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
27
|
Vinestock RC, Felsenthal N, Assaraf E, Katz E, Rubin S, Heinemann-Yerushalmi L, Krief S, Dezorella N, Levin-Zaidman S, Tsoory M, Thomopoulos S, Zelzer E. Neonatal Enthesis Healing Involves Noninflammatory Acellular Scar Formation through Extracellular Matrix Secretion by Resident Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1122-1135. [PMID: 35659946 PMCID: PMC9379688 DOI: 10.1016/j.ajpath.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Wound healing typically recruits the immune and vascular systems to restore tissue structure and function. However, injuries to the enthesis, a hypocellular and avascular tissue, often result in fibrotic scar formation and loss of mechanical properties, severely affecting musculoskeletal function and life quality. This raises questions about the healing capabilities of the enthesis. Herein, this study established an injury model to the Achilles entheses of neonatal mice to study the effectiveness of early-age enthesis healing. Histology and immunohistochemistry analyses revealed an atypical process that did not involve inflammation or angiogenesis. Instead, healing was mediated by secretion of collagen types I and II by resident cells, which formed a permanent hypocellular and avascular scar. Transmission electron microscopy showed that the cellular response to injury, including endoplasmic reticulum stress, autophagy, and cell death, varied between the tendon and cartilage ends of the enthesis. Single-molecule in situ hybridization, immunostaining, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays verified these differences. Finally, gait analysis showed that these processes effectively restored function of the injured leg. These findings reveal a novel healing mechanism in neonatal entheses, whereby local extracellular matrix secretion by resident cells forms an acellular extracellular matrix deposit without inflammation, allowing gait restoration. These insights into the healing mechanism of a complex transitional tissue may lead to new therapeutic strategies for adult enthesis injuries.
Collapse
Affiliation(s)
- Ron C Vinestock
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Assaraf
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Katz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, New York; Department of Biomedical Engineering, Columbia University, New York, New York
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Schulze-Tanzil GG, Delgado-Calcares M, Stange R, Wildemann B, Docheva D. Tendon healing: a concise review on cellular and molecular mechanisms with a particular focus on the Achilles tendon. Bone Joint Res 2022; 11:561-574. [PMID: 35920195 PMCID: PMC9396922 DOI: 10.1302/2046-3758.118.bjr-2021-0576.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.Cite this article: Bone Joint Res 2022;11(8):561-574.
Collapse
Affiliation(s)
| | - Manuel Delgado-Calcares
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine (IMM), University Hospital Münster, Münster, Germany
| | - Britt Wildemann
- Department of Experimental Trauma Surgery, University Hospital Jena, Jena, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Abreu EL, Vance A, Cheng AL, Brotto M. Musculoskeletal Biomarkers Response to Exercise in Older Adults. FRONTIERS IN AGING 2022; 3:867137. [PMID: 35821851 PMCID: PMC9261344 DOI: 10.3389/fragi.2022.867137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
Exercise is an essential component of any good health style, being particularly important for older adults to counteract the effects of aging, including sarcopenia and osteoporosis, which can result in lower fall probability. Exercise programs for older adults are especially designed for that population. A rigorous evaluation of those programs is necessary to assure most benefit is achieved. Serum biomarkers of proteins intrinsic to musculoskeletal homeostasis could contribute objectively to the assessment of the benefits of exercise. In this work, in addition to the usual physical fitness and balance tests, ELISA assays quantified the serum levels of six proteins and one polysaccharide important for the homeostasis of muscle (troponin T and alpha-actinin), tendon/ligament (tenomodulin), cartilage (cartilage oligomeric matrix protein and hyaluronan) and bone (osteocalcin and sclerostin), before and after 8 weeks of an exercise program tailored to older adults, Stay Strong Stay Healthy, offered at a Community Center and at an Independent Senior Living facility. Statistical significance was determined by non-parametric tests (Wilcoxon Signed Ranks and Mann-Whitney U). Physical fitness and balance improved as expected along with a significant decrease in sclerostin, pointing to less inhibition of bone deposition. However, when considering each type of dwelling separately, older adults always saw a significant decrease of the isoform of troponin T associated with fast-twitch muscles, suggesting that daily levels of physical activity may also have a role in the benefit of older adults from exercise.
Collapse
Affiliation(s)
- Eduardo L. Abreu
- School of Nursing and Health Studies, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Amy Vance
- University of Missouri Extension, Columbia, MO, United States
| | - An-Lin Cheng
- Department of Biomedical and Health Informatics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
30
|
Korcari A, Buckley MR, Loiselle AE. Characterization of scar tissue biomechanics during adult murine flexor tendon healing. J Mech Behav Biomed Mater 2022; 130:105192. [PMID: 35339739 PMCID: PMC11103245 DOI: 10.1016/j.jmbbm.2022.105192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Tendon injuries are very common and result in significant impairments in mobility and quality of life. During healing, tendons produce a scar at the injury site, characterized by abundant and disorganized extracellular matrix and by permanent deficits in mechanical integrity compared to healthy tendon. Although a significant amount of work has been done to understand the healing process of tendons and to develop potential therapeutics for tendon regeneration, there is still a significant gap in terms of assessing the direct effects of therapeutics on the functional and material quality specifically of the scar tissue, and thus, on the overall tendon healing process. In this study, we focused on characterizing the mechanical properties of only the scar tissue in flexor digitorum longus (FDL) tendons during the proliferative and early remodeling healing phases and comparing these properties with the mechanical properties of the composite healing tissue. Our method was sensitive enough to identify significant differences in structural and material properties between the scar and tendon-scar composite tissues. To account for possible inaccuracies due to the small aspect ratio of scar tissue, we also applied inverse finite element analysis (iFEA) to compute mechanical properties based on simulated tests with accurate specimen geometries and boundary conditions. We found that the scar tissue linear tangent moduli calculated from iFEA were not significantly different from those calculated experimentally at all healing timepoints, validating our experimental findings, and suggesting the assumptions in our experimental calculations were accurate. Taken together, this study first demonstrates that due to the presence of uninjured stubs, testing composite healing tendons without isolating the scar tissue overestimates the material properties of the scar itself. Second, our scar isolation method promises to enable more direct assessment of how different treatment regimens (e.g., cellular ablation, biomechanical and/or biochemical stimuli, tissue engineered scaffolds) affect scar tissue function and material quality in multiple different types of tendons.
