1
|
Dreyzin A, Rankin AW, Luciani K, Gavrilova T, Shah NN. Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy. Expert Rev Clin Immunol 2024; 20:745-763. [PMID: 38739466 PMCID: PMC11180598 DOI: 10.1080/1744666x.2024.2349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Oncology, Children's National Hospital, Washington DC, USA
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katia Luciani
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 PMCID: PMC10930942 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal;
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
3
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
4
|
Hojjatipour T, Sharifzadeh Z, Maali A, Azad M. Chimeric antigen receptor-natural killer cells: a promising sword against insidious tumor cells. Hum Cell 2023; 36:1843-1864. [PMID: 37477869 DOI: 10.1007/s13577-023-00948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
Natural killer (NK) cells are a critical component of innate immunity, particularly in initial cancer recognition and inhibition of additional tumor growth or metastasis propagation. NK cells recognize transformed cells without prior sensitization via stimulatory receptors and rapidly eradicate them. However, the protective tumor microenvironment facilitates tumor escaping via induction of an exhaustion state in immune cells, including NK cells. Hence, genetic manipulation of NK cells for specific identification of tumor-associated antigens or a more robust response against tumor cells is a promising strategy for NK cells' tumoricidal augmentation. Regarding the remarkable achievement of engineered CAR-T cells in treating hematologic malignancies, there is evolving interest in CAR-NK cell recruitment in cancer immunotherapy. Innate functionality of NK cells, higher safety, superior in vivo maintenance, and the off-the-shelf potential move CAR-NK-based therapy superior to CAR-T cells treatment. In this review, we have comprehensively discussed the recent genetic manipulations of CAR-NK cell manufacturing regarding different domains of CAR constructs and their following delivery systems into diverse sources of NK cells. Then highlight the preclinical and clinical investigations of CAR-NK cells and examine the current challenges and prospects as an optimistic remedy in cancer immunotherapy.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Department of Hematology and Blood Transfusion, Students Research Center, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciecnes, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, 3419759811, Iran.
| |
Collapse
|
5
|
Kao CY, Mills JA, Burke CJ, Morse B, Marques BF. Role of Cytokines and Growth Factors in the Manufacturing of iPSC-Derived Allogeneic Cell Therapy Products. BIOLOGY 2023; 12:biology12050677. [PMID: 37237491 DOI: 10.3390/biology12050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Cytokines and other growth factors are essential for cell expansion, health, function, and immune stimulation. Stem cells have the additional reliance on these factors to direct differentiation to the appropriate terminal cell type. Successful manufacturing of allogeneic cell therapies from induced pluripotent stem cells (iPSCs) requires close attention to the selection and control of cytokines and factors used throughout the manufacturing process, as well as after administration to the patient. This paper employs iPSC-derived natural killer cell/T cell therapeutics to illustrate the use of cytokines, growth factors, and transcription factors at different stages of the manufacturing process, ranging from the generation of iPSCs to controlling of iPSC differentiation into immune-effector cells through the support of cell therapy after patient administration.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Carl J Burke
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Barry Morse
- Research and Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Bruno F Marques
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Li YR, Dunn ZS, Yu Y, Li M, Wang P, Yang L. Advancing cell-based cancer immunotherapy through stem cell engineering. Cell Stem Cell 2023; 30:592-610. [PMID: 36948187 PMCID: PMC10164150 DOI: 10.1016/j.stem.2023.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
Advances in cell-based therapy, particularly CAR-T cell therapy, have transformed the treatment of hematological malignancies. Although an important step forward for the field, autologous CAR-T therapies are hindered by high costs, manufacturing challenges, and limited efficacy against solid tumors. With ongoing progress in gene editing and culture techniques, engineered stem cells and their application in cell therapy are poised to address some of these challenges. Here, we review stem cell-based immunotherapy approaches, stem cell sources, gene engineering and manufacturing strategies, therapeutic platforms, and clinical trials, as well as challenges and future directions for the field.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary Spencer Dunn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miao Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
The effects of encapsulation on NK cell differentiation potency of C-kit+ hematopoietic stem cells via identifying cytokine profiles. Transpl Immunol 2023; 77:101797. [PMID: 36720394 DOI: 10.1016/j.trim.2023.101797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Natural killer cells (NK cells) can kill cancerous cells without prior sensitization. This feature makes them appealing candidates for cellular therapy. Due to the degradation rate and controlled release of these matrices, hydrogels hold great promise in cell differentiation. The study aims to investigate the effect of encapsulated alginate-gelatin on the differentiation potential of C-kit+ cells toward NK cells which are mediated by cytokines detection. Under both encapsulated and unencapsulated conditions, C-kit+ cells can differentiate into NK cells. In the following, real-time PCR and western blotting were done to investigate the mRNA and protein expression, respectively. Determine cytokine profiles from the collected culture medium conducted a Cytokine antibody array. The differentiated cells were then co-cultured with Molt-4 cells to examine the expression levels of INF-γ, TNF-α, and IL-10 using real-time-PCR. There was a substantial change in protein expression of the Notch pathway. Also, the encapsulation increased the mRNA expression of INF-γ and TNF-α in Molt-4 cells. Based on these findings, the encapsulation effects on the differentiation of C-kit+ cells toward NK cells could be related to the secreted cytokines such as interleukin-10 and INF-γ and the Notch protein expression.
Collapse
|
8
|
Oh BLZ, Chan LWY, Chai LYA. Manipulating NK cellular therapy from cancer to invasive fungal infection: promises and challenges. Front Immunol 2023; 13:1044946. [PMID: 36969979 PMCID: PMC10034767 DOI: 10.3389/fimmu.2022.1044946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
The ideal strategy to fight an infection involves both (i) weakening the invading pathogen through conventional antimicrobial therapy, and (ii) strengthening defense through the augmentation of host immunity. This is even more pertinent in the context of invasive fungal infections whereby the majority of patients have altered immunity and are unable to mount an appropriate host response against the pathogen. Natural killer (NK) cells fit the requirement of an efficient, innate executioner of both tumour cells and pathogens – their unique, targeted cell killing mechanism, combined with other arms of the immune system, make them potent effectors. These characteristics, together with their ready availability (given the various sources of extrinsic NK cells available for harvesting), make NK cells an attractive choice as adoptive cellular therapy against fungi in invasive infections. Improved techniques in ex vivo NK cell activation with expansion, and more importantly, recent advances in genetic engineering including state-of-the-art chimeric antigen receptor platform development, have presented an opportune moment to harness this novel therapeutic as a key component of a multipronged strategy against invasive fungal infections.
Collapse
Affiliation(s)
- Bernice Ling Zhi Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Louis Wei Yong Chan
- Clinician Scientist Academy, National University Health System, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- *Correspondence: Louis Yi Ann Chai,
| |
Collapse
|
9
|
Subedi N, Verhagen LP, de Jonge P, Van Eyndhoven LC, van Turnhout MC, Koomen V, Baudry J, Eyer K, Dolstra H, Tel J. Single‐Cell Profiling Reveals Functional Heterogeneity and Serial Killing in Human Peripheral and Ex Vivo‐Generated CD34+ Progenitor‐Derived Natural Killer Cells. Adv Biol (Weinh) 2022; 7:e2200207. [PMID: 36517083 DOI: 10.1002/adbi.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Increasing evidence suggests that natural killer (NK) cells are composed of distinct functional subsets. This multifunctional role has made them an attractive choice for anticancer immunotherapy. A functional NK cell repertoire is generated through cellular education, resulting in a heterogeneous NK cell population with distinct capabilities responding to different stimuli. The application of a high-throughput droplet-based microfluidic platform allows monitoring of NK cell-target cell interactions at the single-cell level and in real-time. A variable response of single NK cells toward different target cells is observed, and a distinct population of NK cells (serial killers) capable of inducing multiple target lysis is identified. By assessing the cytotoxic dynamics, it is shown that single umbilical cord blood-derived CD34+ hematopoietic progenitor (HPC)-NK cells display superior antitumor cytotoxicity. With an integrated analysis of cytotoxicity and cytokine secretion, it is shown that target cell interactions augment cytotoxic as well as secretory behavior of NK cells. By providing an integrated assessment of NK cell functions by microfluidics, this study paves the way to further functionally characterize NK cells ultimately aimed to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Nikita Subedi
- Laboratory of Immunoengineering Department of Biomedical Engineering Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
| | - Liesbeth Petronella Verhagen
- Laboratory of Immunoengineering Department of Biomedical Engineering Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
| | - Paul de Jonge
- Department of Laboratory Medicine – Laboratory of Hematology Radboud Institute of Molecular Life Sciences Radboud University Medical Center Nijmegen 6525 GA The Netherlands
| | - Laura C. Van Eyndhoven
- Laboratory of Immunoengineering Department of Biomedical Engineering Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
| | - Mark C. van Turnhout
- Soft Tissue Engineering and Mechanobiology Department of Biomedical Engineering Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
| | - Vera Koomen
- Laboratory of Immunoengineering Department of Biomedical Engineering Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés (LCMD) ESPCI Paris PSL Research University CNRS UMR8231 Chimie Biologie Innovation Paris 75005 France
| | - Klaus Eyer
- Laboratoire Colloïdes et Matériaux Divisés (LCMD) ESPCI Paris PSL Research University CNRS UMR8231 Chimie Biologie Innovation Paris 75005 France
- Laboratory for Functional Immune Repertoire Analysis Institute of Pharmaceutical Sciences D‐CHAB, ETH, Zürich Zurich 8093 Switzerland
| | - Harry Dolstra
- Department of Laboratory Medicine – Laboratory of Hematology Radboud Institute of Molecular Life Sciences Radboud University Medical Center Nijmegen 6525 GA The Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering Department of Biomedical Engineering Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 5 Eindhoven 5600 MB The Netherlands
| |
Collapse
|
10
|
Liu WN, So WY, Harden SL, Fong SY, Wong MXY, Tan WWS, Tan SY, Ong JKL, Rajarethinam R, Liu M, Cheng JY, Suteja L, Yeong JPS, Iyer NG, Lim DWT, Chen Q. Successful targeting of PD-1/PD-L1 with chimeric antigen receptor-natural killer cells and nivolumab in a humanized mouse cancer model. SCIENCE ADVANCES 2022; 8:eadd1187. [PMID: 36417514 PMCID: PMC9683725 DOI: 10.1126/sciadv.add1187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/05/2022] [Indexed: 06/12/2023]
Abstract
In recent decades, chimeric antigen receptor (CAR)-engineered immune effector cells have demonstrated promising antileukemic activity. Nevertheless, their efficacy remains unsatisfactory on solid cancers, plausibly due to the influence of tumor microenvironments (TME). In a novel mouse cancer model with a humanized immune system, tumor-infiltrating immunosuppressive leukocytes and exhausted programmed death protein-1 (PD-1)high T cells were found, which better mimic patient TME, allowing the screening and assessment of immune therapeutics. Particularly, membrane-bound programmed death ligand 1 (PD-L1) level was elevated on a tumor cell surface, which serves as an attractive target for natural killer (NK) cell-mediated therapy. Hematopoietic stem cell-derived CAR-NK (CAR pNK) cells targeting the PD-L1 showed enhanced in vitro and in vivo anti-solid tumor function. The CAR pNK cells and nivolumab resulted in a synergistic anti-solid tumor response. Together, our study highlights a robust platform to develop and evaluate the antitumor efficacy and safety of previously unexplored therapeutic regimens.
