1
|
Ren J, Ma K, Lu X, Peng H, Wang J, Nasser MI, Liu C. Occurrence and role of Tph cells in various renal diseases. Mol Med 2024; 30:174. [PMID: 39390361 PMCID: PMC11468416 DOI: 10.1186/s10020-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
A new population of peripheral helper T (Tph) cells has been identified and contributed to various autoimmune diseases. Tph cells can secrete interleukin-21 (IL-21), interferon (IFN) and C-X-C motif chemokine ligand 13 (CXCL13) to moderate renal disease. Moreover, Tph cells can congregate in huge numbers and immerse within inflamed tissue. Compared to Tfh cells, Tph cells express high programmed cell death protein 1 (PD-1), major histocompatibility complex II (MHC-II), C-C chemokine receptor 2 (CCR2) and C-C chemokine receptor 5 (CCR5) but often lack expression of the chemokine receptor C-X-C chemokine receptor 5 (CXCR5). They display features distinct from other T cells, which are uniquely poised to promote responses and antibody production of B cells within pathologically inflamed non-lymphoid tissues and a key feature of Tph cells. In this review, we summarize recent findings on the role of Tph cells in chronic kidney disease, acute kidney injury, kidney transplantation and various renal diseases.
Collapse
Affiliation(s)
- Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Provincial People's Hospital, Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
2
|
Saadh MJ, Alfattah MA, Ismail AH, Saeed BA, Abbas HH, Elashmawy NF, Hashim GA, Ismail KS, Abo-Zaid MA, Waggiallah HA. The role of Interleukin-21 (IL-21) in allergic disorders: Biological insights and regulatory mechanisms. Int Immunopharmacol 2024; 134:111825. [PMID: 38723368 DOI: 10.1016/j.intimp.2024.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 06/03/2024]
Abstract
In recent decades, allergic diseases subsequent from an IgE-mediated response to specific allergens have become a progressively public chronic disease worldwide. They have shaped an important medical and socio-economic burden. A significant proportion of allergic disorders are branded via a form 2 immune response relating Th2 cells, type 2 natural lymphoid cells, mast cells and eosinophils. Interleukin-21 (IL-21) is a participant of the type-I cytokine family manufactured through numerous subsets of stimulated CD4+ T cells and uses controlling properties on a diversity of immune cells. Increasingly, experimental sign suggests a character for IL-21 in the pathogenesis of numerous allergic disorders. The purpose of this review is to discuss the biological properties of IL-21 and to summaries current developments in its role in the regulation of allergic disorders.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Mohammed A Alfattah
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Bashar Abdullah Saeed
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | | | - Nabila F Elashmawy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ghassan A Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Khatib Sayeed Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia.
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
3
|
Roach T, Park YP, Choi SC, Morel L. Regulation of the STAT3 pathway by lupus susceptibility gene Pbx1 in T cells. Mol Immunol 2024; 165:1-10. [PMID: 38056350 DOI: 10.1016/j.molimm.2023.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which poorly characterized genetic factors lead to the production of proinflammatory or autoreactive T cells. Pre-B cell leukemia homeobox 1 (PBX1) is a transcription factor whose dominant negative isoform (PBX1-D) is overexpressed in the CD4+ T cells of SLE patients and lupus-prone mice. Pbx1-D overexpression favors the expansion of proinflammatory T cells and impairs regulatory T (Treg) cell development. Here we show that Pbx1 deficiency and Pbx1-D overexpression decreased STAT3 expression and activation in T cells. Accordingly, Pbx1 deficiency in T cells and Pbx1-D overexpression reduced STAT3-dependent TH17 cell polarization in vitro, but it had no effect in vivo at steady state. STAT3-dependent follicular helper T (TFH) cell polarization in vitro and splenic TFH cell frequency were not affected by either Pbx1 deficiency or Pbx1-D overexpression. Pbx1 deficiency also increased the expression of cell cycle arrest and pro-apoptotic genes, with an increased apoptosis in T cells. Our results suggest a complex interplay between PBX1 and STAT3, which may contribute to lupus pathogenesis through dysregulation of the cell cycle and apoptosis.
