1
|
Bases E, El-Sheekh MM, El Shafay SM, El-Shenody R, Nassef M. Therapeutic anti-inflammatory immune potentials of some seaweeds extracts on chemically induced liver injury in mice. Sci Rep 2025; 15:4370. [PMID: 39910080 PMCID: PMC11799325 DOI: 10.1038/s41598-025-87379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Carbon tetrachloride (CCl4) is a well-known hepatotoxin. This work aimed to assess the therapeutic anti-inflammatory immune potentials of the seaweeds Padina pavonia and Jania rubens extracts on carbon tetrachloride (CCL4)-caused liver damage in mice. Our experimentation included two testing regimens: pre-treatment and post-treatment of P. pavonia and J. rubens extracts in CCL4/mice. Pre-treatment and post-treatment of P. pavonia and J. rubens extracts in CCL4/mice increased WBCs count and lymphocytes relative numbers and reduced the neutrophils and monocytes relative numbers. Pre-treatment and post-treatment of CCL4/mice with P. pavonia and J. rubens extracts significantly reduced the release amounts of pro-inflammatory cytokines TNF-α and IL-6 and significantly inhibited the increased CRP level. Furthermore, pre-treatment and post-treatment of CCL4/mice with P. pavonia and J. rubens extracts recovered the activities of GSH, and significantly decreased MDA level. CCL4/mice pre-treated and post-treated with P. pavonia and J. rubens extracts decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Pre- and post-treatment of CCL4/mice with the P. pavonia and J. rubens extracts ameliorated the liver damages caused by CCl4 and significantly inhibited the necrotic area, indicating hepatic cell death and decreased periportal hepatic degeneration, fibrosis, and inflammation.
Collapse
Affiliation(s)
- Eman Bases
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | | | - Rania El-Shenody
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Sundar S, Madhukar P, Kumar R. Anti-leishmanial therapies: overcoming current challenges with emerging therapies. Expert Rev Anti Infect Ther 2024. [PMID: 39644325 DOI: 10.1080/14787210.2024.2438627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Leishmaniasis, including visceral, cutaneous, and mucocutaneous forms, present a major health challenge in tropical regions. Current antileishmanial medications has significant limitations, creating a critical need for novel therapies that are safe and cost-effective with a shorter duration of treatment. AREAS COVERED This review explores the critical aspects of existing antileishmanial therapy and targets for future therapeutic developments. It emphasizes the need for new treatment options due to drug resistance, low success rates, toxicity, and high prices associated with current medications. The different forms of leishmaniasis, their clinical manifestations, the challenges associated with their treatment and emerging treatment options are explored in detail. EXPERT OPINION The first anti-leishmanial drug pentavalent antimony (SbV) was invented more than 100 years back. Since then, this compound has been used for all forms of leishmaniasis worldwide. For more than 70-80 years after discovery of SbV, no new antileishmanial drugs were developed, reflecting the lack of interest from academia or pharma industry. All three new treatments (Amphotericin-B, paromomycin and miltefosine) which underwent the clinical trials were repurposed drugs. The current pipeline for antileishmanial drugs is empty, with LXE 408 being the only potential drug reaching phase II clinical trial.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Prasoon Madhukar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Liu X, Diao N, Song S, Wang W, Cao M, Yang W, Guo C, Chen D. Inflammatory macrophage reprogramming strategy of fucoidan microneedles-mediated ROS-responsive polymers for rheumatoid arthritis. Int J Biol Macromol 2024; 271:132442. [PMID: 38761903 DOI: 10.1016/j.ijbiomac.2024.132442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
During the pathogenesis of rheumatoid arthritis, inflammatory cells usually infiltrate synovial tissues, notably, M1-type macrophages, whose redox imbalance leads to the degradation of joint structures and deterioration of function. Natural active products play a vital role in immune modulation and antioxidants. In this study, we constructed a ROS-responsive nanoparticle called FTL@SIN, which consists of fucoidan (Fuc) and luteolin (Lut) connected by a ROS-responsive bond, Thioketal (TK), and encapsulated with an anti-rheumatic drug, Sinomenine (SIN), for synergistic anti-inflammatory effects. The FTL@SIN is then dispersed in high molecular weight Fuc-fabricated dissolvable microneedles (FTL@SIN MNs) for local administration. Therapy of FTL@SIN MNs afforded a significant decrease in macrophage inflammation while decreasing key pro-inflammatory cytokines and repolarizing M1 type to M2 type, thereby ameliorating synovial inflammation, and promoting cartilage repair. Additionally, our investigations have revealed that Fucoidan (Fuc) demonstrates synergistic effects, exhibiting superior mechanical strength and enhanced physical stability when compared to microneedles formulated solely with hyaluronic acid. This study combines nanomedicine with traditional Chinese medicine, a novel drug delivery strategy that presents a promising avenue for therapeutic intervention in rheumatoid arthritis.
Collapse
Affiliation(s)
- Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shiqing Song
- Rehabilitation Department, Yantai Yuhuangding Hospital, Yantai 264005, China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
4
|
Ofori-Attah E, Hashimoto M, Oki M, Kadowaki D. Therapeutic Effect of Natural Products and Dietary Supplements on Aflatoxin-Induced Nephropathy. Int J Mol Sci 2024; 25:2849. [PMID: 38474096 PMCID: PMC10932067 DOI: 10.3390/ijms25052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.