Collapse
Affiliation(s)
- Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Wing Yan So
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Sarah L. Harden
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Melissa Xin Yu Wong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Jessica Kai Lin Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Jia Ying Cheng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | | | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - N. Gopalakrishna Iyer
- Duke-NUS Medical School, 169857, Singapore
- Department of Head and Neck Surgery, National Cancer Centre Singapore, 169610, Singapore
| | - Darren Wan-Teck Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Division of Medical Oncology, National Cancer Center Singapore, 169610, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| |
Collapse
|
11
|
Cassioli C, Patrussi L, Valitutti S, Baldari CT. Learning from TCR Signaling and Immunological Synapse Assembly to Build New Chimeric Antigen Receptors (CARs). Int J Mol Sci 2022; 23:14255. [PMID: 36430728 PMCID: PMC9694822 DOI: 10.3390/ijms232214255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy is a revolutionary pillar in cancer treatment. Clinical experience has shown remarkable successes in the treatment of certain hematological malignancies but only limited efficacy against B cell chronic lymphocytic leukemia (CLL) and other cancer types, especially solid tumors. A wide range of engineering strategies have been employed to overcome the limitations of CAR T cell therapy. However, it has become increasingly clear that CARs have unique, unexpected features; hence, a deep understanding of how CARs signal and trigger the formation of a non-conventional immunological synapse (IS), the signaling platform required for T cell activation and execution of effector functions, would lead a shift from empirical testing to the rational design of new CAR constructs. Here, we review current knowledge of CARs, focusing on their structure, signaling and role in CAR T cell IS assembly. We, moreover, discuss the molecular features accounting for poor responses in CLL patients treated with anti-CD19 CAR T cells and propose CLL as a paradigm for diseases connected to IS dysfunctions that could significantly benefit from the development of novel CARs to generate a productive anti-tumor response.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31037 Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Cosima T. Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
12
|
Lamers-Kok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, Duru AD, Spanholtz J, Raimo M. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol 2022; 15:164. [DOI: 10.1186/s13045-022-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractNatural killer (NK) cells are unique immune effectors able to kill cancer cells by direct recognition of surface ligands, without prior sensitization. Allogeneic NK transfer is a highly valuable treatment option for cancer and has recently emerged with hundreds of clinical trials paving the way to finally achieve market authorization. Advantages of NK cell therapies include the use of allogenic cell sources, off-the-shelf availability, and no risk of graft-versus-host disease (GvHD). Allogeneic NK cell therapies have reached the clinical stage as ex vivo expanded and differentiated non-engineered cells, as chimeric antigen receptor (CAR)-engineered or CD16-engineered products, or as combination therapies with antibodies, priming agents, and other drugs. This review summarizes the recent clinical status of allogeneic NK cell-based therapies for the treatment of hematological and solid tumors, discussing the main characteristics of the different cell sources used for NK product development, their use in cell manufacturing processes, the engineering methods and strategies adopted for genetically modified products, and the chosen approaches for combination therapies. A comparative analysis between NK-based non-engineered, engineered, and combination therapies is presented, examining the choices made by product developers regarding the NK cell source and the targeted tumor indications, for both solid and hematological cancers. Clinical trial outcomes are discussed and, when available, assessed in comparison with preclinical data. Regulatory challenges for product approval are reviewed, highlighting the lack of specificity of requirements and standardization between products. Additionally, the competitive landscape and business field is presented. This review offers a comprehensive overview of the effort driven by biotech and pharmaceutical companies and by academic centers to bring NK cell therapies to pivotal clinical trial stages and to market authorization.
Collapse
|
13
|
Rafat A, Dizaji Asl K, Mazloumi Z, Samadirad B, Ashrafianbonab F, Farahzadi R, Nozad Charoudeh H. Bone marrow CD34 positive cells may be suitable for collection after death. Transfus Apher Sci 2022; 61:103452. [PMID: 35525798 DOI: 10.1016/j.transci.2022.103452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
Hematopoietic stem cells (HSCs) which are characterized with CD34+ phenotype, have a pivotal role in blood cell regeneration. They are located in lowest hypoxic areas in the bone marrow niches. This microenvironment protects them from DNA damage and excessive proliferation, whereas the oxygenated area driving cells out of quiescent state into proliferation. Given the resistance of HSCs to hypoxia, it is reasonable to imagine that they can survive for some time in the absence of oxygen. Here, we evaluated CD34, Bax, Bcl-2, Bcl-xl, and p53 genes expression after death. Moreover, we established the ex-vivo development of HSCs using SCF, FLT3, IL-2, and IL-15 cytokines in culture system. Our finding indicated that although the most of the dead person's mononuclear cells were alive and adequately expressed the CD34 on their surfaces at the first day of isolation, the viability and CD34+/Ki-67 expression declined significantly after culture process. Taken together, our finding indicated that the viability and CD34+ expression was acceptable on day 0 and could be used as a novel method for therapeutic purposes.
Collapse
Affiliation(s)
- Ali Rafat
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Zeinab Mazloumi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Samadirad
- Legal Medicine Research Center, Iranian Legal Medicine Organization, Tehran, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
14
|
Karvouni M, Vidal-Manrique M, Lundqvist A, Alici E. Engineered NK Cells Against Cancer and Their Potential Applications Beyond. Front Immunol 2022; 13:825979. [PMID: 35242135 PMCID: PMC8887605 DOI: 10.3389/fimmu.2022.825979] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
Cell therapy is an innovative therapeutic concept where viable cells are implanted, infused, or grafted into a patient to treat impaired or malignant tissues. The term was first introduced circa the 19th century and has since resulted in multiple breakthroughs in different fields of medicine, such as neurology, cardiology, and oncology. Lately, cell and gene therapy are merging to provide cell products with additional or enhanced properties. In this context, adoptive transfer of genetically modified cytotoxic lymphocytes has emerged as a novel treatment option for cancer patients. To this day, five cell therapy products have been FDA approved, four of which for CD19-positive malignancies and one for B-cell maturation antigen (BCMA)-positive malignancies. These are personalized immunotherapies where patient T cells are engineered to express chimeric antigen receptors (CARs) with the aim to redirect the cells against tumor-specific antigens. CAR-T cell therapies show impressive objective response rates in clinical trials that, in certain instances, may reach up to 80%. However, the life-threatening side effects associated with T cell toxicity and the manufacturing difficulties of developing personalized therapies hamper their widespread use. Recent literature suggests that Natural Killer (NK) cells, may provide a safer alternative and an 'off-the-shelf' treatment option thanks to their potent antitumor properties and relatively short lifespan. Here, we will discuss the potential of NK cells in CAR-based therapies focusing on the applications of CAR-NK cells in cancer therapy and beyond.
