1
|
Liang BG, Zheng YM, Shen HY, Yang GH, Xu WX, Tan CJ, Ke AW, Qin WZ. Cordycepin mediates pyroptosis in HCC through the upregulation of TXNIP and synergizes with anti-PD-L1 immunotherapy. Hepatol Commun 2025; 9:e0633. [PMID: 40008893 PMCID: PMC11868431 DOI: 10.1097/hc9.0000000000000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/14/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are effective treatments for HCC; however, their therapeutic efficacy is often limited by the development of drug resistance. Therefore, investigating new combination therapeutics involving immune checkpoint inhibitors is critical to improving patient prognosis. In this study, we investigated the therapeutic effect of cordycepin (COR) in HCC and its synergistic effect with anti-programmed cell death ligand 1 (anti-PD-L1) immunotherapy. METHODS We selected 2 HCC cell lines to investigate the effects of COR on HCC growth using in vivo and in vitro experiments. We performed RNA sequencing of the MHCC97H cell line treated with or without COR to understand the underlying mechanism and identify the key regulatory genes. Through in vivo and in vitro experiments on gene knockdown cells, we identified thioredoxin-interacting protein as a key molecule involved in the role of COR. Next, we used mouse subcutaneous and orthotopic tumor models to evaluate the therapeutic effects of COR, atezolizumab (a programmed death-ligand 1 [PD-L1] inhibitor), or their combination. Multiple immunofluorescence staining revealed that the combination of atezolizumab and COR therapy greatly increased the number of tumor-infiltrating CD8+ T cells and PD-L1 expression in HCC compared to monotherapy. RESULTS Our study revealed that COR significantly inhibited HCC growth both in vitro and in vivo. Mechanistically, we showed that COR induces endoplasmic reticulum stress, which upregulates thioredoxin-interacting protein expression and leads to HCC cell pyroptosis. In addition, the combination treatment with COR and PD-L1 inhibitors profoundly inhibited HCC. CONCLUSIONS Overall, our study successfully established a combined therapeutic strategy using COR and PD-L1 inhibitors. This strategy has significant synergistic effects on cancer cells, highlighting its importance in cancer therapy.
Collapse
Affiliation(s)
- Bu-Gang Liang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Hong-Ye Shen
- Department of Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wen-Xin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Chang-Jun Tan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wen-Zheng Qin
- Department of Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| |
Collapse
|
2
|
Xi X, Guo S, Gu Y, Wang X, Wang Q. Challenges and opportunities in single-domain antibody-based tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189284. [PMID: 39947441 DOI: 10.1016/j.bbcan.2025.189284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Single-domain antibodies (sdAbs) have emerged as a promising tool in tumor immunotherapy, garnering significant attention in recent years due to their unique structure and superior properties. Unlike traditional antibodies, sdAbs exhibit several advantages, including small molecular weight, high stability, strong affinity, and high specificity. These characteristics enable sdAbs to effectively target and eliminate tumor cells within the complex tumor microenvironment. Moreover, their structural advantages enhance tissue penetration and reduce immunogenicity, thereby increasing their potential for clinical application. The potential applications of sdAbs include novel immune checkpoint inhibitors, bispecific antibody drugs, innovative immune cell therapies, antibody-drug conjugate therapies, and tumor molecular imaging diagnostics. Despite the promising prospects, several challenges of sdAb-based tumor immunotherapy still require further investigation. This review aims to summarize the status of sdAb-based immunotherapy, identify the challenges encountered, and evaluate the clinical research and application potential of sdAbs in this field.
Collapse
Affiliation(s)
- Xiaozhi Xi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, People's Republic of China.; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, People's Republic of China.; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China
| | - Shasha Guo
- Shandong Women's University, 250355 Jinan, People's Republic of China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuekai Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, People's Republic of China.; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, People's Republic of China
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, People's Republic of China.; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, People's Republic of China.; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Deng C, Ma J, Liu Y, Tong X, Wang L, Dong J, Shi P, Wang M, Zheng W, Ma X. Targeting intracellular cancer proteins with tumor-microenvironment-responsive bispecific nanobody-PROTACs for enhanced therapeutic efficacy. MedComm (Beijing) 2025; 6:e70068. [PMID: 39830023 PMCID: PMC11742431 DOI: 10.1002/mco2.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are pivotal in cancer therapy for their ability to degrade specific proteins. However, their non-specificity can lead to systemic toxicity due to protein degradation in normal cells. To address this, we have integrated a nanobody into the PROTACs framework and leveraged the tumor microenvironment to enhance drug specificity. In this study, we engineered BumPeD, a novel bispecific nanobody-targeted PROTACs-like platform, by fusing two nanobodies with a Furin protease cleavage site (RVRR) and a degron sequence (ALAPYIP or KIGLGRQKPPKATK), enabling the tumor microenvironment to direct the degradation of intracellular proteins. We utilized KN035 and Nb4A to target PD-L1 (programmed death ligand 1) on the cell surface and intracellular Survivin, respectively. In vitro experiments showed that BumPeD triggers Survivin degradation via the ubiquitin-proteasome pathway, inducing tumor apoptosis and suppressing bladder tumor cell proliferation and migration. In vivo experiments further confirmed BumPeD's robust anti-tumor efficacy, underscoring its potential as a precise protein degradation strategy for cancer therapy. Our platform provides a systematic approach to developing effective and practical protein degraders, offering a targeted theoretical basis and experimental support for the development of novel degradative drugs, as well as new directions for cancer therapy.
Collapse
Affiliation(s)
- Changping Deng
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Jiacheng Ma
- Department of Information EngineeringThe Chinese University of Hong KongHong KongP. R. China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Xikui Tong
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Lei Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Jiayi Dong
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Ping Shi
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Meiyan Wang
- School of MedicineShanghai UniversityShanghaiP. R. China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| |
Collapse
|
4
|
Mehrotra S, Kaur N, Kaur S, Matharoo K, Pandey RK. From antibodies to nanobodies: The next frontier in cancer theranostics for solid tumors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:287-329. [PMID: 39978969 DOI: 10.1016/bs.apcsb.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The field of cancer therapeutics has witnessed significant advancements over the past decades, particularly with the emergence of immunotherapy. This chapter traces the transformative journey from traditional antibody-based therapies to the innovative use of nanobodies in the treatment and diagnosis of solid tumors. Nanobodies are the smallest fragments of antibodies derived from camelid immunoglobulins and have redefined the possibilities in cancer theranostics due to their unique structural and functional properties. We provide an overview of the biochemical characteristics of nanobodies that make them particularly suitable for theranostic applications, such as their small size, high stability, enhanced infiltration into the complex tumor microenvironment (TME) and ability to bind with high affinity to epitopes that are inaccessible to conventional antibodies. Further, their ease of modification and functionalization has enabled the development of nanobody-based drug conjugates/toxins and radiolabeled compounds for precise imaging and targeted radiotherapy. We elucidate how nanobodies are being served as valuable tools for prognostic assessment, enabling clinicians to predict disease aggressiveness, monitor treatment response, and stratify patients for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Navdeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
5
|
Lin F, Yin S, Zhang Z, Yu Y, Fang H, Liang Z, Zhu R, Zhou H, Li J, Cao K, Guo W, Qin S, Zhang Y, Lu C, Li H, Liu S, Zhang H, Ye B, Lin J, Li Y, Kang X, Xi JJ, Chen PR. Multimodal targeting chimeras enable integrated immunotherapy leveraging tumor-immune microenvironment. Cell 2024; 187:7470-7491.e32. [PMID: 39504957 DOI: 10.1016/j.cell.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Although immunotherapy has revolutionized cancer treatment, its efficacy is affected by multiple factors, particularly those derived from the complexity and heterogeneity of the tumor-immune microenvironment (TIME). Strategies that simultaneously and synergistically engage multiple immune cells in TIME remain highly desirable but challenging. Herein, we report a multimodal and programmable platform that enables the integration of multiple therapeutic modules into single agents for tumor-targeted co-engagement of multiple immune cells within TIME. We developed the triple orthogonal linker (T-Linker) technology to integrate various therapeutic small molecules and biomolecules as multimodal targeting chimeras (Multi-TACs). The EGFR-CD3-PDL1 Multi-TAC facilitated T-dendritic cell co-engagement to target solid tumors with excellent efficacy, as demonstrated in vitro, in several humanized mouse models and in patient-derived tumor models. Furthermore, Multi-TACs were constructed to coordinate T cells with other immune cell types. The highly modular and programmable feature of our Multi-TACs may find broad applications in immunotherapy and beyond.
Collapse
Affiliation(s)
- Feng Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Shenyi Yin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zijian Zhang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Ying Yu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Haoming Fang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Rujie Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haitao Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Kunxia Cao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiming Guo
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shan Qin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuxuan Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chenghao Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shibo Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Heng Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Buqing Ye
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| | - Yan Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210061, China; National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China.
| | - Xiaozheng Kang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Hosseininejad-Chafi M, Eftekhari Z, Oghalaie A, Behdani M, Sotoudeh N, Kazemi-Lomedasht F. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy. Med Oncol 2024; 42:36. [PMID: 39719469 DOI: 10.1007/s12032-024-02588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection. Traditional antibodies, such as IgGs, have been widely used in immune therapies but are limited by their size and complexity. Nanobodies (Nbs), derived from camelid heavy-chain-only antibodies, offer a promising alternative. These small, stable antibody fragments retain the antigen-binding specificity of traditional antibodies but have enhanced solubility and the ability to target otherwise inaccessible epitopes. This review explores the use of Nbs as ICIs, emphasizing their potential in cancer immunotherapy and other immune-related treatments. Their unique structural properties and small size make Nbs highly effective tools for modulating immune responses, representing a novel approach in the evolving landscape of checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Nazli Sotoudeh
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
7
|
Madsen AV, Mejias-Gomez O, Pedersen LE, Preben Morth J, Kristensen P, Jenkins TP, Goletz S. Structural trends in antibody-antigen binding interfaces: a computational analysis of 1833 experimentally determined 3D structures. Comput Struct Biotechnol J 2024; 23:199-211. [PMID: 38161735 PMCID: PMC10755492 DOI: 10.1016/j.csbj.2023.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Antibodies are attractive therapeutic candidates due to their ability to bind cognate antigens with high affinity and specificity. Still, the underlying molecular rules governing the antibody-antigen interface remain poorly understood, making in silico antibody design inherently difficult and keeping the discovery and design of novel antibodies a costly and laborious process. This study investigates the characteristics of antibody-antigen binding interfaces through a computational analysis of more than 850,000 atom-atom contacts from the largest reported set of antibody-antigen complexes with 1833 nonredundant, experimentally determined structures. The analysis compares binding characteristics of conventional antibodies and single-domain antibodies (sdAbs) targeting both protein- and peptide antigens. We find clear patterns in the number antibody-antigen contacts and amino acid frequencies in the paratope. The direct comparison of sdAbs and conventional antibodies helps elucidate the mechanisms employed by sdAbs to compensate for their smaller size and the fact that they harbor only half the number of complementarity-determining regions compared to conventional antibodies. Furthermore, we pinpoint antibody interface hotspot residues that are often found at the binding interface and the amino acid frequencies at these positions. These findings have direct potential applications in antibody engineering and the design of improved antibody libraries.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Oscar Mejias-Gomez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - J. Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Fridy PC, Rout MP, Ketaren NE. Nanobodies: From High-Throughput Identification to Therapeutic Development. Mol Cell Proteomics 2024; 23:100865. [PMID: 39433212 PMCID: PMC11609455 DOI: 10.1016/j.mcpro.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The camelid single-domain antibody fragment, commonly referred to as a nanobody, achieves the targeting power of conventional monoclonal antibodies (mAbs) at only a fraction of their size. Isolated from camelid species (including llamas, alpacas, and camels), their small size at ∼15 kDa, low structural complexity, and high stability compared with conventional antibodies have propelled nanobody technology into the limelight of biologic development. Nanobodies are proving themselves to be a potent complement to traditional mAb therapies, showing success in the treatment of, for example, autoimmune diseases and cancer, and more recently as therapeutic options to treat infectious diseases caused by rapidly evolving biological targets such as the SARS-CoV-2 virus. This review highlights the benefits of applying a proteomic approach to identify diverse nanobody sequences against a single antigen. This proteomic approach coupled with conventional yeast/phage display methods enables the production of highly diverse repertoires of nanobodies able to bind the vast epitope landscape of an antigen, with epitope sampling surpassing that of mAbs. Additionally, we aim to highlight recent findings illuminating the structural attributes of nanobodies that make them particularly amenable to comprehensive antigen sampling and to synergistic activity-underscoring the powerful advantage of acquiring a large, diverse nanobody repertoire against a single antigen. Lastly, we highlight the efforts being made in the clinical development of nanobodies, which have great potential as powerful diagnostic reagents and treatment options, especially when targeting infectious disease agents.