Collapse
Affiliation(s)
- Ebenezer Ofori-Attah
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mayu Oki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan
| |
Collapse
|
5
|
Zayed A, Al-Saedi DA, Mensah EO, Kanwugu ON, Adadi P, Ulber R. Fucoidan's Molecular Targets: A Comprehensive Review of Its Unique and Multiple Targets Accounting for Promising Bioactivities Supported by In Silico Studies. Mar Drugs 2023; 22:29. [PMID: 38248653 PMCID: PMC10820140 DOI: 10.3390/md22010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Fucoidan is a class of multifunctional polysaccharides derived from marine organisms. Its unique and diversified physicochemical and chemical properties have qualified them for potential and promising pharmacological uses in human diseases, including inflammation, tumors, immunity disorders, kidney diseases, and diabetes. Physicochemical and chemical properties are the main contributors to these bioactivities. The previous literature has attributed such activities to its ability to target key enzymes and receptors involved in potential disease pathways, either directly or indirectly, where the anionic sulfate ester groups are mainly involved in these interactions. These findings also confirm the advantageous pharmacological uses of sulfated versus non-sulfated polysaccharides. The current review shall highlight the molecular targets of fucoidans, especially enzymes, and the subsequent responses via either the upregulation or downregulation of mediators' expression in various tissue abnormalities. In addition, in silico studies will be applied to support the previous findings and show the significant contributors. The current review may help in understanding the molecular mechanisms of fucoidan. Also, the findings of this review may be utilized in the design of specific oligomers inspired by fucoidan with the purpose of treating life-threatening human diseases effectively.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt
| | - Dalal A. Al-Saedi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Emmanuel Ofosu Mensah
- Faculty of Ecotechnology, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia;
| | - Osman Nabayire Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, Yekaterinburg 620002, Russia;
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Ahmed G, Jamal F, Tiwari RK, Singh V, Rai SN, Chaturvedi SK, Pandey K, Singh SK, Kumar A, Narayan S, Vamanu E. Arsenic exposure to mouse visceral leishmaniasis model through their drinking water linked to the disease exacerbation via modulation in host protective immunity: a preclinical study. Sci Rep 2023; 13:21461. [PMID: 38052913 PMCID: PMC10698031 DOI: 10.1038/s41598-023-48642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
A large body of evidence has shown a direct link between arsenic exposure and drug resistance to Leishmania parasites against antimonial preparations in visceral leishmaniasis (VL) hyper-endemic regions, especially in India and its sub-continent. However, the implicated roles of arsenic on the VL host, pathophysiological changes, and immune function have not yet been clarified, particularly at the reported concentration of arsenic in the VL hyper-endemic area of Bihar, India. Herein, we exposed the mouse VL model to arsenic (0.5 mg/L to 2 mg/L) through their drinking water and analyzed its effect on T cells proliferation, Th1/Th2-mediators, MAPK signaling cascade, and parasite load in preclinical models. Coherently, the parasite count in Giemsa stained spleen imprint has been investigated and found significant positive associations with levels of arsenic exposure. The liver and kidney function tests (AST, ALT, ALP, BUN, Creatinine, Urea, etc.) are apparent to hepatonephric toxicity in arsenic exposed VL mice compared to unexposed. This observation appears to be consistent with the up-regulated expression of immune regulatory Th2 mediators (IL-4, IL-10, TGF-β) and down-regulated expression of Th1 mediators (IL-12, IFN-γ, TNF-α) with a suppressed leishmanicidal function of macrophage (ROS, NO, iNOS). We also established that arsenic exposure modulated the host ERK-1/2 and p38 MAPK signaling cascade, limited T lymphocyte proliferation, and a lower IgG2a/IgG1 ratio to favor the Leishmania parasite survival inside the host. This study suggests that the contorted Th1-subtype and exacerbated Th2-subtype immune responses are involved in the increased susceptibility and pathogenesis of Leishmania parasite among subjects/individuals regularly exposed to arsenic.
Collapse
Affiliation(s)
- Ghufran Ahmed
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Fauzia Jamal
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Ritesh K Tiwari
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Veer Singh
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjay K Chaturvedi
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Santosh K Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Shyam Narayan
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India.
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Bucharest, 011464, Bucharest, Romania.
| |
Collapse
|
7
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
8
|
Seth A, Kar S. Host-directed antileishmanial interventions: Harvesting unripe fruits to reach fruition. Int Rev Immunol 2022; 42:217-236. [PMID: 35275772 DOI: 10.1080/08830185.2022.2047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leishmaniasis is an exemplary paradigm of immune evasion, fraught with the perils of limited clinical assistance, escalating costs of treatment and made worse with the lack of suitable vaccine. While drugs remain central to large-scale disease control, the growing emergence of parasite resistance necessitates the need for combination therapy involving host-directed immunological agents. Also, since prolonged disease progression is associated with strong immune suppression of the host, augmentation of host immunity via restoration of the immunoregulatory circuit involving antigen-presenting cells and T-cells, activation of macrophage function and/or CD4+ T helper 1 cell differentiation may serve as an ideal approach to resolve severe cases of leishmaniasis. As such, therapies that embody a synergistic approach that involve direct killing of the parasite in addition to elevating host immunity are likely to pave the way for widespread elimination of leishmaniasis in the future. With this review, we aim to recapitulate the various immunotherapeutic agents found to hold promise in antileishmanial treatment both in vitro and in vivo. These include parasite-specific antigens, dendritic cell-targeted therapy, recombinant inhibitors of various components intrinsic to immune cell signaling and agonists or antagonists to immune cells and cytokines. We also summarize their abilities to direct therapeutic skewing of the host cell-immune response and review their potential to combat the disease either alone, or as adjunct modalities.