Collapse
Affiliation(s)
- Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Mark R Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
31
|
Gomez-Florit M, Labrador-Rached CJ, Domingues RM, Gomes ME. The tendon microenvironment: Engineered in vitro models to study cellular crosstalk. Adv Drug Deliv Rev 2022; 185:114299. [PMID: 35436570 DOI: 10.1016/j.addr.2022.114299] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
Abstract
Tendinopathy is a multi-faceted pathology characterized by alterations in tendon microstructure, cellularity and collagen composition. Challenged by the possibility of regenerating pathological or ruptured tendons, the healing mechanisms of this tissue have been widely researched over the past decades. However, so far, most of the cellular players and processes influencing tendon repair remain unknown, which emphasizes the need for developing relevant in vitro models enabling to study the complex multicellular crosstalk occurring in tendon microenvironments. In this review, we critically discuss the insights on the interaction between tenocytes and the other tendon resident cells that have been devised through different types of existing in vitro models. Building on the generated knowledge, we stress the need for advanced models able to mimic the hierarchical architecture, cellularity and physiological signaling of tendon niche under dynamic culture conditions, along with the recreation of the integrated gradients of its tissue interfaces. In a forward-looking vision of the field, we discuss how the convergence of multiple bioengineering technologies can be leveraged as potential platforms to develop the next generation of relevant in vitro models that can contribute for a deeper fundamental knowledge to develop more effective treatments.
Collapse
|
32
|
Warren JR, Khalil LS, Pietroski AD, Muh SJ. Injection of adipose stem cells in the treatment of rotator cuff disease - a narrative review of current evidence. Regen Med 2022; 17:477-489. [PMID: 35586993 DOI: 10.2217/rme-2021-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study is to summarize evidence for the use of adipose stem cell (ASC) injections in the treatment of rotator cuff tears (RCT) and identify future areas of study. A thorough literature search was performed to identify studies investigating the use of ASC injections in the treatment of RCTs. Among animal trials, it is unclear whether ASCs are of benefit for rotator cuff repair. In clinical trials, ASC injection may reduce retear rate with otherwise equivocal clinical outcomes. Although ASC injection may be safe, the literature does not provide a clear consensus as to the efficacy of ASC injections, nor does it delineate which patients would benefit most from this treatment.
Collapse
Affiliation(s)
- Jonathan R Warren
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Lafi S Khalil
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - Stephanie J Muh
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
33
|
Russo V, Mauro A, Peserico A, Di Giacinto O, Khatib ME, Citeroni MR, Rossi E, Canciello A, Mazzotti E, Barboni B. Tendon Healing Response Is Dependent on Epithelial-Mesenchymal-Tendon Transition State of Amniotic Epithelial Stem Cells. Biomedicines 2022; 10:biomedicines10051177. [PMID: 35625913 PMCID: PMC9138831 DOI: 10.3390/biomedicines10051177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Tendinopathies are at the frontier of advanced responses to health challenges and sectoral policy targets. Cell-based therapy holds great promise for tendon disorder resolution. To verify the role of stepwise trans-differentiation of amniotic epithelial stem cells (AECs) in tendon regeneration, in the present research three different AEC subsets displaying an epithelial (eAECs), mesenchymal (mAECs), and tendon-like (tdAECs) phenotype were allotransplanted in a validated experimental sheep Achilles tendon injury model. Tissue healing was analyzed adopting a comparative approach at two early healing endpoints (14 and 28 days). All three subsets of transplanted cells were able to accelerate regeneration: mAECs with a lesser extent than eAECs and tdAECs as indicated in the summary of the total histological scores (TSH), where at day 28 eAECs and tdAECs had better significant scores with respect to mAEC-treated tendons (p < 0.0001). In addition, the immunomodulatory response at day 14 showed in eAEC-transplanted tendons an upregulation of pro-regenerative M2 macrophages with respect to mAECs and tdAECs (p < 0.0001). In addition, in all allotransplanted tendons there was a favorable IL10/IL12 compared to CTR (p < 0.001). The eAECs and tdAECs displayed two different underlying regenerative mechanisms in the tendon. The eAECs positively influenced regeneration mainly through their greater ability to convey in the host tissue the shift from pro-inflammatory to pro-regenerative responses, leading to an ordered extracellular matrix (ECM) deposition and blood vessel remodeling. On the other hand, the transplantation of tdAECs acted mainly on the proliferative phase by impacting the density of ECM and by supporting a prompt recovery, inducing a low cellularity and angle alignment of the host cell compartment. These results support the idea that AECs lay the groundwork for production of different cell phenotypes that can orient tendon regeneration through a crosstalk with the host tissue. In particular, the obtained evidence suggests that eAECs are a practicable and efficient strategy for the treatment of acute tendinopathies, thus reinforcing the grounds to move their use towards clinical practice.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
- Correspondence:
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Alessia Peserico
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, 64100 Teramo, Italy;
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Eleonora Mazzotti
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| |
Collapse
|
34
|