Collapse
Affiliation(s)
- Tracoyia Roach
- Department of Pathology, Immunology, and Laboratory Medicine, Gainesville, FL 32610-0275, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA.
| |
Collapse
|
4
|
Zhang J, Shen Y, Yang G, Sun J, Tang C, Liang H, Ma J, Wu X, Cao H, Wu M, Ding Y, Li M, Liu Z, Ge L. Commensal microbiota modulates phenotypic characteristics and gene expression in piglet Peyer's patches. Front Physiol 2023; 14:1084332. [PMID: 37035673 PMCID: PMC10073539 DOI: 10.3389/fphys.2023.1084332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
The gastrointestinal tract contains a complex microbial community. Peyer's patches (PPs) play an important role in inducing mucosal immune responses in the gastrointestinal tract. However, little is known about the effect of commensal microbiota on the host's PPs. Here, we analyzed the phenotypic-to-transcriptome changes in the intestine PPs of specific pathogen-free (SPF) and germ-free (GF) piglets (fed in an environment with and without commensal microbiota, respectively) to elucidate the role of commensal microbiota in host intestine mucosal immunity. Analyses of anatomical and histological characteristics showed that commensal microbiota deficiency led to PP hypoplasia, especially regarding B and T cells. A total of 12,444 mRNAs were expressed in 12 libraries; 2,156 and 425 differentially expressed (DE) mRNAs were detected in the jejunal PP (JPP) and ileal PP (IPP), respectively (SPF vs. GF). The shared DE mRNAs of the JPP and IPP were mainly involved in basic physiological and metabolic processes, while the specific DE mRNAs were enriched in regulating immune cells in the JPP and microbial responses and cellular immunity in the IPP. Commensal microbiota significantly modulated the expression of genes related to B-cell functions, including activation, proliferation, differentiation, apoptosis, receptor signaling, germinal center formation, and IgA isotype class switching, particularly in the JPP. TLR4 pathway-related genes were induced in response to microbial colonization and in LPS/SCFA-treated B cells. We also detected 69 and 21 DE lncRNAs in the JPP and IPP, respectively, and four one-to-one lncRNA-mRNA pairs were identified. These findings might represent key regulatory axes for host intestine mucosal immunity development during microbial colonization. Overall, the findings of this study revealed that commensal microbiota modulated phenotypic characteristics and gene expression in the piglet intestine PPs and underscored the importance of early microbial colonization for host mucosal immunity development.
Collapse
Affiliation(s)
- Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yang Shen
- Chongqing Academy of Animal Sciences, Chongqing, China
- Yangling Food Engineering Innovation Center, Yangling, Shanxi, China
| | - Guitao Yang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Chuang Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Liang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jideng Ma
- Chongqing Academy of Animal Sciences, Chongqing, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoqian Wu
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Haoran Cao
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Mingzhou Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- *Correspondence: Liangpeng Ge,
| |
Collapse
|
5
|
Jahangir M, Kahrizi MS, Natami M, Moaref Pour R, Ghoreishizadeh S, Hemmatzadeh M, Mohammadi H, Shomali N, Sandoghchian Shotorbani S. MicroRNA-155 acts as a potential prognostic and diagnostic factor in patients with ankylosing spondylitis by modulating SOCS3. Mol Biol Rep 2023; 50:553-563. [PMID: 36350418 DOI: 10.1007/s11033-022-08033-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a progressive inflammatory disease. Our primary objective was to explore the role of miR-155 and its targeted factors in AS pathogenesis. METHODS AND RESULTS PBMCs were isolated from 30 AS patients and 30 healthy individuals using the Ficoll-hypaque isolation approach. The expression of miR-155 and its associated targets, including Suppressor Of Cytokine Signaling 3 (SOCS3), STAT3, and IL-21, were determined using qT-qPCR. Then, PBMCs were cultured, and the effect of miR-155, SOCS3 siRNA (to suppress its expression), pEFSOCS3 (enforced expression), and their combination were investigated by qRT-PCR and western blotting. We also treated the cultured PBMCs with Brefeldin A, a potent inhibitor of cytokine secretion, to determine its effect on IL-21 expression and secretion. In addition, the association between miR-155 and patients' clinicopathological features was examined. The results showed that miR-155, IL-21, and STAT3 were increased in patients with AS, while SOCS3 had decreasing expression trend. It was also determined that miR-155 alleviates SOCS3 expression and increases IL-21 and STAT3 expression; it had a prominent effect when combined with SOCS3 siRNA. Besides, we showed that simultaneous transfection of miR-155 and pEFSOCS3 had no significant effect on IL-21 and STAT3 expression, revealing that miR-155 could alleviate the enforced expression of SOCS3. It was also proven that Brefledine A led to IL-21 up-regulation or accumulation while relieving its secretion. Also, a significant correlation between miR-155 and pathological features of AS patients was found. CONCLUSION miR-155 acts as a potential prognostic and diagnostic biomarker. Its up-regulation leads to the down-regulation of SOCS3 and increased expression of IL-21 and STAT3 as characteristic of TH-17 lymphocytes, leading to worsening inflammatory conditions in patients with AS.