Collapse
Affiliation(s)
- Anuradha Seth
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Susanta Kar
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
9
|
Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar Drugs 2021; 19:637. [PMID: 34822508 PMCID: PMC8624348 DOI: 10.3390/md19110637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Anastasia N. Voronova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
10
|
Kumari D, Perveen S, Sharma R, Singh K. Advancement in leishmaniasis diagnosis and therapeutics: An update. Eur J Pharmacol 2021; 910:174436. [PMID: 34428435 DOI: 10.1016/j.ejphar.2021.174436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is regarded as a neglected tropical disease by World Health Organization (WHO) and is ranked next to malaria as the deadliest protozoan disease. The primary causative agents of the disease comprise of diverse leishmanial species sharing clinical features ranging from skin abrasions to lethal infection in the visceral organs. As several Leishmania species are involved in infection, the role of accurate diagnosis becomes pivotal in adding new dimensions to anti-leishmanial therapy. Diagnostic methods must be fast, reliable, easy to perform, highly sensitive, and specific to differentiate among similar parasitic diseases. Herein, we present the conventional and recent approaches impended for the disease diagnosis and their sensitivity, specificity, and clinical application in parasite detection. Furthermore, we have also elaborated various new methods to cure leishmaniasis, which include host-directed therapies, drug repurposing, nanotechnology, and combinational therapy. This review addresses novel techniques and innovations in leishmaniasis, which can aid in unraveling new strategies to fight against the deadly infection.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, Mohan U, Ravichandiran V, Mandal D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. Biomed Pharmacother 2021; 141:111920. [PMID: 34328115 DOI: 10.1016/j.biopha.2021.111920] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The study of tropical diseases like leishmaniasis, a parasitic disease, has not received much attention even though it is the second-largest infectious disease after malaria. As per the WHO report, a total of 0.7-1.0 million new leishmaniasis cases, which are spread by 23 Leishmania species in more than 98 countries, are estimated with an alarming 26,000-65,000 death toll every year. Lack of potential vaccines along with the cost and toxicity of amphotericin B (AmB), the most common drug for the treatment of leishmaniasis, has raised the interest significantly for new formulations and drug delivery systems including nanoparticle-based delivery as anti-leishmanial agents. The size, shape, and high surface area to volume ratio of different NPs make them ideal for many biological applications. The delivery of drugs through liposome, polymeric, and solid-lipid NPs provides the advantage of high biocomatibilty of the carrier with reduced toxicity. Importantly, NP-based delivery has shown improved efficacy due to targeted delivery of the payload and synergistic action of NP and payload on the target. This review analyses the advantage of NP-based delivery over standard chemotherapy and natural product-based delivery system. The role of different physicochemical properties of a nanoscale delivery system is discussed. Further, different ways of nanoformulation delivery ranging from liposome, niosomes, polymeric, metallic, solid-lipid NPs were updated along with the possible mechanisms of action against the parasite. The status of current nano-vaccines and the future potential of NP-based vaccine are elaborated here.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vishnu Kant
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Utpal Mohan
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India; National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
12
|
Mukherjee A, Roy S, Patidar A, Bodhale N, Dandapat J, Saha B, Sarkar A. TLR2 dimer-specific ligands selectively activate protein kinase C isoforms in Leishmania infection. Immunology 2021; 164:318-331. [PMID: 34021910 DOI: 10.1111/imm.13373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022] Open
Abstract
Of the thirteen Toll-like receptors (TLRs) in mice, TLR2 has a unique ability of forming heterodimers with TLR1 and TLR6. Such associations lead to selective cellular signalling and cellular responses such as cytokine expression. One of the signalling intermediates is protein kinase C (PKC); of which, eight isoforms are expressed in macrophages. Leishmania-a protozoan parasite that resides and replicates in macrophages-selectively modulates PKC-α, PKC-β, PKC-δ and PKC-ζ isoforms in macrophages. As TLR2 plays significant roles in Leishmania infection, we examined whether these PKC isoforms play selective roles in TLR2 signalling and TLR2-induced anti-leishmanial functions. We observed that the TLR2 ligands-Pam3 CSK4 (TLR1/2), PGN (TLR2/2) and FSL (TLR2/6)-differentially phosphorylated and translocated PKC-α, PKC-β, PKC-δ and PKC-ζ isoforms to cell membrane in uninfected and L. major-infected macrophages. The PKC isoform-specific inhibitors differentially altered IL-10 and IL-12 expression, Th1 and Th2 responses and anti-leishmanial effects in macrophages and in BALB/c mice. While PKC isoforms' inhibitors had insignificant effects on the Pam3CSK4-induced anti-leishmanial functions, PGN-induced pro-leishmanial effects were enhanced by PKC-(α + β) inhibitors, whereas PKC-(δ + ζ) inhibitors enhanced the anti-leishmanial effects of FSL. These results indicated that the ligand-induced TLR2 dimerization triggered differential dose-dependent and kinetic profiles of PKC isoform activation and that selective targeting of PKC isoforms using their respective inhibitors in combination significantly modulated TLR2-induced anti-leishmanial functions. To the best of our knowledge, this is the first demonstration of TLR2 dimer signalling through PKC isoforms and TLR2-induced PKC isoform-targeted anti-leishmanial therapy.
Collapse
Affiliation(s)
| | - Sayoni Roy
- National Centre for Cell Science [NCCS], Pune, India
| | - Ashok Patidar
- National Centre for Cell Science [NCCS], Pune, India
| | - Neelam Bodhale
- National Centre for Cell Science [NCCS], Pune, India.,JBNSTS, Calcutta, India
| | | | - Bhaskar Saha
- Trident Academy of Creative Technology [TACT], Bhubaneswar, India.,National Centre for Cell Science [NCCS], Pune, India
| | - Arup Sarkar
- Trident Academy of Creative Technology [TACT], Bhubaneswar, India
| |
Collapse
|
13
|
Ortalli M, Varani S, Cimato G, Veronesi R, Quintavalla A, Lombardo M, Monari M, Trombini C. Evaluation of the Pharmacophoric Role of the O-O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. J Med Chem 2020; 63:13140-13158. [PMID: 33091297 PMCID: PMC8018184 DOI: 10.1021/acs.jmedchem.0c01589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Leishmaniases are neglected diseases that can be treated with a limited drug arsenal; the development of new molecules is therefore a priority. Recent evidence indicates that endoperoxides, including artemisinin and its derivatives, possess antileishmanial activity. Here, 1,2-dioxanes were synthesized with their corresponding tetrahydropyrans lacking the peroxide bridge, to ascertain if this group is a key pharmacophoric requirement for the antileishmanial bioactivity. Newly synthesized compounds were examined in vitro, and their mechanism of action was preliminarily investigated. Three endoperoxides and their corresponding tetrahydropyrans effectively inhibited the growth of Leishmania donovani promastigotes and amastigotes, and iron did not play a significant role in their activation. Further, reactive oxygen species were produced in both endoperoxide- and tetrahydropyran-treated promastigotes. In conclusion, the peroxide group proved not to be crucial for the antileishmanial bioactivity of endoperoxides, under the tested conditions. Our findings reveal the potential of both 1,2-dioxanes and tetrahydropyrans as lead compounds for novel therapies against Leishmania.