Xu X, Ha P, Yen E, Li C, Zheng Z. Small Leucine-Rich Proteoglycans in Tendon Wound Healing. Adv Wound Care (New Rochelle) 2022; 11:202-214. [PMID: 34978952 DOI: 10.1089/wound.2021.0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital of Capital Medical University, Beijing, People's Republic of China
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Pin Ha
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Emily Yen
- Arcadia High School, Arcadia, California, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
35
|
Yang R, Zheng Y, Zhang Y, Li G, Xu Y, Zhang Y, Xu Y, Zhuang C, Yu P, Deng L, Cui W, Chen Y, Wang L. Bipolar Metal Flexible Electrospun Fibrous Membrane Based on Metal-Organic Framework for Gradient Healing of Tendon-to-Bone Interface Regeneration. Adv Healthc Mater 2022; 11:e2200072. [PMID: 35286782 DOI: 10.1002/adhm.202200072] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Indexed: 12/17/2022]
Abstract
Metal ions play a significant role in tissue repair, with widely application in clinical treatment. However, the therapeutic effect of metal ions is always limited due to metabolization and narrow repair capability. Here, a bipolar metal flexible electrospun fibrous membrane based on a metal-organic framework (MOF), which is bioinspired by the gradient structure of the tendon-to-bone interface, with a combination of regulating osteoblasts differentiation and angiogenesis properties, is constructed successfully by a continuous electrospinning technique and matching the longitudinal space morphology for synchronous regeneration. Furthermore, the MOF, acting as carriers, can not only achieve the sustainable release of metal ions, but promote the osteogenesis and tenogenesis on the scaffold. The in vitro data show that this novel hierarchical structure can accelerate the tenogenesis, the biomineralization, and angiogenesis. Moreover, in the in vivo experiment, the flexible fibrous membrane can promote tendon and bone tissue repair, and fibrocartilage reconstruction, to realize the multiple tissue synchronous regeneration at the damaged tendon-to-bone interface. Altogether, this newly developed bipolar metal flexible electrospun fibrous membrane based on a MOF, as a new biomimetic flexible scaffold, has great potential in reconstruct the tissue damage, especially gradient tissue damage.
Collapse
Affiliation(s)
- Renhao Yang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yunlong Zheng
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 P. R. China
| | - Yin Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Gen Li
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yidong Xu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yin Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yang Xu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Chengyu Zhuang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Pei Yu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Lianfu Deng
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 P. R. China
| | - Lei Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
36
|
Eugenol-Preconditioned Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Antioxidant Capacity of Tendon Stem Cells In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3945195. [PMID: 35178155 PMCID: PMC8847013 DOI: 10.1155/2022/3945195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
Tendon stem cells (TSCs) are often exposed to oxidative stress at tendon injury sites, which impairs their physiological effect as well as therapeutic application. Recently, extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (BMSCs) were shown to mediate cell protection and survival under stress conditions. The function of BMSC-EVs may be affected by pretreatment with various factors such as eugenol (EUG)—a powerful antioxidant. In our previous study, we found that H2O2 significantly impaired TSC proliferation and tenogenic differentiation capabilities. Apoptosis and intracellular ROS accumulation in TSCs were induced by H2O2. However, such H2O2-induced damage was prevented by treatment with EUG-BMSC-EVs. Furthermore, EUG-BMSC-EVs activated the Nrf2/HO-1 pathway to counteract H2O2-induced damage in TSCs. In a rat patellar tendon injury model, the ROS level was significantly higher than that in the normal tendon and TSCs not pretreated showed a poor therapeutic effect. However, EUG-BMSC-EV-pretreated TSCs significantly improved tenogenesis and matrix regeneration during tendon healing. Additionally, the EUG-BMSC-EV group had a significantly improved fiber arrangement. Overall, EUG-BMSC-EVs protected TSCs against oxidative stress and enhanced their functions in tendon injury. These findings provide a basis for potential clinical use of EUG-BMSC-EVs as a new therapeutic vehicle to facilitate TSC therapies for tendon regeneration.
Collapse
|
37
|
He P, Ruan D, Huang Z, Wang C, Xu Y, Cai H, Liu H, Fei Y, Heng BC, Chen W, Shen W. Comparison of Tendon Development Versus Tendon Healing and Regeneration. Front Cell Dev Biol 2022; 10:821667. [PMID: 35141224 PMCID: PMC8819183 DOI: 10.3389/fcell.2022.821667] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Tendon is a vital connective tissue in human skeletal muscle system, and tendon injury is very common and intractable in clinic. Tendon development and repair are two closely related but still not fully understood processes. Tendon development involves multiple germ layer, as well as the regulation of diversity transcription factors (Scx et al.), proteins (Tnmd et al.) and signaling pathways (TGFβ et al.). The nature process of tendon repair is roughly divided in three stages, which are dominated by various cells and cell factors. This review will describe the whole process of tendon development and compare it with the process of tendon repair, focusing on the understanding and recent advances in the regulation of tendon development and repair. The study and comparison of tendon development and repair process can thus provide references and guidelines for treatment of tendon injuries.