Collapse
Affiliation(s)
| | | | - Mohammad Natami
- Department of Urology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raziyeh Moaref Pour
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Hemmatzadeh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Hwang SM, Im SH, Rudra D. Signaling networks controlling ID and E protein activity in T cell differentiation and function. Front Immunol 2022; 13:964581. [PMID: 35983065 PMCID: PMC9379924 DOI: 10.3389/fimmu.2022.964581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
E and inhibitor of DNA binding (ID) proteins are involved in various cellular developmental processes and effector activities in T cells. Recent findings indicate that E and ID proteins are not only responsible for regulating thymic T cell development but also modulate the differentiation, function, and fate of peripheral T cells in multiple immune compartments. Based on the well-established E and ID protein axis (E-ID axis), it has been recognized that ID proteins interfere with the dimerization of E proteins, thus restricting their transcriptional activities. Given this close molecular relationship, the extent of expression or stability of these two protein families can dynamically affect the expression of specific target genes involved in multiple aspects of T cell biology. Therefore, it is essential to understand the endogenous proteins or extrinsic signaling pathways that can influence the dynamics of the E-ID axis in a cell-specific and context-dependent manner. Here, we provide an overview of E and ID proteins and the functional outcomes of the E-ID axis in the activation and function of multiple peripheral T cell subsets, including effector and memory T cell populations. Further, we review the mechanisms by which endogenous proteins and signaling pathways alter the E-ID axis in various T cell subsets influencing T cell function and fate at steady-state and in pathological settings. A comprehensive understanding of the functions of E and ID proteins in T cell biology can be instrumental in T cell-specific targeting of the E-ID axis to develop novel therapeutic modalities in the context of autoimmunity and cancer.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea
- ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
- *Correspondence: Sin-Hyeog Im, ; Dipayan Rudra,
| | - Dipayan Rudra
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Sin-Hyeog Im, ; Dipayan Rudra,
| |
Collapse
|
7
|
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
8
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1116] [Impact Index Per Article: 279.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
9
|
Niclosamide suppresses the expansion of follicular helper T cells and alleviates disease severity in two murine models of lupus via STAT3. J Transl Med 2021; 19:86. [PMID: 33632240 PMCID: PMC7908700 DOI: 10.1186/s12967-021-02760-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Autoantibody production against endogenous cellular components is pathogenic feature of systemic lupus erythematosus (SLE). Follicular helper T (TFH) cells aid in B cell differentiation into autoantibody-producing plasma cells (PCs). The IL-6 and IL-21 cytokine-mediated STAT3 signaling are crucial for the differentiation to TFH cells. Niclosamide is an anti-helminthic drug used to treat parasitic infections but also exhibits a therapeutic effect on autoimmune diseases due to its potential immune regulatory effects. In this study, we examined whether niclosamide treatment could relieve lupus-like autoimmunity by modulating the differentiation of TFH cells in two murine models of lupus. Methods 10-week-old MRL/lpr mice were orally administered with 100 mg/kg of niclosamide or with 0.5% methylcellulose (MC, vehicle) daily for 7 weeks. TLR7 agonist, resiquimod was topically applied to an ear of 8-week-old C57BL/6 mice 3 times a week for 5 weeks. And they were orally administered with 100 mg/kg of niclosamide or with 0.5% MC daily for 5 weeks. Every mouse was analyzed for lupus nephritis, proteinuria, autoantibodies, immune complex, immune cell subsets at the time of the euthanization. Results Niclosamide treatment greatly improved proteinuria, anti-dsDNA antibody levels, immunoglobulin subclass titers, histology of lupus nephritis, and C3 deposition in MRL/lpr and R848-induced mice. In addition, niclosamide inhibited the proportion of TFH cells and PCs in the spleens of these animals, and effectively suppressed differentiation of TFH-like cells and expression of associated genes in vitro. Conclusions Niclosamide exerted therapeutic effects on murine lupus models by suppressing TFH cells and plasma cells through STAT3 inhibition. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02760-2.