Collapse
Affiliation(s)
- Maria Karvouni
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Marcos Vidal-Manrique
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology‐Pathology, Karolinska Institute, Stockholm, Sweden
| | - Evren Alici
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Schmidt D, Ebrahimabadi S, Gomes KRDS, de Moura Aguiar G, Cariati Tirapelle M, Nacasaki Silvestre R, de Azevedo JTC, Tadeu Covas D, Picanço-Castro V. Engineering CAR-NK cells: how to tune innate killer cells for cancer immunotherapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac003. [PMID: 35919494 PMCID: PMC9327111 DOI: 10.1093/immadv/ltac003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cell therapy is an innovative approach that permits numerous possibilities in the field of cancer treatment. CAR-T cells have been successfully used in patients with hematologic relapsed/refractory. However, the need for autologous sources for T cells is still a major drawback. CAR-NK cells have emerged as a promising resource using allogeneic cells that could be established as an off-the-shelf treatment. NK cells can be obtained from various sources, such as peripheral blood (PB), bone marrow, umbilical cord blood (CB), and induced pluripotent stem cells (iPSC), as well as cell lines. Genetic engineering of NK cells to express different CAR constructs for hematological cancers and solid tumors has shown promising preclinical results and they are currently being explored in multiple clinical trials. Several strategies have been employed to improve CAR-NK-cell expansion and cytotoxicity efficiency. In this article, we review the latest achievements and progress made in the field of CAR-NK-cell therapy.
Collapse
Affiliation(s)
- Dayane Schmidt
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sima Ebrahimabadi
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kauan Ribeiro de Sena Gomes
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Graziela de Moura Aguiar
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariane Cariati Tirapelle
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Nacasaki Silvestre
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Júlia Teixeira Cottas de Azevedo
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Virginia Picanço-Castro
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Dai K, Wu Y, She S, Zhang Q. Advancement of chimeric antigen receptor-natural killer cells targeting hepatocellular carcinoma. World J Gastrointest Oncol 2021; 13:2029-2037. [PMID: 35070039 PMCID: PMC8713322 DOI: 10.4251/wjgo.v13.i12.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
With the advance of genome engineering technology, chimeric antigen receptors (CARs)-based immunotherapy has become an emerging therapeutic strategy for tumors. Although initially designed for T cells in tumor immunotherapy, CARs have been exploited to modify the function of natural killer (NK) cells against a variety of tumors, including hepatocellular carcinoma (HCC). CAR-NK cells have the potential to sufficiently kill tumor antigen-expressing HCC cells, independent of major histocompatibility complex matching or prior priming. In this review, we summarize the recent advances in genetic engineering of CAR-NK cells against HCC and discuss the current challenges and prospects of CAR-NK cells as a revolutionary cellular immunotherapy against HCC.
Collapse
Affiliation(s)
- Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yin Wu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Sha She
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qian Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
17
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Gunduz M, Ataca Atilla P, Atilla E. New Orders to an Old Soldier: Optimizing NK Cells for Adoptive Immunotherapy in Hematology. Biomedicines 2021; 9:biomedicines9091201. [PMID: 34572387 PMCID: PMC8466804 DOI: 10.3390/biomedicines9091201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
NK (Natural Killer) cell-mediated adoptive immunotherapy has gained attention in hematology due to the progressing knowledge of NK cell receptor structure, biology and function. Today, challenges related to NK cell expansion and persistence in vivo as well as low cytotoxicity have been mostly overcome by pioneering trials that focused on harnessing NK cell functions. Recent technological advancements in gene delivery, gene editing and chimeric antigen receptors (CARs) have made it possible to generate genetically modified NK cells that enhance the anti-tumor efficacy and represent suitable “off-the-shelf” products with fewer side effects. In this review, we highlight recent advances in NK cell biology along with current approaches for potentiating NK cell proliferation and activity, redirecting NK cells using CARs and optimizing the procedure to manufacture clinical-grade NK and CAR NK cells for adoptive immunotherapy.
Collapse
Affiliation(s)
- Mehmet Gunduz
- Department of Hematology, Biruni University, Istanbul 34010, Turkey;
| | - Pinar Ataca Atilla
- Interdisciplinary Stem Cells and Regenerative Medicine Ph.D Program, Stem Cell Institute, Ankara University, Ankara 06520, Turkey;
| | - Erden Atilla
- Department of Hematology, Mersin State Hospital, Korukent District, 96015 St., Toroslar 33240, Turkey
- Correspondence: ; Tel.: +9-05-058-213-131
| |
Collapse
|
19
|
Sim T, Choi B, Kwon SW, Kim KS, Choi H, Ross A, Kim DH. Magneto-Activation and Magnetic Resonance Imaging of Natural Killer Cells Labeled with Magnetic Nanocomplexes for the Treatment of Solid Tumors. ACS NANO 2021; 15:12780-12793. [PMID: 34165964 DOI: 10.1021/acsnano.1c01889] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural killer (NK) cell-based immunotherapy has been considered a promising cell-based cancer treatment strategy with low side effects for early tumors and metastasis. However, the therapeutic efficacy is generally low in established solid tumors. Ex vivo activation of NK cells with exogenous cytokines is often essential but ineffective to generate high doses of functional NK cells for cancer treatment. Image-guided local delivery of NK cells is also suggested for the therapy. However, there is a lack of noninvasive tools for monitoring NK cells. Herein, magnetic nanocomplexes are fabricated with clinically available materials (hyaluronic acid, protamine, and ferumoxytol; HAPF) for labeling NK cells. The prepared HAPF-nanocomplexes effectively attach to the NK cells (HAPF-NK). An exogenous magnetic field application effectively achieves magneto-activation of NK cells, promoting the generation and secretion of lytic granules of NK cells. The magneto-activated HAPF-NK cells also allow an MR image-guided NK cell therapy to treat hepatocellular carcinoma (HCC) solid tumors via transcatheter intra-arterial infusion. Suppressed tumor growth after the treatment of IA infused magneto-activated NK cells demonstrated a potential enhanced therapeutic efficacy of image guided local delivery of magneto-activated HAPF-NK cells. Given the potential challenges of NK cell cancer immunotherapy against established solid tumors, the effective NK cell labeling with HAPF, magneto-activation, and MRI contrast effect of NK cells will be beneficial to enhance the NK cell-therapeutic efficacy in various cancers.
Collapse
Affiliation(s)
- Taehoon Sim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Bongseo Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Soon Woo Kwon
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Kwang-Soo Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Alexander Ross
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| |
Collapse
|
20
|
Stem cells-derived natural killer cells for cancer immunotherapy: current protocols, feasibility, and benefits of ex vivo generated natural killer cells in treatment of advanced solid tumors. Cancer Immunol Immunother 2021; 70:3369-3395. [PMID: 34218295 DOI: 10.1007/s00262-021-02975-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, natural killer (NK) cell-based immunotherapy provides a practical therapeutic strategy for patients with advanced solid tumors (STs). This approach is adaptively conducted by the autologous and identical NK cells after in vitro expansion and overnight activation. However, the NK cell-based cancer immunotherapy has been faced with some fundamental and technical limitations. Moreover, the desirable outcomes of the NK cell therapy may not be achieved due to the complex tumor microenvironment by inhibition of intra-tumoral polarization and cytotoxicity of implanted NK cells. Currently, stem cells (SCs) technology provides a powerful opportunity to generate more effective and universal sources of the NK cells. Till now, several strategies have been developed to differentiate types of the pluripotent and adult SCs into the mature NK cells, with both feeder layer-dependent and/or feeder laye-free strategies. Higher cytokine production and intra-tumoral polarization capabilities as well as stronger anti-tumor properties are the main features of these SCs-derived NK cells. The present review article focuses on the principal barriers through the conventional NK cell immunotherapies for patients with advanced STs. It also provides a comprehensive resource of protocols regarding the generation of SCs-derived NK cells in an ex vivo condition.
Collapse
|
21
|
Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol 2021; 14:73. [PMID: 33933160 PMCID: PMC8088725 DOI: 10.1186/s13045-021-01083-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Due to their efficient recognition and lysis of malignant cells, natural killer (NK) cells are considered as specialized immune cells that can be genetically modified to obtain capable effector cells for adoptive cellular treatment of cancer patients. However, biological and technical hurdles related to gene delivery into NK cells have dramatically restrained progress. Recent technological advancements, including improved cell expansion techniques, chimeric antigen receptors (CAR), CRISPR/Cas9 gene editing and enhanced viral transduction and electroporation, have endowed comprehensive generation and characterization of genetically modified NK cells. These promising developments assist scientists and physicians to design better applications of NK cells in clinical therapy. Notably, redirecting NK cells using CARs holds important promise for cancer immunotherapy. Various preclinical and a limited number of clinical studies using CAR-NK cells show promising results: efficient elimination of target cells without side effects, such as cytokine release syndrome and neurotoxicity which are seen in CAR-T therapies. In this review, we focus on the details of CAR-NK technology, including the design of efficient and safe CAR constructs and associated NK cell engineering techniques: the vehicles to deliver the CAR-containing transgene, detection methods for CARs, as well as NK cell sources and NK cell expansion. We summarize the current CAR-NK cell literature and include valuable lessons learned from the CAR-T cell field. This review also provides an outlook on how these approaches may transform current clinical products and protocols for cancer treatment.
