1
|
Ragupathy S, Thirugnanasambandam A, Henry T, Vinayagam V, Sneha R, Newmaster SG. Flower Species Ingredient Verification Using Orthogonal Molecular Methods. Foods 2024; 13:1862. [PMID: 38928803 PMCID: PMC11203286 DOI: 10.3390/foods13121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Flowers are gaining considerable interest among consumers as ingredients in food, beverages, cosmetics, and natural health products. The supply chain trades in multiple forms of botanicals, including fresh whole flowers, which are easier to identify than dried flowers or flowers processed as powdered or liquid extracts. There is a gap in the scientific methods available for the verification of flower species ingredients traded in the supply chains of multiple markets. The objective of this paper is to develop methods for flower species ingredient verification using two orthogonal methods. More specifically, the objectives of this study employed both (1) DNA-based molecular diagnostic methods and (2) NMR metabolite fingerprint methods in the identification of 23 common flower species ingredients. NMR data analysis reveals considerable information on the variation in metabolites present in different flower species, including color variants within species. This study provides a comprehensive comparison of two orthogonal methods for verifying flower species ingredient supply chains to ensure the highest quality products. By thoroughly analyzing the benefits and limitations of each approach, this research offers valuable insights to support quality assurance and improve consumer confidence.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Thomas Henry
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Varathan Vinayagam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Ragupathy Sneha
- College of Medicine, American University of Antigua, Jobberwock Beach Road, Coolidge P.O. Box W1451, Antigua;
| | - Steven G. Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| |
Collapse
|
2
|
Rodrigues V, Honrado M, Santos J, Pinto MA, Amaral JS. Development of a loop-mediated isothermal amplification assay for the rapid detection of Styphnolobium japonicum (L.) Schott as an adulterant of Ginkgo biloba (L.). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155322. [PMID: 38569291 DOI: 10.1016/j.phymed.2023.155322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 04/05/2024]
Abstract
BACKGROUND Species adulteration is a concern in herbal products, especially when plant substitutes of lower economic value replace valuable botanicals. Styphnolobium japonicum is well known as a potential adulterant of Ginkgo biloba, which is one of the most demanded medicinal plants due to its wide use in pharmaceuticals, food supplements, and traditional medicine. Despite bearing some resemblance to ginkgo's flavonol composition, S. japonicum lacks many of G. biloba's desired therapeutic properties. To prevent adulteration practices, it is crucial to implement rigorous quality control measures, including fast and simple diagnostic tools that can be used on-field. PURPOSE This study aims to develop for the first time a species-specific loop-mediated isothermal amplification (LAMP) method for the fast identification of S. japonicum in ginkgo-containing products. METHODS A set of four specific primers (SjF3, SjB3, SjFIP, and SjBIP) and loop primers (SjLF and SjLB) were designed for a LAMP based assay using the 5.8S partial sequence and the internal transcribed spacer 2 of nuclear ribosomal DNA of S. japonicum. RESULTS The successful amplification of the LAMP assay was inspected through visual detection, with the highest intensity recorded at the optimal conditions set at 68 °C for 40 min. The primers showed high specificity and were able to accurately discriminate S. japonicum from G. biloba and 49 other species of medicinal plants. Furthermore, the proposed LAMP assay proved to be fast, selective, and highly sensitive, as demonstrated by the absolute and relative limits of detection, which were reached at 0.5 pg for S. japonicum DNA and 0.01 % S. japonicum in G. biloba, respectively. CONCLUSIONS This novel approach allows easy identification and discrimination of S. japonicum as a potential adulterant of G. biloba, thus being a useful tool for quality control. Compared to chromatographic or PCR-based methods, the assay proved to be fast, sensitive and did not require expensive equipment, thus offering the possibly usage in field analysis.
Collapse
Affiliation(s)
- Vânia Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Mónica Honrado
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal; LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Joana Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal.
| |
Collapse
|
3
|
Kantak M, Batra P, Shende P. Integration of DNA barcoding and nanotechnology in drug delivery. Int J Biol Macromol 2023; 230:123262. [PMID: 36646350 DOI: 10.1016/j.ijbiomac.2023.123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
In recent years' development in nanotechnology utilization of DNA barcodes with potential benefit of nanoparticulate system is a hallmark for novel advancement in healthcare, biomedical and research sector. Interplay of biological barcoding with nanodimensional system encompasses innovative technologies to offer unique advantages of ultra-sensitivity, error-free, accuracy with minimal label reagents, and less time consumption in comparison to conventional techniques like ELISA, PCR, culture media, electrophoresis. DNA barcoding systems used as universal novel tool for identification and multiplex structural detection of proteins, DNAs, toxins, allergens, and nucleic acids of humans, viruses, animals, bacteria, plants as well as personalized treatment in ovarian cancer, AIDS-related Kaposi sarcoma, breast cancer and cardiovascular diseases. Barcoding tools offer substantial attention in drug delivery, in-vivo screening, gene transport for theranostics, bioimaging, and nano-biosensors applications. This review article outlines the recent advances in nano-mediated DNA barcodes to explore various applications in detection of cancer markers, tumor cells, pathogens, allergens, as theranostics, biological sensors, and plant authentication. Furthermore, it summarizes the diverse newer technologies such as bio-barcode amplification (BBA), Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) and CRISPR-Cas9 gene knockout and their applications as sensors for detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Maithili Kantak
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Priyanka Batra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Spaggiari C, Righetti L, Spadini C, Annunziato G, Nsanzurwimo A, Cabassi CS, Bruni R, Costantino G. Metabolite Profiling and Bioactivities of Leaves, Stems, and Flowers of Rumex usambarensis (Dammer) Dammer, a Traditional African Medicinal Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:482. [PMID: 36771567 PMCID: PMC9921730 DOI: 10.3390/plants12030482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The comprehensive identification of secondary metabolites represents a fundamental step for the assessment of bioactivities and pharmacological properties of traditional herbal drugs. Rumex usambarensis (Dammer) Dammer has been described as a multipurpose remedy in different African traditional pharmacopoeias, but its phytochemical profile has not been properly investigated. Herein we report a high throughput metabolomic screening, based on ultra-high performance liquid chromatography-travelling wave ion mobility spectrometry quadrupole time-of-flight (UHPLC-TWINS-QTOF), which was performed for the first time on different R. usambarensis plant parts. By applying high-resolution mass spectrometry-based metabolomics and chemometric analysis, a complete discrimination of different aerial parts was obtained, with the annotation of 153 significant metabolites in leaves, stems, and flowers, suggesting an easy authentication and discrimination route. Phytochemical data were correlated to antimicrobial and antioxidant properties. Flavonoids, benzopyranes, chromones, and xanthones derivatives, along with a richer phytocomplex, might be responsible for the stronger bioactivities obtained from flowers.
Collapse
Affiliation(s)
- Chiara Spaggiari
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Laura Righetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Costanza Spadini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | | | | | | | - Renato Bruni
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | | |
Collapse
|
5
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Ibrahim IS, Mohd Said M, Mohammad Zainoor N, Jamal JA. Authentication of Marantodes pumilum (Blume) Kuntze: A Systematic Review. Front Pharmacol 2022; 13:855384. [PMID: 35754509 PMCID: PMC9213798 DOI: 10.3389/fphar.2022.855384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Botanical drug products consist of complex phytochemical constituents that vary based on various factors that substantially produce different pharmacological activities and possible side effects. Marantodes pumilum (Blume) Kuntze (Primulaceae) is one of the most popular Malay traditional botanical drugs and widely recognized for its medicinal use. Many studies have been conducted focusing on the identification of bioactive substances, pharmacological and toxicological activities in its specific varieties but less comprehensive study on M. pumilum authentication. Lack of quality control (QC) measurement assessment may cause different quality issues on M. pumilum containing products like adulteration by pharmaceutical substances, substitution, contamination, misidentification with toxic plant species, which may be detrimental to consumers' health and safety. This systematic literature review aims to provide an overview of the current scenario on the quality control of botanical drug products as determined by pharmacopoeia requirements specifically for M. pumilum authentication or identification. A systematic search for peer-reviewed publications to document literature search for M. pumilum authentication was performed using four electronic databases: Web of Science, PubMed, Scopus and ScienceDirect for related studies from January 2010 to December 2021. The research studies published in English and related articles for identification or authentication of M. pumilum were the main inclusion criteria in this review. A total 122 articles were identified, whereby 33 articles met the inclusion criteria. Macroscopy, microscopy, chemical fingerprinting techniques using chromatography, spectroscopy and hyphenated techniques, and genetic-based fingerprinting using DNA barcoding method have been used to identify M. pumilum and to distinguish between different varieties and plant parts. The study concluded that a combination of approaches is necessary for authenticating botanical drug substances and products containing M. pumilum to assure the quality, safety, and efficacy of marketed botanical drug products, particularly those with therapeutic claims.