Collapse
Affiliation(s)
- Margherita Ortalli
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
- Department of Experimental, Diagnostic and Specialty
Medicine, Alma Mater Studiorum - University of Bologna, Via
Massarenti 9, 40138 Bologna, Italy
| | - Giorgia Cimato
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Ruben Veronesi
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| |
Collapse
|
14
|
Oral administration of eugenol oleate cures experimental visceral leishmaniasis through cytokines abundance. Cytokine 2020; 145:155301. [PMID: 33127258 DOI: 10.1016/j.cyto.2020.155301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Visceral leishmaniasis (VL) is an endemic fatal infectious disease in tropical and subtropical nations. The limited treatment options, long treatment regimens, invasive mode of administration of drugs, and lack of effective vaccination are the main reasons for the search of new alternative therapeutics against VL. On this quest, from a series of eugenol derivatives, we had demonstrated eugenol oleate as a lead immunomodulatory anti-VL molecule earlier. In this report, the oral efficacy and mechanism of eugenol oleate in inducing immunomodulatory anti-VL activity has been studied in BALB/c mice model. The plasma pharmacokinetic and acute toxicity studies suggested that the eugenol oleate is safe with an appreciable pharmacokinetic profile. Eugenol oleate (30 mg/kg B.W.) showed 86.5% of hepatic and 84.1% of splenic parasite clearance. The increased Th1 cytokine profile and decreased Th2 cytokine profile observed from ELISA and qRTPCR suggested that the eugenol oleate induced the parasite clearance through the activation of the host immune system. Subsequently, the mechanistic insights behind the anti-leishmanial activity of eugenol oleate were studied in peritoneal macrophages in vitro by inhibitor response study and immunoblotting. The results inferred that eugenol oleate activated the PKC-βII-p38 MAPK and produced IL-12 and IFN-γ which intern activated the iNOS2 to produce NO free radicals that cleared the intracellular parasite.
Collapse
|
15
|
Can We Harness Immune Responses to Improve Drug Treatment in Leishmaniasis? Microorganisms 2020; 8:microorganisms8071069. [PMID: 32709117 PMCID: PMC7409143 DOI: 10.3390/microorganisms8071069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease that has been neglected in priority for control and eradication of malaria, tuberculosis, and HIV/AIDS. Collectively, over one seventh of the world’s population is at risk of being infected with 0.7–1.2 million new infections reported annually. Clinical manifestations range from self-healing cutaneous lesions to fatal visceral disease. The first anti-leishmanial drugs were introduced in the 1950′s and, despite several shortcomings, remain the mainstay for treatment. Regardless of this and the steady increase in infections over the years, particularly among populations of low economic status, research on leishmaniasis remains under funded. This review looks at the drugs currently in clinical use and how they interact with the host immune response. Employing chemoimmunotherapeutic approaches may be one viable alternative to improve the efficacy of novel/existing drugs and extend their lifespan in clinical use.
Collapse
|
16
|
Abdel-Daim MM, Dawood MAO, Aleya L, Alkahtani S. Effects of fucoidan on the hematic indicators and antioxidative responses of Nile tilapia (Oreochromis niloticus) fed diets contaminated with aflatoxin B 1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12579-12586. [PMID: 32006335 DOI: 10.1007/s11356-020-07854-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Fucoidan is a rich source of medicinally active immunostimulants that possess various pharmacological properties. This study examined the potential impact of fucoidan on the hematic indicators and antioxidative responses of Nile tilapia fed diets contaminated with aflatoxin B1 (AFB1). Fish (60 ± 6.1 g) were allocated to five groups; the first (control) and second groups were fed 0% or 1% fucoidan-supplemented diets without AFB1 contamination, while the third, fourth, and fifth groups were fed diets contaminated with AFB1 and supplemented with 0%, 0.5%, and 1% fucoidan, respectively. After 30 days, fish fed AFB1 showed high ALT, AST, ALP, cholesterol, urea, and creatinine levels; furthermore, total blood protein and tissue (liver, kidney, and gill) glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activity significantly (P ≤ 0.05) decreased in fish fed AFB1, while tissue malondialdehyde significantly increased (P ≤ 0.05). Interestingly, fish fed fucoidan showed decreased ALT, AST, ALP, cholesterol, urea, and creatinine, as well as increased blood protein, GSH, GPx, SOD, and CAT activity. The results suggested that fucoidan is capable of inducing protective activity against AFB1 toxicity in Nile tilapia by enhancing the serum biochemical and tissue antioxidant responses of fish.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
17
|
Zayed A, Ulber R. Fucoidans: Downstream Processes and Recent Applications. Mar Drugs 2020; 18:E170. [PMID: 32197549 PMCID: PMC7142712 DOI: 10.3390/md18030170] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Fucoidans are multifunctional marine macromolecules that are subjected to numerous and various downstream processes during their production. These processes were considered the most important abiotic factors affecting fucoidan chemical skeletons, quality, physicochemical properties, biological properties and industrial applications. Since a universal protocol for fucoidans production has not been established yet, all the currently used processes were presented and justified. The current article complements our previous articles in the fucoidans field, provides an updated overview regarding the different downstream processes, including pre-treatment, extraction, purification and enzymatic modification processes, and shows the recent non-traditional applications of fucoidans in relation to their characters.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El Guish Street, Tanta 31527, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
| |
Collapse
|
18
|
Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study. Mar Drugs 2020; 18:md18030143. [PMID: 32121066 PMCID: PMC7143719 DOI: 10.3390/md18030143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Fucoidans are a class of fucose-rich sulfated polysaccharides derived from brown macroalgae that exert a range of biological activities in vitro and in vivo. To generate an unbiased assessment of pathways and processes affected by fucoidan, a placebo-controlled double-blind pilot study was performed in healthy volunteers. Blood samples were taken immediately before and 24 h after ingestion of a single dose of 1 g of Undaria pinnatifida fucoidan (UPF) or placebo. Levels of isolated miRNAs were analyzed using Taqman Open Array Human MicroRNA panels. Out of 754 miRNAs screened, UPF affected a total of 53 miRNAs. Pathway analysis using the TALOS data analysis tool predicted 29 different pathways and processes that were largely grouped into cell surface receptor signaling, cancer-related pathways, the majority of which were previously associated with fucoidans. However, this analysis also identified nine pathways and processes that have not been associated with fucoidans before. Overall, this study illustrates that even a single dose of fucoidans has the potential to affect the expression of genes related to fundamental cellular processes. Moreover, it confirms previous data that fucoidans influence immunity, cancer cells, inflammation, and neurological function.