Collapse
|
10
|
Woś I, Tabarkiewicz J. Effect of interleukin-6, -17, -21, -22, and -23 and STAT3 on signal transduction pathways and their inhibition in autoimmune arthritis. Immunol Res 2021; 69:26-42. [PMID: 33515210 PMCID: PMC7921069 DOI: 10.1007/s12026-021-09173-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
Rheumatic diseases are complex autoimmune diseases which include among others rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), and psoriatic arthritis (PsA). These diseases are characterized by prolonged and increased secretion of inflammatory factors, eventually leading to inflammation. This is often accompanied by persistent pain and stiffness in the joint and finally bone destruction and osteoporosis. These diseases can occur at any age, regardless of gender or origin. Autoimmune arthritis is admittedly associated with long-term treatment, and discontinuation of medication is associated with unavoidable relapse. Therefore, it is important to detect the disease at an early stage and apply appropriate preventative measures. During inflammation, pro-inflammatory factors such as interleukins (IL)-6, -17, -21, -22, and -23 are secreted, while anti-inflammatory factors including IL-10 are downregulated. Research conducted over the past several years has focused on inhibiting inflammatory pathways and activating anti-inflammatory factors to improve the quality of life of people with rheumatic diseases. The aim of this paper is to review current knowledge on stimulatory and inhibitory pathways involving the signal transducer and activator of transcription 3 (STAT3). STAT3 has been shown to be one of the crucial factors involved in inflammation and is directly linked with other pro-inflammatory factors and thus is a target of current research on rheumatoid diseases.
Collapse
Affiliation(s)
- Izabela Woś
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| | - Jacek Tabarkiewicz
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| |
Collapse
|
11
|
Calcineurin and Systemic Lupus Erythematosus: The Rationale for Using Calcineurin Inhibitors in the Treatment of Lupus Nephritis. Int J Mol Sci 2021; 22:ijms22031263. [PMID: 33514066 PMCID: PMC7865978 DOI: 10.3390/ijms22031263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a broad spectrum of clinical presentations that can affect almost all organ systems. Lupus nephritis (LN) is a severe complication that affects approximately half of the systemic erythematosus lupus (SLE) patients, which significantly increases the morbidity and the mortality risk. LN is characterized by the accumulation of immune complexes, ultimately leading to renal failure. Aberrant activation of T cells plays a critical role in the pathogenesis of both SLE and LN and is involved in the production of inflammatory cytokines, the recruitment of inflammatory cells to the affected tissues and the co-stimulation of B cells. Calcineurin is a serine-threonine phosphatase that, as a consequence of the T cell hyperactivation, induces the production of inflammatory mediators. Moreover, calcineurin is also involved in the alterations of the podocyte phenotype, which contribute to proteinuria and kidney damage observed in LN patients. Therefore, calcineurin inhibitors have been postulated as a potential treatment strategy in LN, since they reduce T cell activation and promote podocyte cytoskeleton stabilization, both being key aspects in the development of LN. Here, we review the role of calcineurin in SLE and the latest findings about calcineurin inhibitors and their mechanisms of action in the treatment of LN.
Collapse
|
12
|
James JA, Guthridge JM, Chen H, Lu R, Bourn RL, Bean K, Munroe ME, Smith M, Chakravarty E, Baer AN, Noaiseh G, Parke A, Boyle K, Keyes-Elstein L, Coca A, Utset T, Genovese MC, Pascual V, Utz PJ, Holers VM, Deane KD, Sivils KL, Aberle T, Wallace DJ, McNamara J, Franchimont N, St. Clair EW. Unique Sjögren's syndrome patient subsets defined by molecular features. Rheumatology (Oxford) 2020; 59:860-868. [PMID: 31497844 PMCID: PMC7188221 DOI: 10.1093/rheumatology/kez335] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/23/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To address heterogeneity complicating primary SS (pSS) clinical trials, research and care by characterizing and clustering patients by their molecular phenotypes. METHODS pSS patients met American-European Consensus Group classification criteria and had at least one systemic manifestation and stimulated salivary flow of ⩾0.1 ml/min. Correlated transcriptional modules were derived from gene expression microarray data from blood (n = 47 with appropriate samples). Patients were clustered based on this molecular information using an unbiased random forest modelling approach. In addition, multiplex, bead-based assays and ELISAs were used to assess 30 serum cytokines, chemokines and soluble receptors. Eleven autoantibodies, including anti-Ro/SSA and anti-La/SSB, were measured by Bio-Rad Bioplex 2200. RESULTS Transcriptional modules distinguished three clusters of pSS patients. Cluster 1 showed no significant elevation of IFN or inflammation modules. Cluster 2 showed strong IFN and inflammation modular network signatures, as well as high plasma protein levels of IP-10/CXCL10, MIG/CXCL9, BLyS (BAFF) and LIGHT. Cluster 3 samples exhibited moderately elevated IFN modules, but with suppressed inflammatory modules, increased IP-10/CXCL10 and B cell-attracting chemokine 1/CXCL13 and trends toward increased MIG/CXCL9, IL-1α, and IL-21. Anti-Ro/SSA and anti-La/SSB were present in all three clusters. CONCLUSION Molecular profiles encompassing IFN, inflammation and other signatures can be used to separate patients with pSS into distinct clusters. In the future, such profiles may inform patient selection for clinical trials and guide treatment decisions.