Collapse
Affiliation(s)
- Ida Syazrina Ibrahim
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mazlina Mohd Said
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Jamia Azdina Jamal
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020349. [PMID: 35056662 PMCID: PMC8779633 DOI: 10.3390/molecules27020349] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
Abstract
Natural products represents an important source of new lead compounds in drug discovery research. Several drugs currently used as therapeutic agents have been developed from natural sources; plant sources are specifically important. In the past few decades, pharmaceutical companies demonstrated insignificant attention towards natural product drug discovery, mainly due to its intrinsic complexity. Recently, technological advancements greatly helped to address the challenges and resulted in the revived scientific interest in drug discovery from natural sources. This review provides a comprehensive overview of various approaches used in the selection, authentication, extraction/isolation, biological screening, and analogue development through the application of modern drug-development principles of plant-based natural products. Main focus is given to the bioactivity-guided fractionation approach along with associated challenges and major advancements. A brief outline of historical development in natural product drug discovery and a snapshot of the prominent natural drugs developed in the last few decades are also presented. The researcher’s opinions indicated that an integrated interdisciplinary approach utilizing technological advances is necessary for the successful development of natural products. These involve the application of efficient selection method, well-designed extraction/isolation procedure, advanced structure elucidation techniques, and bioassays with a high-throughput capacity to establish druggability and patentability of phyto-compounds. A number of modern approaches including molecular modeling, virtual screening, natural product library, and database mining are being used for improving natural product drug discovery research. Renewed scientific interest and recent research trends in natural product drug discovery clearly indicated that natural products will play important role in the future development of new therapeutic drugs and it is also anticipated that efficient application of new approaches will further improve the drug discovery campaign.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.N.); (M.A.B.); (H.A.A.)
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.N.); (M.A.B.); (H.A.A.)
- Correspondence:
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.N.); (M.A.B.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.N.); (M.A.B.); (H.A.A.)
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
|
9
|
Kim Y, Cho SH. Lindera glauca Blume ameliorates amyloid-β 1-42-induced memory impairment in mice with neuroprotection and activation of the CREB-BDNF pathway. Neurochem Int 2021; 147:105071. [PMID: 34000331 DOI: 10.1016/j.neuint.2021.105071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder presenting cognitive decline accompanied by deposits of amyloid-β (Aβ) and tau hyperphosphorylation. Without current treatment to AD, many studies suggested diverse approaches, one of which was herbal medicine and its active compounds. Very few studies have examined the effect of Lindera glauca Blume (L. glauca) in models of degenerative disease despite the attention that it received as a novel potential treatment source. We examined the efficacy of L. glauca in a mouse model of AD, which was induced by intrahippocampal injection of Aβ1-42. METHODS Mice were intrahippocampally infused with Aβ1-42 and were orally administered ethanolic extract of L.glauca before and after infusion for 21 days. Y-maze test and Morris water maze was conducted to assess memory impairment. Immunohistochemistry and western blot analysis were performed to assess the effect of L. glauca administration on pathological changes in mice. RESULTS L. glauca exhibited beneficial effects in spatial and reference learning as shown in increased time spent in the target quadrant in Morris water maze and increased spontaneous alternation in Y-maze. At the same time, decline of Aβ burden and phosphorylated tau were observed in the hippocampus of L. glauca-treated mouse under intrahippocampal injection of Aβ1-42. The results corresponded with amelioration of the decreased neuronal marker, neuronal-specific nuclear protein (NeuN) and attenuation of the increased reactive astrocyte marker, glial fibrillary acidic protein (GFAP) levels in hippocampus. Additionally, 21-day treatment with L. glauca inhibited downregulation of phosphorylated cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) levels. CONCLUSION L. glauca improves behavioral deficits induced by Aβ1-42 and inhibits both Aβ- and tau-related pathological changes, stimulating neuroprotection mediated by CREB activation. L. glauca can be suggested as a new candidate for treatment of AD.
Collapse
Affiliation(s)
- Yunna Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, Republic of Korea; Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| | - Seung-Hun Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, Republic of Korea; Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Kruger J, Taylor JRN, Ferruzzi MG, Debelo H. What is food-to-food fortification? A working definition and framework for evaluation of efficiency and implementation of best practices. Compr Rev Food Sci Food Saf 2020; 19:3618-3658. [PMID: 33337067 DOI: 10.1111/1541-4337.12624] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
Food-to-food fortification (FtFF) is an emerging food-based strategy that can complement current strategies in the ongoing fight against micronutrient deficiencies, but it has not been defined or characterized. This review has proposed a working definition of FtFF. Comparison with other main food-based strategies clearly differentiates FtFF as an emerging strategy with the potential to address multiple micronutrient deficiencies simultaneously, with little dietary change required by consumers. A review of literature revealed that despite the limited number of studies (in vitro and in vivo), the diversity of food-based fortificants investigated and some contradictory data, there are promising fortificants, which have the potential to improve the amount of bioavailable iron, zinc, and provitamin A from starchy staple foods. These fortificants are typically fruits and vegetables, with high mineral as well as ascorbic acid and β-carotene contents. However, as the observed improvements in micronutrient bioavailability and status are relatively small, measuring the positive outcomes is more likely to be impactful only if the FtFF products are consumed as regular staples. Considering best practices in implementation of FtFF, raw material authentication and ingredient documentation are critical, especially as the contents of target micronutrients and bioavailability modulators as well as the microbiological quality of the plant-based fortificants can vary substantially. Also, as there are only few developed supply chains for plant-based fortificants, procurement of consistent materials may be problematic. This, however, provides the opportunity for value chain development, which can contribute towards the economic growth of communities, or hybrid approaches that leverage traditional premixes to standardize product micronutrient content.
Collapse
Affiliation(s)
- Johanita Kruger
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - John R N Taylor
- Department of Consumer and Food Sciences and Institute for Food, Nutrition and Well-being, University of Pretoria, Pretoria, South Africa
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina
| | - Hawi Debelo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina
| |
Collapse
|
11
|
Akter KM, Park WS, Kim HJ, Khalil AAK, Ahn MJ. Comparative Studies of Fraxinus Species from Korea Using Microscopic Characterization, Phytochemical Analysis, and Anti-Lipase Enzyme Activity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E534. [PMID: 32326102 PMCID: PMC7238101 DOI: 10.3390/plants9040534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022]
Abstract
Fraxinus species belongs to the Oleaceae family, commonly known as Ash tree, and has been utilized as a folk medicine with various medicinal properties, including anti-obesity activity. The goal of the present study was to establish quality control parameters using microscopic characterization, phytochemical differentiation, and anti-lipase activity evaluation of five Fraxinus plants in Korea. Microscopic evaluation of the lower surface, petiole, and midrib of leaves, and stem bark showed discriminative anatomical characteristics, such as the stomatal index of the lower leaf surface; the number of sclerenchyma cells, and the diameter of parenchyma cells in the petiole and midrib; and the cork cell size and fiber frequency in the stem bark. Phytochemical analysis using high-performance liquid chromatography revealed the significant variation in the chemical profiles of the 12 major secondary metabolites among the samples. The orthogonal projections to latent structure-discrimination analysis efficiently differentiated each group belonging to each Fraxinus plant with the anatomical and quantification data. F. rhynchophylla and ligstroside showed the most potent anti-lipase activity among the plants and the 12 major metabolites, respectively. These findings could serve as the scientific criteria for the appropriate identification and establishment of standards for the use of Fraxinus species as medicinal plants.