Collapse
|
19
|
Nunes C, Coimbra MA. The Potential of Fucose-Containing Sulfated Polysaccharides As Scaffolds for Biomedical Applications. Curr Med Chem 2019; 26:6399-6411. [PMID: 30543164 DOI: 10.2174/0929867326666181213093718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
Abstract
Marine environments have a high quantity and diversity of sulfated polysaccharides. In coastal regions brown algae are the most abundant biomass producers and their cell walls have fucosecontaining sulfated polysaccharides (FCSP), known as fucans and/or fucoidans. These sulfated compounds have been widely researched for their biomedical properties, namely the immunomodulatory, haemostasis, pathogen inhibition, anti-inflammatory capacity, and antitumoral. These activities are probably due to their ability to mimic the carbohydrate moieties of mammalian glycosaminoglycans. Therefore, the FCSP are interesting compounds for application in health-related subjects, mainly for developing scaffolds for delivery systems or tissue regeneration. FCSP showed potential for these applications also due to their ability to form stable 3D structures with other polymers able to entrap therapeutic agents or cell and growth factors, besides their biocompatibility and biodegradability. However, for the clinical use of these biopolymers well-defined reproducible molecules are required in order to accurately establish relationships between structural features and human health applications.
Collapse
Affiliation(s)
- Cláudia Nunes
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.,QOPNA/LAQVREQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- QOPNA/LAQVREQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Chandrakar P, Gunaganti N, Parmar N, Kumar A, Singh SK, Rashid M, Wahajuddin M, Mitra K, Narender T, Kar S. β-Amino acid derivatives as mitochondrial complex III inhibitors of L. donovani: A promising chemotype targeting visceral leishmaniasis. Eur J Med Chem 2019; 182:111632. [PMID: 31499363 DOI: 10.1016/j.ejmech.2019.111632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
β-amino acids and their analogues are gathering increased attention not only because of their antibacterial and antifungal activity, but also for their use in designing peptidomimetics with increased oral bioavailability and resistance to metabolic degradation. In this study, a series of α-phenyl substituted chalcones, α-phenyl, β-amino substituted dihydrochalcones and β-amino acid derivatives were synthesized and evaluated for their antileishmanial efficacy against experimental visceral leishmaniasis (VL). Among all synthesized derivatives, 10c showed promising antileishmanial efficacy against both extracellular promastigote and intracellular amastigote (IC50 8.2 μM and 20.5 μM respectively) of L. donovani with negligible cytotoxic effect towards J774 macrophages and Vero cells. 10c effectively reduced spleen and liver parasite burden (>90%) in both hamster and Balb/c model of VL without any hepatotoxicity. In vitro pharmacokinetic analysis showed that 10c was stable in gastric fluid and plasma of Balb/c mice at 10 μg/ml. Further analysis of the molecular mechanism revealed that 10c entered into the parasite by depolarizing the plasma membrane rather than forming nonspecific pores and induced molecular events like loss in mitochondrial membrane potential with a gradual decline in ATP production. This, in turn, did not induce programmed cell death of the parasite; rather 10c induced bioenergetic collapse of the parasite by decreasing ATP synthesis through specific inhibition of mitochondrial complex III activity. Altogether, our results allude to the therapeutic potential of β-amino acid derivatives as novel antileishmanials, identifying them as lead compounds for further exploration in the design of potent candidates for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Pragya Chandrakar
- Parasitology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Naresh Gunaganti
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Naveen Parmar
- Parasitology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Ashok Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sandeep Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - M Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Tadigopula Narender
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Susanta Kar
- Parasitology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.