Collapse
Affiliation(s)
- Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
9
|
Yue L, Geng F, Jin J, Li W, Liu B, Du M, Gao X, Lü J, Pan X. Lactobacillus reuteri Assists Engineered Bacteria That Target Tumors to Release PD-L1nb to Mitigate the Adverse Effects of Breast Cancer Immunotherapy. Biotechnol J 2024; 19:e202400428. [PMID: 39711089 DOI: 10.1002/biot.202400428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
Programmed death protein-ligand 1 (PD-L1) inhibitors demonstrate significant antitumor efficacy by modulating T-cell activity and inhibiting the PD-1/PD-L1 pathway, thus enhancing immune responses. Despite their robust effects, systemic administration of these inhibitors is linked to severe immune toxicity. To address this issue, we engineered a strain, REP, which releases PD-L1 nanoantibodies (PD-L1nb) to treat breast cancer and attenuate immunotherapy-related side effects. REP selectively targets tumors and periodically releases PD-L1nb within tumors via a quorum-sensing lysis system. Administration of 108 colony-forming units (CFU) of REP led to a substantial 52% reduction in tumor growth, achieved through the sustained release of PD-L1nb. Importantly, there were no detectable lesions in other organs, with the exception of mild intestinal damage. Further, we explored the potential of a combined treatment using Lactobacillus reuteri (LR) and REP to alleviate intestinal inflammation. LR modulates the expression of inflammatory markers IL-1β, IL-6, and IL-10 through the JNK pathway, reducing intestinal inflammation without compromising REP's antitumor efficacy. Consequently, we formulated a dual strategy employing an engineered strain and probiotics to reduce the adverse effects of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Lijun Yue
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Feng Geng
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiayi Jin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenzhen Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Maoru Du
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xue Gao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Junhong Lü
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
10
|
Chen Y, Zhang J, Hu W, Li X, Sun K, Shen Y, Zhang M, Wu J, Gao S, Yu J, Que R, Zhang Y, Yang F, Xia W, Zhang A, Tang X, Bai X, Liang T. Envafolimab plus lenvatinib and transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a prospective, single-arm, phase II study. Signal Transduct Target Ther 2024; 9:280. [PMID: 39384742 PMCID: PMC11464841 DOI: 10.1038/s41392-024-01991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
Evidences regarding the feasibility of transcatheter arterial chemoembolization (TACE)-based therapy for unresectable hepatocellular carcinoma (uHCC) remains limited. This study aimed to investigate the efficacy and safety of TACE combined with envafolimab and lenvatinib for uHCC. Eligible patients with uHCC received envafolimab and lenvatinib after TACE until disease progression, conversion to surgery, intolerable toxicities, or death. The primary endpoint was the objective response rate (ORR) assessed according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria. Between March 2022 and July 2022, 38 patients were included for safety analysis, and 36 patients were included for efficacy analysis. As of the data cutoff (13 December 2023), the median follow-up was 16.9 months. The ORR was 50%, and disease control rate (DCR) was 83.3% per RECIST 1.1 (ORR and DCR of both 83.3% per modified RECIST (mRECIST)). The median progression-free survival (PFS) was 7.58 months. Of 36 patients, 17 patients were converted to resectable HCC with a surgical conversion rate of 47.2%, and 16 patients underwent surgery with R0 resection rate of 100%, pathologic complete response (pCR) rate of 31.3%. Overall incidences of treatment-related adverse events (TRAEs) of any grade was 97.4%. Grade ≥ 3 TRAEs were observed in 52.6% patients. No treatment-related deaths occurred. Image mass cytometry (IMC) analysis revealed that combined treatment improved the immune status of the tumor microenvironment, and resident macrophages had the potential to predict efficacy of this treatment. Envafolimab plus lenvatinib and TACE yielded promising survival outcomes and conversion efficiency with a tolerable safety profile. Trial registration Clinical trials: NCT05213221.
Collapse
Affiliation(s)
- Yiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wendi Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shunliang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Risheng Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiliang Xia
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Aibin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Geng Q, Lu Y, Li D, Qin L, Qi C, Pu X, Zhuang Y, Zhu Y, Zha Q, Wang G, Jiang H. β-glucan combined with Envafolimab and Endostar as immune rechallenge for metastatic non-small cell lung cancer. BMC Immunol 2024; 25:60. [PMID: 39271997 PMCID: PMC11401293 DOI: 10.1186/s12865-024-00651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitor rechallenge has emerged as a prominent study area in non-small cell lung cancer (NSCLC). β-glucan was reported to reverse resistance to anti-PD-1/PD-L1 inhibitors by regulating the tumor microenvironment. In this self-initiated clinical trial (ChiCTR2100054796), NSCLC participants who have previously failed anti-PD-1 therapy received β-glucan (500 mg, bid, d1-21), Envafolimab (300 mg, d1) and Endostar (210 mg, civ72h) every 3 weeks until disease progression or unacceptable toxicity. The clinical efficacy and adverse events were observed, while serum samples were collected for proteomic analysis. RESULTS Twenty Three patients were enrolled from January 2022 to March 2023 (median age, 65 years; male, n = 18 [78.3%]; squamous NSCLC, n = 9 [39.1%]; mutant type, n = 13 [56.5%]). The overall response rate (ORR) was 21.7% and disease control rate (DCR) was 73.9%. Median progression-free survival (mPFS) and median overall survival (mOS) was 4.3 months [95% CI: 2.0-6.6] and 9.8 months [95% CI: 7.2-12.4], respectively. The mPFS between PD-L1 positive and negative subgroup has significant difference (6.3 months vs. 2.3 months, p = 0.002). Treatment-related adverse events (TRAEs) occurred in 52.2% of patients. The most common TRAEs were hypothyroidism (26.1%) and fatigue (26.1%). 2 (8.7%) grade 3 adverse events were reported. No adverse reaction related deaths have been observed. Proteomic analysis revealed that the levels of CASP-8, ARG1, MMP12, CD28 and CXCL5 correlated with resistance to the treatment while the levels of CD40-L and EGF related to the favorable response. CONCLUSION β-glucan combined with Envafolimab and Endostar has considerable efficacy and safety for immune rechallenge in metastatic NSCLC patients who failed of anti-PD-1 treatment previously, especially for PD-L1 positive patients.
Collapse
Affiliation(s)
- Qian Geng
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Yingying Lu
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Dongqing Li
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Lanqun Qin
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Chunjian Qi
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Xiaolin Pu
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Yi Zhuang
- Department of Oncology, Changzhou Wujin Hospital of TCM, Changzhou, 213003, China
| | - Yajun Zhu
- Department of Oncology, Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu, 213200, China
| | - Quanbin Zha
- Department of Oncology, Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu, 213200, China
| | - Ge Wang
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Hua Jiang
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China.
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China.
| |
Collapse
|
12
|
Wu L, Zheng Z, Xun J, Liu L, Wang J, Zhang X, Shao Y, Shen Y, Zhang R, Zhang M, Sun M, Qi T, Wang Z, Xu S, Song W, Tang Y, Zhao B, Song Z, Routy JP, Lu H, Chen J. Anti-PD-L1 antibody ASC22 in combination with a histone deacetylase inhibitor chidamide as a "shock and kill" strategy for ART-free virological control: a phase II single-arm study. Signal Transduct Target Ther 2024; 9:231. [PMID: 39245675 PMCID: PMC11381521 DOI: 10.1038/s41392-024-01943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
The combination of ASC22, an anti-PD-L1 antibody potentially enhancing HIV-specific immunity and chidamide, a HIV latency reversal agent, may serve as a strategy for antiretroviral therapy-free virological control for HIV. People living with HIV, having achieved virological suppression, were enrolled to receive ASC22 and chidamide treatment in addition to their antiretroviral therapy. Participants were monitored over 24 weeks to measure changes in viral dynamics and the function of HIV-specific CD8+ T cells (NCT05129189). 15 participants completed the study. At week 8, CA HIV RNA levels showed a significant increase from baseline, and the values returned to baseline after discontinuing ASC22 and chidamide. The total HIV DNA was only transiently increased at week 4 (P = 0.014). In contrast, integrated HIV DNA did not significantly differ from baseline. Increases in the proportions of effector memory CD4+ and CD8+ T cells (TEM) were observed from baseline to week 24 (P = 0.034 and P = 0.002, respectively). The combination treatment did not succeed in enhancing the function of HIV Gag/Pol- specific CD8+ T cells. Nevertheless, at week 8, a negative correlation was identified between the proportions of HIV Gag-specific TEM cells and alterations in integrated DNA in the T cell function improved group (P = 0.042 and P = 0.034, respectively). Nine adverse events were solicited, all of which were graded 1 and resolved spontaneously. The combined treatment of ASC22 and chidamide was demonstrated to be well-tolerated and effective in activating latent HIV reservoirs. Further investigations are warranted in the context of analytic treatment interruption.
Collapse
Affiliation(s)
- Luling Wu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihang Zheng
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jingna Xun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiangrong Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yueming Shao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meiyan Sun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuibao Xu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bihe Zhao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zichen Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Hongzhou Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Guangdong, China.