Collapse
Affiliation(s)
- Ying Gong
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Roel G J Klein Wolterink
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Gerard M J Bos
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,CiMaas BV, Maastricht, The Netherlands
| | - Wilfred T V Germeraad
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands. .,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands. .,CiMaas BV, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Fathi E, Farahzadi R, Valipour B. Alginate/gelatin encapsulation promotes NK cells differentiation potential of bone marrow resident C-kit + hematopoietic stem cells. Int J Biol Macromol 2021; 177:317-327. [PMID: 33621568 DOI: 10.1016/j.ijbiomac.2021.02.131] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
The ability of natural killer (NK) cells to destroy cancerous cells with no prior sensitization has made them attractive candidates for cell therapy. The application of hydrogels must be notified as cell delivery vehicles in cell differentiation. The present study was conducted to investigate the effect of alginate-gelatin encapsulation on NK cell differentiation potential of C-kit+ cells. C-kit+ cells were differentiated to NK cells under both encapsulated and un-encapsulated conditions. Next, the cells were subjected to real-time polymerase chain reaction (PCR) and western blotting for the assessment of their telomere length and protein expressions, respectively. Afterward, culture medium was collected to measure cytokines levels. Thereafter, the differentiated NK cells were co-cultured with Molt-4 cells to investigate the potency of cell apoptosis by Annexin V/PI assay. A significant change was observed in the protein expression of Janus kinase/Signal transducers (JAK/STAT) pathway components. Additionally, the encapsulation caused an increase in the apoptosis of Molt-4 cells and telomere length of NK cells differentiated C-kit+ cells. Therefore, it can be concluded that the effects of encapsulation on NK cell's differentiation of C-kit+ cells could be resulted from the secreted cytokines of interleukin (IL)-2, IL-3, IL-7, and IL-12 as well as the increased telomere length.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behnaz Valipour
- Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
23
|
Montazersaheb S, Fathi E, Farahzadi R. Cytokines and signaling pathways involved in differentiation potential of hematopoietic stem cells towards natural killer cells. Tissue Cell 2021; 70:101501. [PMID: 33578272 DOI: 10.1016/j.tice.2021.101501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
NK cells are innate immune cells derived from common lymphoid progenitor and are developed primarily in the bone marrow. These cells respond to stress signals, inflammatory cytokines, and cancerous cells through the secretion of active immune mediators. Previous studies revealed that NK cells can be used as an essential cell in the defense against cancers. According to the literature, a set of cytokines and factors play a crucial role during differentiation of NK cells. In other words, developmental events of NK cells are regulated through multiple critical cytokines, including interleukins (ILs), kit ligand, fms-like tyrosine kinase three ligand, transforming growth factor-β, and typical γ chain family of cytokines. Among previously investigated ILs, IL-2, IL-3, IL-7, and IL-15 are the most important. In addition to ILs, transcription factors and MicroRNAs are involved in NK cell development. In this review study, after presenting a brief description of developmental stages and production of the NK cells, the factors and signaling pathways involved in differentiation of NK cells were discussed.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Li K, Wu Y, Li Y, Yu Q, Tian Z, Wei H, Qu K. Landscape and Dynamics of the Transcriptional Regulatory Network During Natural Killer Cell Differentiation. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:501-515. [PMID: 33385611 PMCID: PMC8377244 DOI: 10.1016/j.gpb.2020.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/10/2018] [Accepted: 03/04/2019] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are essential in controlling cancer and infection. However, little is known about the dynamics of the transcriptional regulatory machinery during NK cell differentiation. In this study, we applied the assay of transposase accessible chromatin with sequencing (ATAC-seq) technique in a home-developed in vitro NK cell differentiation system. Analysis of ATAC-seq data illustrated two distinct transcription factor (TF) clusters that dynamically regulate NK cell differentiation. Moreover, two TFs from the second cluster, FOS-like 2 (FOSL2) and early growth response 2 (EGR2), were identified as novel essential TFs that control NK cell maturation and function. Knocking down either of these two TFs significantly impacted NK cell differentiation. Finally, we constructed a genome-wide transcriptional regulatory network that provides a better understanding of the regulatory dynamics during NK cell differentiation.
Collapse
Affiliation(s)
- Kun Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Yang Wu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Young Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Qiaoni Yu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Zhigang Tian
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China; CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China; CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China; CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China; School of Data Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
25
|
NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplant Cell Ther 2020; 27:21-35. [PMID: 33007496 DOI: 10.1016/j.bbmt.2020.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands, which are often upregulated in cancer; (2) targeting cells that have a loss of major histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific antigens on the tumor cell surface. All these strategies have been successfully harnessed in adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-induced immune escape and immune suppression can limit NK cell therapies' efficacy. Therefore, we also discuss how these limitations can be overcome by conferring NK cells with the ability to redirect their tumor-targeting capabilities and survive the immune-suppressive tumor microenvironment. Finally, we also discuss how future iterations can benefit from combination therapies with other immunotherapeutic agents.
Collapse
|
26
|
Valipour B, Abedelahi A, Naderali E, Velaei K, Movassaghpour A, Talebi M, Montazersaheb S, Karimipour M, Darabi M, Chavoshi H, Nozad Charoudeh H. Cord blood stem cell derived CD16 + NK cells eradicated acute lymphoblastic leukemia cells using with anti-CD47 antibody. Life Sci 2019; 242:117223. [PMID: 31881222 DOI: 10.1016/j.lfs.2019.117223] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive cancer in children and adults which possess higher CD47 expression than normal cells. ALL chemotherapy has a lot of side effects and in most cases is ineffective. However arrival of Natural killer (NK) cell immunotherapy raised hopes for successful treatment of cancers, tailoring NK cells to meet clinical requirements is still under investigation. Of note, CD16+ (FCγIIIa) NK cells eliminate tumor cells with antibody dependent cell cytotoxicity (ADCC) mechanism. Therefore, we evaluated ADCC effect of cord blood stem cell derived CD16+ NK cells with using anti CD47 blocking antibody. CD16+ NK cells generated efficiently from CD34 positive cord blood cells in vitro using IL-2, IL-15 and IL-21 cytokines, although it was not dose dependent. CD16+ cells derived from CD34+ cells in day 14 of culture efficiently increased apoptosis in ALL cells, produced INFγ and increased CD107-a expression when used anti CD47 antibody (increased around 30-40%). Interestingly, CD16+ NK cell cytotoxicity slightly increased in combination with macrophages against ALL cells (around 10%). Taken together, our findings induced this hope that cord blood stem cell derived CD16+ NK cells exploit antitumor immune response in cancer therapy with using anti-CD47 antibody.
Collapse
Affiliation(s)
- Behnaz Valipour
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Naderali
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Biochemistry Department, Faculty of Medicine, Tabriz University of Medical Sciences
| | - Hadi Chavoshi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
27
|
Torabi-Rahvar M, Aghayan HR, Ahmadbeigi N. Antigen-independent killer cells prepared for adoptive immunotherapy: One source, divergent protocols, diverse nomenclature. J Immunol Methods 2019; 477:112690. [PMID: 31678265 DOI: 10.1016/j.jim.2019.112690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/15/2019] [Accepted: 10/25/2019] [Indexed: 12/30/2022]
Abstract
Adoptive cell therapy (ACT) using tumor antigen-independent killer cells has been widely used in clinical trials of cancer treatment. Circumventing the need for identification of a particular tumor-associated antigen on tumor cells, the approach has opened possibilities for the extension of ACT immunotherapy to patients with a wide variety of cancer types. Namely, Natural Killer (NK), Lymphokine-activated Killer (LAK) cells and Cytokine-induced killer (CIK) cells are the most commonly used cell types in antigen-independent adoptive immunotherapy of cancer. They all originate from peripheral blood mononuclear cells and share several common features in their killing mechanisms. However, despite broad application in clinical settings, the boundaries between these cell types are not very clearly defined. The current study aims to review different aspects of these cell populations in terms of phenotypical characteristic and preparation media, to clarify how the boundaries are set.
Collapse
Affiliation(s)
| | - Hamid-Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute,Shariati Hospital, Tehran University of Medical Sciences, North Kargar Ave, 14117 Tehran, Iran.
| |
Collapse
|
28
|
Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies. J Immunol Res 2018; 2018:4054815. [PMID: 30306093 PMCID: PMC6166361 DOI: 10.1155/2018/4054815] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are powerful immune effectors whose antitumor activity is regulated through a sophisticated network of activating and inhibitory receptors. As effectors of cancer immunotherapy, NK cells are attractive as they do not attack healthy self-tissues nor do they induce T cell-driven inflammatory cytokine storm, enabling their use as allogeneic adoptive cellular therapies. Clinical responses to adoptive NK-based immunotherapy have been thwarted, however, by the profound immunosuppression induced by the tumor microenvironment, particularly severe in the context of solid tumors. In addition, the short postinfusion persistence of NK cells in vivo has limited their clinical efficacy. Enhancing the antitumor immunity of NK cells through genetic engineering has been fueled by the promise that impaired cytotoxic functionality can be restored or augmented with the use of synthetic genetic approaches. Alongside expressing chimeric antigen receptors to overcome immune escape by cancer cells, enhance their recognition, and mediate their killing, NK cells have been genetically modified to enhance their persistence in vivo by the expression of cytokines such as IL-15, avoid functional and metabolic tumor microenvironment suppression, or improve their homing ability, enabling enhanced targeting of solid tumors. However, NK cells are notoriously adverse to endogenous gene uptake, resulting in low gene uptake and transgene expression with many vector systems. Though viral vectors have achieved the highest gene transfer efficiencies with NK cells, nonviral vectors and gene transfer approaches—electroporation, lipofection, nanoparticles, and trogocytosis—are emerging. And while the use of NK cell lines has achieved improved gene transfer efficiencies particularly with viral vectors, challenges with primary NK cells remain. Here, we discuss the genetic engineering of NK cells as they relate to NK immunobiology within the context of cancer immunotherapy, highlighting the most recent breakthroughs in viral vectors and nonviral approaches aimed at genetic reprogramming of NK cells for improved adoptive immunotherapy of cancer, and, finally, address their clinical status.
