1
|
Zhang H, Luan S, Wang F, Yang L, Chen S, Li Z, Wang X, Wang WP, Chen LQ, Wang Y. The Role of Exosomes in Central Immune Tolerance and Myasthenia Gravis. Immunol Invest 2024:1-23. [PMID: 39680429 DOI: 10.1080/08820139.2024.2440772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
BACKGROUND Immune homeostasis plays a crucial role in immunology andis dependent on both central and peripheral tolerance. Centraltolerance and peripheral tolerance occur in the thymus and thesecondary lymphoid tissues, respectively. Tolerance breakdown andimmune regulation defects can lead to autoimmune disorders. In thisreview article, we aimed to describe the role of exosomes inregulating central tolerance and provide a summary of their effectson the pathogenesis, diagnosis, and therapeutic potential inmyasthenia gravis (MG). METHODS Articles for this review wereidentified using the PubMed database. RESULTS As the primarylymphoid organ, the thymus is responsible for building an immunecompetent, yet self-tolerant of T-cell population. Thymic statesinclude thymoma, thymic hyperplasia, and thymic atrophy, which canexert a significant influence on the central immune tolerance andrepresent specific characteristics of MG. Previous studies have foundthat exosomes derived from human thymic epithelial cells carryantigen-presenting molecules and a wide range of tissue restrictedantigens, which may indicate a vital role of thymic exosomes in MG.Besides, exosomal miRNAs and lncRNAs may also play a critical role inthe pathophysiology of MG. CONCLUSION This review provides thetherapeutic and diagnostic potential of exosomes in MG patients.
Collapse
Affiliation(s)
- Hanlu Zhang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Fuqiang Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Yang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Sicheng Chen
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyang Li
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xuyang Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Wen-Ping Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Long-Qi Chen
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yun Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Mu S, Wang W, Liu Q, Ke N, Li H, Sun F, Zhang J, Zhu Z. Autoimmune disease: a view of epigenetics and therapeutic targeting. Front Immunol 2024; 15:1482728. [PMID: 39606248 PMCID: PMC11599216 DOI: 10.3389/fimmu.2024.1482728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Autoimmune diseases comprise a large group of conditions characterized by a complex pathogenesis and significant heterogeneity in their clinical manifestations. Advances in sequencing technology have revealed that in addition to genetic susceptibility, various epigenetic mechanisms including DNA methylation and histone modification play critical roles in disease development. The emerging field of epigenetics has provided new perspectives on the pathogenesis and development of autoimmune diseases. Aberrant epigenetic modifications can be used as biomarkers for disease diagnosis and prognosis. Exploration of human epigenetic profiles revealed that patients with autoimmune diseases exhibit markedly altered DNA methylation profiles compared with healthy individuals. Targeted cutting-edge epigenetic therapies are emerging. For example, DNA methylation inhibitors can rectify methylation dysregulation and relieve patients. Histone deacetylase inhibitors such as vorinostat can affect chromatin accessibility and further regulate gene expression, and have been used in treating hematological malignancies. Epigenetic therapies have opened new avenues for the precise treatment of autoimmune diseases and offer new opportunities for improved therapeutic outcomes. Our review can aid in comprehensively elucidation of the mechanisms of autoimmune diseases and development of new targeted therapies that ultimately benefit patients with these conditions.