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Cui C, Wang J, Wang C, Xu T, Qin L, Xiao S, Gong J, Song L, Liu D. Model-informed drug development of envafolimab, a subcutaneously injectable PD-L1 antibody, in patients with advanced solid tumors. Oncologist 2024; 29:e1189-e1200. [PMID: 38982653 PMCID: PMC11379657 DOI: 10.1093/oncolo/oyae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/17/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Envafolimab is the first and only globally approved subcutaneously injectable PD-L1 antibody for the treatment of instability-high (MSI-H) or DNA mismatch repair deficient (dMMR) advanced solid tumors in adults, including those with advanced colorectal cancer that has progressed after treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. The aim of this investigation was to examine the pharmacokinetic and exposure-response (E-R) profile of envafolimab in patients with solid tumors to support the approval of fixed and alternative dose regimens. METHODS In this study, a population pharmacokinetic (PopPK) modeling approach will be employed to quantitatively evaluate intrinsic and extrinsic covariates. Additionally, PopPK-estimated exposure parameters were used to evaluate E-R relationship for safety and efficacy to provide a theoretical basis for recommending optimal treatment regimens. Simulations were performed on the dosing regimens of body weight-based regimen of 2.50 mg/kg QW, fixed dose 150 mg QW, and 300 mg Q2W for the selection of alternative dosing regimens. Data from 4 clinical studies (NCT02827968, NCT03101488, NCT03248843, and NCT03667170) were utilized. RESULTS The PopPK dataset comprised 182 patients with 1810 evaluable envafolimab concentration records. Finally, a one-compartment model incorporating first-order absorption, first-order linear elimination, and time-dependent elimination according to an Emax function was found to accurately describe the concentration-time data of envafolimab in patients with advanced solid tumors. Creatinine clearance and country were identified as statistically significant factors affecting clearance, but had limited clinical significance. A relative flat exposure-response relationship was observed between early measures of safety and efficacy to verify that no dose adjustment is required. Simulation results indicated that 2.50 mg/kg QW, 150 mg QW, and 300 mg Q2W regimen yield similar steady-state exposure. CONCLUSIONS No statistically significant difference was observed between weight-based and fixed dose regimens. Model-based simulation supports the adoption of a 150 mg weekly or 300 mg biweekly dosing regimen of envafolimab in the solid tumor population, as these schedules effectively balance survival benefits and safety risks.
Collapse
Affiliation(s)
- Cheng Cui
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, People’s Republic of China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Jing Wang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, People’s Republic of China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Chunyang Wang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, People’s Republic of China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ting Xu
- Alphamab Co., Ltd., Suzhou, People’s Republic of China
| | - Lan Qin
- 3DMedicines Co., Ltd., Shanghai, People’s Republic of China
| | - Shen Xiao
- 3DMedicines Co., Ltd., Shanghai, People’s Republic of China
| | - John Gong
- 3DMedicines Co., Ltd., Shanghai, People’s Republic of China
| | - Ling Song
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, People’s Republic of China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, People’s Republic of China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Bouma RG, Nijen Twilhaar MK, Brink HJ, Affandi AJ, Mesquita BS, Olesek K, van Dommelen JMA, Heukers R, de Haas AM, Kalay H, Ambrosini M, Metselaar JM, van Rooijen A, Storm G, Oliveira S, van Kooyk Y, den Haan JMM. Nanobody-liposomes as novel cancer vaccine platform to efficiently stimulate T cell immunity. Int J Pharm 2024; 660:124254. [PMID: 38795934 DOI: 10.1016/j.ijpharm.2024.124254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer vaccines can be utilized in combination with checkpoint inhibitors to optimally stimulate the anti-tumor immune response. Uptake of vaccine antigen by antigen presenting cells (APCs) is a prerequisite for T cell priming, but often relies on non-specific mechanisms. Here, we have developed a novel vaccination strategy consisting of cancer antigen-containing liposomes conjugated with CD169- or DC-SIGN-specific nanobodies (single domain antibodies) to achieve specific uptake by APCs. Our studies demonstrate efficient nanobody liposome uptake by human and murine CD169+ and DC-SIGN+ APCs in vitro and in vivo when compared to control liposomes or liposomes with natural ligands for CD169 and DC-SIGN. Uptake of CD169 nanobody liposomes resulted in increased T cell activation by human APCs and stimulated naive T cell priming in mouse models. In conclusion, while nanobody liposomes have previously been utilized to direct drugs to tumors, here we show that nanobody liposomes can be applied as vaccination strategy that can be extended to other receptors on APCs in order to elicit a potent immune response against tumor antigens.
Collapse
Affiliation(s)
- R G Bouma
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - M K Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - H J Brink
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - A J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - B S Mesquita
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - K Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - J M A van Dommelen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - R Heukers
- QVQ Holding BV, Yalelaan 1, Utrecht 3584 CL, the Netherlands
| | - A M de Haas
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - H Kalay
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - M Ambrosini
- LIPOSOMA BV, Science Park 408, Amsterdam 1098 XH, the Netherlands
| | - J M Metselaar
- LIPOSOMA BV, Science Park 408, Amsterdam 1098 XH, the Netherlands; Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - A van Rooijen
- LIPOSOMA BV, Science Park 408, Amsterdam 1098 XH, the Netherlands
| | - G Storm
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; Department of Biomaterials Science and Technology, University of Twente, Enschede 7500 AE, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - S Oliveira
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - J M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Li Y, Zhang W, Du J, Hu J, Hu R, Zeng Z, Jin-Si-Han EEMBK, Lian S, Wang H, Li Y, Pan Z, Feng C, Zhang X, Lu Z. Efficacy and Safety of Neoadjuvant Subcutaneous Envafolimab in dMMR/MSI-H Locally Advanced Colon Cancer. Target Oncol 2024; 19:601-610. [PMID: 38691294 DOI: 10.1007/s11523-024-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Neoadjuvant immunotherapy with programmed death-ligand 1 blockade for colon cancer, especially for mismatch repair-deficient (dMMR)/high microsatellite instability (MSI-H) colon cancer, has gained considerable attention recently. OBJECTIVE This study aimed to assess the safety and efficacy of neoadjuvant subcutaneous envafolimab in patients with dMMR/MSI-H locally advanced colon cancer. METHODS Patients with dMMR/MSI-H locally advanced colon cancer treated with envafolimab at Sun Yat-sen University Cancer Center and Yunnan Cancer Hospital from October 2021 to July 2023 were retrospectively reviewed and analyzed. The primary endpoint was the pathological complete response (CR) rate, and secondary endpoints were treatment-related adverse events and complete clinical response rate. RESULTS Overall, 15 patients were analyzed. After neoadjuvant immunotherapy with envafolimab, six patients achieved a CR, with five partial responses, and four stable disease. Three patients achieving a complete clinical response chose to accept a "watch and wait" strategy, and surgery was performed in 12 patients. Postoperative pathology results revealed seven patients achieved pathological CRs, and five patients achieved tumor regression grade 2, with 66.7% of the total CR rate. The most common treatment-related adverse events were pruritus and rash (40%), with no severe cases. No recurrences occurred over a 7.9-month follow-up. CONCLUSIONS Envafolimab yielded promising surgical outcomes and safety in dMMR/MSI-H locally advanced colon cancer, representing a promising treatment modality for this population.
Collapse
Affiliation(s)
- Yuan Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Weili Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Jie Du
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Jinlong Hu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Ruixi Hu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Ziyang Zeng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - E-Er-Man-Bie-Ke Jin-Si-Han
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Shaopu Lian
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Hao Wang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yunfeng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Cheng Feng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China.
| | - Zhenhai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Zhang J, Wang X, Huang Q, Ye J, Wang J. Genetically Encoded Epoxide Warhead for Precise and Versatile Covalent Targeting of Proteins. J Am Chem Soc 2024; 146:16173-16183. [PMID: 38819260 PMCID: PMC11177858 DOI: 10.1021/jacs.4c03974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Genetically encoding a proximal reactive warhead into the protein binder/drug has emerged as an efficient strategy for covalently binding to protein targets, enabling broad applications. To expand the reactivity scope for targeting the diverse natural residues under physiological conditions, the development of a genetically encoded reactive warhead with excellent stability and broad reactivity is highly desired. Herein, we reported the genetic encoding of epoxide-containing tyrosine (EPOY) for developing covalent protein drugs. Our study demonstrates that EPOY, when incorporated into a nanobody (KN035), can cross-link with different side chains (mutations) at the same position of PD-L1 protein. Significantly, a single genetically encoded reactive warhead that is capable of covalent and site-specific targeting to 10 different nucleophilic residues was achieved for the first time. This would largely expand the scope of covalent warhead and inspire the development of covalent warheads for both small-molecule drugs and protein drugs. Furthermore, we incorporate the EPOY into a designed ankyrin repeat protein (DarpinK13) to create the covalent binders of KRAS. This covalent KRAS binder holds the potential to achieve pan-covalent targeting of KRAS based on the structural similarity among all oncogenic KRAS mutants while avoiding off-target binding to NRAS/HRAS through a covalent interaction with KRAS-specific residues (H95 and E107). We envision that covalently targeting to H95 will be a promising strategy for the development of covalent pan-KRAS inhibitors in the future.
Collapse
Affiliation(s)
| | | | | | - Jinsong Ye
- Department of Chemistry,
Research Center for Chemical Biology and Omics Analysis, College of
Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jie Wang
- Department of Chemistry,
Research Center for Chemical Biology and Omics Analysis, College of
Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Badenhorst M, Windhorst AD, Beaino W. Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities. Front Med (Lausanne) 2024; 11:1401515. [PMID: 38915766 PMCID: PMC11195831 DOI: 10.3389/fmed.2024.1401515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Immunotherapy targeted to immune checkpoint inhibitors, such as the program cell death receptor (PD-1) and its ligand (PD-L1), has revolutionized cancer treatment. However, it is now well-known that PD-1/PD-L1 immunotherapy response is inconsistent among patients. The current challenge is to customize treatment regimens per patient, which could be possible if the PD-1/PD-L1 expression and dynamic landscape are known. With positron emission tomography (PET) imaging, it is possible to image these immune targets non-invasively and system-wide during therapy. A successful PET imaging tracer should meet specific criteria concerning target affinity, specificity, clearance rate and target-specific uptake, to name a few. The structural profile of such a tracer will define its properties and can be used to optimize tracers in development and design new ones. Currently, a range of PD-1/PD-L1-targeting PET tracers are available from different molecular categories that have shown impressive preclinical and clinical results, each with its own advantages and disadvantages. This review will provide an overview of current PET tracers targeting the PD-1/PD-L1 axis. Antibody, peptide, and antibody fragment tracers will be discussed with respect to their molecular characteristics and binding properties and ways to optimize them.