Collapse
|
29
|
Hosseinzadeh F, Verdi J, Ai J, Hajighasemlou S, Seyhoun I, Parvizpour F, Hosseinzadeh F, Iranikhah A, Shirian S. Combinational immune-cell therapy of natural killer cells and sorafenib for advanced hepatocellular carcinoma: a review. Cancer Cell Int 2018; 18:133. [PMID: 30214375 PMCID: PMC6131874 DOI: 10.1186/s12935-018-0624-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background High prevalence of hepatocellular carcinoma (HCC) and typically poor prognosis of this disease that lead to late stage diagnosis when potentially curative therapies are least effective; therefore, development of an effective and systematic treatment is an urgent requirement. Main body In this review, several current treatments for HCC patients and their advantages or disadvantages were summarized. Moreover, various recent preclinical and clinical studies about the performances of "two efficient agents, sorafenib or natural killer (NK) cells", against HCC cells were investigated. In addition, the focus this review was on the chemo-immunotherapy approach, correlation between sorafenib and NK cells and their effects on the performance of each other for better suppression of HCC. Conclusion It was concluded that combinational therapy with sorafenib and NK cells might improve the outcome of applied therapeutic approaches for HCC patients. Finally, it was also concluded that interaction between sorafenib and NK cells is dose and time dependent, therefore, a careful dose and time optimizing is necessary for development of a combinational immune-cell therapy.
Collapse
Affiliation(s)
- Faezeh Hosseinzadeh
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saieh Hajighasemlou
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iran Food and Drug Administration, Tehran, Iran
| | - Iman Seyhoun
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Frzad Parvizpour
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abolfazl Iranikhah
- 4Department of Gastroenterology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sadegh Shirian
- 5Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,6Shiraz Molecular Pathology Research Center, Dr. Daneshbod Lab, Shiraz, Iran
| |
Collapse
|
30
|
Wu Y, Tian Z, Wei H. Developmental and Functional Control of Natural Killer Cells by Cytokines. Front Immunol 2017; 8:930. [PMID: 28824650 PMCID: PMC5543290 DOI: 10.3389/fimmu.2017.00930] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are effective in combating infections and tumors and as such are tempting for adoptive transfer therapy. However, they are not homogeneous but can be divided into three main subsets, including cytotoxic, tolerant, and regulatory NK cells, with disparate phenotypes and functions in diverse tissues. The development and functions of such NK cells are controlled by various cytokines, such as fms-like tyrosine kinase 3 ligand (FL), kit ligand (KL), interleukin (IL)-3, IL-10, IL-12, IL-18, transforming growth factor-β, and common-γ chain family cytokines, which operate at different stages by regulating distinct signaling pathways. Nevertheless, the specific roles of each cytokine that regulates NK cell development or that shapes different NK cell functions remain unclear. In this review, we attempt to describe the characteristics of each cytokine and the existing protocols to expand NK cells using different combinations of cytokines and feeder cells. A comprehensive understanding of the role of cytokines in NK cell development and function will aid the generation of better efficacy for adoptive NK cell treatment.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
Sharma P, Kumar P, Sharma R. Natural Killer Cells - Their Role in Tumour Immunosurveillance. J Clin Diagn Res 2017; 11:BE01-BE05. [PMID: 28969116 DOI: 10.7860/jcdr/2017/26748.10469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
Abstract
An important component of the innate immune system, the natural killer cells that originate from the lymphoid cell lineage, hold tremendous potential as an effective therapeutic tool to combat a variety of cancers. Their vast capability to kill altered cells such as opsonized cells (antibody coated), tumour cells, genotoxically changed cells without affecting the healthy cells of the body, make them an effective therapeutic agent for various types of cancers. Besides, through interplay and molecular crosstalk via several cytokines, they also augment the adaptive immune response by, promoting the differentiation, activation and recruitment of component cells of the system. With the current advance knowledge of Natural Killer (NK) cells, their receptor-ligand interactions involved in functional regulation, various mechanistic approaches involving the role of cytokines led to desired modulation of NK cell activity in a tailor-made manner, for triggering clinically relevant responces. Several strategies have been adopted by researchers, to augment the efficacy of NK cells. Still many challenges exist for increasing the therapeutic relevance of these cells.
Collapse
Affiliation(s)
- Preeti Sharma
- Associate Professor, Department of Biochemistry, Santosh Medical University, Ghaziabad, Uttar Pradesh, India
| | - Pradeep Kumar
- Professor, Department of Biochemistry, Santosh Medical University, Ghaziabad, Uttar Pradesh, India
| | - Rachna Sharma
- Lecturer, Department of Biochemistry, TSM Medical College and Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
32
|
Hasmim M, Khalife N, Zhang Y, Doldur M, Visentin G, Terry S, Giron-Michel J, Tang R, Delhommeau F, Dulphy N, Bourhis JH, Louache F, Chouaib S. Expression of CD94 by ex vivo-differentiated NK cells correlates with the in vitro and in vivo acquisition of cytotoxic features. Oncoimmunology 2017; 6:e1346763. [PMID: 29123958 DOI: 10.1080/2162402x.2017.1346763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022] Open
Abstract
The administration of ex vivo-expanded Natural Killer (NK) cells in leukemia therapy is still challenging, in part due to the difficulty to generate in sufficient quantities fully mature and functional NK cells and Identification of surface markers indicative of NK maturation and functionality is therefore needed. Here, based on the analysis of surface receptors of ex vivo-expanded NK cells, we identified CD94 as a surface marker correlating with high lytic potential against leukemic cell lines and immunological synapse formation. CD94-positive ex vivo-expanded NK cells displayed higher expression of NKG2 receptors and the adhesion molecule LFA-1, as compared with their CD94-negative counterparts. We also tested the in vivo anti-leukemic capacity of ex vivo-expanded NK cells against patient-derived acute myeloid leukemia cells. Although no anti-leukemic effect was detected, we noticed that only CD94-positive ex vivo-expanded NK cells were detected in leukemic mice at the end of the 2-week treatment. Moreover, flow cytometry analysis showed a subpopulation harboring CD94 (NK) and CD34 (leukemic cells) double staining, indicative of conjugate formation. Therefore surface expression of CD94 on ex vivo-differentiated NK cells emerged as an indicator of in vitro and in vivo killer cell functionality.