| |
Collapse
|
21
|
The fucoidan from sea cucumber Apostichopus japonicus attenuates lipopolysaccharide-challenged liver injury in C57BL/6J mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
22
|
Upadhyay A, Chandrakar P, Gupta S, Parmar N, Singh SK, Rashid M, Kushwaha P, Wahajuddin M, Sashidhara KV, Kar S. Synthesis, Biological Evaluation, Structure-Activity Relationship, and Mechanism of Action Studies of Quinoline-Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. J Med Chem 2019; 62:5655-5671. [PMID: 31124675 DOI: 10.1021/acs.jmedchem.9b00628] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, a series of quinoline-metronidazole hybrid compounds was synthesized and tested against the murine model of visceral leishmaniasis. Among all synthesized derivatives, 15b and 15i showed significant antileishmanial efficacy against both extracellular promastigote (IC50 9.54 and 5.42 μM, respectively) and intracellular amastigote (IC50 9.81 and 3.75 μM, respectively) forms of Leishmania donovani with negligible cytotoxicity toward the host (J774 macrophages, Vero cells). However, compound 15i effectively inhibited the parasite burden in the liver and spleen (>80%) of infected BALB/c mice. Mechanistic studies revealed that 15i triggers oxidative stress which induces bioenergetic collapse and apoptosis of the parasite by decreasing ATP production and mitochondrial membrane potential. Structure-activity analyses and pharmacokinetic studies suggest 15i as a promising antileishmanial lead and emphasize the importance of quinoline-metronidazole series as a suitable platform for the future development of antileishmanial agents.
Collapse
Affiliation(s)
- Akanksha Upadhyay
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Pragya Chandrakar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Sampa Gupta
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Naveen Parmar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Sandeep Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Pragati Kushwaha
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Koneni V Sashidhara
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Susanta Kar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| |
Collapse
|
23
|
Mu K, Yu S, Kitts DD. The Role of Nitric Oxide in Regulating Intestinal Redox Status and Intestinal Epithelial Cell Functionality. Int J Mol Sci 2019; 20:E1755. [PMID: 30970667 PMCID: PMC6479862 DOI: 10.3390/ijms20071755] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Important functions of intestinal epithelial cells (IECs) include enabling nutrient absorption to occur passively and acting as a defense barrier against potential xenobiotic components and pathogens. A compromise to IEC function can result in the translocation of bacteria, toxins, and allergens that lead to the onset of disease. Thus, the maintenance and optimal function of IECs are critically important to ensure health. Endogenous biosynthesis of nitric oxide (NO) regulates IEC functionality both directly, through free radical activity, and indirectly through cell signaling mechanisms that impact tight junction protein expression. In this paper, we review the current knowledge on factors that regulate inducible nitric oxide synthase (iNOS) and the subsequent roles that NO has on maintaining IECs' intestinal epithelial barrier structure, functions, and associated mechanisms of action. We also summarize important findings on the effects of bioactive dietary food components that interact with NO production and affect downstream intestinal epithelium integrity.
Collapse
Affiliation(s)
- Kaiwen Mu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Shengwu Yu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - David D Kitts
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
24
|
Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar Drugs 2019; 17:E183. [PMID: 30897733 PMCID: PMC6471298 DOI: 10.3390/md17030183] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
The marine acid polysaccharide fucoidan has attracted attention from both the food and pharmaceutical industries due to its promising therapeutic effects. Fucoidan is a polysaccharide that mainly consists of L-fucose and sulphate groups. Its excellent biological function is attributed to its unique biological structure. Classical activities include antitumor, antioxidant, anticoagulant, antithrombotic, immunoregulatory, antiviral and anti-inflammatory effects. More recently, fucoidan has been shown to alleviate metabolic syndrome, protect the gastrointestinal tract, benefit angiogenesis and bone health. This review focuses on the progress in our understanding of the biological activities of fucoidan, highlighting its benefits for the treatment of human disease. We hope that this review can provide some theoretical basis and inspiration for the product development of fucoidan.
Collapse
Affiliation(s)
- Yu Wang
- Marine College, Shandong University, Weihai 264209, China.
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China.
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China.
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
25
|
Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, Hamza OM, McGwire BS, Satoskar AR. Host-Directed Drug Therapies for Neglected Tropical Diseases Caused by Protozoan Parasites. Front Microbiol 2018; 9:2655. [PMID: 30555425 PMCID: PMC6284052 DOI: 10.3389/fmicb.2018.02655] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
The neglected tropical diseases (NTDs) caused by protozoan parasites are responsible for significant morbidity and mortality worldwide. Current treatments using anti-parasitic drugs are toxic and prolonged with poor patient compliance. In addition, emergence of drug-resistant parasites is increasing worldwide. Hence, there is a need for safer and better therapeutics for these infections. Host-directed therapy using drugs that target host pathways required for pathogen survival or its clearance is a promising approach for treating infections. This review will give a summary of the current status and advances of host-targeted therapies for treating NTDs caused by protozoa.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nathan M Ryan
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Gregory Halsey
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Omar M Hamza
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Sarkar I, Garg R, van Drunen Littel-van den Hurk S. The respiratory syncytial virus fusion protein formulated with a polymer-based adjuvant induces multiple signaling pathways in macrophages. Vaccine 2018; 36:2326-2336. [PMID: 29559168 DOI: 10.1016/j.vaccine.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) causes acute respiratory tract infections in infants, the elderly and immunocompromised individuals. No licensed vaccine is available against RSV. We previously reported that intranasal immunization of rodents and lambs with a RSV vaccine candidate (ΔF/TriAdj) induces protective immunity with a good safety profile. ΔF/TriAdj promoted innate immune responses in respiratory mucosal tissues in vivo, by local chemokine and cytokine production, as well as infiltration and activation of immune cells including macrophages. The macrophage is an important cell type in context of both innate and adaptive immune responses against RSV. Therefore, we characterized the effects of ΔF/TriAdj on a murine macrophage cell line, RAW264.7, and bone marrow-derived macrophages (BMMs). A gene expression study of pattern recognition receptors (PRRs) revealed induction of endosomal and cytosolic receptors in RAW264.7 cells and BMMs by ΔF/TriAdj, but no up-regulation by ΔF in PBS. As a secondary response to the PRR gene expression, induction of several chemokines and pro-inflammatory cytokines, as well as up-regulation of MHC-II and co-stimulatory immune markers, was observed. To further investigate the mechanisms involved in ΔF/TriAdj-mediated secondary responses, we used relevant signal transduction pathway inhibitors. Based on inhibition studies at both transcript and protein levels, JNK, ERK1/2, CaMKII, PI3K and JAK pathways were clearly responsible for ΔF/TriAdj-mediated chemokine and pro-inflammatory cytokine responses, while the p38 and NF-κB pathways appeared to be not or minimally involved. ΔF/TriAdj induced IFN-β, which may participate in the JAK-STAT pathway to further amplify CXCL-10 production, which was strongly up-regulated. Blocking this pathway by a JAK inhibitor almost completely abrogated CXCL-10 production and caused a significant reduction in the cell surface expression of MHC-II and co-stimulatory immune markers. These data demonstrate that ΔF/TriAdj induces multiple signaling pathways in macrophages.