Collapse
Affiliation(s)
- Melinda Badenhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Albert D. Windhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Wissam Beaino
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
18
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
19
|
Abudureheman T, Zhou H, Yang LT, Huang XS, Jing JJ, Duan CW, Chen KM. Construction of Switch Modules for CAR-T Cell Treatment Using a Site-Specific Conjugation System. Bioconjug Chem 2024; 35:604-615. [PMID: 38661725 DOI: 10.1021/acs.bioconjchem.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Chimeric antigen receptor T-cell (CAR-T cell) therapy has become a promising treatment option for B-cell hematological tumors. However, few optional target antigens and disease relapse due to loss of target antigens limit the broad clinical applicability of CAR-T cells. Here, we conjugated an antibody (Ab) fusion protein, consisting of an Ab domain and a SpyCatcher domain, with the FITC-SpyTag (FITC-ST) peptide to form a bispecific safety switch module using a site-specific conjugation system. We applied the safety switch module to target CD19, PDL1, or Her2-expressing tumor cells by constructing FMC63 (anti-CD19), antiPDL1, or ZHER (anti-Her2)-FITC-ST, respectively. Those switch modules significantly improved the cytotoxic effects of anti-FITC CAR-T cells on tumor cells. Additionally, we obtained the purified CD8+ T cells by optimizing a shorter version of the CD8-binding aptamer to generate anti-FITC CD8-CAR-T cells, which combined with the CD4-FITC-ST switch module (anti-CD4) to eliminate the CD4-positive tumor cells in vitro and in vivo. Overall, we established a novel safety switch module by site-specific conjugation to enhance the antitumor function of universal CAR-T cells, thereby expanding the application scope of CAR-T therapy and improving its safety and efficacy.
Collapse
Affiliation(s)
- Tuersunayi Abudureheman
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hang Zhou
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Li-Ting Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiu-Song Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jun-Jie Jing
- Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, and Fujian Children's Hospital, Fuzhou 350001, China
| | - Cai-Wen Duan
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
- Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, and Fujian Children's Hospital, Fuzhou 350001, China
| | - Kai-Ming Chen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
- Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, and Fujian Children's Hospital, Fuzhou 350001, China
| |
Collapse
|
20
|
Wilson J, Kimmel B, Arora K, Chada N, Bharti V, Kwiatkowski A, Finklestein J, Hanna A, Arner E, Sheehy T, Pastora L, Yang J, Pagendarm H, Stone P, Taylor B, Hubert L, Gibson-Corley K, May J, McLean J, Rathmell J, Richmond A, Rathmell W, Balko J, Fingleton B, Hargrove-Wiley E. Programable Albumin-Hitchhiking Nanobodies Enhance the Delivery of STING Agonists to Potentiate Cancer Immunotherapy. RESEARCH SQUARE 2024:rs.3.rs-3243545. [PMID: 38766114 PMCID: PMC11100900 DOI: 10.21203/rs.3.rs-3243545/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stimulator of interferon genes (STING) is a promising target for potentiating antitumor immunity, but multiple pharmacological barriers limit the clinical utility, efficacy, and/or safety of STING agonists. Here we describe a modular platform for systemic administration of STING agonists based on nanobodies engineered for in situ hitchhiking of agonist cargo on serum albumin. Using site-selective bioconjugation chemistries to produce molecularly defined products, we found that covalent conjugation of a STING agonist to anti-albumin nanobodies improved pharmacokinetics and increased cargo accumulation in tumor tissue, stimulating innate immune programs that increased the infiltration of activated natural killer cells and T cells, which potently inhibited tumor growth in multiple mouse tumor models. We also demonstrated the programmability of the platform through the recombinant integration of a second nanobody domain that targeted programmed cell death ligand-1 (PD-L1), which further increased cargo delivery to tumor sites while also blocking immunosuppressive PD-1/PD-L1 interactions. This bivalent nanobody carrier for covalently conjugated STING agonists stimulated robust antigen-specific T cell responses and long-lasting immunological memory, conferred enhanced therapeutic efficacy, and was effective as a neoadjuvant treatment for improving responses to adoptive T cell transfer therapy. Albumin-hitchhiking nanobodies thus offer an enabling, multimodal, and programmable platform for systemic delivery of STING agonists with potential to augment responses to multiple immunotherapeutic modalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ann Hanna
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tsumoto K, Takeuchi T. Next-Generation Anti-TNFα Agents: The Example of Ozoralizumab. BioDrugs 2024; 38:341-351. [PMID: 38584236 PMCID: PMC11055793 DOI: 10.1007/s40259-024-00648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2024] [Indexed: 04/09/2024]
Abstract
Biologic therapy involving anti-tumor necrosis factor-α (anti-TNFα) agents has fundamentally changed the management of patients with immune-mediated inflammatory diseases, including rheumatoid arthritis, thus benefiting many patients. Nevertheless, the inability of some patients to achieve low disease activity or clinical remission remains a major concern. To address such concerns, next-generation anti-TNFα agents that differ from the immunoglobulin G-format anti-TNFα agents that have been used to date are being developed using antibody-engineering technology. Their unique design employing novel molecular characteristics affords several advantages, such as early improvement of clinical symptoms, optimization of drug bioavailability, enhancement of tissue penetration, and a reduction in side effects. This holds promise for a new paradigm shift in biologic therapy via the use of next-generation anti-TNFα agents. Ozoralizumab, a next-generation anti-TNFα agent that was recently approved in Japan, comprises a variable region heavy-chain format. It has a completely different structure from conventional therapeutic antibodies, such as a small molecular size, an albumin-binding module, and a unique format that produces an avidity effect. Ozoralizumab exhibited rapid biodistribution into joints, provided attenuation of Fcγ receptor-mediated inflammatory responses, and had a high binding affinity to TNFα in non-clinical studies. In clinical trials, ozoralizumab yielded an early improvement in clinical symptoms, a sustained efficacy for up to 52 weeks, and an acceptable tolerability in patients with rheumatoid arthritis. This review focuses on the results of pre-clinical and clinical trials for ozoralizumab and outlines the progress in next-generation antibody development.
Collapse
Affiliation(s)
- Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Takeuchi
- Saitama Medical University, Saitama, Japan.
- School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
22
|
Gao X, Cao K, Yang J, Liu L, Gao L. Recent advances in nanotechnology for programmed death ligand 1-targeted cancer theranostics. J Mater Chem B 2024; 12:3191-3208. [PMID: 38497358 DOI: 10.1039/d3tb02787b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint inhibitor-based immunotherapy has provided a unique and potent weapon against cancer in clinical practice. The likelihood of achieving beneficial effects from PD-L1/PD-1 immune checkpoint blockade (ICB) therapy is clinically assessed by detecting PD-L1 expression through invasive tissue biopsies. However, PD-L1 expression is susceptible to tumor heterogeneity and dynamic response to ICB therapy. Moreover, currently, anti-PD-L1 immunotherapy still faces challenges of the low targeting efficiency of antibody drugs and the risk of immune-associated adverse events. To overcome these issues, advanced nanotechnology has been developed for the purpose of quantitative, non-invasive, and dynamic analyses of PD-L1, and to enhance the efficiency of ICB therapy. In this review, we first introduce the nanoprobe-assisted in vitro/in vivo modalities for the selective and sensitive analysis of PD-L1 during the diagnostic and therapeutic process. On the other hand, the feasibility of fabricating diverse functional nanocarriers as smart delivery systems for precisely targeted delivery of PD-L1 immune checkpoint inhibitors and combined therapies is highlighted. Finally, the current challenges are discussed and future perspectives for PD-L1-targeted cancer theranostics in preclinical research and clinical settings are proposed.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Jingru Yang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Linhong Liu
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
23
|
Liu JJ, Xu XY, Han H, Wang T, Zhang W, Cui J, Semenov M. Case report: Envafolimab causes local skin necrosis. Front Immunol 2024; 15:1336311. [PMID: 38585260 PMCID: PMC10995323 DOI: 10.3389/fimmu.2024.1336311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Envafolimab is a Chinese domestic innovative fusion of a humanized single-domain programmed death-ligand 1 (PD-L1) antibody (dAb) and human immunoglobulin IgG1 crystalline fragment (Fc) developed for subcutaneous injections. It was granted conditional market authorization by the China National Medical Product Administration (NMPA) in December 2021. Envafolimab is used to treat adult patients with previously treated microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) advanced solid tumors, including patients with advanced colorectal cancer disease progression who were previously administered fluorouracil, oxaliplatin, and irinotecan, as well as other patients with advanced solid tumors who experienced disease progression after receiving standard treatment and had no other alternative treatment options. However, the lack of post-marketing clinical trial data requires conducting more clinical studies on the safety and efficacy of envafolimab in order to provide scientific basis and a reference for future therapeutic applications. In this paper, we report a case of severe skin necrosis and bleeding in the area of injection after subcutaneous administration of envafolimab in a patient diagnosed with hepatocellular carcinoma. We discuss issues that must be considered before administration of a PD-L1 inhibitor subcutaneously, which could induce immune mechanisms leading to skin necrosis in the area of injection.
Collapse
Affiliation(s)
- Jing Jing Liu
- Yu Lin City First Hospital (Yan An University Second Affiliated Hospital) Pharmaceutical Department, Yu Lin, Shaanxi, China
| | - Xiao Ya Xu
- Yu Lin City First Hospital (Yan An University Second Affiliated Hospital) Pharmaceutical Department, Yu Lin, Shaanxi, China
| | - Huan Han
- Shaanxi Province People’s Hospital, Pharmaceutical Department, Xi’An, Shaanxi, China
| | - Tong Wang
- Yu Lin City First Hospital (Yan An University Second Affiliated Hospital) Pharmaceutical Department, Yu Lin, Shaanxi, China
| | - Wei Zhang
- Yu Lin City First Hospital (Yan An University Second Affiliated Hospital) Pharmaceutical Department, Yu Lin, Shaanxi, China
| | - Jing Cui
- Yu Lin City First Hospital (Yan An University Second Affiliated Hospital) Department of Oncology, Yu Lin, Shaanxi, China
| | - Maksim Semenov
- Medical Affairs Department, Proswell Medical International Contract Research Organization (CRO), Beijing, China
| |
Collapse
|
24
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Zhu L, Man CW, Harrison RE, Wu Z, Limsakul P, Peng Q, Hashimoto M, Mamaril AP, Xu H, Liu L, Wang Y. Engineering a Programmed Death-Ligand 1-Targeting Monobody Via Directed Evolution for SynNotch-Gated Cell Therapy. ACS NANO 2024; 18:8531-8545. [PMID: 38456901 PMCID: PMC10958600 DOI: 10.1021/acsnano.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Programmed death-ligand 1 (PD-L1) is a promising target for cancer immunotherapy due to its ability to inhibit T cell activation; however, its expression on various noncancer cells may cause on-target off-tumor toxicity when designing PD-L1-targeting Chimeric Antigen Receptor (CAR) T cell therapies. Combining rational design and directed evolution of the human fibronectin-derived monobody scaffold, "PDbody" was engineered to bind to PD-L1 with a preference for a slightly lower pH, which is typical in the tumor microenvironment. PDbody was further utilized as a CAR to target the PD-L1-expressing triple negative MDA-MB-231 breast cancer cell line. To mitigate on-target off-tumor toxicity associated with targeting PD-L1, a Cluster of Differentiation 19 (CD19)-recognizing SynNotch IF THEN gate was integrated into the system. This CD19-SynNotch PDbody-CAR system was then expressed in primary human T cells to target CD19-expressing MDA-MB-231 cancer cells. These CD19-SynNotch PDbody-CAR T cells demonstrated both specificity and efficacy in vitro, accurately eradicating cancer targets in cytotoxicity assays. Moreover, in an in vivo bilateral murine tumor model, they exhibited the capability to effectively restrain tumor growth. Overall, CD19-SynNotch PDbody-CAR T cells represent a distinct development over previously published designs due to their increased efficacy, proliferative capability, and mitigation of off-tumor toxicity for solid tumor treatment.