Collapse
Affiliation(s)
- Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
| | - Hye-Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
| | - Atif Ali Khan Khalil
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Korea; (K.-M.A.); (W.S.P.); (H.-J.K.); (A.A.K.K.)
| |
Collapse
|
12
|
Grazina L, Amaral JS, Mafra I. Botanical origin authentication of dietary supplements by DNA‐based approaches. Compr Rev Food Sci Food Saf 2020; 19:1080-1109. [DOI: 10.1111/1541-4337.12551] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Liliana Grazina
- REQUIMTE‐LAQV, Faculdade de FarmáciaUniversidade do Porto Porto Portugal
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança Bragança Portugal
| | - Isabel Mafra
- REQUIMTE‐LAQV, Faculdade de FarmáciaUniversidade do Porto Porto Portugal
| |
Collapse
|
13
|
Patel ND, Kanaki NS. Fingerprint analysis of Shankhpushpi for species discrimination by HPLC coupled with chemometric methods. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1728695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nikunj D. Patel
- Department of Pharmaceutical sciences, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, India
| | - Niranjan S. Kanaki
- Department of Pharmaceutical sciences, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, India
| |
Collapse
|
14
|
Chen Z, de Boves Harrington P. Automatic soft independent modeling for class analogies. Anal Chim Acta 2019; 1090:47-56. [PMID: 31655645 DOI: 10.1016/j.aca.2019.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023]
Abstract
Soft independent modeling of class analogy (SIMCA) is an important method for authentication. The key parameters for SIMCA, the number of principal components and the decision threshold, determine the model's performance. In this report, a self-optimizing SIMCA that automatically determines these two parameters is devised and referred to as automatic SIMCA (aSIMCA). An efficient optimization is obtained by incorporating response surface modeling (RSM) and bootstrapped Latin partitions with the model-building dataset. A set of design points over the ranges of the two parameters are evaluated with respect to sensitivity and specificity by using the model-building data from target and non-target classes. Averages of the sensitivity and specificity are used as responses for the design points. A 2-dimensional interpolation and a bivariate cubic polynomial were used to model the response surface. As a control method, a grid search that evaluates all combinations of the two parameters over the same ranges was performed in parallel to determine the best conditions for SIMCA and the modeling performance was compared to aSIMCA with RSM. The developed aSIMCA methods were evaluated by authenticating two botanical extracts sets, i.e., marijuana and hemp, with spectral datasets collected from various spectroscopic techniques, including nuclear magnetic resonance, high-resolution mass, and ultraviolet spectrometry. Results of a paired t-test indicated that the aSIMCA with the RSM had similar performance with the one optimized by the grid search for modeling marijuana and hemp, while the RSM was more computationally efficient. The 2-dimensional interpolation is preferred because the better efficiency and the fit to the response surface is more precise.
Collapse
Affiliation(s)
- Zewei Chen
- Center for Intelligent Chemical Instrumentation, Clippinger Laboratories, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Peter de Boves Harrington
- Center for Intelligent Chemical Instrumentation, Clippinger Laboratories, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
15
|
Esteki M, Shahsavari Z, Simal-Gandara J. Gas Chromatographic Fingerprinting Coupled to Chemometrics for Food Authentication. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1649691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- M. Esteki
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Z. Shahsavari
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo – Ourense Campus, Ourense, Spain
| |
Collapse
|
16
|
Tnah L, Lee S, Tan A, Lee C, Ng K, Ng C, Nurul Farhanah Z. DNA barcode database of common herbal plants in the tropics: a resource for herbal product authentication. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Abubakar BM, Salleh FM, Shamsir Omar MS, Wagiran A. Assessing product adulteration of Eurycoma longifolia (Tongkat Ali) herbal medicinal product using DNA barcoding and HPLC analysis. PHARMACEUTICAL BIOLOGY 2018; 56:368-377. [PMID: 30058427 PMCID: PMC6130542 DOI: 10.1080/13880209.2018.1479869] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/29/2018] [Accepted: 05/18/2018] [Indexed: 05/05/2023]
Abstract
CONTEXT Eurycoma longifolia Jack (Simaroubaceae) commonly known as Tongkat Ali is one of the most important plants in Malaysia. The plant extracts (particularly roots) are widely used for the treatment of cough and fever besides having antimalarial, antidiabetic, anticancer and aphrodisiac activities. OBJECTIVES This study assesses the extent of adulteration of E. longifolia herbal medicinal products (HMPs) using DNA barcoding validated by HPLC analysis. MATERIALS AND METHODS Chloroplastic rbcL and nuclear ITS2 barcode regions were used in the present study. The sequences generated from E. longifolia HMPs were compared to sequences in the GenBank using MEGABLAST to verify their taxonomic identity. These results were verified by neighbor-joining tree analysis in which branches of unknown specimen are compared to the reference sequences established from this study and other retrieved from the GenBank. The HMPs were also analysed using HPLC analysis for the presence of eurycomanone bioactive marker. RESULTS Identification using DNA barcoding revealed that 37% of the tested HMPs were authentic while 27% were adulterated with the ITS2 barcode region proven to be the ideal marker. The validation of the authenticity using HPLC analysis showed a situation in which a species which was identified as authentic was found not to contain the expected chemical compound. DISCUSSION AND CONCLUSIONS DNA barcoding should be used as the first screening step for testing of HMPs raw materials. However, integration of DNA barcoding with HPLC analysis will help to provide detailed knowledge about the safety and efficacy of the HMPs.
Collapse
Affiliation(s)
- Bashir Mohammed Abubakar
- Department of Biotechnology & Medical Engineering, Faculty of Biosciences and Medical Engineering, UTM Skudai, Johor, Malaysia
- Department of Biological Sciences, Bauchi State University Gadau, Bauchi, Nigeria
| | - Faezah Mohd Salleh
- Department of Biotechnology & Medical Engineering, Faculty of Biosciences and Medical Engineering, UTM Skudai, Johor, Malaysia
| | - Mohd Shahir Shamsir Omar
- Department of Biosciences & Health Sciences, Faculty of Biosciences and Medical Engineering, UTM Skudai, Johor, Malaysia
| | - Alina Wagiran
- Department of Biotechnology & Medical Engineering, Faculty of Biosciences and Medical Engineering, UTM Skudai, Johor, Malaysia
| |
Collapse
|
18
|
Tungphatthong C, Somnuek J, Phadungcharoen T, Ingkaninan K, Denduangboripant J, Sukrong S. DNA barcoding of species of Bacopa coupled with high-resolution melting analysis. Genome 2018; 61:867-877. [PMID: 30388379 DOI: 10.1139/gen-2018-0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In Thailand, there are three species of Bacopa, namely, B. monnieri, B. caroliniana, and B. floribunda. Among these species of Bacopa, B. monnieri is the only medicinal species, used for the treatment of cognitive impairment and improvement of cognitive abilities because of its bioactive constituents, bacoside A and B. However, because of the similar characteristics of these species, it is difficult to differentiate among related species, resulting in confusion during identification. For this reason, and to ensure therapeutic quality for consumers, authentication is important. In this study, the three abovementioned species of Bacopa were evaluated using barcoding coupled with high-resolution melting (Bar-HRM) analysis based on primers designed for the trnL-F sequences of the three species. The melting profiles of the trnL-F amplicons of B. caroliniana and B. floribunda were clearly different from the melting profile of the trnL-F amplicon from B. monnieri; thus, the species could be discriminated by Bar-HRM analysis. Bar-HRM was then used to authenticate commercial products in various forms. The melting curves of the six commercial samples indicated that all the tested products contained genuine B. monnieri species. This method provides an efficient and reliable authentication system for future commercial herbal products and offers a reference system for quality control.
Collapse
Affiliation(s)
- Chayapol Tungphatthong
- a Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University Drug and Health Products Innovation Promotion Center (CU.D.HIP), Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Thailand.,b Research Unit of DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, 10330, Thailand
| | - Jutharat Somnuek
- a Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University Drug and Health Products Innovation Promotion Center (CU.D.HIP), Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Thailand.,b Research Unit of DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, 10330, Thailand
| | | | - Kornkanok Ingkaninan
- d Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Thailand
| | | | - Suchada Sukrong
- a Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University Drug and Health Products Innovation Promotion Center (CU.D.HIP), Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Thailand.,b Research Unit of DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, 10330, Thailand
| |
Collapse
|
19
|
Simmler C, Graham JG, Chen SN, Pauli GF. Integrated analytical assets aid botanical authenticity and adulteration management. Fitoterapia 2018; 129:401-414. [PMID: 29175549 PMCID: PMC5963993 DOI: 10.1016/j.fitote.2017.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/30/2022]
Abstract
This article reviews and develops a perspective for the meaning of authenticity in the context of quality assessment of botanical materials and the challenges associated with discerning adulterations vs. contaminations vs. impurities. Authentic botanicals are by definition non-adulterated, a mutually exclusive relationship that is confirmed through the application of a multilayered set of analytical methods designed to validate the (chemo)taxonomic identity of a botanical and certify that it is devoid of any adulteration. In practice, the ever-increasing sophistication in the process of intentional adulteration, as well as the growing number of botanicals entering the market, altogether necessitate a constant adaptation and reinforcement of authentication methods with new approaches, especially new technologies. This article summarizes the set of analytical methods - classical and contemporary - that can be employed in the authentication of botanicals. Particular emphasis is placed on the application of untargeted metabolomics and chemometrics. An NMR-based untargeted metabolomic model is proposed as a rapid, systematic, and complementary screening for the discrimination of authentic vs. potentially adulterated botanicals. Such analytical model can help advance the evaluation of botanical integrity in natural product research.