Collapse
Affiliation(s)
- Meriem Hasmim
- U1186-INSERM, Equipe labellisée Ligue contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, Villejuif, France
| | - Nadine Khalife
- U1186-INSERM, Equipe labellisée Ligue contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, Villejuif, France
| | - Yanyan Zhang
- INSERM U1170, Gustave Roussy, F-94805, Villejuif, France.,Paris-Sud University, F-91405, Orsay, France
| | - Manale Doldur
- Qatar Biomedical Research Institute, Doha, Hamad Bin Khalifa University, Qatar
| | - Geralidne Visentin
- U1186-INSERM, Equipe labellisée Ligue contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, Villejuif, France
| | - Stéphane Terry
- U1186-INSERM, Equipe labellisée Ligue contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, Villejuif, France
| | - Julien Giron-Michel
- INSERM UMRS 1197, Hôpital Paul Brousse, Villejuif, Cedex, France.,Université Paris-Saclay, France
| | - Ruoping Tang
- Service d'Hématologie clinique et de thérapie cellulaire, AP-HP, Hôpital St Antoine, F-75012, Paris, France
| | - François Delhommeau
- Sorbonne Universités, UPMC Université Paris 06, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France.,INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, F-75012, Paris, France.,Service d'hématologie biologique, AP-HP, Hôpital Saint-Antoine & Hôpital Armand-Trousseau, F-75012, Paris, France
| | - Nicolas Dulphy
- UMR-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Henri Bourhis
- U1186-INSERM, Equipe labellisée Ligue contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, Villejuif, France.,Department of Hematology and Bone Marrow Transplantation, Gustave Roussy Campus, Villejuif, France
| | - Fawzia Louache
- INSERM U1170, Gustave Roussy, F-94805, Villejuif, France.,Paris-Sud University, F-91405, Orsay, France
| | - Salem Chouaib
- U1186-INSERM, Equipe labellisée Ligue contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, Villejuif, France
| |
Collapse
|
33
|
Wu Y, Li Y, Fu B, Jin L, Zheng X, Zhang A, Sun R, Tian Z, Wei H. Programmed differentiated natural killer cells kill leukemia cells by engaging SLAM family receptors. Oncotarget 2017; 8:57024-57038. [PMID: 28915651 PMCID: PMC5593622 DOI: 10.18632/oncotarget.18659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells are important innate immune cells that can directly kill transformed or virus-infected cells. The adoptive transfer of NK cells has been used to treat hematological malignancies; however, the limited sources and quantities of NK cells have restricted their clinical application. Here, we acquired sufficient quantities of functional NK cells from CD34+ cells treated with a cytokine cocktail. Microarray analysis of the cultured cells revealed a two-stage pattern of programmed differentiation during NK cell development. Different transcription factors were enriched during these two stages, suggesting that preparation of progenitors committed to the NK cell lineage occurs in program 1, while NK cell transformation and maturation occur in program 2. Cultured NK cells highly expressed signaling lymphocytic activation molecule (SLAM) family receptors (SFRs), while leukemia cells expressed SFR ligands. The engagement of these SFRs strengthened the cytotoxicity of NK cells toward leukemia cells. These results demonstrate a simple method of obtaining sufficient NK cells for clinical application, and have categorized NK cell differentiation according to commitment and transformation programs. Moreover, the binding between SFRs on NK cells and their ligands on leukemia cells suggests a new basis for NK cell therapy for treatment of leukemia.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Young Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Linlin Jin
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Aimei Zhang
- Central Laboratory, Anhui Provincial Hospital, Hefei, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
34
|
Qin Z, Chen J, Zeng J, Niu L, Xie S, Wang X, Liang Y, Wu Z, Zhang M. Effect of NK cell immunotherapy on immune function in patients with hepatic carcinoma: A preliminary clinical study. Cancer Biol Ther 2017; 18:323-330. [PMID: 28353401 DOI: 10.1080/15384047.2017.1310346] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We investigated the effectiveness of adoptive transfer of KIR ligand-mismatched highly activated nature killer (HANK) cells in patients with hepatic carcinoma. Peripheral blood mononuclear cells were obtained and cultured in vitro to induce expansion and activation of HANK cells. After 12 d of culture, the cells were divided into 3 parts and infused intravenously on days 13 to 15. The patients (n = 16) were given one to 6 courses of immunotherapy. No side effects were observed. The lymphocyte subsets and cytokine, thymidine kinase 1 (TK1) and circulating tumor cell (CTC) levels were measured 1 day before treatment and 1 month after the final infusion: the absolute number of total T cells and NK cells and the IL-2 and TNF-β levels were significantly higher, and the TK1 and CTC levels were significantly lower at 1 month after treatment. The percentage of patients who experienced partial response, disease stabilization, and disease progression at 3 months after treatment was 18.8%, 50.0% and 31.2%, respectively. The total follow-up period was 2-12 months. The median progression-free survival from treatment was 7.5 months. This is the first study on the benefits of HANK cell immunotherapy for hepatic carcinoma These encouraging preliminary observations imply that HANK cell immunotherapy is safe, can improve the immune function of patients with liver cancer, and may even reduce the rate of tumor metastasis and recurrence. However, further studies on larger samples of patients with a longer follow-up period are required to confirm these findings.
Collapse
Affiliation(s)
- Zilin Qin
- a School of Medicine , Jinan University , Guangdong Province , Guangzhou , China
| | - Jibing Chen
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Jianying Zeng
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Lizhi Niu
- a School of Medicine , Jinan University , Guangdong Province , Guangzhou , China.,b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Silun Xie
- c Hank Bioengineering Co., Ltd. , Shenzhen , China
| | - Xiaohua Wang
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Yingqing Liang
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Zhenyi Wu
- c Hank Bioengineering Co., Ltd. , Shenzhen , China
| | | |
Collapse
|
35
|
Sarvaria A, Jawdat D, Madrigal JA, Saudemont A. Umbilical Cord Blood Natural Killer Cells, Their Characteristics, and Potential Clinical Applications. Front Immunol 2017; 8:329. [PMID: 28386260 PMCID: PMC5362597 DOI: 10.3389/fimmu.2017.00329] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system able to kill different targets such as cancer cells and virally infected cells without prior activation making then attractive candidates for cancer immunotherapy. Umbilical cord blood (UCB) has become a source of hematopoietic stem cells for transplantation but as we gain a better understanding of the characteristics of each immune cell that UCB contains, we will also be able to develop new cell therapies for cancer. In this review, we present what is currently known of the phenotype and functions of UCB NK cells and how these cells could be used in the future for cancer immunotherapy.
Collapse
Affiliation(s)
- Anushruti Sarvaria
- Anthony Nolan Research Institute, London, UK; Cancer Institute, University College London, London, UK
| | - Dunia Jawdat
- King Abdullah International Medical Research Center , Riyadh , Saudi Arabia
| | - J Alejandro Madrigal
- Anthony Nolan Research Institute, London, UK; Cancer Institute, University College London, London, UK
| | - Aurore Saudemont
- Anthony Nolan Research Institute, London, UK; Cancer Institute, University College London, London, UK
| |
Collapse
|
36
|
Hosseini E, Ghasemzadeh M, Kamalizad M, Schwarer AP. Ex vivo expansion of CD3 depleted cord blood-MNCs in the presence of bone marrow stromal cells; an appropriate strategy to provide functional NK cells applicable for cellular therapy. Stem Cell Res 2017; 19:148-155. [PMID: 28171825 DOI: 10.1016/j.scr.2017.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/14/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
Considering umbilical cord blood (UCB) as a rich source of hematopoietic stem cells, we introduced a cost-effective approach to expand CD3depleted UCB-MNCs into functional NK cells. CD3depleted UCB-MNCs were expanded in the presence or absence of a feeder [bone marrow stem cells (BMSCs) or osteoblasts], with or without cytokines and their differentiation into NK cells was determined by flow cytometry. NK cell function was quantified by LAMP-1/CD107a expression, TNF-α/IFN-γ release, and LDH release/PI staining in targets. Higher expansion of NK cells was observed after two weeks in the presence of BMSCs and cytokines (104±15) compared to osteoblasts and cytokines (84±29, p<0.05). On day 14, CD3depleted UCB-MNCs in the presence of BMSCs and cytokines showed lower expression of CD3, CD19, CD14, CD15 and CD69 as well as higher expression of CD2 and CD7, which were suggestive of cell differentiation into mature NK cell lineage. Strong cytotoxicity of expanded cells was also identified with higher LDH release and PI% in targets. Significant upregulation of LAMP-1 with decreased release of IFN-γ and TNF-α from effectors were observed. We demonstrate an effective expansion of UCB-NK cells that maintained their functional capabilities applicable for cellular therapies.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Maedeh Kamalizad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Anthony P Schwarer
- Department of Hematology and Oncology, Eastern School, Monash University, Melbourne, Australia
| |
Collapse
|
37
|
Vasu S, Berg M, Davidson-Moncada J, Tian X, Cullis H, Childs RW. A novel method to expand large numbers of CD56(+) natural killer cells from a minute fraction of selectively accessed cryopreserved cord blood for immunotherapy after transplantation. Cytotherapy 2016; 17:1582-93. [PMID: 26432560 DOI: 10.1016/j.jcyt.2015.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AIMS Umbilical cord blood transplantation (UCBT) is increasingly used to treat acute leukemias. UCB units are thawed and infused in their entirety at transplant, precluding later use as immunotherapy to prevent or treat leukemia relapse. METHODS We developed a device that selectively thaws only 1 mL of the UCB unit, leaving the remaining UCB unit cryopreserved for subsequent transplantation. We also show that large numbers of CD56(+) natural killer (NK) cells can be expanded from these 1-mL fractions of selectively accessed UCB. Immunomagnetic depletion of CD3(+) cells of the 1-mL fraction was performed, and the cells were subsequently stimulated with irradiated Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-LCLs) and set to culture in media containing interleukin (IL)-2. RESULTS When a 1:20 ratio of total nucleated cells to EBV-LCL feeder cells was used, day-21 and day-35 NK cell cultures initiated from 1 mL of UCB contained a median of 430 × 10(6) (range: 44-4321 × 10(6)) and 6092 × 10(6) (range: 165-20947 × 10(6)) CD3(-)CD56(+) NK cells. These cells expressed high levels of CD161, LFA-1, CD69, NKG2D, NKp30, NKp44, NKp80 and NKp46. UCB-derived NK cells were highly cytotoxic against K562 leukemia cells, although cytotoxicity was slightly lower than in expanded PBMC-derived NK cells. CONCLUSIONS We have developed and optimized a strategy to selectively access a small fraction from cryopreserved UCB and show that large numbers of CD56(+) cells can be expanded from this selectively accessed fraction. This strategy presents a method to explore whether early adoptive transfer of NK cells expanded from the same UCB unit used for transplantation can prevent leukemic relapse and decrease graft-versus-host disease after UCBT.