Collapse
Affiliation(s)
- Linshan Zhu
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Chi-Wei Man
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California, 92093 United States
| | - Reed E.S. Harrison
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhuohang Wu
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Praopim Limsakul
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Center of
Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Qin Peng
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518132, P.R. China
| | - Matthew Hashimoto
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony P. Mamaril
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Hongquan Xu
- Department
of Statistics, University of California, Los Angeles, California 90095, United States
| | - Longwei Liu
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yingxiao Wang
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
26
|
Raskova Kafkova L, Mierzwicka JM, Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P, Raska M. NSCLC: from tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front Immunol 2024; 15:1342086. [PMID: 38384472 PMCID: PMC10879685 DOI: 10.3389/fimmu.2024.1342086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is largely promoted by a multistep tumorigenesis process involving various genetic and epigenetic alterations, which essentially contribute to the high incidence of mortality among patients with NSCLC. Clinical observations revealed that NSCLC also co-opts a multifaceted immune checkpoint dysregulation as an important driving factor in NSCLC progression and development. For example, a deregulated PI3K/AKT/mTOR pathway has been noticed in 50-70% of NSCLC cases, primarily modulated by mutations in key oncogenes such as ALK, EGFR, KRAS, and others. Additionally, genetic association studies containing patient-specific factors and local reimbursement criteria expose/reveal mutations in EGFR/ALK/ROS/BRAF/KRAS/PD-L1 proteins to determine the suitability of available immunotherapy or tyrosine kinase inhibitor therapy. Thus, the expression of such checkpoints on tumors and immune cells is pivotal in understanding the therapeutic efficacy and has been extensively studied for NSCLC treatments. Therefore, this review summarizes current knowledge in NSCLC tumorigenesis, focusing on its genetic and epigenetic intricacies, immune checkpoint dysregulation, and the evolving landscape of targeted therapies. In the context of current and future therapies, we emphasize the significance of antibodies targeting PD-1/PD-L1 and CTLA-4 interactions as the primary therapeutic strategy for immune system reactivation in NSCLC. Other approaches involving the promising potential of nanobodies, probodies, affibodies, and DARPINs targeting immune checkpoints are also described; these are under active research or clinical trials to mediate immune regulation and reduce cancer progression. This comprehensive review underscores the multifaceted nature, current state and future directions of NSCLC research and treatment.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| | - Joanna M. Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Prosenjit Chakraborty
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Petr Jakubec
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Ondrej Fischer
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Jozef Skarda
- Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
27
|
Li T, Chen C, Liu L, Qin J, Qiu L, Wang A, Dong W, Zhang G, Li Y, Zhao L, Zhang F, Hu Y. A multicenter, real-world study on effectiveness and safety of first-line modified PD-1 inhibitors with chemotherapy in advanced non-small cell lung cancer (aNSCLC) with drive gene-negative. Cancer Med 2024; 13:e7024. [PMID: 38400661 PMCID: PMC10891446 DOI: 10.1002/cam4.7024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVES The use of immune checkpoint inhibitors, particularly PD-1 inhibitors, has revolutionized the treatment of advanced tumors and shown significant improvements in patient survival rates. However, which PD-1 inhibitor is more effective and safer for a specific indication remains unclear. To address this problem, our study aimed to evaluate the effectiveness and safety of different PD-1 inhibitors in combination with chemotherapy as first-line therapy for individuals with advanced non-small-cell lung cancer (NSCLC) without driver genes in the real world. MATERIALS AND METHODS We conducted a retrospective study of individuals diagnosed with aNSCLC who received immune checkpoint inhibitors (ICIs) with modified PD-1 inhibitors, including Sintilimab, Toripalimab, Tislelizumab, Camrelizumab, or Pembrolizumab as first-line treatment between March 5th, 2016 and October 20th, 2022. We assessed demographic and clinical information and analyzed clinical response, survival outcomes, and safety profiles. The primary endpoint was overall survival (OS), and the secondary endpoints included progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and safety. RESULTS As of the date cut-off on October 20th, 2022, the median follow-up time was 20.62 months. A total of 204 patients were enrolled in the study, including 56 (27.5%) patients receiving modified PD-1 inhibitors (Sintilimab, Toripalimab, Tislelizumab, or Camrelizumab) in combination with chemotherapy and 148 (72.5%) patients receiving Pembrolizumab in combination with chemotherapy. In the overall cohort, the median overall survival (OS) was 26.9 months (95%CI, 22.3-31.6), the median progression-free survival (PFS) was 8.4 months (95%CI, 6.9-9.8), and the objective response rate (ORR) and disease control rate (DCR) were 47.6% (95%CI, 29.9-43.6) and 84.3% (95%CI, 78.4-88.9). The mOS of modified PD-1 inhibitors group and Pembrolizumab group were 30.7 (95%CI, 17.3-44.4) months and 26.8 (95%CI, 22.2-31.4) months. The mPFS of two groups were 8.3(95%CI, 6.9-9.6) months and 8.8 (95%CI, 6.9-10.7) months, respectively. There was no statistical difference between the two groups in terms of OS or PFS. The ORR for the two groups was 48.2% (95%CI, 34.8-61.8) and 47.3% (95%CI, 39.1-5.6), respectively. However, due to the limited sample size, the difference was not statistically significant. On the other hand, the DCR tended to be higher in the Pembrolizumab group (86.5%; 95%CI, 79.7-91.4) compared to the modified PD-1 inhibitors group (78.6%; 95%CI, 65.2-87.9), and this difference was statistically significant (p = 0.006). In terms of safety, both groups exhibited favorable clinical safety profiles. The only two types of potentially immune-related adverse events reported were pneumonitis and reactive cutaneous capillary endothelial proliferation (RCCEP). CONCLUSIONS The modified PD-1 inhibitors showed comparable survival outcomes and manageable safety profiles in NSCLC compared to Pembrolizumab. Moreover, these inhibitors exhibited improved accessibility and economic outcomes compared to Pembrolizumab. While there were similarities in drug-related and immunotherapy-related adverse reactions between the modified PD-1 inhibitors and Pembrolizumab, there were some slight differences. Further prospective and retrospective studies would be necessary to validate these findings beyond the scope of the CTONG1901 study.
Collapse
Affiliation(s)
- Tao Li
- Medical School of Chinese PLABeijingChina
- Department of Oncology, the First Medical CenterChinese PLA General Hospital; Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs Ministry of EducationChina
| | - Chao Chen
- Internal Medicine Emergency DepartmentThe Second Hospital of BeijingBeijingChina
| | - Lu Liu
- Medical School of Chinese PLABeijingChina
- Department of Nutrition, The First Medical CenterChinese PLA General Hospital
| | - Jiapei Qin
- Medical School of Chinese PLABeijingChina
- Department of Oncology, the First Medical CenterChinese PLA General Hospital; Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs Ministry of EducationChina
| | - Lupeng Qiu
- Medical School of Chinese PLABeijingChina
- Department of Oncology, the First Medical CenterChinese PLA General Hospital; Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs Ministry of EducationChina
| | - An Wang
- Medical School of Chinese PLABeijingChina
- Department of Oncology, the First Medical CenterChinese PLA General Hospital; Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs Ministry of EducationChina
| | - Weiwei Dong
- Medical School of Chinese PLABeijingChina
- Department of Oncology, the First Medical CenterChinese PLA General Hospital; Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs Ministry of EducationChina
| | - Gehan Zhang
- Institute of Translational Medicine, Chinese PLA General HospitalBeijingChina
| | - Yao Li
- Medical School of Chinese PLABeijingChina
- Department of Oncology, the First Medical CenterChinese PLA General Hospital; Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs Ministry of EducationChina
| | - Lei Zhao
- Institute of Translational Medicine, Chinese PLA General HospitalBeijingChina
| | - Fan Zhang
- Medical School of Chinese PLABeijingChina
- Department of Oncology, the First Medical CenterChinese PLA General Hospital; Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs Ministry of EducationChina
| | - Yi Hu
- Medical School of Chinese PLABeijingChina
- Department of Oncology, the First Medical CenterChinese PLA General Hospital; Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs Ministry of EducationChina
| |
Collapse
|
28
|
Zhang C, Li J, Wu H, Huang W, Da L, Shen Y, Sun G. A retrospective study on the efficacy and safety of Envafolimab, a PD-L1 inhibitor, in the treatment of advanced malignant solid tumors. Front Pharmacol 2024; 15:1356013. [PMID: 38357311 PMCID: PMC10864544 DOI: 10.3389/fphar.2024.1356013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Envafolimab, a PD-L1 inhibitor, has demonstrated potential in treating advanced malignant solid tumors (AMST). To study its' efficacy and safety in AMST, our retrospective study recruited 64 patients with various AMST, and treated with Envafolimab (400 mg every 3 weeks). We divided the patients into two cohorts: Cohort 1 (25 patients) receiving Envafolimab as first-line therapy, and Cohort 2 (39 patients) receiving it as second-line or subsequent therapy. Our analysis focused on Envafolimab's efficacy and safety. Over a median follow-up of 7.1 months, Cohort I reported a Disease Control Rate (DCR) of 72.0% and an Objective response rate (ORR) of 12.0%, while Cohort II had a DCR of 51.3% and an ORR of 5.1%. Notably, patients with more than four treatment cycles showed higher DCR and longer Progression-Free Survival (PFS) than those with fewer cycles. Adverse events were observed in 68.8% of patients, with severe events (CTCAE grade 3/4) in 14.1%. Most adverse events were mild, leading to treatment discontinuation in only 3.1% of patients, with no life-threatening events reported. In summary, Envafolimab is a safe and effective treatment for AMST, in both initial and later therapy stages, particularly with extended treatment duration, meriting further clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guoping Sun
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
29
|
Cong Y, Devoogdt N, Lambin P, Dubois LJ, Yaromina A. Promising Diagnostic and Therapeutic Approaches Based on VHHs for Cancer Management. Cancers (Basel) 2024; 16:371. [PMID: 38254860 PMCID: PMC10814765 DOI: 10.3390/cancers16020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of the distinctive structure of heavy chain-only antibodies in species belonging to the Camelidae family has elicited significant interest in their variable antigen binding domain (VHH) and gained attention for various applications, such as cancer diagnosis and treatment. This article presents an overview of the characteristics, advantages, and disadvantages of VHHs as compared to conventional antibodies, and their usage in diverse applications. The singular properties of VHHs are explained, and several strategies that can augment their utility are outlined. The preclinical studies illustrating the diagnostic and therapeutic efficacy of distinct VHHs in diverse formats against solid cancers are summarized, and an overview of the clinical trials assessing VHH-based agents in oncology is provided. These investigations demonstrate the enormous potential of VHHs for medical research and healthcare.