Collapse
Affiliation(s)
- Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), United States; UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - James G Graham
- Center for Natural Product Technologies (CENAPT), United States
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), United States; UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), United States; UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States.
| |
Collapse
|
20
|
Detection of adulteration in Hydrastis canadensis (goldenseal) dietary supplements via untargeted mass spectrometry-based metabolomics. Food Chem Toxicol 2018; 120:439-447. [PMID: 30031041 DOI: 10.1016/j.fct.2018.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022]
Abstract
Current estimates report that approximately 25% of U.S. adults use dietary supplements for medicinal purposes. Yet, regulation and transparency within the dietary supplement industry remains a challenge, and economic incentives encourage adulteration or augmentation of botanical dietary supplement products. Undisclosed changes to the dietary supplement composition could impact safety and efficacy; thus, there is a continued need to monitor possible botanical adulteration or mis-identification. Goldenseal, Hydrastis canadensis L. (Ranunculaceae), is a well-known botanical used to combat bacterial infections and digestive problems and is widely available as a dietary supplement. The goal of this study was to evaluate potential adulteration in commercial botanical products using untargeted metabolomics, with H. canadensis supplements serving as a test case. An untargeted ultraperformance liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis was performed on 35 H. canadensis commercial products. Visual inspection of the chemometric data via principal component analysis (PCA) revealed several products that were distinct from the main groupings of samples, and subsequent evaluation of contributing metabolites led to their confirmation of the outliers as originating from a non-goldenseal species or a mixture of plant materials. The obtained results demonstrate the potential for untargeted metabolomics to discriminate between multiple unknown products and predict possible adulteration.
Collapse
|
21
|
Gurley BJ, Yates CR, Markowitz JS. “…Not Intended to Diagnose, Treat, Cure or Prevent Any Disease.” 25 Years of Botanical Dietary Supplement Research and the Lessons Learned. Clin Pharmacol Ther 2018; 104:470-483. [DOI: 10.1002/cpt.1131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Bill J. Gurley
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| | - Charles R. Yates
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Tennessee Health Science Center; Memphis Tennessee USA
| | - John S. Markowitz
- Department of Pharmacotherapy and Translational Research; College of Pharmacy; University of Florida; Gainesville Florida USA
| |
Collapse
|
22
|
Seethapathy GS, Tadesse M, Urumarudappa SKJ, V Gunaga S, Vasudeva R, Malterud KE, Shaanker RU, de Boer HJ, Ravikanth G, Wangensteen H. Authentication of Garcinia fruits and food supplements using DNA barcoding and NMR spectroscopy. Sci Rep 2018. [PMID: 30002410 DOI: 10.1038/s41598-018-28635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Garcinia L. (Clusiaceae) fruits are a rich source of (-)-hydroxycitric acid, and this has gained considerable attention as an anti-obesity agent and a popular weight loss food supplement. In this study, we assessed adulteration of morphologically similar samples of Garcinia using DNA barcoding, and used NMR to quantify the content of (-)-hydroxycitric acid and (-)-hydroxycitric acid lactone in raw herbal drugs and Garcinia food supplements. DNA barcoding revealed that mostly G. gummi-gutta (previously known as G. cambogia) and G. indica were traded in Indian herbal markets, and there was no adulteration. The content of (-)-hydroxycitric acid and (-)-hydroxycitric acid lactone in the two species varied from 1.7% to 16.3%, and 3.5% to 20.7% respectively. Analysis of ten Garcinia food supplements revealed a large variation in the content of (-)-hydroxycitric acid, from 29 mg (4.6%) to 289 mg (50.6%) content per capsule or tablet. Only one product contained quantifiable amounts of (-)-hydroxycitric acid lactone. Furthermore the study demonstrates that DNA barcoding and NMR could be effectively used as a regulatory tool to authenticate Garcinia fruit rinds and food supplements.
Collapse
Affiliation(s)
- Gopalakrishnan Saroja Seethapathy
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
- Natural History Museum, University of Oslo, P.O. Box 1172, 0318, Oslo, Norway
| | - Margey Tadesse
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Santhosh Kumar J Urumarudappa
- Department of Crop Physiology, School of Ecology and Conservation, University of Agricultural Sciences, Gandhi Krishi Vigyan Kendra, Bangalore, 560065, India
| | - Srikanth V Gunaga
- Department of Forest Biology, College of Forestry, University of Agricultural Sciences, Sirsi, 581401, India
| | - Ramesh Vasudeva
- Department of Forest Biology, College of Forestry, University of Agricultural Sciences, Sirsi, 581401, India
| | - Karl Egil Malterud
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Ramanan Uma Shaanker
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
- Department of Crop Physiology, School of Ecology and Conservation, University of Agricultural Sciences, Gandhi Krishi Vigyan Kendra, Bangalore, 560065, India
| | - Hugo J de Boer
- Natural History Museum, University of Oslo, P.O. Box 1172, 0318, Oslo, Norway
| | - Gudasalamani Ravikanth
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India.
| | - Helle Wangensteen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
23
|
Authentication of Garcinia fruits and food supplements using DNA barcoding and NMR spectroscopy. Sci Rep 2018; 8:10561. [PMID: 30002410 PMCID: PMC6043575 DOI: 10.1038/s41598-018-28635-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022] Open
Abstract
Garcinia L. (Clusiaceae) fruits are a rich source of (−)-hydroxycitric acid, and this has gained considerable attention as an anti-obesity agent and a popular weight loss food supplement. In this study, we assessed adulteration of morphologically similar samples of Garcinia using DNA barcoding, and used NMR to quantify the content of (−)-hydroxycitric acid and (−)-hydroxycitric acid lactone in raw herbal drugs and Garcinia food supplements. DNA barcoding revealed that mostly G. gummi-gutta (previously known as G. cambogia) and G. indica were traded in Indian herbal markets, and there was no adulteration. The content of (−)-hydroxycitric acid and (−)-hydroxycitric acid lactone in the two species varied from 1.7% to 16.3%, and 3.5% to 20.7% respectively. Analysis of ten Garcinia food supplements revealed a large variation in the content of (−)-hydroxycitric acid, from 29 mg (4.6%) to 289 mg (50.6%) content per capsule or tablet. Only one product contained quantifiable amounts of (−)-hydroxycitric acid lactone. Furthermore the study demonstrates that DNA barcoding and NMR could be effectively used as a regulatory tool to authenticate Garcinia fruit rinds and food supplements.
Collapse
|
24
|
Hegde S, Saini A, Hegde HV, Kholkute SD, Roy S. Molecular identification of Saraca asoca from its substituents and adulterants. 3 Biotech 2018; 8:161. [PMID: 29527448 PMCID: PMC5835484 DOI: 10.1007/s13205-018-1175-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Saraca asoca (Roxb.) De Wilde is an important medicinal plant from the Western Ghats of India, traditionally used in treatment of various gynecological disorders. Increasing commercial demand and decreasing numbers has resulted in this plant becoming endangered with crude drug materials being extensively substituted/adulterated with other plant species. The present study was undertaken with the objective of development and evaluation of multivariate cluster analysis of ISSR fingerprints against rbcL-based DNA barcodes as tool to understand the relationships and to differentiate common adulterants and substituents from S. asoca. ISSR-based Hierarchical Cluster Analysis was carried out on 41 samples of S. asoca and 5 each of the 5 common substituent/adulterant plants and the clustering patterns were evaluated against DNA-sequence-based barcoding of rbcL region of their plastids. Factorial analysis and Principal Coordinate Analysis revealed distinct groups of genetic pools of respective taxa thereby confirming the utility of ISSR fingerprinting as a useful tool for differentiation between the genuine and the adulterants/substituents. NCBI-BLAST search on DNA barcode rbcL region confirmed the results of ISSR assays. Therefore, our study demonstrated the utility of simple, cost-effective method of ISSR fingerprinting coupled with rbcL barcoding in differentiating this important medicinal plant from its common adulterants/substituents. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Satisha Hegde
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka 590010 India
- KLE Academy of Higher Education and Research (Deemed-to-be-University), Dr. Prabhakar Kore Basic Science Research Centre, Belagavi, Karnataka 590010 India
| | - Archana Saini
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka 590010 India
| | - Harsha Vasudev Hegde
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka 590010 India
| | - Sanjiva D. Kholkute
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka 590010 India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka 590010 India
| |
Collapse
|
25
|
Santhosh Kumar JU, Krishna V, Seethapathy GS, Ganesan R, Ravikanth G, Shaanker RU. Assessment of adulteration in raw herbal trade of important medicinal plants of India using DNA barcoding. 3 Biotech 2018; 8:135. [PMID: 29479511 DOI: 10.1007/s13205-018-1169-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/10/2018] [Indexed: 11/25/2022] Open
Abstract
A number of studies have shown that there could be widespread substitution and/or adulteration (hereafter referred to as substitution) in raw herbal trade of medicinal plants. Substitution could potentially endanger the health and safety of the consumers. In this study, the extent of adulteration in raw herbal trade of 30 important medicinal plants in South India was analyzed. Biological reference material (BRM) consisting of taxonomically authenticated samples of each of the 30 species along with 14 other co-occurring and congeneric allied species that are likely to be used in adulteration was established. DNA barcode signatures of 124 BRM using two candidate regions, nr-ITS and psbA-trnH were identified. A total of 203 herbal trade samples representing the 30 medicinal plant species were collected from 34 locations in South India. Using the DNA barcode sequences of the BRM as reference, the analysis indicated that the substitution ranged from 20 to 100%. Overall, approximately 12% of the market samples were adulterated. Considering the potential health hazard that such adulteration can cause, the need for a national regulatory framework that can authenticate and regulate raw herbal trade in the country is discussed.