Collapse
Affiliation(s)
- Sumithira Vasu
- Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Maria Berg
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Herb Cullis
- American Flouroseal Corporation, Gaithersburg, Maryland, USA
| | - Richard W Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
38
|
Leischner C, Burkard M, Pfeiffer MM, Lauer UM, Busch C, Venturelli S. Nutritional immunology: function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment. Nutr J 2016; 15:47. [PMID: 27142426 PMCID: PMC4855330 DOI: 10.1186/s12937-016-0167-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells as part of the innate immune system represent the first line of defence against (virus-) infected and malignantly transformed cells. The emerging field of nutritional immunology focuses on compounds featuring immune-modulating activities in particular on NK cells, which e.g. can be exploited for cancer prevention and treatment. The plant-based nutrition resveratrol is a ternary hydroxylated stilbene, which is present in many foods and beverages, respectively. In humans it comprises a large variety of distinct biological activities. Interestingly, resveratrol strongly modulates the immune response including the activity of NK cells. This review will give an overview on NK cell functions and summarize the resveratrol-mediated modulation thereof.
Collapse
Affiliation(s)
- Christian Leischner
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Markus Burkard
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.,Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany
| | - Matthias M Pfeiffer
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Christian Busch
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany.,Pallas Clinic, Olten, Switzerland
| | - Sascha Venturelli
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.
| |
Collapse
|
39
|
Moretta F, Petronelli F, Lucarelli B, Pitisci A, Bertaina A, Locatelli F, Mingari MC, Moretta L, Montaldo E. The generation of human innate lymphoid cells is influenced by the source of hematopoietic stem cells and by the use of G-CSF. Eur J Immunol 2016; 46:1271-8. [DOI: 10.1002/eji.201546079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/15/2015] [Accepted: 01/26/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Francesca Moretta
- Department of Internal Medicine; University of Verona; Verona Italy
- Lab. Analisi chimico-cliniche e microbiologiche; Ospedale Sacro Cuore Negrar; Verona Italy
| | - Francesca Petronelli
- U.O.C. Clinical and Experimental Immunology IPRCCS; Giannina Gaslini Institute; Genova Italy
| | - Barbarella Lucarelli
- Department of Pediatric Hematology and Oncology; IRCCS Bambino Gesù Children's Hospital; Rome Italy
| | - Angela Pitisci
- Department of Pediatric Hematology and Oncology; IRCCS Bambino Gesù Children's Hospital; Rome Italy
| | - Alice Bertaina
- Department of Pediatric Hematology and Oncology; IRCCS Bambino Gesù Children's Hospital; Rome Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology; IRCCS Bambino Gesù Children's Hospital; Rome Italy
- Department of Pediatrics; University of Pavia; Pavia Italy
| | - Maria Cristina Mingari
- U.O. Immunology; IRCCS AOU San Martino-IST; Genova Italy
- Department of Experimental Medicine; University of Genova; Genova Italy
| | - Lorenzo Moretta
- Department of Immunology; IRCCS Bambino Gesù Children's Hospital; Rome Italy
| | - Elisa Montaldo
- U.O.C. Clinical and Experimental Immunology IPRCCS; Giannina Gaslini Institute; Genova Italy
| |
Collapse
|
40
|
Lowe E, Truscott LC, De Oliveira SN. In Vitro Generation of Human NK Cells Expressing Chimeric Antigen Receptor Through Differentiation of Gene-Modified Hematopoietic Stem Cells. Methods Mol Biol 2016; 1441:241-51. [PMID: 27177671 DOI: 10.1007/978-1-4939-3684-7_20] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NK cells represent a very promising source for adoptive cellular approaches for cancer immunotherapy, and extensive research has been conducted, including clinical trials. Gene modification of NK cells can direct their specificity and enhance their function, but the efficiency of gene transfer techniques is very limited. Here we describe two protocols designed to generate mature human NK cells from gene-modified hematopoietic stem cells. These protocols use chimeric antigen receptor as the transgene, but could potentially be modified for the expression any particular transgene in human NK cells.
Collapse
Affiliation(s)
- Emily Lowe
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laurel C Truscott
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Hematology/Oncology, Mattel Children's Hospital-UCLA Medical Center, Los Angeles, CA, USA
| | - Satiro N De Oliveira
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Division of Hematology/Oncology, Mattel Children's Hospital-UCLA Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Cao G, Wang J, Zheng X, Wei H, Tian Z, Sun R. Tumor Therapeutics Work as Stress Inducers to Enhance Tumor Sensitivity to Natural Killer (NK) Cell Cytolysis by Up-regulating NKp30 Ligand B7-H6. J Biol Chem 2015; 290:29964-73. [PMID: 26472927 DOI: 10.1074/jbc.m115.674010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future.
Collapse
Affiliation(s)
- Guoshuai Cao
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jian Wang
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China,
| | - Xiaodong Zheng
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Zhigang Tian
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Rui Sun
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China, and
| |
Collapse
|
42
|
Sun C, Sun HY, Xiao WH, Zhang C, Tian ZG. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin 2015; 36:1191-9. [PMID: 26073325 PMCID: PMC4648180 DOI: 10.1038/aps.2015.41] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%–50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment.
Collapse
|
43
|
Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 2015; 47:e141. [PMID: 25676064 PMCID: PMC4346487 DOI: 10.1038/emm.2014.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023] Open
Abstract
Cancer cells and the immune system are closely related and thus influence each other. Although immune cells can suppress cancer cell growth, cancer cells can evade immune cell attack via immune escape mechanisms. Natural killer (NK) cells kill cancer cells by secreting perforins and granzymes. Upon contact with cancer cells, NK cells form immune synapses to deliver the lethal hit. Mature NK cells are differentiated from hematopoietic stem cells in the bone marrow. They move to lymph nodes, where they are activated through interactions with dendritic cells. Interleukin-15 (IL-15) is a key molecule that activates mature NK cells. The adoptive transfer of NK cells to treat incurable cancer is an attractive approach. A certain number of activated NK cells are required for adoptive NK cell therapy. To prepare these NK cells, mature NK cells can be amplified to obtain sufficient numbers of NK cells. Alternatively, NK cells can be differentiated and amplified from hematopoietic stem cells. In addition, the selection of donors is important to achieve maximal efficacy. In this review, we discuss the overall procedures and strategies of NK cell therapy against cancer.
Collapse
Affiliation(s)
- Suk Ran Yoon
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Tae-Don Kim
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Inpyo Choi
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
44
|
Role of Donor Activating KIR-HLA Ligand-Mediated NK Cell Education Status in Control of Malignancy in Hematopoietic Cell Transplant Recipients. Biol Blood Marrow Transplant 2015; 21:829-39. [PMID: 25617806 DOI: 10.1016/j.bbmt.2015.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/19/2015] [Indexed: 11/21/2022]
Abstract
Some cancers treated with allogeneic hematopoietic stem cell transplantation (HSCT) are sensitive to natural killer cell (NK) reactivity. NK function depends on activating and inhibitory receptors and is modified by NK education/licensing effect and mediated by coexpression of inhibitory killer-cell immunoglobulin-like receptor (KIR) and its corresponding HLA I ligand. We assessed activating KIR (aKIR)-based HLA I-dependent education capacity in donor NKs in 285 patients with hematological malignancies after HSCT from unrelated donors. We found significantly adverse progression-free survival (PFS) and time to progression (TTP) in patients who received transplant from donors with NKs educated by C1:KIR2DS2/3, C2:KIR2DS1, or Bw4:KIR3DS1 pairs (for PFS: hazard ratio [HR], 1.70; P = .0020, Pcorr = .0039; HR, 1.54; P = .020, Pcorr = .039; HR, 1.51; P = .020, Pcorr = .040; and for TTP: HR, 1.82; P = .049, Pcorr = .096; HR, 1.72; P = .096, Pcorr = .18; and HR, 1.65; P = .11, Pcorr = .20, respectively). Reduced PFS and TTP were significantly dependent on the number of aKIR-based education systems in donors (HR, 1.36; P = .00031, Pcorr = .00062; and HR, 1.43; P = .019, Pcorr = .038). Furthermore, the PFS and TTP were strongly adverse in patients with missing HLA ligand cognate with educating aKIR-HLA pair in donor (HR, 3.25; P = .00022, Pcorr = .00045; and HR, 3.82; P = .027, Pcorr = .054). Together, these data suggest important qualitative and quantitative role of donor NK education via aKIR-cognate HLA ligand pairs in the outcome of HSCT. Avoiding the selection of transplant donors with high numbers of aKIR-HLA-based education systems, especially for recipients with missing cognate ligand, is advisable.
Collapse
|
45
|
Bodduluru LN, Kasala ER, Madhana RMR, Sriram CS. Natural killer cells: the journey from puzzles in biology to treatment of cancer. Cancer Lett 2014; 357:454-67. [PMID: 25511743 DOI: 10.1016/j.canlet.2014.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023]
Abstract
Natural Killer (NK) cells are innate immune effectors that are primarily involved in immunosurveillance to spontaneously eliminate malignantly transformed and virally infected cells without prior sensitization. NK cells trigger targeted attack through release of cytotoxic granules, and secrete various cytokines and chemokines to promote subsequent adaptive immune responses. NK cells selectively attack target cells with diminished major histocompatibility complex (MHC) class I expression. This "Missing-self" recognition by NK cells at first puzzled researchers in the early 1990s, and the mystery was solved with the discovery of germ line encoded killer immunoglobulin receptors that recognize MHC-I molecules. This review summarizes the biology of NK cells detailing the phenotypes, receptors and functions; interactions of NK cells with dendritic cells (DCs), macrophages and T cells. Further we discuss the various strategies to modulate NK cell activity and the practice of NK cells in cancer immunotherapy employing NK cell lines, autologous, allogeneic and genetically engineered cell populations.