Collapse
Affiliation(s)
- Ying Cong
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| |
Collapse
|
30
|
Solomon PE, Bracken CJ, Carozza JA, Wang H, Young EP, Wellner A, Liu CC, Sweet-Cordero EA, Li L, Wells JA. Discovery of VH domains that allosterically inhibit ENPP1. Nat Chem Biol 2024; 20:30-41. [PMID: 37400538 PMCID: PMC10746542 DOI: 10.1038/s41589-023-01368-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Ectodomain phosphatase/phosphodiesterase-1 (ENPP1) is overexpressed on cancer cells and functions as an innate immune checkpoint by hydrolyzing extracellular cyclic guanosine monophosphate adenosine monophosphate (cGAMP). Biologic inhibitors have not yet been reported and could have substantial therapeutic advantages over current small molecules because they can be recombinantly engineered into multifunctional formats and immunotherapies. Here we used phage and yeast display coupled with in cellulo evolution to generate variable heavy (VH) single-domain antibodies against ENPP1 and discovered a VH domain that allosterically inhibited the hydrolysis of cGAMP and adenosine triphosphate (ATP). We solved a 3.2 Å-resolution cryo-electron microscopy structure for the VH inhibitor complexed with ENPP1 that confirmed its new allosteric binding pose. Finally, we engineered the VH domain into multispecific formats and immunotherapies, including a bispecific fusion with an anti-PD-L1 checkpoint inhibitor that showed potent cellular activity.
Collapse
Affiliation(s)
- Paige E Solomon
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Colton J Bracken
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cartography Biosciences, South San Francisco, CA, USA
| | - Jacqueline A Carozza
- Department of Biochemistry, Stanford University Medical School, Stanford, CA, USA
| | - Haoqing Wang
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Macromolecular Structural Knowledge Center, Stanford University, Stanford, CA, USA
| | - Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alon Wellner
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Lingyin Li
- Department of Biochemistry, Stanford University Medical School, Stanford, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Zhang B, Brahma RK, Zhu L, Feng J, Hu S, Qian L, Du S, Yao SQ, Ge J. Insulin-like Growth Factor 2 (IGF2)-Fused Lysosomal Targeting Chimeras for Degradation of Extracellular and Membrane Proteins. J Am Chem Soc 2023; 145:24272-24283. [PMID: 37899626 DOI: 10.1021/jacs.3c08886] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Targeted degradation of the cell-surface and extracellular proteins via the endogenous lysosomal degradation pathways, such as lysosome-targeting chimeras (LYTACs), has recently emerged as an attractive tool to expand the scope of extracellular chemical biology. Herein, we report a series of recombinant proteins genetically fused to insulin-like growth factor 2 (IGF2), which we termed iLYTACs, that can be conveniently obtained in high yield by standard cloning and bacterial expression in a matter of days. We showed that both type-I iLYTACs, in which IGF2 was fused to a suitable affibody or nanobody capable of binding to a specific protein target, and type-II iLYTAC (or IGF2-Z), in which IGF2 was fused to the IgG-binding Z domain that served as a universal antibody-binding adaptor, could be used for effective lysosomal targeting and degradation of various extracellular and membrane-bound proteins-of-interest. These heterobifunctional iLYTACs are fully genetically encoded and can be produced on a large scale from conventional E. coli expression systems without any form of chemical modification. In the current study, we showed that iLYTACs successfully facilitated the cell uptake, lysosomal localization, and efficient lysosomal degradation of various disease-relevant protein targets from different mammalian cell lines, including EGFR, PD-L1, CD20, and α-synuclein. The antitumor properties of iLYTACs were further validated in a mouse xenograft model. Overall, iLYTACs represent a general and modular strategy for convenient and selective targeted protein degradation, thus expanding the potential applications of current LYTACs and related techniques.
Collapse
Affiliation(s)
- Bei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Rajeev Kungur Brahma
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiayi Feng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shiqi Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
32
|
Li B, Wang S, Shan B, Li B, Li F. A PD-L1xCD3 bispecific nanobody as a novel T-cell engager in treating PD-L1 overexpression melanoma. Mol Immunol 2023; 163:20-27. [PMID: 37722180 DOI: 10.1016/j.molimm.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
The development of Immune checkpoint blockade(ICB) therapy and BRAF- and MEK-targeted therapies has reshaped the survival outcomes of the patients with advanced melanoma. PD-1/PD-L1 blockade was an approved strategy in melanoma treatment. Here we design a PD-L1 xCD3 nanobody as a novel bispecific T cell engager (BiTE) in treating PD-L1 overexpression melanoma. BiTE PD-L1×CD3 Nb was predicted to bind near a large acidic surface on CD3-ε similar to UCHT1-scFv antibody based on alpha-fold and molecular docking. BiTE PD-L1×CD3 Nb and anti-CD3 Nb retained the ability to activate T cells to produce TNF-α and IFN-γ in a dose-dependent manner. The IC50 value of BiTE PD-L1×CD3 Nb was 4.208μg/mL. BiTE PD-L1×CD3 Nb showed obvious cytotoxic activity on both A375WT and A375PD-L1 related to PD-L1 expression level.
Collapse
Affiliation(s)
- Boping Li
- Department of Dermatology, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Dermatology, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Baihui Shan
- Department of Dermatology, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Baizhi Li
- Institute of Frontier Medical Science, School of Pharmaceutical Science, Jilin University, Changchun, China.
| | - Fuqiu Li
- Department of Dermatology, Second Affiliated Hospital of Jilin University, Changchun, China.
| |
Collapse
|
33
|
Li Z, Zhang W, Zhang Q, Li P, Tang X. Self-Assembly Multivalent Fluorescence-Nanobody Coupled Multifunctional Nanomaterial with Colorimetric Fluorescence and Photothermal to Enhance Immunochromatographic Assay. ACS NANO 2023; 17:19359-19371. [PMID: 37782130 DOI: 10.1021/acsnano.3c06930] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The multimodal lateral flow immunoassay (LFIA) has provided accurate and reliable results for fast and immediate detection. Nonetheless, multimodal LFIA remains challenging to develop biosensors with high sensitivity and tolerance to matrix interference in agro-food. In this study, we developed a self-assembled multivalent fluorescence-nanobody (Nb26-EGFP-H6) with 16.5-fold and 30-fold higher affinity and sensitivity than a monovalent nanobody (Nb26). Based on the Nb26-EGFP-H6, we synthesized enhanced immune-probes Zn-CN@Nb26-EGFP-H6 by pyrolyzing and oxidizing an imidazolating zeolite framework-8 (ZIF-8) to obtain photothermal metal-carbon nanomaterials (Zn-CN) for immobilizing Nb26-EGFP-H6. The rough and porous structure of Zn-CN with a large surface area facilitates the enrichment and immobilization of antibodies. A trimodal lateral flow immunoassay (tLFIA) with colorimetric, fluorescent, and photothermal triple signal outputs was constructed for the detection of aflatoxin B1 (AFB1) in maize. Attractively, the Zn-CN-based tLFIA's multiplex guarantees accurate and sensitive detection of AFB1, with triple signal detection limits of 0.0012 ng/mL (colorimetric signals), 0.0094 ng/mL (fluorescent signals), and 0.252 ng/mL (photothermal signals). The sensitivity of the trimode immunosensor was 628-fold and 42-fold higher than that of the original Nb26-based ELISA (IC50) and the unimodal LFIA (LOD). This work provides an idea for constructing a sensitive, tolerant matrix and efficient and accurate analytical platform for rapidly detecting AFB1 in food.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wen Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
| |
Collapse
|
34
|
Chang Y, Jin G, Luo W, Luo Q, Jung J, Hummel SN, Torregrosa-Allen S, Elzey BD, Low PS, Lian XL, Bao X. Engineered human pluripotent stem cell-derived natural killer cells with PD-L1 responsive immunological memory for enhanced immunotherapeutic efficacy. Bioact Mater 2023; 27:168-180. [PMID: 37091063 PMCID: PMC10113709 DOI: 10.1016/j.bioactmat.2023.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Adoptive chimeric antigen receptor (CAR)-engineered natural killer (NK) cells have shown promise in treating various cancers. However, limited immunological memory and access to sufficient numbers of allogenic donor cells have hindered their broader preclinical and clinical applications. Here, we first assess eight different CAR constructs that use an anti-PD-L1 nanobody and/or universal anti-fluorescein (FITC) single-chain variable fragment (scFv) to enhance antigen-specific proliferation and anti-tumor cytotoxicity of NK-92 cells against heterogenous solid tumors. We next genetically engineer human pluripotent stem cells (hPSCs) with optimized CARs and differentiate them into functional dual CAR-NK cells. The tumor microenvironment responsive anti-PD-L1 CAR effectively promoted hPSC-NK cell proliferation and cytotoxicity through antigen-dependent activation of phosphorylated STAT3 (pSTAT3) and pSTAT5 signaling pathways via an intracellular truncated IL-2 receptor β-chain (ΔIL-2Rβ) and STAT3-binding tyrosine-X-X-glutamine (YXXQ) motif. Anti-tumor activities of PD-L1-induced memory-like hPSC-NK cells were further boosted by administering a FITC-folate bi-specific adapter that bridges between a programmable anti-FITC CAR and folate receptor alpha-expressing breast tumor cells. Collectively, our hPSC CAR-NK engineering platform is modular and could constitute a realistic strategy to manufacture off-the-shelf CAR-NK cells with immunological memory-like phenotype for targeted immunotherapy.
Collapse
|
35
|
Ważyńska MA, Butera R, Requesens M, Plat A, Zarganes-Tzitzikas T, Neochoritis CG, Plewka J, Skalniak L, Kocik-Krol J, Musielak B, Magiera-Mularz K, Rodriguez I, Blok SN, de Bruyn M, Nijman HW, Elsinga PH, Holak TA, Dömling A. Design, Synthesis, and Biological Evaluation of 2-Hydroxy-4-phenylthiophene-3-carbonitrile as PD-L1 Antagonist and Its Comparison to Available Small Molecular PD-L1 Inhibitors. J Med Chem 2023. [PMID: 37450644 PMCID: PMC10388299 DOI: 10.1021/acs.jmedchem.3c00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In search of a potent small molecular PD-L1 inhibitor, we designed and synthesized a compound based on a 2-hydroxy-4-phenylthiophene-3-carbonitrile moiety. Ligand's performance was tested in vitro and compared side-by-side with a known PD-L1 antagonist with a proven bioactivity BMS1166. Subsequently, we modified both compounds to allow 18F labeling that could be used for PET imaging. Radiolabeling, which is used in drug development and diagnosis, was applied to investigate the properties of those ligands and test them against tissue sections with diverse expression levels of PD-L1. We confirmed biological activity toward hPD-L1 for this inhibitor, comparable with BMS1166, while holding enhanced pharmacological properties.