Collapse
Affiliation(s)
- Peiwen He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Honglu Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School of Stomatology, Bejing, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| |
Collapse
|
38
|
Impact of Electrospun Piezoelectric Core-Shell PVDFhfp/PDMS Mesh on Tenogenic and Inflammatory Gene Expression in Human Adipose-Derived Stem Cells: Comparison of Static Cultivation with Uniaxial Cyclic Tensile Stretching. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9010021. [PMID: 35049730 PMCID: PMC8772741 DOI: 10.3390/bioengineering9010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Specific microenvironments can trigger stem cell tenogenic differentiation, such as specific substrates or dynamic cell cultivation. Electrospun meshes composed by core–shell fibers (random or aligned; PDMS core; piezoelectric PVDFhfp shell) were fabricated by coaxial electrospinning. Elastic modulus and residual strain were assessed. Human ASCs were seeded on such scaffolds either under static conditions for 1 week or with subsequent 10% dynamic stretching for 10,800 cycles (1 Hz, 3 h), assessing load elongation curves in a Bose® bioreactor system. Gene expression for tenogenic expression, extracellular matrix, remodeling, pro-fibrotic and inflammatory marker genes were assessed (PCR). For cell-seeded meshes, the E modulus increased from 14 ± 3.8 MPa to 31 ± 17 MPa within 3 h, which was not observed for cell-free meshes. Random fibers resulted in higher tenogenic commitment than aligned fibers. Dynamic cultivation significantly enhanced pro-inflammatory markers. Compared to ASCs in culture flasks, ASCs on random meshes under static cultivation showed a significant upregulation of Mohawk, Tenascin-C and Tenomodulin. The tenogenic commitment expressed by human ASCs in contact with random PVDFhfp/PDMS paves the way for using this novel highly elastic material as an implant to be wrapped around a lacerated tendon, envisioned as a functional anti-adhesion membrane.
Collapse
|
39
|
The Effect of Age and Intrinsic Aerobic Exercise Capacity on the Expression of Inflammation and Remodeling Markers in Rat Achilles Tendons. Int J Mol Sci 2021; 23:ijms23010079. [PMID: 35008516 PMCID: PMC8744822 DOI: 10.3390/ijms23010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Old age, adiposity, and metabolic disorders are known as risk factors for chronic tendinopathy, which is a common problem in both athletes and the general population. However, the importance of these influencing factors has not yet been well understood. This study investigated alterations in gene expression and histology of Achilles tendons of young (10 weeks) and old (100 weeks) rats bred for low (low capacity runners, LCR) and high (high capacity runners, HCR) intrinsic aerobic exercise capacity. In this rat model, LCR displayed a phenotype of reduced exercise capacity, higher body weight, and metabolic dysfunctions compared to HCR. We hypothesized that the risk factors for tendinopathy in old LCR could lead to more pronounced impairments in Achilles tendon tissue. In quantitative real-time PCR (qPCR), age-related downregulation of tenocyte markers e.g., tenomodulin, genes related to matrix modeling and remodeling (e.g., collagens, elastin, biglycan, fibronectin, tenascin C) as well as transforming growth factor beta 3 (Tgfb3) have been detected. Inflammation marker cyclooxygenase 2 (Cox2) was downregulated in old rats, while microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in old HCR and old LCR. In all groups, interleukin 6 (Il6), interleukin 1 beta (Il1b), and tumor necrosis factor alpha (Tnfa) showed no significant alteration. In histological evaluation, tendons of old rats had fewer and more elongated tenocyte nuclei than young rats. Even though a higher content of glycosaminoglycans, a sign of degeneration, was found in old HCR and LCR, no further signs of tendinopathy were detectable in tendons of old rats by histological evaluation. Low intrinsic aerobic exercise capacity and the associated phenotype did not show significant effects on gene expression and tendon histology. These findings indicate that aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue and suggests that other risk factors associated with intrinsic aerobic exercise capacity are less influential in this rat model.
Collapse
|
40
|
Di Pauli von Treuheim T, Torre OM, Ferreri ED, Nasser P, Abbondandolo A, Delgado Caceres M, Lin D, Docheva D, Iatridis JC. Tenomodulin and Chondromodulin-1 Are Both Required to Maintain Biomechanical Function and Prevent Intervertebral Disc Degeneration. Cartilage 2021; 13:604S-614S. [PMID: 34486420 PMCID: PMC8804743 DOI: 10.1177/19476035211029696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The underlying mechanisms and molecular factors influencing intervertebral disc (IVD) homeostasis and degeneration remain clinically relevant. Tenomodulin (Tnmd) and chondromodulin (Chm1) are antiangiogenic transmembrane glycoproteins, with cleavable C-terminus, expressed by IVD cells that are implicated in the onset of degenerative processes. We evaluate the organ-level biomechanical impact of knocking out Tnmd alone, and Tnmd and Chm1, simultaneously. DESIGN Caudal (c5-8) and lumbar vertebrae (L1-4) of skeletally mature male and female 9-month-old wildtype (WT), Tnmd knockout (Tnmd-/-), and Tnmd/Chm1 double knockout (Tnmd-/-/Chm-/-) mice were used (n = 9-13 per group). Disc height index (DHI), histomorphological changes, and axial, torsional, creep, and failure biomechanical properties were evaluated. Differences were assessed by one-way ANOVA with post hoc Bonferroni-corrected comparisons (P < 0.05). RESULTS Tnmd-/-/Chm1-/- IVDs displayed increased DHI and histomorphological scores that indicated increased IVD degeneration compared to the WT and Tnmd-/- groups. Double knockout IVDs required significantly less torque and energy to initiate torsional failure. Creep parameters were comparable between all groups, except for the slow time constant, which indicated faster outward fluid flow. Tnmd-/- IVDs lost fluid faster than the WT group, and this effect was amplified in the double knockout IVDs. CONCLUSION Knocking out Tnmd and Chm1 affects IVD fluid flow and organ-level biomechanical function and therefore may play a role in contributing to IVD degeneration. Larger effects of the Tnmd and Chm1 double knockout mice compared to the Tnmd single mutant suggest that Chm1 may play a compensatory role in the Tnmd single mutant IVDs.