Collapse
Affiliation(s)
- J U Santhosh Kumar
- 1Department of Post Graduate Studies and Research in Biotechnology, Jnanasahyadri, Kuvempu University, Shankaraghatta, Shimoga, 577451 India
- 2School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065 India
- 3Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065 India
| | - V Krishna
- 1Department of Post Graduate Studies and Research in Biotechnology, Jnanasahyadri, Kuvempu University, Shankaraghatta, Shimoga, 577451 India
| | - G S Seethapathy
- 4Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064 India
| | - R Ganesan
- 4Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064 India
| | - G Ravikanth
- 4Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064 India
| | - R Uma Shaanker
- 2School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065 India
- 3Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065 India
- 4Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064 India
| |
Collapse
|
26
|
Srirama R, Santhosh Kumar JU, Seethapathy GS, Newmaster SG, Ragupathy S, Ganeshaiah KN, Uma Shaanker R, Ravikanth G. Species Adulteration in the Herbal Trade: Causes, Consequences and Mitigation. Drug Saf 2018; 40:651-661. [PMID: 28389979 DOI: 10.1007/s40264-017-0527-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The global economy of the international trade of herbal products has been increasing by 15% annually, with the raw material for most herbal products being sourced from South and Southeast Asian countries. In India, of the 8000 species of medicinal plants harvested from the wild, approximately 960 are in the active trade. With increasing international trade in herbal medicinal products, there is also increasing concern about the widespread adulteration and species admixtures in the raw herbal trade. The adverse consequences of such species adulteration on the health and safety of consumers have only recently begun to be recognised and documented. We provide a comprehensive review of the nature and magnitude of species adulteration in the raw herbal trade, and identify the underlying drivers that might lead to such adulteration. We also discuss the possible biological and chemical equivalence of species that are used as adulterants and substitutes, and the consequences thereof to consumer health and safety, and propose a framework for the development of a herbal trade authentication service that can help regulate the herbal trade market.
Collapse
Affiliation(s)
- Ramanujam Srirama
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
| | - J U Santhosh Kumar
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - G S Seethapathy
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
| | - Steven G Newmaster
- Department of Integrative Biology, Centre for Biodiversity Genomics (CBG), College of Biological Sciences, University of Guelph, Toronto, ON, N1G 2W1, Canada
| | - S Ragupathy
- Department of Integrative Biology, Centre for Biodiversity Genomics (CBG), College of Biological Sciences, University of Guelph, Toronto, ON, N1G 2W1, Canada
| | - K N Ganeshaiah
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - R Uma Shaanker
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Gudasalamani Ravikanth
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India.
| |
Collapse
|
27
|
Akter KM, Kim HJ, Khalil AAK, Park WS, Lee MK, Park JH, Ahn MJ. Inner morphological and chemical differentiation of Boehmeria species. J Nat Med 2017; 72:409-423. [PMID: 29260412 DOI: 10.1007/s11418-017-1164-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
The present study was designed to establish quality control parameters for pharmacognostic evaluation and differentiation of eight locally derived Boehmeria species, B. gracilis, B. nivea, B. pannosa, B. platanifolia, B. quelpaertensis, B. spicata, B. splitgerbera, B. tricuspis, and two varieties named B. japonica var. longispica, B. nivea var. concolor, which have been utilized as the folk medicine, 'Mo-Si-Pool' in Korea. Although the outer morphological study of these species had been reported, there is no pharmacognostical description yet. Therefore, inner morphological evaluation on leaf midrib, petiole and stem of eight Boehmeria species and two varieties was accomplished along with preliminary phytochemical analysis by HPLC-DAD profiling. The microscopic data showed discriminative inner morphological characteristics such as collenchyma cell layer, thickness of cortex and xylem, frequency of druse and hairs, and number of vascular bundles. The HPLC profiles exhibited more than four characteristic peaks. The molecular ions of the four peaks (1-4) were tentatively identified by ESI-MS, and their structures were identified by NMR spectroscopy to be the flavonoids, rutin (1), isoquercetin (2) and kaempferol-3-O-rutinoside (3), and a phenanthroquinolizidine alkaloid, (-)-cryptopleurine (4). While compounds 1 and 2 were detected in all samples, compound 4 was determined only in B. japonica var. longispica, B. pannosa and B. quelpaertensis and B. splitgerbera. These findings provide the initial scientific criteria for proper identification and establishment of standards for use of Boehmeria species in traditional medicine.
Collapse
Affiliation(s)
- Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Hye-Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Atif Ali Khan Khalil
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28644, Korea
| | - Jong Hee Park
- College of Pharmacy, Pusan National University, Busan, 46241, Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
28
|
Hegde S, Hegde HV, Jalalpure SS, Peram MR, Pai SR, Roy S. Resolving Identification Issues of Saraca asoca from Its Adulterant and Commercial Samples Using Phytochemical Markers. Pharmacogn Mag 2017; 13:S266-S272. [PMID: 28808391 PMCID: PMC5538165 DOI: 10.4103/pm.pm_417_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/08/2016] [Indexed: 11/24/2022] Open
Abstract
Saraca asoca (Roxb.) De Wilde (Ashoka) is a highly valued endangered medicinal tree species from Western Ghats of India. Besides treating cardiac and circulatory problems, S. asoca provides immense relief in gynecological disorders. Higher price and demand, in contrast to the smaller population size of the plant, have motivated adulteration with other plants such as Polyalthia longifolia (Sonnerat) Thwaites. The fundamental concerns in quality control of S. asoca arise due to its part of medicinal value (Bark) and the chemical composition. Phytochemical fingerprinting with proper selection of analytical markers is a promising method in addressing quality control issues. In the present study, high-performance liquid chromatography of phenolic compounds (gallic acid, catechin, and epicatechin) coupled to multivariate analysis was used. Five samples each of S. asoca, P. longifolia from two localities alongside five commercial market samples showed evidence of adulteration. Subsequently, multivariate hierarchical cluster analysis and principal component analysis was established to discriminate the adulterants of S. asoca. The proposed method ascertains identification of S. asoca from its putative adulterant P. longifolia and commercial market samples. The data generated may also serve as baseline data to form a quality standard for pharmacopoeias.
Collapse
Affiliation(s)
- Satisha Hegde
- Regional Medical Research Centre, Indian Council of Medical Research, Belagavi, Karnataka, India.,KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India
| | - Harsha Vasudev Hegde
- Regional Medical Research Centre, Indian Council of Medical Research, Belagavi, Karnataka, India
| | - Sunil Satyappa Jalalpure
- Dr. Prabhakar Kore Basic Science Research Centre, KLE University, Belagavi, Karnataka, India.,Department of Pharmacognosy, KLE University's College of Pharmacy, Belagavi, Karnataka, India
| | - Malleswara Rao Peram
- Dr. Prabhakar Kore Basic Science Research Centre, KLE University, Belagavi, Karnataka, India
| | - Sandeep Ramachandra Pai
- Regional Medical Research Centre, Indian Council of Medical Research, Belagavi, Karnataka, India.,Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Subarna Roy
- Regional Medical Research Centre, Indian Council of Medical Research, Belagavi, Karnataka, India
| |
Collapse
|
29
|
Hegde S, Pai SR, Roy S. Combination of DNA isolation and RP-HPLC analysis method for bark samples of Saraca asoca and its adulterant. 3 Biotech 2017; 7:208. [PMID: 28667648 PMCID: PMC5493565 DOI: 10.1007/s13205-017-0791-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/14/2017] [Indexed: 01/11/2023] Open
Abstract
DNA fingerprinting singly or in combination with phytochemical analysis is ideal for quality control of crude plant-based drugs. However, when the source material is tannin rich stem bark, extraction of DNA by conventional methods becomes challenging. In such cases, phytochemical profiling serves as very useful tool for its identification. The work herein described a method for simultaneous DNA isolation and phytochemical extraction for downstream analysis and applications from dried bark powder of Saraca asoca and commercial samples of this crude drug as well as from those of Polyalthia longifolia, its most common adulterant. It is a modified CTAB-based method which involves a pre-extraction step by soaking samples overnight in de-ionized water followed by filtration. The residues in the filter paper were used for DNA isolation and dried filtrate was used for Reverse Phase-High-Performance Liquid Chromatography analysis. Results revealed that genomic DNA isolated was PCR amplifiable with Inter Simple Sequence Repeat and Start Codon Targeted markers. Phenolic compounds of catechin, epicatechin, and gallic acid were detected from the above dried filtrate. The method is simple, reliable and it requires small amount of sample with an option of integrating both phytochemical and DNA-based profiling, from the same starting material. Therefore, the present method could be useful for further potential applications such as quality control assessment of S. asoca products.