Collapse
Affiliation(s)
- Indranil Sarkar
- VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada; Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Ravendra Garg
- VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada; Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada.
| |
Collapse
|
27
|
Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydr Polym 2017; 175:395-408. [PMID: 28917882 DOI: 10.1016/j.carbpol.2017.07.082] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Studies on brown algal cell walls have entered a new phase with the concomitant discovery of novel polysaccharides present in cell walls and the establishment of a comprehensive generic model for cell wall architecture. Brown algal cell walls are composites of structurally complex polysaccharides. In this review we discuss the most recent progress in the structural composition of brown algal cell walls, emphasizing the significance of extraction and screening techniques, and the biological activities of the corresponding polysaccharides, with a specific focus on the fucose-containing sulfated polysaccharides. They include valuable marine molecules that exert a broad range of pharmacological properties such as antioxidant and anti-inflammatory activities, functions in the regulation of immune responses and of haemostasis, anti-infectious and anticancer actions. We identify the key remaining challenges in this research field.
Collapse
Affiliation(s)
- Estelle Deniaud-Bouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Kevin Hardouin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Philippe Potin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Bernard Kloareg
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Cécile Hervé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| |
Collapse
|
28
|
Bruni N, Stella B, Giraudo L, Della Pepa C, Gastaldi D, Dosio F. Nanostructured delivery systems with improved leishmanicidal activity: a critical review. Int J Nanomedicine 2017; 12:5289-5311. [PMID: 28794624 PMCID: PMC5536235 DOI: 10.2147/ijn.s140363] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leishmaniasis is a vector-borne zoonotic disease caused by protozoan parasites of the genus Leishmania, which are responsible for numerous clinical manifestations, such as cutaneous, visceral, and mucocutaneous leishmaniasis, depending on the site of infection for particular species. These complexities threaten 350 million people in 98 countries worldwide. Amastigotes living within macrophage phagolysosomes are the principal target of antileishmanial treatment, but these are not an easy target as drugs must overcome major structural barriers. Furthermore, limitations on current therapy are related to efficacy, toxicity, and cost, as well as the length of treatment, which can increase parasitic resistance. Nanotechnology has emerged as an attractive alternative as conventional drugs delivered by nanosized carriers have improved bioavailability and reduced toxicity, together with other characteristics that help to relieve the burden of this disease. The significance of using colloidal carriers loaded with active agents derives from the physiological uptake route of intravenous administered nanosystems (the phagocyte system). Nanosystems are thus able to promote a high drug concentration in intracellular mononuclear phagocyte system (MPS)-infected cells. Moreover, the versatility of nanometric drug delivery systems for the deliberate transport of a range of molecules plays a pivotal role in the design of therapeutic strategies against leishmaniasis. This review discusses studies on nanocarriers that have greatly contributed to improving the efficacy of antileishmaniasis drugs, presenting a critical review and some suggestions for improving drug delivery.
Collapse
Affiliation(s)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Daniela Gastaldi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
29
|
Jawed JJ, Majumder S, Bandyopadhyay S, Biswas S, Parveen S, Majumdar S. SLA-PGN-primed dendritic cell-based vaccination induces Th17-mediated protective immunity against experimental visceral leishmaniasis: a crucial role of PKCβ. Pathog Dis 2016; 74:ftw041. [PMID: 27150838 DOI: 10.1093/femspd/ftw041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 11/12/2022] Open
Abstract
Emergence of drug resistance during visceral leishmaniasis (VL) is a major obstacle imposed during successful therapy. An effective vaccine strategy against this disease is therefore necessary. Our present study exploited the SLA (soluble leishmanial antigen) and PGN (peptidoglycan) stimulated bone marrow-derived dendritic cells (DCs) as a suitable vaccine candidate during experimental VL. SLA-PGN-stimulated DCs showed a significant decrease in hepatic and splenic parasite burden, which were associated with increased production of nitric oxide and pro-inflammatory cytokines such as IL-12, IFN-γ and IL-17. Elevated level of IL-17 was accompanied with the generation of more Th17 cells. Further studies on DC provided the evidence that these SLA-PGN-stimulated DCs played an important role in providing necessary cytokines such as IL-6, IL-23 and TGF-β for the generation of Th17 cells. Interestingly, inhibition of protein kinase C-β (PKCβ) in DCs led to decreased production of Th17 polarizing cytokines, causing reduction of the Th17 population size. Altogether, our finding highlighted the important role of DC-based PKCβ in regulation of the function and generation of Th17 cells.