Collapse
Affiliation(s)
| | - Olivia M. Torre
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily D. Ferreri
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Nasser
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angelica Abbondandolo
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Delgado Caceres
- Experimental Trauma Surgery, Department
of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Dasheng Lin
- Orthopaedic Center of People’s
Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou,
China
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department
of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - James C. Iatridis
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA,James C. Iatridis, Leni & Peter W. May
Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave
Levy Place, Box 1188, New York, NY 10029-6574, USA.
| |
Collapse
|
41
|
Chen SH, Chen ZY, Lin YH, Chen SH, Chou PY, Kao HK, Lin FH. Extracellular Vesicles of Adipose-Derived Stem Cells Promote the Healing of Traumatized Achilles Tendons. Int J Mol Sci 2021; 22:ijms222212373. [PMID: 34830254 PMCID: PMC8618291 DOI: 10.3390/ijms222212373] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Healing of ruptured tendons remains a clinical challenge because of its slow progress and relatively weak mechanical force at an early stage. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have therapeutic potential for tissue regeneration. In this study, we isolated EVs from adipose-derived stem cells (ADSCs) and evaluated their ability to promote tendon regeneration. Our results indicated that ADSC-EVs significantly enhanced the proliferation and migration of tenocytes in vitro. To further study the roles of ADSC-EVs in tendon regeneration, ADSC-EVs were used in Achilles tendon repair in rabbits. The mechanical strength, histology, and protein expression in the injured tendon tissues significantly improved 4 weeks after ADSC-EV treatment. Decorin and biglycan were significantly upregulated in comparison to the untreated controls. In summary, ADSC-EVs stimulated the proliferation and migration of tenocytes and improved the mechanical strength of repaired tendons, suggesting that ADSC-EV treatment is a potential highly potent therapeutic strategy for tendon injuries.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.C.); (Z.-Y.C.); (S.-H.C.)
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
| | - Zhi-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.C.); (Z.-Y.C.); (S.-H.C.)
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Hsuan Lin
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
| | - Shih-Hsien Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.C.); (Z.-Y.C.); (S.-H.C.)
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
| | - Pang-Yun Chou
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
- Correspondence: (H.-K.K.); (F.-H.L.); Tel.: +886-328-1200 (ext. 3355) (H.-K.K.); +886-928-260-400 (F.-H.L.)
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.C.); (Z.-Y.C.); (S.-H.C.)
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 35053, Taiwan
- Correspondence: (H.-K.K.); (F.-H.L.); Tel.: +886-328-1200 (ext. 3355) (H.-K.K.); +886-928-260-400 (F.-H.L.)
| |
Collapse
|
42
|
Effects of aging on the histology and biochemistry of rat tendon healing. BMC Musculoskelet Disord 2021; 22:949. [PMID: 34781961 PMCID: PMC8594129 DOI: 10.1186/s12891-021-04838-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Tendon diseases and injuries are a serious problem for the aged population, often leading to pain, disability and a significant decline in quality of life. The purpose of this study was to determine the influence of aging on biochemistry and histology during tendon healing and to provide a new strategy for improving tendon healing. METHOD A total of 24 Sprague-Dawley rats were equally divided into a young and an aged group. A rat patellar tendon defect model was used in this study. Tendon samples were collected at weeks 2 and 4, and hematoxylin-eosin, alcian blue and immunofluorescence staining were performed for histological analysis. Meanwhile, reverse transcription-polymerase chain reaction (RT-PCR) and western blot were performed to evaluate the biochemical changes. RESULTS The histological scores in aged rats were significantly lower than those in young rats. At the protein level, collagen synthesis-related markers Col-3, Matrix metalloproteinase-1 and Metallopeptidase Inhibitor 1(TIMP-1) were decreased at week 4 in aged rats compared with those of young rats. Though there was a decrease in the expression of the chondrogenic marker aggrecan at the protein level in aged tendon, the Micro-CT results from weeks 4 samples showed no significant difference(p>0.05) on the ectopic ossification between groups. Moreover, we found more adipocytes accumulated in the aged tendon defect with the Oil Red O staining and at the gene and protein levels the markers related to adipogenic differentiation. CONCLUSIONS Our findings indicate that tendon healing is impaired in aged rats and is characterized by a significantly lower histological score, decreased collagen synthesis and more adipocyte accumulation in patellar tendon after repair.