Collapse
Affiliation(s)
- Marta A Ważyńska
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Roberto Butera
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Annechien Plat
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Tryfon Zarganes-Tzitzikas
- Centre for Medicines Discovery, Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, Roosevelt Drive, OX3 7FZ Oxford, U.K
| | | | - Jacek Plewka
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Justyna Kocik-Krol
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicz St 11, 30-348 Krakow, Poland
| | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ismael Rodriguez
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicz St 11, 30-348 Krakow, Poland
| | - Simon N Blok
- Department of Nuclear Medicine and MolecularImaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and MolecularImaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Olomouc 77900, Czech Republic
| |
Collapse
|
36
|
De Pauw T, De Mey L, Debacker JM, Raes G, Van Ginderachter JA, De Groof TWM, Devoogdt N. Current status and future expectations of nanobodies in oncology trials. Expert Opin Investig Drugs 2023; 32:705-721. [PMID: 37638538 DOI: 10.1080/13543784.2023.2249814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Monoclonal antibodies have revolutionized personalized medicine for cancer in recent decades. Despite their broad application in oncology, their large size and complexity may interfere with successful tumor targeting for certain applications of cancer diagnosis and therapy. Nanobodies have unique structural and pharmacological features compared to monoclonal antibodies and have successfully been used as complementary anti-cancer diagnostic and/or therapeutic tools. AREAS COVERED Here, an overview is given of the nanobody-based diagnostics and therapeutics that have been or are currently being tested in oncological clinical trials. Furthermore, preclinical developments, which are likely to be translated into the clinic in the near future, are highlighted. EXPERT OPINION Overall, the presented studies show the application potential of nanobodies in the field of oncology, making it likely that more nanobodies will be clinically approved in the upcoming future.
Collapse
Affiliation(s)
- Tessa De Pauw
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lynn De Mey
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Jens M Debacker
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Geert Raes
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Timo W M De Groof
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
37
|
Zhang JJH, Starr SL, Chamie K. Novel Delivery Mechanisms for Existing Systemic Agents and Emerging Therapies in Bladder Cancer. Bladder Cancer 2023; 9:109-123. [PMID: 38993290 PMCID: PMC11181680 DOI: 10.3233/blc-220114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/28/2023] [Indexed: 07/13/2024]
Abstract
Systemic agents including immune checkpoint inhibitors, antibody-drug conjugates, and targeted therapies play a critical role in the management of bladder cancer. Novel localized delivery mechanisms for existing systemic agents explore solutions to improve treatment response without compromising safety. Herein, we review the contemporary innovations in modern intravesical agents, hyperthermic drug delivery, reverse-thermal gels, nanocarriers, gene therapy, and subcutaneous therapies.
Collapse
Affiliation(s)
- JJ H. Zhang
- Department of Urology, UCLA Medical Center, Los Angeles, CA, USA
| | | | - Karim Chamie
- Department of Urology, UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
38
|
Silva-Pilipich N, Covo-Vergara Á, Vanrell L, Smerdou C. Checkpoint blockade meets gene therapy: Opportunities to improve response and reduce toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:43-86. [PMID: 37541727 DOI: 10.1016/bs.ircmb.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) based on monoclonal antibodies represent a breakthrough for the treatment of cancer. However, their efficacy varies among tumor types and patients, and they can lead to adverse effects due to on-target/off-tumor activity, since they are administered systemically at high doses. An alternative and attractive approach for the delivery of ICIs is the use of gene therapy vectors able to express them in vivo. This review focuses on the most recent studies using viral vectors able to express ICIs locally or systemically in preclinical models of cancer. These vectors include non-replicating viruses, oncolytic viruses able to propagate specifically in tumor cells and destroy them, and self-amplifying RNA vectors, armed with different formats of antibodies against immune checkpoints. Non-replicating vectors usually lead to long-term ICI expression, potentially eliminating the need for repeated administration. Vectors with replication capacity, although they have a shorter window of expression, can induce inflammation which enhances the antitumor effect. Finally, these engineered vectors can be used in combination with other immunostimulatory molecules or with CAR-T cells, further boosting the antitumor immune responses.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| | - Ángela Covo-Vergara
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain
| | - Lucía Vanrell
- Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay; Nanogrow Biotech, Montevideo, Uruguay
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| |
Collapse
|
39
|
Hambly JN, Ruby CE, Mourich DV, Bracha S, Dolan BP. Potential Promises and Perils of Human Biological Treatments for Immunotherapy in Veterinary Oncology. Vet Sci 2023; 10:336. [PMID: 37235419 PMCID: PMC10224056 DOI: 10.3390/vetsci10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of immunotherapy for the treatment of human cancers has heralded a new era in oncology, one that is making its way into the veterinary clinic. As the immune system of many animal species commonly seen by veterinarians is similar to humans, there is great hope for the translation of human therapies into veterinary oncology. The simplest approach for veterinarians would be to adopt existing reagents that have been developed for human medicine, due to the potential of reduced cost and the time it takes to develop a new drug. However, this strategy may not always prove to be effective and safe with regard to certain drug platforms. Here, we review current therapeutic strategies that could exploit human reagents in veterinary medicine and also those therapies which may prove detrimental when human-specific biological molecules are used in veterinary oncology. In keeping with a One Health framework, we also discuss the potential use of single-domain antibodies (sdAbs) derived from camelid species (also known as Nanobodies™) for therapies targeting multiple veterinary animal patients without the need for species-specific reformulation. Such reagents would not only benefit the health of our veterinary species but could also guide human medicine by studying the effects of outbred animals that develop spontaneous tumors, a more relevant model of human diseases compared to traditional laboratory rodent models.
Collapse
Affiliation(s)
- Jeilene N. Hambly
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Carl E. Ruby
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Dan V. Mourich
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Shay Bracha
- Biotesserae Inc., Corvallis, OR 97331, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
40
|
Boisgerault N, Bertrand P. Inside PD-1/PD-L1,2 with their inhibitors. Eur J Med Chem 2023; 256:115465. [PMID: 37196547 DOI: 10.1016/j.ejmech.2023.115465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
This review summarizes current knowledge in the development of immune checkpoint inhibitors, including antibodies and small molecules.
Collapse
Affiliation(s)
- Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université D'Angers, CRCI2NA, LabEx IGO, F-44000, Nantes, France
| | - Philippe Bertrand
- University of Poitiers, IC2MP UMR 7285 CNRS, 4 Rue Michel Brunet B27, TSA 51106, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
41
|
Jin BK, Odongo S, Radwanska M, Magez S. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int J Mol Sci 2023; 24:5994. [PMID: 36983063 PMCID: PMC10057852 DOI: 10.3390/ijms24065994] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
NANOBODY® (a registered trademark of Ablynx N.V) molecules (Nbs), also referred to as single domain-based VHHs, are antibody fragments derived from heavy-chain only IgG antibodies found in the Camelidae family. Due to their small size, simple structure, high antigen binding affinity, and remarkable stability in extreme conditions, nanobodies possess the potential to overcome several of the limitations of conventional monoclonal antibodies. For many years, nanobodies have been of great interest in a wide variety of research fields, particularly in the diagnosis and treatment of diseases. This culminated in the approval of the world's first nanobody based drug (Caplacizumab) in 2018 with others following soon thereafter. This review will provide an overview, with examples, of (i) the structure and advantages of nanobodies compared to conventional monoclonal antibodies, (ii) methods used to generate and produce antigen-specific nanobodies, (iii) applications for diagnostics, and (iv) ongoing clinical trials for nanobody therapeutics as well as promising candidates for clinical development.
Collapse
Affiliation(s)
- Bo-kyung Jin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Steven Odongo
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
- Center for Biosecurity and Global Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
42
|
Pan Y, Xia H, He Y, Zeng S, Shen Z, Huang W. The progress of molecules and strategies for the treatment of HBV infection. Front Cell Infect Microbiol 2023; 13:1128807. [PMID: 37009498 PMCID: PMC10053227 DOI: 10.3389/fcimb.2023.1128807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO's strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, Sharifzadeh Z. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol 2023; 14:1012841. [PMID: 36761751 PMCID: PMC9905824 DOI: 10.3389/fimmu.2023.1012841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The immune system is essential in recognizing and eliminating tumor cells. The unique characteristics of the tumor microenvironment (TME), such as heterogeneity, reduced blood flow, hypoxia, and acidity, can reduce the efficacy of cell-mediated immunity. The primary goal of cancer immunotherapy is to modify the immune cells or the TME to enable the immune system to eliminate malignancies successfully. Nanobodies, known as single-domain antibodies, are light chain-free antibody fragments produced from Camelidae antibodies. The unique properties of nanobodies, including high stability, reduced immunogenicity, enhanced infiltration into the TME of solid tumors and facile genetic engineering have led to their promising application in cell-mediated immunotherapy. They can promote the cancer therapy either directly by bridging between tumor cells and immune cells and by targeting cancer cells using immune cell-bound nanobodies or indirectly by blocking the inhibitory ligands/receptors. The T-cell activation can be engaged through anti-CD3 and anti-4-1BB nanobodies in the bispecific (bispecific T-cell engagers (BiTEs)) and trispecific (trispecific T-cell engager (TriTEs)) manners. Also, nanobodies can be used as natural killer (NK) cell engagers (BiKEs, TriKEs, and TetraKEs) to create an immune synapse between the tumor and NK cells. Nanobodies can redirect immune cells to attack tumor cells through a chimeric antigen receptor (CAR) incorporating a nanobody against the target antigen. Various cancer antigens have been targeted by nanobody-based CAR-T and CAR-NK cells for treating both hematological and solid malignancies. They can also cause the continuation of immune surveillance against tumor cells by stopping inappropriate inhibition of immune checkpoints. Other roles of nanobodies in cell-mediated cancer immunotherapy include reprogramming macrophages to reduce metastasis and angiogenesis, as well as preventing the severe side effects occurring in cell-mediated immunotherapy. Here, we highlight the critical functions of various immune cells, including T cells, NK cells, and macrophages in the TME, and discuss newly developed immunotherapy methods based on the targeted manipulation of immune cells and TME with nanobodies.