Collapse
Affiliation(s)
- Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Medicine
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Medicine
| | - Hua Chen
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rufei Lu
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Medicine
| | - Rebecka L Bourn
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Krista Bean
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Melissa E Munroe
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Miles Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Eliza Chakravarty
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Alan N Baer
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ghaith Noaiseh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ann Parke
- Division of Rheumatic Diseases, University of Connecticut, Farmington, CT, USA
| | - Karen Boyle
- Rho Federal Systems Division, Chapel Hill, NC, USA
| | | | - Andreea Coca
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tammy Utset
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mark C Genovese
- Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Virginia Pascual
- Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY, USA
| | - Paul J Utz
- Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora,CO, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora,CO, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Teresa Aberle
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Daniel J Wallace
- Department of Medicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - James McNamara
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - E. William St. Clair
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
13
|
Afroz S, Shama, Battu S, Matin S, Solouki S, Elmore JP, Minhas G, Huang W, August A, Khan N. Amino acid starvation enhances vaccine efficacy by augmenting neutralizing antibody production. Sci Signal 2019; 12:12/607/eaav4717. [PMID: 31719173 DOI: 10.1126/scisignal.aav4717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific reduction in the intake of proteins or amino acids (AAs) offers enormous health benefits, including increased life span, protection against age-associated disorders, and improved metabolic fitness and immunity. Cells respond to conditions of AA starvation by activating the amino acid starvation response (AAR). Here, we showed that mimicking AAR with halofuginone (HF) enhanced the magnitude and affinity of neutralizing, antigen-specific antibody responses in mice immunized with dengue virus envelope domain III protein (DENVrEDIII), a potent vaccine candidate against DENV. HF enhanced the formation of germinal centers (GCs) and increased the production of the cytokine IL-10 in the secondary lymphoid organs of vaccinated mice. Furthermore, HF promoted the transcription of genes associated with memory B cell formation and maintenance and maturation of GCs in the draining lymph nodes of vaccinated mice. The increased abundance of IL-10 in HF-preconditioned mice correlated with enhanced GC responses and may promote the establishment of long-lived plasma cells that secrete antigen-specific, high-affinity antibodies. Thus, these data suggest that mimetics of AA starvation could provide an alternative strategy to augment the efficacy of vaccines against dengue and other infectious diseases.
Collapse
Affiliation(s)
- Sumbul Afroz
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shama
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Srikanth Battu
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shaikh Matin
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Sabrina Solouki
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jessica P Elmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gillipsie Minhas
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nooruddin Khan
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India.