Collapse
|
43
|
Delgado Caceres M, Angerpointner K, Galler M, Lin D, Michel PA, Brochhausen C, Lu X, Varadarajan AR, Warfsmann J, Stange R, Alt V, Pfeifer CG, Docheva D. Tenomodulin knockout mice exhibit worse late healing outcomes with augmented trauma-induced heterotopic ossification of Achilles tendon. Cell Death Dis 2021; 12:1049. [PMID: 34741033 PMCID: PMC8571417 DOI: 10.1038/s41419-021-04298-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) represents a common problem after tendon injury with no effective treatment yet being developed. Tenomodulin (Tnmd), the best-known mature marker for tendon lineage cells, has important effects in tendon tissue aging and function. We have reported that loss of Tnmd leads to inferior early tendon repair characterized by fibrovascular scaring and therefore hypothesized that its lack will persistently cause deficient repair during later stages. Tnmd knockout (Tnmd-/-) and wild-type (WT) animals were subjected to complete Achilles tendon surgical transection followed by end-to-end suture. Lineage tracing revealed a reduction in tendon-lineage cells marked by ScleraxisGFP, but an increase in alpha smooth muscle actin myofibroblasts in Tnmd-/- tendon scars. At the proliferative stage, more pro-inflammatory M1 macrophages and larger collagen II cartilaginous template were detected in this group. At the remodeling stage, histological scoring revealed lower repair quality in the injured Tnmd-/- tendons, which was coupled with higher HO quantified by micro-CT. Tendon biomechanical properties were compromised in both groups upon injury, however we identified an abnormal stiffening of non-injured Tnmd-/- tendons, which possessed higher static and dynamic E-moduli. Pathologically thicker and abnormally shaped collagen fibrils were observed by TEM in Tnmd-/- tendons and this, together with augmented HO, resulted in diminished running capacity of Tnmd-/- mice. These novel findings demonstrate that Tnmd plays a protecting role against trauma-induced endochondral HO and can inspire the generation of novel therapeutics to accelerate repair.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Katharina Angerpointner
- Hand, Elbow and Plastic Surgery Department, Schön Klinik München Harlaching, Munich, Germany
| | - Michael Galler
- Department of Trauma Surgery, Caritas Hospital St. Josef, Regensburg, Germany
| | - Dasheng Lin
- Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Philipp A Michel
- Department of Trauma-, Hand-, and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | | | - Xin Lu
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Adithi R Varadarajan
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Jens Warfsmann
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany
| | - Volker Alt
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Clinic and Policlinic for Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Clinic and Policlinic for Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
44
|
Taguchi T, Zhang N, Angibeau D, Spivey KP, Lopez MJ. Evaluation of canine adipose-derived multipotent stromal cell differentiation to ligamentoblasts on tensioned collagen type I templates in a custom bioreactor culture system. Am J Vet Res 2021; 82:924-934. [PMID: 34669492 DOI: 10.2460/ajvr.82.11.924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate differentiation of canine adipose-derived multipotent stromal cells (ASCs) into ligamentoblasts on tensioned collagen type I (Col1) templates in a perfusion culture system. SAMPLES Infrapatellar fat pad ASCs from healthy stifle joints of 6 female mixed-breed dogs. PROCEDURES Third-passage ASCs (6 × 106 cells/template) were loaded onto suture-augmented Col1 templates under 15% static strain in perfusion bioreactors. Forty-eight ASC-Col1 constructs were incubated with ligamentogenic (ligamentogenic constructs; n = 24) or stromal medium (stromal constructs; 24) for up to 21 days. Specimens were collected from each construct after 2 hours (day 0) and 7, 14, and 21 days of culture. Cell number, viability, distribution, and morphology; construct collagen content; culture medium procollagen-I-N-terminal peptide concentration; and gene expression were compared between ligamentogenic and stromal constructs. RESULTS ASCs adhered to collagen fibers. Cell numbers increased from days 0 to 7 and days 14 to 21 for both construct types. Relative to stromal constructs, cell morphology and extracellular matrix were more mature and collagen content on day 21 and procollagen-I-N-terminal peptide concentration on days 7 and 21 were greater for ligamentogenic constructs. Ligamentogenic constructs had increased expression of the genes biglycan on day 7, decorin throughout the culture period, and Col1, tenomodulin, fibronectin, and tenascin-c on day 21; expression of Col1, tenomodulin, and tenascin-c increased between days 7 and 21. CONCLUSIONS AND CLINICAL RELEVANCE Ligamentogenic medium was superior to stromal medium for differentiation of ASCs to ligamentoblasts on suture-augmented Col1 scaffolds. Customized ligament neotissue may augment treatment options for dogs with cranial cruciate ligament rupture.
Collapse
Affiliation(s)
- Takashi Taguchi
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Nan Zhang
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Dominique Angibeau
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Kathryn P Spivey
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Mandi J Lopez
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
45
|
Adipogenic differentiation was inhibited by downregulation of PPARγ signaling pathway in aging tendon stem/progenitor cells. J Orthop Surg Res 2021; 16:614. [PMID: 34663381 PMCID: PMC8522149 DOI: 10.1186/s13018-021-02720-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tendon stem/progenitor cells (TSPCs) play a vital role in tendon repair and regeneration. Previously we found more adipocytes accumulated in the patellar tendon injury sites in aging rats compared with the young ones, of which the mechanism is still unknown. Here, we want to identify whether erroneous differentiation of TSPCs by aging accounts for the adipocyte accumulation. METHODS TSPCs from young and aging rats were isolated and propagated. Both young and aging TSPCs were induced to differentiate into adipocytes, and Oil red O staining, quantitative real-time polymerase chain reaction (qRT-PCR), western-blot and immunofluorescent staining were used to evaluate the capability of TSPCs. RNA sequencing was utilized to screen out different genes and signaling pathways related to adipogenesis between young and aging TSPCs. RESULTS The Oil red O staining showed there were more adipocytes formed in young TSPCs. Besides, adipogenic markers perilipin, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding proteins alpha (C/EBPα) and Fatty acid-binding protein 4 (FABP4) were elevated both at gene and protein level. PPARγ signaling pathway was selected as our target via RNA sequencing. After adding the signaling activators, Rosiglitazone maleate (RM), inhibited adipogenesis of aging TSCs was reversed. CONCLUSIONS In conclusion, aging inhibited adipogenesis of TSPCs by down-regulating PPARγ signaling. It is not likely that the adipocyte accumulation in aging tendon during repair was due to the aging of TSPCs. This may provide new targets for curing aging tendon injuries or tendinopathies.