Collapse
Affiliation(s)
- Junaid Jibran Jawed
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Saikat Majumder
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Syamdas Bandyopadhyay
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Satabdi Biswas
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Shabina Parveen
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| |
Collapse
|
30
|
Correa S, Choi KY, Dreaden EC, Renggli K, Shi A, Gu L, Shopsowitz KE, Quadir MA, Ben-Akiva E, Hammond PT. Highly scalable, closed-loop synthesis of drug-loaded, layer-by-layer nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2016; 26:991-1003. [PMID: 27134622 PMCID: PMC4847955 DOI: 10.1002/adfm.201504385] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Layer-by-layer (LbL) self-assembly is a versatile technique from which multicomponent and stimuli-responsive nanoscale drug carriers can be constructed. Despite the benefits of LbL assembly, the conventional synthetic approach for fabricating LbL nanoparticles requires numerous purification steps that limit scale, yield, efficiency, and potential for clinical translation. In this report, we describe a generalizable method for increasing throughput with LbL assembly by using highly scalable, closed-loop diafiltration to manage intermediate purification steps. This method facilitates highly controlled fabrication of diverse nanoscale LbL formulations smaller than 150 nm composed from solid-polymer, mesoporous silica, and liposomal vesicles. The technique allows for the deposition of a broad range of polyelectrolytes that included native polysaccharides, linear polypeptides, and synthetic polymers. We also explore the cytotoxicity, shelf life and long-term storage of LbL nanoparticles produced using this approach. We find that LbL coated systems can be reliably and rapidly produced: specifically, LbL-modified liposomes could be lyophilized, stored at room temperature, and reconstituted without compromising drug encapsulation or particle stability, thereby facilitating large scale applications. Overall, this report describes an accessible approach that significantly improves the throughput of nanoscale LbL drug-carriers that show low toxicity and are amenable to clinically relevant storage conditions.
Collapse
Affiliation(s)
- Santiago Correa
- Institute for Integrative Cancer Research Department of Biological Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| | - Ki Young Choi
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| | - Erik C. Dreaden
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| | - Kasper Renggli
- Koch Institute for Integrative Cancer Research Department of Biological Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| | - Aria Shi
- Koch Institute for Integrative Cancer Research Department of Biological Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| | - Li Gu
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| | - Kevin E. Shopsowitz
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| | - Mohiuddin A. Quadir
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| | - Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research Department of Biological Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA, 02139, USA
| |
Collapse
|
31
|
Fitton JH, Stringer DN, Karpiniec SS. Therapies from Fucoidan: An Update. Mar Drugs 2015; 13:5920-46. [PMID: 26389927 PMCID: PMC4584361 DOI: 10.3390/md13095920] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 12/30/2022] Open
Abstract
Fucoidans are a class of sulfated fucose-rich polysaccharides found in brown marine algae and echinoderms. Fucoidans have an attractive array of bioactivities and potential applications including immune modulation, cancer inhibition, and pathogen inhibition. Research into fucoidan has continued to gain pace over the last few years and point towards potential therapeutic or adjunct roles. The source, extraction, characterization and detection of fucoidan is discussed.
Collapse
Affiliation(s)
- Janet Helen Fitton
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Damien N Stringer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Samuel S Karpiniec
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| |
Collapse
|
32
|
OHNOGI H, NAITO Y, HIGASHIMURA Y, UNO K, YOSHIKAWA T. Immune Efficacy and Safety of Fucoidan Extracted from Gagome Kombu (Kjellmaniella crassifolia) in Healthy Japanese Subjects. ACTA ACUST UNITED AC 2015. [DOI: 10.1625/jcam.12.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiromu OHNOGI
- TAKARA BIO INC
- Department of Food Factor Science, Graduate School of Medical Science,Kyoto Prefectural University of Medicine
| | - Yuji NAITO
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yasuki HIGASHIMURA
- Department of Food Factor Science, Graduate School of Medical Science,Kyoto Prefectural University of Medicine
| | - Kazuko UNO
- Louis Pasteur Center for Medical Research
| | - Toshikazu YOSHIKAWA
- Department of Food Factor Science, Graduate School of Medical Science,Kyoto Prefectural University of Medicine
| |
Collapse
|
33
|
El-Boshy M, El-Ashram A, Risha E, Abdelhamid F, Zahran E, Gab-Alla A. Dietary fucoidan enhance the non-specific immune response and disease resistance in African catfish, Clarias gariepinus, immunosuppressed by cadmium chloride. Vet Immunol Immunopathol 2014; 162:168-73. [PMID: 25454084 DOI: 10.1016/j.vetimm.2014.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022]
Abstract
Fucoidan is sulfated polysaccharide extracted from seaweed brown algae. This study was designed to evaluate the immunomodulatory effects and disease resistance of dietary fucoidan on catfish, Clarias gariepinus, immunosuppressed by cadmium. Three hundred and sixty African catfish, C. gariepinus, was allocated into six equal groups. The first group served as a control. Groups (F1 and F2) were fed on fucoidan supplemented ration at concentrations of 4 and 6g/kg diet respectively for 21 days. Groups (Cd, CdF1 and CdF2) were subjected throughout the experiment to a sub-lethal concentration of 5ppm cadmium chloride solution and groups (CdF1 and CdF2) were fed on a ration supplemented with fucoidan. Macrophages oxidative burst, phagocytic activity percentages and lymphocytes transformation index were a significant increase in the fucoidan-treated groups (F1 and F2), while serum lysozyme, nitric oxide and bactericidal activity were enhanced only in group (F2) when compared with controls. These parameters as well as absolute lymphocyte count and survival rate were significantly increased in group (CdF2) when compared with cadmium chloride immunosuppressed group (Cd). It could be concluded that the fucoidan can be used as immunostimulant for the farmed African catfish, C. gariepinus as it can improve its resistance to immunosuppressive stressful conditions.
Collapse
Affiliation(s)
- Mohamed El-Boshy
- Department of Laboratory Medicine, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Egypt.
| | - Ahmed El-Ashram
- Fish Health and Diseases Department, Faculty of fish Resources, Suez University, Egypt
| | - Engy Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Fatma Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Eman Zahran
- Department of Internal Medicine, Infections and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Ali Gab-Alla
- Department of Biological Sciences, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|