| |
Collapse
|
14
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
15
|
Reyes-Pérez IV, Sánchez-Hernández PE, Muñoz-Valle JF, Martínez-Bonilla GE, García-Iglesias T, González-Díaz V, García-Arellano S, Cerpa-Cruz S, Polanco-Cruz J, Ramírez-Dueñas MG. Cytokines (IL-15, IL-21, and IFN-γ) in rheumatoid arthritis: association with positivity to autoantibodies (RF, anti-CCP, anti-MCV, and anti-PADI4) and clinical activity. Clin Rheumatol 2019; 38:3061-3071. [PMID: 31312989 DOI: 10.1007/s10067-019-04681-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/23/2019] [Accepted: 07/05/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial membrane damage and autoantibody production. RA is a heterogeneous disease, where cytokines such as IL-15, IL-21, and IFN-γ have been associated. However, their association with the autoantibodies has not been clearly described. The aim of this study was to evaluate the relationship between the cytokines IL-15, IL-21, and IFN-γ with the autoantibodies (RF, anti-CCP, anti-MCV, and anti-PADI4) in RA and disease activity. METHODOLOGY This study included 153 RA patients and 80 control subjects (CS). The levels of IL-15, IL-21, IFN-γ, anti-CCP, anti-MCV, and anti-PADI4 were quantified by ELISA, whereas RF was quantified by turbidimetry. The disease activity was evaluated by the indices disease activity score 28-erythrocyte sedimentation rate (DAS28-ESR), clinical disease activity index (CDAI), and simple disease activity index (SDAI). RESULTS The serum levels of IL-15, IL-21, and IFN-γ, and autoantibodies were increased in RA patients, compared with CS (p < 0.05). A correlation was found between IL-21 and anti-CCP and anti-MCV (p < 0.05). According to RA evolution, RF, anti-CCP, and anti-MCV had higher levels in early RA. In addition, increased levels of IL-21 were observed in RA seropositive patients (RF/anti-CCP/anti-MCV). The higher levels of both cytokines and autoantibodies were observed in moderate activity, evaluated by the three indices. CONCLUSIONS Our results suggest that the increased soluble levels of IL-15, IL-21, and IFN-γ are involved in the inflammatory network in RA. However, IL-21 serum levels are associated with higher titers of autoantibodies (RF, anti-CCP, and anti-MCV) and IL-15 with moderate activity. Key Points • IL-15, IL-21, and IFN-y are associated with the immunopathology of RA, but not significantly with the evolution of the disease. • RF, anti-CCP, and anti-MCV had higher levels in early than established RA. • IL-21 has an association with RF, anti-CCP, and anti-MCVand, for this reason, could be proposed as a disease biomarker. • Patients with activity moderate of disease showed higher levels of RF, anti-CCP, anti-MCV, and IL-15.
Collapse
Affiliation(s)
- Itzel Viridiana Reyes-Pérez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, No. 950, 44340, Guadalajara, Jalisco, Mexico
| | - Pedro Ernesto Sánchez-Hernández
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, No. 950, 44340, Guadalajara, Jalisco, Mexico.
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Trinidad García-Iglesias
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, No. 950, 44340, Guadalajara, Jalisco, Mexico
| | - Verónica González-Díaz
- Servicio de Reumatología, Hospital Civil Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sergio Cerpa-Cruz
- Servicio de Reumatología, Hospital Civil Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Julissa Polanco-Cruz
- Servicio de Reumatología, Hospital Civil Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - María Guadalupe Ramírez-Dueñas
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, No. 950, 44340, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
16
|
Abstract
Curcumin is a polyphenol natural product isolated from turmeric, interacting with different cellular and molecular targets and, consequently, showing a wide range of pharmacological effects. Recent preclinical and clinical trials have revealed immunomodulatory properties of curcumin that arise from its effects on immune cells and mediators involved in the immune response, such as various T-lymphocyte subsets and dendritic cells, as well as different inflammatory cytokines. Systemic lupus erythematosus (SLE) is an inflammatory, chronic autoimmune-mediated disease characterized by the presence of autoantibodies, deposition of immune complexes in various organs, recruitment of autoreactive and inflammatory T cells, and excessive levels of plasma proinflammatory cytokines. The function and numbers of dendritic cells and T cell subsets, such as T helper 1 (Th1), Th17, and regulatory T cells have been found to be significantly altered in SLE. In the present report, we reviewed the results of in vitro, experimental (pre-clinical), and clinical studies pertaining to the modulatory effects that curcumin produces on the function and numbers of dendritic cells and T cell subsets, as well as relevant cytokines that participate in SLE.
Collapse
|
17
|
Zharkova O, Celhar T, Cravens PD, Satterthwaite AB, Fairhurst AM, Davis LS. Pathways leading to an immunological disease: systemic lupus erythematosus. Rheumatology (Oxford) 2017; 56:i55-i66. [PMID: 28375453 PMCID: PMC5410978 DOI: 10.1093/rheumatology/kew427] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 12/25/2022] Open
Abstract
SLE is a chronic autoimmune disease caused by perturbations of the immune system. The clinical presentation is heterogeneous, largely because of the multiple genetic and environmental factors that contribute to disease initiation and progression. Over the last 60 years, there have been a number of significant leaps in our understanding of the immunological mechanisms driving disease processes. We now know that multiple leucocyte subsets, together with inflammatory cytokines, chemokines and regulatory mediators that are normally involved in host protection from invading pathogens, contribute to the inflammatory events leading to tissue destruction and organ failure. In this broad overview, we discuss the main pathways involved in SLE and highlight new findings. We describe the immunological changes that characterize this form of autoimmunity. The major leucocytes that are essential for disease progression are discussed, together with key mediators that propagate the immune response and drive the inflammatory response in SLE.