Collapse
|
46
|
Decellularized tendon matrix membranes prevent post-surgical tendon adhesion and promote functional repair. Acta Biomater 2021; 134:160-176. [PMID: 34303866 DOI: 10.1016/j.actbio.2021.07.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Adhesion often occurs after tendon injury, and results in sliding disorder and movement limitation with no ideal solution for it in clinic. In this study, an anti-adhesion membrane, i.e., decellularized tendon matrix (DTM) for tendon is successfully prepared by an optimized tendon decellularization method from homologous extracellular matrix. Microsection technology has been used to optimize the method of decellularization in order to better preserve the bioactive components in tissues and reduce the chemical reagent residues on the premise of effective decellularization with relatively shorter time and less reagents for decellularization. The physic-chemical properties and biological functions of DTM are evaluated, and high-throughput and high-precision tandem mass tags (TMT) labeling proteomics technology is used to analyze protein components of DTM, which may provide the scientific support for application of the innovative product. In vitro biosafety tests show that DTM not only is non-toxic but also promote cell proliferation. Subcutaneous implantation test confirms that DTM is completely degraded after 12 weeks and there is no obvious inflammatory reaction. The results of Achilles tendon repair in rabbits show that DTM can not only prevent tendon adhesion but also improve the quality of tendon repair, which demonstrates its tremendous application potential. STATEMENT OF SIGNIFICANCE: There is no ideal solution for adhesion after tendon injury. In this study, a dense tendon anti-adhesion membrane (DTM) was successfully prepared from homologous extracellular matrix (ECM). This DTM could effectively retain bioactive ingredients, and prevent adhesion as well as improve the quality of tendon repair in vivo. An optimized decellularization method was used which could effectively decellularize tendon in a short time, better preserve bioactive components, and reduce reagent residues. For the first time, high-throughput and high-precision tandem mass tags (TMT) labeling proteomics technology was used to qualitatively and quantitatively analyze the protein composition of fresh tendon, acellular tendon and DTM, which provided not only scientific support for the application of DTM, but also comprehensive and accurate data support for related research of bovine tendons and decellularization.
Collapse
|
47
|
Maintenance of Ligament Homeostasis of Spheroid-Colonized Embroidered and Functionalized Scaffolds after 3D Stretch. Int J Mol Sci 2021; 22:ijms22158204. [PMID: 34360970 PMCID: PMC8348491 DOI: 10.3390/ijms22158204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Anterior cruciate ligament (ACL) ruptures are usually treated with autograft implantation to prevent knee instability. Tissue engineered ACL reconstruction is becoming promising to circumvent autograft limitations. The aim was to evaluate the influence of cyclic stretch on lapine (L) ACL fibroblasts on embroidered scaffolds with respect to adhesion, DNA and sulphated glycosaminoglycan (sGAG) contents, gene expression of ligament-associated extracellular matrix genes, such as type I collagen, decorin, tenascin C, tenomodulin, gap junctional connexin 43 and the transcription factor Mohawk. Control scaffolds and those functionalized by gas phase fluorination and cross-linked collagen foam were either pre-cultured with a suspension or with spheroids of LACL cells before being subjected to cyclic stretch (4%, 0.11 Hz, 3 days). Stretch increased significantly the scaffold area colonized with cells but impaired sGAGs and decorin gene expression (functionalized scaffolds seeded with cell suspension). Stretching increased tenascin C, connexin 43 and Mohawk but decreased decorin gene expression (control scaffolds seeded with cell suspension). Pre-cultivation of functionalized scaffolds with spheroids might be the more suitable method for maintaining ligamentogenesis in 3D scaffolds compared to using a cell suspension due to a significantly higher sGAG content in response to stretching and type I collagen gene expression in functionalized scaffolds.
Collapse
|
48
|
Jakobsen JR, Schjerling P, Svensson RB, Buhl R, Carstensen H, Koch M, Krogsgaard MR, Kjær M, Mackey AL. RNA sequencing and immunofluorescence of the myotendinous junction of mature horses and humans. Am J Physiol Cell Physiol 2021; 321:C453-C470. [PMID: 34260300 DOI: 10.1152/ajpcell.00218.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The myotendinous junction (MTJ) is a specialized interface for transmitting high forces between the muscle and tendon and yet the MTJ is a common site of strain injury with a high recurrence rate. The aim of this study was to identify previously unknown MTJ components in mature animals and humans. Samples were obtained from the superficial digital flexor (SDF) muscle-tendon interface of 20 horses, and the tissue was separated through a sequential cryosectioning approach into muscle, MTJ (muscle tissue enriched in myofiber tips attached to the tendon), and tendon fractions. RT-PCR was performed for genes known to be expressed in the three tissue fractions and t-distributed stochastic neighbor embedding (t-SNE) plots were used to select the muscle, MTJ, and tendon samples from five horses for RNA sequencing. The expression of previously known and unknown genes identified through RNA sequencing was studied by immunofluorescence on human hamstring MTJ tissue. The main finding was that RNA sequencing identified the expression of a panel of 61 genes enriched at the MTJ. Of these, 48 genes were novel for the MTJ and 13 genes had been reported to be associated with the MTJ in earlier studies. The expression of known [COL22A1 (collagen XXII), NCAM (neural cell adhesion molecule), POSTN (periostin), NES (nestin), OSTN (musclin/osteocrin)] and previously undescribed [MNS1 (meiosis-specific nuclear structural protein 1), and LCT (lactase)] MTJ genes was confirmed at the protein level by immunofluorescence on tissue sections of human MTJ. In conclusion, in muscle-tendon interface tissue enriched with myofiber tips, we identified the expression of previously unknown MTJ genes representing diverse biological processes, which may be important in the maintenance of the specialized MTJ.