Collapse
Affiliation(s)
- Satisha Hegde
- ICMR-National Institute of Traditional Medicine (Formerly Regional Medical Research Centre), Indian Council of Medical Research, Department of Health Research, Govt. of India, Belagavi, Karnataka, 590 010, India
- KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, 590 010, India
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, 590010, India
| | - Sandeep Ramchandra Pai
- ICMR-National Institute of Traditional Medicine (Formerly Regional Medical Research Centre), Indian Council of Medical Research, Department of Health Research, Govt. of India, Belagavi, Karnataka, 590 010, India
- Amity Institute of Biotechnology (AIB), Amity University, Mumbai, Maharashtra, 410206, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine (Formerly Regional Medical Research Centre), Indian Council of Medical Research, Department of Health Research, Govt. of India, Belagavi, Karnataka, 590 010, India.
| |
Collapse
|
30
|
Practical considerations when designing and conducting clinical pharmacokinetic herb–drug interaction studies. ACTA ACUST UNITED AC 2017. [DOI: 10.4155/ipk-2016-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pharmacokinetic herb–drug interaction (HDI) research has been ongoing for almost two decades and a significant body of information has been published on the subject, yet much of it is contradictory. Some of this disparity stems from the botanical dosage form itself, as product quality and dosage form performance can vary significantly among brands. Unless products are adequately characterized, HDI study results can be misleading. The purpose of this report is to identify several common weaknesses inherent in many prospective clinical HDI studies and to provide guidance in addressing these shortcomings. Topics such as study design, pharmacokinetic end points, product quality, dosage form performance, gauging clinical relevance, and efforts to minimize dietary influences while improving compliance are discussed.
Collapse
|
31
|
Urumarudappa SKJ, Gogna N, Newmaster SG, Venkatarangaiah K, Subramanyam R, Saroja SG, Gudasalamani R, Dorai K, Ramanan US. DNA barcoding and NMR spectroscopy-based assessment of species adulteration in the raw herbal trade of Saraca asoca (Roxb.) Willd, an important medicinal plant. Int J Legal Med 2016; 130:1457-1470. [PMID: 27627901 DOI: 10.1007/s00414-016-1436-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/09/2016] [Indexed: 11/24/2022]
Abstract
Saraca asoca (Roxb.) Willd, commonly known as "Asoka" or "Ashoka," is one of the most important medicinal plants used in raw herbal trade in India. The bark extracts of the tree are used in the treatment of leucorrhea and other uterine disorders besides also having anti-inflammatory, anti-bacterial, anti-pyretic, anti-helminthic, and analgesic activity. The indiscriminate and rampant extraction of the wood to meet the ever-increasing market demand has led to a sharp decline in naturally occurring populations of the species in the country. Consequently, the species has recently been classified as "vulnerable" by the International Union for Conservation of Nature (IUCN). Increasing deforestation and increasing demand for this medicinal plant have resulted in a limited supply and suspected widespread adulteration of the species in the raw herbal trade market. Adulteration is a serious concern due to: (i) reduction in the efficacy of this traditional medicine, (ii) considerable health risk to consumers, and (iii) fraudulent product substitution that impacts the economy for the Natural Health Product (NHP) Industry and consumers. In this paper, we provide the first attempt to assess the extent of adulteration in the raw herbal trade of S. asoca using DNA barcoding validated by NMR spectroscopic techniques. Analyzing market samples drawn from 25 shops, mostly from peninsular India, we show that more than 80 % of the samples were spurious, representing plant material from at least 7 different families. This is the first comprehensive and large-scale study to demonstrate the widespread adulteration of market samples of S. asoca in India. These results pose grave implications for the use of raw herbal drugs, such as that of S. asoca, on consumer health and safety. Based on these findings, we argue for a strong and robust regulatory framework to be put in place, which would ensure the quality of raw herbal trade products and reassure consumer confidence in indigenous medicinal systems. Graphical Abstract DNA barcoding and NMR spectroscopy-based assessment of adulteration in Saraca asoca.
Collapse
Affiliation(s)
- Santhosh Kumar Jayanthinagar Urumarudappa
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India.,Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India.,Department of Post Graduate Studies and Research in Biotechnology, Jnanasahyadri, Kuvempu University, Shankaraghatta, Shimoga, 577451, India
| | - Navdeep Gogna
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City Sector 81, PO Manauli, Mohali, 140306, Punjab, India
| | - Steven G Newmaster
- Centre for Biodiversity Genomics (CBG), College of Biological Sciences, Department of Integrative Biology, University of Guelph, Toronto, N1G 2W1, Canada
| | - Krishna Venkatarangaiah
- Department of Post Graduate Studies and Research in Biotechnology, Jnanasahyadri, Kuvempu University, Shankaraghatta, Shimoga, 577451, India
| | - Ragupathy Subramanyam
- Centre for Biodiversity Genomics (CBG), College of Biological Sciences, Department of Integrative Biology, University of Guelph, Toronto, N1G 2W1, Canada
| | | | - Ravikanth Gudasalamani
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
| | - Kavita Dorai
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City Sector 81, PO Manauli, Mohali, 140306, Punjab, India
| | - Uma Shaanker Ramanan
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India. .,Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India. .,Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India.
| |
Collapse
|
32
|
Karpiuk UV, Al Azzam KM, Abudayeh ZHM, Kislichenko V, Naddaf A, Cholak I, Yemelianova O. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique. Adv Pharm Bull 2016; 6:285-91. [PMID: 27478794 PMCID: PMC4961990 DOI: 10.15171/apb.2016.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/08/2016] [Accepted: 06/18/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. METHODS Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. RESULTS The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. CONCLUSION The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases.
Collapse
Affiliation(s)
| | - Khaldun Mohammad Al Azzam
- Department of Pharmaceutical Chemistry, Pharmacy Program, Batterjee Medical College for Sciences and Technology (BMC), 21442 Jeddah, Kingdom of Saudi Arabia
| | | | | | - Ahmad Naddaf
- Faculty of Pharmacy, Isra University, 11622 Amman, Jordan
| | - Irina Cholak
- Bogomolets National Medical University, Kiev, Ukraine
| | | |
Collapse
|
33
|
Mudge EM, Betz JM, Brown PN. The Importance of Method Selection in Determining Product Integrity for Nutrition Research. Adv Nutr 2016; 7:390-8. [PMID: 26980823 PMCID: PMC4785475 DOI: 10.3945/an.115.010611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The American Herbal Products Association estimates that there as many as 3000 plant species in commerce. The FDA estimates that there are about 85,000 dietary supplement products in the marketplace. The pace of product innovation far exceeds that of analytical methods development and validation, with new ingredients, matrixes, and combinations resulting in an analytical community that has been unable to keep up. This has led to a lack of validated analytical methods for dietary supplements and to inappropriate method selection where methods do exist. Only after rigorous validation procedures to ensure that methods are fit for purpose should they be used in a routine setting to verify product authenticity and quality. By following systematic procedures and establishing performance requirements for analytical methods before method development and validation, methods can be developed that are both valid and fit for purpose. This review summarizes advances in method selection, development, and validation regarding herbal supplement analysis and provides several documented examples of inappropriate method selection and application.