Collapse
Affiliation(s)
- Olga Zharkova
- Singapore Immunology Network, 8A Biomedical Grove, Immunos.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Teja Celhar
- Singapore Immunology Network, 8A Biomedical Grove, Immunos
| | | | - Anne B Satterthwaite
- Department of Immunology.,The Rheumatic Diseases Division, Department of Internal Medicine, UT Southwestern Medical Center at Dallas, TX, USA
| | - Anna-Marie Fairhurst
- Singapore Immunology Network, 8A Biomedical Grove, Immunos.,School of Biological Sciences, Nanyang Technological University, Singapore.,Department of Immunology
| | - Laurie S Davis
- The Rheumatic Diseases Division, Department of Internal Medicine, UT Southwestern Medical Center at Dallas, TX, USA
| |
Collapse
|
18
|
Halwani R, Sultana A, Vazquez-Tello A, Jamhawi A, Al-Masri AA, Al-Muhsen S. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma. J Asthma 2017. [PMID: 28635548 DOI: 10.1080/02770903.2017.1283696] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. METHODS Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. RESULTS Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. CONCLUSIONS These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.
Collapse
Affiliation(s)
- Rabih Halwani
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Asma Sultana
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia.,b Prince Naif Health Research Center , King Saud University , Riyadh , Saudi Arabia
| | - Alejandro Vazquez-Tello
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Amer Jamhawi
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Abeer A Al-Masri
- c Department of Physiology , Faculty of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Saleh Al-Muhsen
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
19
|
Yi JS, Russo MA, Massey JM, Juel V, Hobson-Webb LD, Gable K, Raja SM, Balderson K, Weinhold KJ, Guptill JT. B10 Cell Frequencies and Suppressive Capacity in Myasthenia Gravis Are Associated with Disease Severity. Front Neurol 2017; 8:34. [PMID: 28239367 PMCID: PMC5301008 DOI: 10.3389/fneur.2017.00034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disease. The mechanisms for loss of self-tolerance in this disease are not well understood, and recently described regulatory B cell (Breg) subsets have not been thoroughly investigated. B10 cells are a subset of Bregs identified by the production of the immunosuppressive cytokine, interleukin-10 (IL-10). B10 cells are known to strongly inhibit B- and T-cell inflammatory responses in animal models and are implicated in human autoimmunity. In this study, we examined quantitative and qualitative aspects of B10 cells in acetylcholine receptor autoantibody positive MG (AChR-MG) patients and healthy controls. We observed reduced B10 cell frequencies in AChR-MG patients, which inversely correlated with disease severity. Disease severity also affected the function of B10 cells, as B10 cells in the moderate/severe group of MG patients were less effective in suppressing CD4 T-cell proliferation. These results suggest that B10 cell frequencies may be a useful biomarker of disease severity, and therapeutics designed to restore B10 cell frequencies could hold promise as a treatment for this disease through restoration of self-tolerance.