Collapse
Affiliation(s)
- Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India.
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Rajaram Mohan Rao Madhana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Chandra Shaker Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| |
Collapse
|
46
|
Mosaad YM. Hematopoietic stem cells: an overview. Transfus Apher Sci 2014; 51:68-82. [PMID: 25457002 DOI: 10.1016/j.transci.2014.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022]
Abstract
Considerable efforts have been made in recent years in understanding the mechanisms that govern hematopoietic stem cell (HSC) origin, development, differentiation, self-renewal, aging, trafficking, plasticity and transdifferentiation. Hematopoiesis occurs in sequential waves in distinct anatomical locations during development and these shifts in location are accompanied by changes in the functional status of the stem cells and reflect the changing needs of the developing organism. HSCs make a choice of either self-renewal or committing to differentiation. The balance between self-renewal and differentiation is considered to be critical to the maintenance of stem cell numbers. It is still under debate if HSC can rejuvenate infinitely or if they do not possess ''true" self-renewal and undergo replicative senescence such as any other somatic cell. Gene therapy applications that target HSCs offer a great potential for the treatment of hematologic and immunologic diseases. However, the clinical success has been limited by many factors. This review is intended to summarize the recent advances made in the human HSC field, and will review the hematopoietic stem cell from definition through development to clinical applications.
Collapse
Affiliation(s)
- Youssef Mohamed Mosaad
- Clinical Immunology Unit, Clinical Pathology Department & Mansoura Research Center for Cord Stem Cell (MARC_CSC), Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
47
|
Eguizabal C, Zenarruzabeitia O, Monge J, Santos S, Vesga MA, Maruri N, Arrieta A, Riñón M, Tamayo-Orbegozo E, Amo L, Larrucea S, Borrego F. Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective. Front Immunol 2014; 5:439. [PMID: 25309538 PMCID: PMC4164009 DOI: 10.3389/fimmu.2014.00439] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells play an essential role in the fight against tumor development. Over the last years, the progress made in the NK-cell biology field and in deciphering how NK-cell function is regulated, is driving efforts to utilize NK-cell-based immunotherapy as a promising approach for the treatment of malignant diseases. Therapies involving NK cells may be accomplished by activating and expanding endogenous NK cells by means of cytokine treatment or by transferring exogenous cells by adoptive cell therapy and/or by hematopoietic stem cell transplantation. NK cells that are suitable for adoptive cell therapy can be derived from different sources, including ex vivo expansion of autologous NK cells, unstimulated or expanded allogeneic NK cells from peripheral blood, derived from CD34+ hematopoietic progenitors from peripheral blood and umbilical cord blood, and NK-cell lines. Besides, genetically modified NK cells expressing chimeric antigen receptors or cytokines genes may also have a relevant future as therapeutic tools. Recently, it has been described the derivation of large numbers of functional and mature NK cells from pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, which adds another tool to the expanding NK-cell-based cancer immunotherapy arsenal.
Collapse
Affiliation(s)
| | | | - Jorge Monge
- Basque Center for Transfusion and Human Tissues , Galdakao , Spain
| | - Silvia Santos
- Basque Center for Transfusion and Human Tissues , Galdakao , Spain
| | | | - Natalia Maruri
- Regulation of the Immune System Group, BioCruces Health Research Institute , Barakaldo , Spain
| | - Arantza Arrieta
- Regulation of the Immune System Group, BioCruces Health Research Institute , Barakaldo , Spain
| | - Marta Riñón
- Regulation of the Immune System Group, BioCruces Health Research Institute , Barakaldo , Spain
| | | | - Laura Amo
- Regulation of the Immune System Group, BioCruces Health Research Institute , Barakaldo , Spain
| | - Susana Larrucea
- Regulation of the Immune System Group, BioCruces Health Research Institute , Barakaldo , Spain
| | - Francisco Borrego
- Immunopathology Group, BioCruces Health Research Institute , Barakaldo , Spain ; Ikerbasque, Basque Foundation for Science , Bilbao , Spain
| |
Collapse
|
48
|
Conversion of adipose-derived stem cells into natural killer-like cells with anti-tumor activities in nude mice. PLoS One 2014; 9:e106246. [PMID: 25162225 PMCID: PMC4146612 DOI: 10.1371/journal.pone.0106246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/30/2014] [Indexed: 01/29/2023] Open
Abstract
Efforts to develop peripheral blood-derived nature killer (NK) cells into therapeutic products have been hampered by these cells' low abundance and histoincompatibility. On the other hand, derivation of NK-like cells from more abundant cell sources such as embryonic stem cells (ESCs) and umbilical cord blood (UCB) requires the selection of rare CD34+ cells. Thus, we sought to convert adipose-derived stem cells (ADSCs), which are abundant and natively CD34+, into NK-like cells. When grown in hematopoietic induction medium, ADSCs formed sphere clusters and expressed hematopoietic markers CD34, CD45, and KDR. Further induction in NK cell-specific medium resulted in a population of cells that expressed NK cell marker CD56, and thus termed ADSC-NK. Alternatively, the hematopoietically induced ADSCs were transduced with NK cell-specific transcription factor E4BP4 prior to induction in NK cell-specific medium. This latter population of cells, termed ADSC-NKE, expressed CD56 and additional NK cell markers such as CD16, CD94, CD158, CD314, FasL, and NKp46. ADSC-NKE was as potent as NK leukemia cell NKL in killing breast cancer cell MCF7 and prostate cancer cells DU145, PC3, LnCap, DuPro, C4-2 and CWR22, but exhibited no killing activity toward normal endothelial and smooth muscle cells. In nude mice test ADSC-NKE was able to significantly delay the progression of tumors formed by MCF7 and PC3. When injected into immunocompetent rats, ADSC-NKE was detectable in bone marrow and spleen for at least 5 weeks. Together, these results suggest that ADSCs can be converted into NK-like cells with anti-tumor activities.
Collapse
|
49
|
Li J, Li H, Mao H, Yu M, Yang F, Feng T, Fan Y, Lu Q, Shen C, Yin Z, Mao M, Tu W. Impaired NK cell antiviral cytokine response against influenza virus in small-for-gestational-age neonates. Cell Mol Immunol 2013; 10:437-43. [PMID: 23872919 DOI: 10.1038/cmi.2013.31] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 01/26/2023] Open
Abstract
The neonates, particularly small-for-gestational-age (SGA) ones, are susceptible to various microbial infections. Natural killer (NK) cells are critical components of host innate immunity system and the main source of the inflammatory cytokines, which provide critical protection during the early phase of viral infections before the development of an appropriate adaptive immune response. However, little is known about the antiviral effects of NK cells in neonates especially the SGA population. Herein, a prospective descriptive study was performed to determine the differences of NK cell immunity among adults, appropriate-for gestational-age (AGA) and SGA neonates. Adults have much higher NK cell number in peripheral blood than that in cord blood from neonates. In response to influenza virus stimulation, neonatal NK cells, especially SGA baby cells, expressed significantly lower antiviral cytokines including perforin, interferon (IFN)-γ and tumor-necrosis factor (TNF)-α responses than adult NK cells. In addition, the antiviral cytokine responses of NK cells were positively correlated with neonatal birth weight. Our data suggested that the depressed antiviral activity and less frequency of NK cells are likely to be responsible for the high susceptibility to microbial infection in neonates, at least in part. Improving the function of innate immunity may provide a new way to defend virus infection.
Collapse
Affiliation(s)
- Jinrong Li
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013; 10:230-52. [PMID: 23604045 DOI: 10.1038/cmi.2013.10] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play critical roles in host immunity against cancer. In response, cancers develop mechanisms to escape NK cell attack or induce defective NK cells. Current NK cell-based cancer immunotherapy aims to overcome NK cell paralysis using several approaches. One approach uses expanded allogeneic NK cells, which are not inhibited by self histocompatibility antigens like autologous NK cells, for adoptive cellular immunotherapy. Another adoptive transfer approach uses stable allogeneic NK cell lines, which is more practical for quality control and large-scale production. A third approach is genetic modification of fresh NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from various sources, including peripheral or cord blood cells, stem cells or even induced pluripotent stem cells (iPSCs), and a variety of stimulators can be used for large-scale production in laboratories or good manufacturing practice (GMP) facilities, including soluble growth factors, immobilized molecules or antibodies, and other cellular activators. A list of NK cell therapies to treat several types of cancer in clinical trials is reviewed here. Several different approaches to NK-based immunotherapy, such as tissue-specific NK cells, killer receptor-oriented NK cells and chemically treated NK cells, are discussed. A few new techniques or strategies to monitor NK cell therapy by non-invasive imaging, predetermine the efficiency of NK cell therapy by in vivo experiments and evaluate NK cell therapy approaches in clinical trials are also introduced.
Collapse
Affiliation(s)
- Min Cheng
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|