Collapse
Affiliation(s)
- Elizabeth M Mudge
- Centre for Applied Research and Innovation, British Columbia Institute of Technology, Burnaby, Canada; and
| | | | - Paula N Brown
- Centre for Applied Research and Innovation, British Columbia Institute of Technology, Burnaby, Canada; and
| |
Collapse
|
34
|
Cuadros-Rodríguez L, Ruiz-Samblás C, Valverde-Som L, Pérez-Castaño E, González-Casado A. Chromatographic fingerprinting: An innovative approach for food 'identitation' and food authentication – A tutorial. Anal Chim Acta 2016; 909:9-23. [DOI: 10.1016/j.aca.2015.12.042] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/17/2015] [Accepted: 12/30/2015] [Indexed: 01/09/2023]
|
35
|
The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav 2015; 52:344-62. [PMID: 26169932 DOI: 10.1016/j.yebeh.2015.05.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 01/27/2023]
Abstract
As all medicines, herbal medicinal products are expected to be safe, effective, and of appropriate quality. However, regulations on herbal medicinal products vary from country to country, and herbal preparations do occur not only in the form of medicinal products but also as less strictly regulated product groups like dietary supplements. Therefore, it is not always easy for the consumers to discriminate high-quality products from low-quality products. On the other hand, herbal medicines have many special features that distinguish them from conventional medicinal products. Plants are complex multicomponent mixtures; in addition, their phytochemical composition is not constant because of inherent variability and a plethora of external influences. Therefore, the production process of an herbal medicinal product needs to be strictly monitored. First of all, the starting materials need to be correctly authenticated and free of adulterants and contaminants. During plant growth, many factors like harvest season and time, developmental stage, temperature, and humidity have a strong impact on plant metabolite production. Also, postharvest processing steps like drying and storage can significantly alter the phytochemical composition of herbal material. As the production of many phytopharmaceuticals includes an extraction step, the extraction solvent and conditions need to be optimized in order to enrich the bioactive constituents in the extract. The quality of finished preparations needs to be determined either on the basis of marker constituents or on the basis of analytical fingerprints. Thus, all production stages should be accompanied by appropriate quality assessment measures. Depending on the particular task, different methods need to be applied, ranging from macroscopic, microscopic, and DNA-based authentication methods to spectroscopic methods like vibrational spectroscopy and chromatographic and hyphenated methods like HPLC, GC-MS and LC-MS. Also, when performing pharmacological and toxicological studies, many features inherent in herbal medicinal products need to be considered in order to guarantee valid results: concerning in vitro studies, difficulties are often related to lacking knowledge of ADME characteristics of the bioactive constituents, nuisance compounds producing false positive and false negative results, and solubility problems. In in vivo animal studies, the route of administration is a very important issue. Clinical trials on herbal medicinal products in humans very often suffer from a poor reporting quality. This often hampers or precludes the pooling of clinical data for systematic reviews. In order to overcome this problem, appropriate documentation standards for clinical trials on herbal medicinal products have been defined in an extension of the CONSORT checklist. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
|
36
|
Simmler C, Anderson JR, Gauthier L, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals. JOURNAL OF NATURAL PRODUCTS 2015; 78:2007-22. [PMID: 26244884 PMCID: PMC4553119 DOI: 10.1021/acs.jnatprod.5b00342] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Raw licorice roots represent heterogeneous materials obtained from mainly three Glycyrrhiza species. G. glabra, G. uralensis, and G. inflata exhibit marked metabolite differences in terms of flavanones (Fs), chalcones (Cs), and other phenolic constituents. The principal objective of this work was to develop complementary chemometric models for the metabolite profiling, classification, and quality control of authenticated licorice. A total of 51 commercial and macroscopically verified samples were DNA authenticated. Principal component analysis and canonical discriminant analysis were performed on (1)H NMR spectra and area under the curve values obtained from UHPLC-UV chromatograms, respectively. The developed chemometric models enable the identification and classification of Glycyrrhiza species according to their composition in major Fs, Cs, and species specific phenolic compounds. Further key outcomes demonstrated that DNA authentication combined with chemometric analyses enabled the characterization of mixtures, hybrids, and species outliers. This study provides a new foundation for the botanical and chemical authentication, classification, and metabolomic characterization of crude licorice botanicals and derived materials. Collectively, the proposed methods offer a comprehensive approach for the quality control of licorice as one of the most widely used botanical dietary supplements.
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Jeffrey R. Anderson
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Laura Gauthier
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - David C. Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - James B. McAlpine
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| |
Collapse
|
37
|
Seethapathy GS, Ganesh D, Santhosh Kumar JU, Senthilkumar U, Newmaster SG, Ragupathy S, Uma Shaanker R, Ravikanth G. Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. Int J Legal Med 2014; 129:693-700. [DOI: 10.1007/s00414-014-1120-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
|
38
|
Sonibare MA, Adeniran AA. Comparative micromorphological study of wild and micropropagated Dioscorea bulbifera Linn. Asian Pac J Trop Biomed 2014; 4:176-83. [PMID: 25182434 DOI: 10.1016/s2221-1691(14)60228-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/27/2013] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To study the leaf epidermis of wild and micropropagated Dioscorea bulbifera Linn. (D. bulbifera) in order to document useful diagnostic features that may be employed for correct crude drug identification and to clear any taxonomic uncertainties in the micropropagated medicinal plant. METHODS Growth responses of micropropagated D. bulbifera were observed on Murashige Skoog medium supplemented with 6-benzylamino purine (1.0 mg/L)+α-naphthaleneacetic acid (0.2 mg/L)+cysteine (20 mg/L) using nodal segments as explants. Leaves of the wild and micropropagated plants were studied microscopically. RESULTS More than 80% shoot regeneration and formation of 10%-30% whitish-brown callus were observed within 3 weeks. The highest root proliferation was obtained from Murashige Skoog medium of 6-benzylamino purine (0.05 mg/L) and α-naphthaleneacetic acid (0.01 mg/L) with mean root length of (27.00±1.25) mm and elongated single shoot of mean length (38.00±11.09) mm. Leaf epidermal features that revealed similarities between the wild and micropropagated plants included amphistomatic condition, presence of mucilage, glandular unicellular trichome with multicellular head, polygonal cells with smooth walls, stomata type and shape. Slight variations included thick cuticular wall with closed stomata in wild plant compared to thin walled opened stomata in the in vitro plant. Opening of stomata accounted for larger average stomata sizes of (7.68±0.38) µm and (6.14±0.46) µm on the adaxial and abaxial surfaces, respectively of the micropropagated plant compared to the wild. CONCLUSIONS The diagnostic features obtained in the study could serve as a basis for proper identification for quality control for standardization of the medicinal plant.
Collapse
Affiliation(s)
- Mubo A Sonibare
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Adedapo A Adeniran
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
39
|
Simmler C, Jones T, Anderson JR, Nikolić DC, van Breemen RB, Soejarto DD, Chen SN, Pauli GF. Species-specific Standardisation of Licorice by Metabolomic Profiling of Flavanones and Chalcones. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:378-88. [PMID: 25859589 PMCID: PMC4391967 DOI: 10.1002/pca.2472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Major phenolics from licorice roots (Glycyrrhiza sp.) are glycosides of the flavanone liquiritigenin (F) and its 2′-hydroxychalcone isomer, isoliquiritigenin (C). As the F and C contents fluctuate between batches of licorice, both quality control and standardisation of its preparations become complex tasks. OBJECTIVE To characterise the F and C metabolome in extracts from Glycyrrhiza glabra L. and Glycyrrhiza uralensis Fisch. ex DC. by addressing their composition in major F–C pairs and defining the total F:C proportion. MATERIAL AND METHODS Three types of extracts from DNA-authenticated samples were analysed by a validated UHPLC/UV method to quantify major F and C glycosides. Each extract was characterised by the identity of major F–C pairs and the proportion of Fs among all quantified Fs:Cs. RESULTS The F and C compositions and proportions were found to be constant for all extracts from a Glycyrrhiza species. All G. uralensis extracts contained up to 2.5 more Fs than G. glabra extracts. Major F–C pairs were B-ring glycosidated in G. uralensis, and A-/B-ring apiosyl-glucosidated in the G. glabra extracts. The F:C proportion was found to be linked to the glycosidation site: the more B-ring F-C glycosides were present, the higher was the final F:C proportion in the extract. These results enable the chemical differentiation of extracts from G. uralensis and G. glabra, which are characterised by total F:C proportions of 8.37:1.63 and 7.18:2.82, respectively. CONCLUSION Extracts from G. glabra and G. uralensis can be differentiated by their respective F and C compositions and proportions, which are both useful for further standardisation of licorice botanicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guido F. Pauli
- Correspondence to: G. F. Pauli, UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, 833 S. Wood Street, Chicago, Illinois, 60612, USA.
| |
Collapse
|
40
|
nrDNA ITS sequence based SCAR marker to authenticate Aconitum heterophyllum and Cyperus rotundus in Ayurvedic raw drug source and prepared herbal products. Food Chem 2014; 145:1015-20. [DOI: 10.1016/j.foodchem.2013.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 08/31/2013] [Accepted: 09/04/2013] [Indexed: 11/16/2022]
|
41
|
Datta S, Mahdi F, Ali Z, Jekabsons MB, Khan IA, Nagle DG, Zhou YD. Toxins in botanical dietary supplements: blue cohosh components disrupt cellular respiration and mitochondrial membrane potential. JOURNAL OF NATURAL PRODUCTS 2014; 77:111-117. [PMID: 24328138 PMCID: PMC3932489 DOI: 10.1021/np400758t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA "black box" warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3), exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage.