Collapse
Affiliation(s)
- John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center , Durham, NC , USA
| | - Melissa A Russo
- Department of Neurology, Neuromuscular Section, Duke University Medical Center , Durham, NC , USA
| | - Janice M Massey
- Department of Neurology, Neuromuscular Section, Duke University Medical Center , Durham, NC , USA
| | - Vern Juel
- Department of Neurology, Neuromuscular Section, Duke University Medical Center , Durham, NC , USA
| | - Lisa D Hobson-Webb
- Department of Neurology, Neuromuscular Section, Duke University Medical Center , Durham, NC , USA
| | - Karissa Gable
- Department of Neurology, Neuromuscular Section, Duke University Medical Center , Durham, NC , USA
| | - Shruti M Raja
- Department of Neurology, Neuromuscular Section, Duke University Medical Center , Durham, NC , USA
| | - Kristina Balderson
- Department of Neurology, Neuromuscular Section, Duke University Medical Center , Durham, NC , USA
| | - Kent J Weinhold
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center , Durham, NC , USA
| | - Jeffrey T Guptill
- Department of Neurology, Neuromuscular Section, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
20
|
Contribution and underlying mechanisms of CXCR4 overexpression in patients with systemic lupus erythematosus. Cell Mol Immunol 2016; 14:842-849. [PMID: 27665947 DOI: 10.1038/cmi.2016.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/23/2022] Open
Abstract
Aberrant expression of CXCR4 has been indicated to play a role in the pathogenesis of systemic lupus erythematosus (SLE), but the mechanism of CXCR4 dysregulation in SLE is unclear. This study is aimed to explore the clinical significance and possible mechanisms of abnormal CXCR4 expression on B cells from patients with untreated SLE. Expression of CXCR4 on peripheral B cells was determined by flow cytometry and western blotting. Freshly isolated B cells were cultured with exogenous interleukin 21(IL-21) in the presence or absence of CD40 ligand (CD40L) plus anti-IgM antibody (aIgM), and changes in CXCR4 expression were detected. Involvement of phosphatidylinositol 3 kinase (PI3K)/Akt and Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathways was assessed by adding blocking agents Ly294002 and AG490. Since CD63 is reported to mediate endosomal recruitment of CXCR4 and BCL6 is capable of silencing CD63 gene transcription, we also measured BCL6 and CD63 gene transcription with real-time PCR. It was shown that CXCR4 expression on B cells was significantly upregulated in SLE patients, especially in those with lupus nephritis, and was positively correlated with SLE Disease Activity Index scores and negatively with the serum complement 3 levels (P<0.05). Downregulation of CXCR4 by IL-21 was intact. In contrast, a similar effect of aIgM plus CD40L in downregulating CXCR4 expression was defective in SLE patients but was restored by co-stimulation with IL-21 in vitro. Both Ly294002 and AG490 promoted downregulation of surface CXCR4 expression on B cells from SLE patients (P=0.078 and P=0.064). Furthermore, B cells from SLE patients exhibited diminished CD63 mRNA and enhanced BCL6 mRNA expression (both P<0.05). To sum up, CXCR4 was overexpressed on SLE B cells, positively correlating with disease activity and kidney involvement. Overactivation of the PI3K/Akt and JAK/STAT pathways as well as defective CD63 synthesis may contribute to CXCR4 dysregulation in SLE.
Collapse
|
21
|
B cells biology in systemic lupus erythematosus—from bench to bedside. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1111-25. [DOI: 10.1007/s11427-015-4953-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022]
|
22
|
Wu Y, He S, Bai B, Zhang L, Xue L, Lin Z, Yang X, Zhu F, He P, Tang W, Zuo J. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation. Cell Mol Immunol 2015; 13:379-90. [PMID: 25942599 DOI: 10.1038/cmi.2015.13] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 12/31/2022] Open
Abstract
We previously reported that SM934, a water-soluble artemisinin derivative, was a viable treatment in murine lupus models. In the current study, we further investigated the therapeutic effects of a modified dosage regimen of SM934 on lupus-prone MRL/lpr mice and explored its effects on B cell responses, a central pathogenic event in systemic lupus erythematosus (SLE). When orally administered twice-daily, SM934 significantly prolonged the life-span of MRL/lpr mice, ameliorated the lymphadenopathy symptoms and decreased the levels of serum anti-nuclear antibodies (ANAs) and of the pathogenic cytokines IL-6, IL-10 and IL-21. Furthermore, SM934 treatment restored the B-cell compartment in the spleen of MRL/lpr mice by increasing quiescent B cell numbers, maintaining germinal center B-cell numbers, decreasing activated B cell numbers and reducing plasma cell (PC) numbers. Ex vivo, SM934 suppressed the Toll-like receptor (TLR)-triggered activation and proliferation of B cells, as well as antibody secretion. Moreover, the present study demonstrated that SM934 interfered with the B-cell intrinsic pathway by downregulating TLR7/9 mRNA expression, MyD88 protein expression and NF-κB phosphorylation. In human peripheral blood mononuclear cells (PBMCs), consistent with the results in MRL/lpr mice, SM934 inhibited TLR-associated B-cell activation and PC differentiation. In conclusion, a twice daily dosing regimen of SM934 had therapeutic effects on lupus-prone MRL/lpr mice by suppressing B cell activation and plasma cell formation.
Collapse
Affiliation(s)
- Yanwei Wu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bingxin Bai
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Zhang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lu Xue
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Lin
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peilan He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|