Collapse
Affiliation(s)
- Jens R Jakobsen
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Pan T, Lin SC, Lee YC, Yu G, Song JH, Pan J, Titus M, Satcher RL, Panaretakis T, Logothetis C, Yu-Lee LY, Lin SH. Statins reduce castration-induced bone marrow adiposity and prostate cancer progression in bone. Oncogene 2021; 40:4592-4603. [PMID: 34127814 PMCID: PMC8384136 DOI: 10.1038/s41388-021-01874-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
A fraction of patients undergoing androgen deprivation therapy (ADT) for advanced prostate cancer (PCa) will develop recurrent castrate-resistant PCa (CRPC) in bone. Strategies to prevent CRPC relapse in bone are lacking. Here we show that the cholesterol-lowering drugs statins decrease castration-induced bone marrow adiposity in the tumor microenvironment and reduce PCa progression in bone. Using primary bone marrow stromal cells (BMSC) and M2-10B4 cells, we showed that ADT increases bone marrow adiposity by enhancing BMSC-to-adipocyte transition in vitro. Knockdown of androgen receptor abrogated BMSC-to-adipocyte transition, suggesting an androgen receptor-dependent event. RNAseq analysis showed that androgens reduce the secretion of adipocyte hormones/cytokines including leptin during BMSC-to-adipocyte transition. Treatment of PCa C4-2b, C4-2B4, and PC3 cells with leptin led to an increase in cell cycle progression and nuclear Stat3. RNAseq analysis also showed that androgens inhibit cholesterol biosynthesis pathway, raising the possibility that inhibiting cholesterol biosynthesis may decrease BMSC-to-adipocyte transition. Indeed, statins decreased BMSC-to-adipocyte transition in vitro and castration-induced bone marrow adiposity in vivo. Statin pre-treatment reduced 22RV1 PCa progression in bone after ADT. Our findings with statin may provide one of the mechanisms to the clinical correlations that statin use in patients undergoing ADT seems to delay progression to "lethal" PCa.
Collapse
Affiliation(s)
- Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Guoyu Yu
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Pan
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
50
|
Madry H, Grässel S, Nöth U, Relja B, Bernstein A, Docheva D, Kauther MD, Katthagen JC, Bader R, van Griensven M, Wirtz DC, Raschke MJ, Huber-Lang M. The future of basic science in orthopaedics and traumatology: Cassandra or Prometheus? Eur J Med Res 2021; 26:56. [PMID: 34127057 PMCID: PMC8200553 DOI: 10.1186/s40001-021-00521-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Orthopaedic and trauma research is a gateway to better health and mobility, reflecting the ever-increasing and complex burden of musculoskeletal diseases and injuries in Germany, Europe and worldwide. Basic science in orthopaedics and traumatology addresses the complete organism down to the molecule among an entire life of musculoskeletal mobility. Reflecting the complex and intertwined underlying mechanisms, cooperative research in this field has discovered important mechanisms on the molecular, cellular and organ levels, which subsequently led to innovative diagnostic and therapeutic strategies that reduced individual suffering as well as the burden on the society. However, research efforts are considerably threatened by economical pressures on clinicians and scientists, growing obstacles for urgently needed translational animal research, and insufficient funding. Although sophisticated science is feasible and realized in ever more individual research groups, a main goal of the multidisciplinary members of the Basic Science Section of the German Society for Orthopaedics and Trauma Surgery is to generate overarching structures and networks to answer to the growing clinical needs. The future of basic science in orthopaedics and traumatology can only be managed by an even more intensified exchange between basic scientists and clinicians while fuelling enthusiasm of talented junior scientists and clinicians. Prioritized future projects will master a broad range of opportunities from artificial intelligence, gene- and nano-technologies to large-scale, multi-centre clinical studies. Like Prometheus in the ancient Greek myth, transferring the elucidating knowledge from basic science to the real (clinical) world will reduce the individual suffering from orthopaedic diseases and trauma as well as their socio-economic impact.
Collapse
Affiliation(s)
- Henning Madry
- Institute of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Homburg, Germany
| | - Susanne Grässel
- Experimental Orthopedics, Department of Orthopedic Surgery, University of Regensburg, Regensburg, Germany
| | - Ulrich Nöth
- Department of Orthopaedics and Trauma Surgery, Evangelisches Waldkrankenhaus Berlin Spandau, Berlin, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anke Bernstein
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Max Daniel Kauther
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Essen, Essen, Germany
| | - Jan Christoph Katthagen
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Rainer Bader
- Department of Orthopaedics, Research Lab for Biomechanics and Implant Technology, Rostock University Medical Center, Rostock, Germany
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN-Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dieter C Wirtz
- Department of Orthopaedics and Trauma Surgery, University Hopsital Bonn, Bonn, Germany
| | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Helmholzstr. 8/1, Ulm, Germany.
| |
Collapse
|