Collapse
Affiliation(s)
- Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Monireh Gholizadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Sheila Seyed-Motahari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,*Correspondence: Zahra Sharifzadeh,
| |
Collapse
|
44
|
Zhang Y, Ding Y, Li N, Wang S, Zhou S, Li R, Yang H, Li W, Qu J. Noninvasive Imaging of Tumor PD-L1 Expression Using [ 99mTc]Tc-Labeled KN035 with SPECT/CT. Mol Pharm 2023; 20:690-700. [PMID: 36541699 DOI: 10.1021/acs.molpharmaceut.2c00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) checkpoint blockade is a major breakthrough in cancer therapy, but identifying patients likely to benefit from this therapy remains challenging. Immunohistochemistry is not informative about PD-L1 expression heterogeneity because of the limitations of invasive tissue collection. Noninvasive SPECT imaging is an approach to patient selection and therapeutic monitoring by assessing the PD-L1 status throughout the whole body. Here, we radiolabeled a single-domain PD-L1 antibody with technetium-99m (99mTc) for immune-SPECT imaging to evaluate its feasibility of detecting PD-L1 expression. The radiochemical purity of [99mTc]Tc-HYNIC-KN035 was 99.40 ± 0.11% with a specific activity of 2.68 MBq/μg. [99mTc]Tc-HYNIC-KN035 displayed a high PD-L1 specificity both in vitro and in vivo and showed a high specific affinity for PD-L1 with an equilibrium dissociation constant (KD) of 31.04 nM. The binding of [99mTc]Tc-HYNIC-KN035 to H1975 cells (high expression of PD-L1) was much higher than to A549 cells (low expression of PD-L1). SPECT/CT imaging showed that H1975 tumors were visualized at 4 h post-injection and became clearer with time. However, mild tumor uptake was observed in A549 tumors and H1975 tumors of the blocking group at all time points. The uptake value of [99mTc]Tc-HYNIC-KN035 in H1975 tumors was increased continuously from 9.68 ± 0.91% ID/g at 4 h to 13.31 ± 2.23% ID/g at 24 h post-injection, which was higher than in A549 tumors with %ID/g of 4.59 ± 0.76 and 5.54 ± 0.28 at 4 and 24 h post-injection, respectively. These specific bindings were confirmed by blocking studies. [99mTc]Tc-HYNIC-KN035 can be synthesized easily and specifically targeted to PD-L1 in the tumor environment, allowing PD-L1 expression assessment noninvasively and dynamically with SPECT/CT imaging.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ying Ding
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.,Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Ning Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Sen Wang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Si Zhou
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ruping Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hui Yang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Wenliang Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jinrong Qu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
45
|
Banik SSR, Kushnir N, Doranz BJ, Chambers R. Breaking barriers in antibody discovery: harnessing divergent species for accessing difficult and conserved drug targets. MAbs 2023; 15:2273018. [PMID: 38050985 DOI: 10.1080/19420862.2023.2273018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023] Open
Abstract
To exploit highly conserved and difficult drug targets, including multipass membrane proteins, monoclonal antibody discovery efforts increasingly rely on the advantages offered by divergent species such as rabbits, camelids, and chickens. Here, we provide an overview of antibody discovery technologies, analyze gaps in therapeutic antibodies that stem from the historic use of mice, and examine opportunities to exploit previously inaccessible targets through discovery now possible in alternate species. We summarize the clinical development of antibodies raised from divergent species, discussing how these animals enable robust immune responses against highly conserved binding sites and yield antibodies capable of penetrating functional pockets via long HCDR3 regions. We also discuss the value of pan-reactive molecules often produced by these hosts, and how these antibodies can be tested in accessible animal models, offering a faster path to clinical development.
Collapse
|
46
|
Jiang M, Liu M, Liu G, Ma J, Zhang L, Wang S. Advances in the structural characterization of complexes of therapeutic antibodies with PD-1 or PD-L1. MAbs 2023; 15:2236740. [PMID: 37530414 PMCID: PMC10399482 DOI: 10.1080/19420862.2023.2236740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
Antibody-based immune checkpoint blockade (ICB)-based therapeutics have become effective clinical applications for cancers. Applications of monoclonal antibodies (mAbs) to de-activate the PD-1-PD-L1 pathway could effectively reverse the phenotype of depleted activated thymocytes (T cells) to recover their anti-tumoral activities. High-resolution structures of the complexes of the therapeutic monoclonal antibodies with PD-1 or PD-L1 have revealed the key inter-molecular interactions and provided valuable insights into the fundamental mechanisms by which these antibodies inhibit PD-L1-PD-1 binding. Each anti-PD-1 mAb exhibits a unique blockade mechanism, such as interference with large PD-1-PD-L1 contacting interfaces, steric hindrance by overlapping a small area of this site, or binding to an N-glycosylated site. In contrast, all therapeutic anti-PD-L1 mAbs bind to a similar area of PD-L1. Here, we summarized advances in the structural characterization of the complexes of commercial mAbs that target PD-1 or PD-L1. In particular, we focus on the unique characteristics of those mAb structures, epitopes, and blockade mechanisms. It is well known that the use of antibodies as anti-tumor drugs has increased recently and both PD-1 and PD-L1 have attracted substantial attention as target for antibodies derived from new technologies. By focusing on structural characterization, this review aims to aid the development of novel antibodies targeting PD-1 or PD-L1 in the future.
Collapse
Affiliation(s)
- Mengzhen Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Man Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guodi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiawen Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
47
|
Zhang Y, Yang S, Jiang D, Li Y, Ma S, Wang L, Li G, Wang H, Zhang A, Xu G. Screening and identification of an anti-PD-1 nanobody with antitumor activity. Biosci Rep 2022; 43:BSR20221546. [PMID: 36475449 PMCID: PMC9867944 DOI: 10.1042/bsr20221546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Blocking of PD-1 or PD-L1 with corresponding antibody to enhance T cell response and mediate antitumor activity has been successfully applied in clinical practice. Several immune checkpoint inhibitors including monoclonal antibodies targeting PD-1 have been approved by the Food and Drug Administration (FDA) in cancer immunotherapy. However, the application of traditional antibodies has limited due to their drawbacks of large molecular weight and low tissue penetration. As the high specificity and strong tissue penetration of nanobodies (Nbs), efforts have been taken to develop Nbs for cancer therapy. Herein, we aim to screen a specific Nb against human PD-1 derived from a naïve camel Nb phage display library and further study its biological characteristic and anti-tumor activity. Finally, an anti-PD-1 Nb with high specificity and affinity was screened and generated, its cytotoxicity and antitumor effect was also confirmed in vitro and vivo. All of these indicate that the anti-PD-1 Nb may provide an alternative and appealing therapeutic agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanting Zhang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shaoqi Yang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yanning Li
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shuo Ma
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Liyan Wang
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Guangqi Li
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hongxia Wang
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Aijun Zhang
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Guangxian Xu
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|
48
|
Kang-Pettinger T, Walker K, Brown R, Cowan R, Wright H, Baravalle R, Waters LC, Muskett FW, Bowler MW, Sawmynaden K, Coombs PJ, Carr MD, Hall G. Identification, binding, and structural characterization of single domain anti-PD-L1 antibodies inhibitory of immune regulatory proteins PD-1 and CD80. J Biol Chem 2022; 299:102769. [PMID: 36470427 PMCID: PMC9811221 DOI: 10.1016/j.jbc.2022.102769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits. Here, we report the identification and characterization of a diverse panel of 16 novel VHHs specific to PD-L1. The panel of VHHs demonstrate affinities of 0.7 nM to 5.1 μM and were able to completely inhibit PD-1 binding to PD-L1. The binding site for each VHH on PD-L1 was determined using NMR chemical shift perturbation mapping and revealed a common binding surface encompassing the PD-1-binding site. Additionally, we solved crystal structures of two representative VHHs in complex with PD-L1, which revealed unique binding modes. Similar NMR experiments were used to identify the binding site of CD80 on PD-L1, which is another immune response regulatory element and interacts with PD-L1 localized on the same cell surface. CD80 and PD-1 were revealed to share a highly overlapping binding site on PD-L1, with the panel of VHHs identified expected to inhibit CD80 binding. Comparison of the CD80 and PD-1 binding sites on PD-L1 enabled the identification of a potential antibody binding region able to confer specificity for the inhibition of PD-1 binding only, which may offer therapeutic benefits to counteract cancer cell evasion of the immune system.
Collapse
Affiliation(s)
- Tara Kang-Pettinger
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Kayleigh Walker
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Richard Brown
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Richard Cowan
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Helena Wright
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Roberta Baravalle
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Lorna C. Waters
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Frederick W. Muskett
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | | | - Kovilen Sawmynaden
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Peter J. Coombs
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Mark D. Carr
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK,For correspondence: Gareth Hall; Mark D. Carr
| | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK,For correspondence: Gareth Hall; Mark D. Carr
| |
Collapse
|
49
|
Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:35. [PMID: 36418786 PMCID: PMC9684400 DOI: 10.1186/s43556-022-00100-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Since the first monoclonal antibody drug, muromonab-CD3, was approved for marketing in 1986, 165 antibody drugs have been approved or are under regulatory review worldwide. With the approval of new drugs for treating a wide range of diseases, including cancer and autoimmune and metabolic disorders, the therapeutic antibody drug market has experienced explosive growth. Monoclonal antibodies have been sought after by many biopharmaceutical companies and scientific research institutes due to their high specificity, strong targeting abilities, low toxicity, side effects, and high development success rate. The related industries and markets are growing rapidly, and therapeutic antibodies are one of the most important research and development areas in the field of biology and medicine. In recent years, great progress has been made in the key technologies and theoretical innovations provided by therapeutic antibodies, including antibody-drug conjugates, antibody-conjugated nuclides, bispecific antibodies, nanobodies, and other antibody analogs. Additionally, therapeutic antibodies can be combined with technologies used in other fields to create new cross-fields, such as chimeric antigen receptor T cells (CAR-T), CAR-natural killer cells (CAR-NK), and other cell therapy. This review summarizes the latest approved or in regulatory review therapeutic antibodies that have been approved or that are under regulatory review worldwide, as well as clinical research on these approaches and their development, and outlines antibody discovery strategies that have emerged during the development of therapeutic antibodies, such as hybridoma technology, phage display, preparation of fully human antibody from transgenic mice, single B-cell antibody technology, and artificial intelligence-assisted antibody discovery.
Collapse
Affiliation(s)
- Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjian Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Mei Tang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
50
|
Quach HT, Hou Z, Bellis RY, Saini JK, Amador-Molina A, Adusumilli PS, Xiong Y. Next-generation immunotherapy for solid tumors: combination immunotherapy with crosstalk blockade of TGFβ and PD-1/PD-L1. Expert Opin Investig Drugs 2022; 31:1187-1202. [PMID: 36448335 PMCID: PMC10085570 DOI: 10.1080/13543784.2022.2152323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION In solid tumor immunotherapy, less than 20% of patients respond to anti-programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) agents. The role of transforming growth factor β (TGFβ) in diverse immunity is well-established; however, systemic blockade of TGFβ is associated with toxicity. Accumulating evidence suggests the role of crosstalk between TGFβ and PD-1/PD-L1 pathways. AREAS COVERED We focus on TGFβ and PD-1/PD-L1 signaling pathway crosstalk and the determinant role of TGFβ in the resistance of immune checkpoint blockade. We provide the rationale for combination anti-TGFβ and anti-PD-1/PD-L1 therapies for solid tumors and discuss the current status of dual blockade therapy in preclinical and clinical studies. EXPERT OPINION The heterogeneity of tumor microenvironment across solid tumors complicates patient selection, treatment regimens, and response and toxicity assessment for investigation of dual blockade agents. However, clinical knowledge from single-agent studies provides infrastructure to translate dual blockade therapies. Dual TGFβ and PD-1/PD-L1 blockade results in enhanced T-cell infiltration into tumors, a primary requisite for successful immunotherapy. A bifunctional fusion protein specifically targets TGFβ in the tumor microenvironment, avoiding systemic toxicity, and prevents interaction of PD-1+ cytotoxic cells with PD-L1+ tumor cells.
Collapse
Affiliation(s)
- Hue Tu Quach
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Rebecca Y. Bellis
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jasmeen K. Saini
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Director, Mesothelioma Program; Head, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|