Collapse
Affiliation(s)
- Sandipan Datta
- Department of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
| | - Fakhri Mahdi
- Department of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Mika B. Jekabsons
- Department of Biology, University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A. Khan
- Department of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Dale G. Nagle
- Department of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Yu-Dong Zhou
- Department of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
42
|
Recent trends in the analysis of amino acids in fruits and derived foodstuffs. Anal Bioanal Chem 2013; 405:7941-56. [DOI: 10.1007/s00216-013-7025-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 02/02/2023]
|
43
|
Primetta AK, Jaakola L, Ayaz FA, Inceer H, Riihinen KR. Anthocyanin fingerprinting for authenticity studies of bilberry (Vaccinium myrtillus L.). Food Control 2013. [DOI: 10.1016/j.foodcont.2012.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Vermaak I, Viljoen A, Lindström SW. Hyperspectral imaging in the quality control of herbal medicines - the case of neurotoxic Japanese star anise. J Pharm Biomed Anal 2012; 75:207-13. [PMID: 23277152 DOI: 10.1016/j.jpba.2012.11.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
Illicium verum (Chinese star anise) dried fruit is popularly used as a remedy to treat infant colic. However, instances of life-threatening adverse events in infants have been recorded after use, in some cases due to substitution and/or adulteration of I. verum with Illicium anisatum (Japanese star anise), which is toxic. It is evident that rapid and efficient quality control methods are of utmost importance to prevent re-occurrence of such dire consequences. The potential of short wave infrared (SWIR) hyperspectral imaging and image analysis as a rapid quality control method to distinguish between I. anisatum and I. verum whole dried fruit was investigated. Images were acquired using a sisuChema SWIR hyperspectral pushbroom imaging system with a spectral range of 920-2514 nm. Principal component analysis (PCA) was applied to the images to reduce the high dimensionality of the data, remove unwanted background and to visualise the data. A classification model with 4 principal components and an R²X_cum of 0.84 and R²Y_cum of 0.81 was developed for the 2 species using partial least squares discriminant analysis (PLS-DA). The model was subsequently used to accurately predict the identity of I. anisatum (98.42%) and I. verum (97.85%) introduced into the model as an external dataset. The results show that SWIR hyperspectral imaging is an objective and non-destructive quality control method that can be successfully used to identify whole dried fruit of I. anisatum and I. verum. In addition, this method has the potential to detect I. anisatum whole dried fruits within large batches of I. verum through upscaling to a conveyor belt system.
Collapse
Affiliation(s)
- Ilze Vermaak
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | | | | |
Collapse
|
45
|
LC-MS/MS Identification of a Bromelain Peptide Biomarker from Ananas comosus Merr. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:548486. [PMID: 23082082 PMCID: PMC3467939 DOI: 10.1155/2012/548486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/02/2012] [Indexed: 11/17/2022]
Abstract
Bromelain (Br) is a cysteine peptidase (GenBank AEH26024.1) from pineapple, with over 40 years of clinical use. The constituents mediating its anti-inflammatory activity are not thoroughly characterized and no peptide biomarker exists. Our objective is to characterize Br raw material and identify peptides in the plasma of Br treated mice. After SDS-PAGE in-gel digestion, Br (VN#3507; Middletown, CT, USA) peptides were analyzed via LC/MS/MS using 95% protein probability, 95% peptide probability, and a minimum peptide number = 5. Br spiked mouse plasma (1 ug/ul) and plasma from i.p. treated mice (12 mg/kg) were assessed using SRM. In Br raw material, we identified seven proteins: four proteases, one jacalin-like lectin, and two protease inhibitors. In Br spiked mouse plasma, six proteins (ananain, bromelain inhibitor, cysteine proteinase AN11, FB1035 precursor, FBSB precursor, and jacalin-like lectin) were identified. Using LC/MS/MS, we identified the unique peptide, DYGAVNEVK, derived from FB1035, in the plasma of i.p. Br treated mice. The spectral count of this peptide peaked at 6 hrs and was undetectable by 24 hrs. In this study, a novel Br peptide was identified in the plasma of treated mice for the first time. This Br peptide could serve as a biomarker to standardize the therapeutic dose and maximize clinical utility.
Collapse
|
46
|
Won CS, Oberlies NH, Paine MF. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Ther 2012; 136:186-201. [PMID: 22884524 DOI: 10.1016/j.pharmthera.2012.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022]
Abstract
Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively.
Collapse
Affiliation(s)
- Christina S Won
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | | | | |
Collapse
|
47
|
Napolitano JG, Gödecke T, Rodríguez-Brasco MF, Jaki BU, Chen SN, Lankin DC, Pauli G. The tandem of full spin analysis and qHNMR for the quality control of botanicals exemplified with Ginkgo biloba. JOURNAL OF NATURAL PRODUCTS 2012; 75:238-48. [PMID: 22332915 PMCID: PMC3388902 DOI: 10.1021/np200949v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Botanical dietary supplements and herbal remedies are widely used for health promotion and disease prevention. Due to the high chemical complexity of these natural products, it is essential to develop new analytical strategies to guarantee their quality and consistency. In particular, the precise characterization of multiple botanical markers remains a challenge. This study demonstrates how a combination of computer-aided spectral analysis and 1D quantitative ¹H NMR spectroscopy (qHNMR) generates the analytical foundation for innovative means of simultaneously identifying and quantifying botanical markers in complex mixtures. First, comprehensive ¹H NMR profiles (fingerprints) of selected botanical markers were generated via ¹H iterative full spin analysis (HiFSA) with PERCH. Next, the ¹H fingerprints were used to assign specific ¹H resonances in the NMR spectra of reference materials, enriched fractions, and crude extracts of Ginkgo biloba leaves. These ¹H fingerprints were then used to verify the assignments by 2D NMR. Subsequently, a complete purity and composition assessment by means of 1D qHNMR was conducted. As its major strengths, this tandem approach enables the simultaneous quantification of multiple constituents without the need for identical reference materials, the semiquantitative determination of particular subclasses of components, and the detection of impurities and adulterants.
Collapse
Affiliation(s)
- José G. Napolitano
- Institute for Tuberculosis Research and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60612, U.S.A
| | - Tanja Gödecke
- Institute for Tuberculosis Research and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60612, U.S.A
| | - María F. Rodríguez-Brasco
- Institute for Tuberculosis Research and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60612, U.S.A
| | - Birgit U. Jaki
- Institute for Tuberculosis Research and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60612, U.S.A
| | - Shao-Nong Chen
- Institute for Tuberculosis Research and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60612, U.S.A
| | - David C. Lankin
- Institute for Tuberculosis Research and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60612, U.S.A
| | - GuidoF. Pauli
- Institute for Tuberculosis Research and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60612, U.S.A
| |
Collapse
|
48
|
Won CS, Oberlies NH, Paine MF. Influence of dietary substances on intestinal drug metabolism and transport. Curr Drug Metab 2011; 11:778-92. [PMID: 21189136 DOI: 10.2174/138920010794328869] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/20/2010] [Indexed: 11/22/2022]
Abstract
Successful delivery of promising new chemical entities via the oral route is rife with challenges, some of which cannot be explained or foreseen during drug development. Further complicating an already multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug disposition and response. Some dietary substances, particularly fruit juices, have been shown to inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and potentially pharmacodynamic (PD), outcomes. Inhibition of intestinal CYP3Amediated metabolism is the major mechanism by which fruit juices, including grapefruit juice, enhances systemic exposure to new and already marketed drugs. Inhibition of intestinal non-CYP3A enzymes and apically-located transport proteins represent recently identified mechanisms that can alter PK and PD. Several fruit juices have been shown to inhibit these processes in vitro, but some interactions have not translated to the clinic. The lack of in vitroin vivo concordance is due largely to a lack of rigorous methods to elucidate causative ingredients prior to clinical testing. Identification of specific components and underlying mechanisms is challenging, as dietary substances frequently contain multiple, often unknown, bioactive ingredients that vary in composition and bioactivity. A translational research approach, combining expertise from clinical pharmacologists and natural products chemists, is needed to develop robust models describing PK/PD relationships between a given dietary substance and drug of interest. Validation of these models through well-designed clinical trials would facilitate development of common practice guidelines for managing drug-dietary substance interactions appropriately.
Collapse
Affiliation(s)
- Christina S Won
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | | | | |
Collapse
|