Collapse
Affiliation(s)
- Siqi Mu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Wanrong Wang
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Qiuyu Liu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Naiyu Ke
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Li
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feiyang Sun
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jiali Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| |
Collapse
|
3
|
Gerussi A, Cappadona C, Bernasconi DP, Cristoferi L, Valsecchi MG, Carbone M, Invernizzi P, Asselta R. Improving predictive accuracy in primary biliary cholangitis: A new genetic risk score. Liver Int 2024; 44:1952-1960. [PMID: 38619000 DOI: 10.1111/liv.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND AND AIMS Genetic variants influence primary biliary cholangitis (PBC) risk. We established and tested an accurate polygenic risk score (PRS) using these variants. METHODS Data from two Italian cohorts (OldIT 444 cases, 901 controls; NewIT 255 cases, 579 controls) were analysed. The latest international genome-wide meta-analysis provided effect size estimates. The PRS, together with human leukocyte antigen (HLA) status and sex, was included in an integrated risk model. RESULTS Starting from 46 non-HLA genes, 22 variants were selected. PBC patients in the OldIT cohort showed a higher risk score than controls: -.014 (interquartile range, IQR, -.023, .005) versus -.022 (IQR -.030, -.013) (p < 2.2 × 10-16). For genetic-based prediction, the area under the curve (AUC) was .72; adding sex increased the AUC to .82. Validation in the NewIT cohort confirmed the model's accuracy (.71 without sex, .81 with sex). Individuals in the top group, representing the highest 25%, had a PBC risk approximately 14 times higher than that of the reference group (lowest 25%; p < 10-6). CONCLUSION The combination of sex and a novel PRS accurately discriminated between PBC cases and controls. The model identified a subset of individuals at increased risk of PBC who might benefit from tailored monitoring.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Davide Paolo Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
4
|
Mustelin T, Andrade F. Autoimmunity: the neoantigen hypothesis. Front Immunol 2024; 15:1432985. [PMID: 38994353 PMCID: PMC11236689 DOI: 10.3389/fimmu.2024.1432985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Ainslie RJ, Simitsidellis I, Kirkwood PM, Gibson DA. RISING STARS: Androgens and immune cell function. J Endocrinol 2024; 261:e230398. [PMID: 38579776 PMCID: PMC11103679 DOI: 10.1530/joe-23-0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Androgens can modulate immune cell function and may contribute to differences in the prevalence and severity of common inflammatory conditions. Although most immune cells are androgen targets, our understanding of how changes in androgen bioavailability can affect immune responses is incomplete. Androgens alter immune cell composition, phenotype, and activation by modulating the expression and secretion of inflammatory mediators or by altering the development and maturation of immune cell precursors. Androgens are generally associated with having suppressive effects on the immune system, but their impacts are cell and tissue context-dependent and can be highly nuanced even within immune cell subsets. In response to androgens, innate immune cells such as neutrophils, monocytes, and macrophages increase the production of the anti-inflammatory cytokine IL-10 and decrease nitric oxide production. Androgens promote the differentiation of T cell subsets and reduce the production of inflammatory mediators, such as IFNG, IL-4 and IL-5. Additionally, androgens/androgen receptor can promote the maturation of B cells. Thus, androgens can be considered as immunomodulatory agents, but further work is required to understand the precise molecular pathways that are regulated at the intersection between endocrine and inflammatory signals. This narrative review focusses on summarising our current understanding of how androgens can alter immune cell function and how this might affect inflammatory responses in health and disease.
Collapse
Affiliation(s)
- Rebecca J Ainslie
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Ioannis Simitsidellis
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Phoebe M Kirkwood
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Douglas A Gibson
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Wang CM, Jan Wu YJ, Zheng JW, Huang LY, Tan KP, Chen JY. T cell expressions of aberrant gene signatures and Co-inhibitory receptors (Co-IRs) as predictors of renal damage and lupus disease activity. J Biomed Sci 2024; 31:41. [PMID: 38650001 PMCID: PMC11034032 DOI: 10.1186/s12929-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is distinguished by an extensive range of clinical heterogeneity with unpredictable disease flares and organ damage. This research investigates the potential of aberrant signatures on T cell genes, soluble Co-IRs/ligands, and Co-IRs expression on T cells as biomarkers for lupus disease parameters. METHODS Comparative transcriptome profiling analysis of non-renal and end-stage renal disease (ESRD) phenotypes of SLE was performed using CD4 + and CD8 + cDNA microarrays of sorted T cells. Comparing the expression of Co-IRs on T cells and serum soluble mediators among healthy and SLE phenotypes. RESULTS SLE patients with ESRD were downregulated CD38, PLEK, interferon-γ, CX3CR1, FGFBP2, and SLCO4C1 transcripts on CD4 + and CD8 + T cells simultaneously and NKG7, FCRL6, GZMB/H, FcγRIII, ITGAM, Fas ligand, TBX21, LYN, granulysin, CCL4L1, CMKLR1, HLA-DRβ, KIR2DL3, and KLRD1 in CD8 T cells. Pathway enrichment and PPI network analyses revealed that the overwhelming majority of Differentially Expressed Genes (DEGs) have been affiliated with novel cytotoxic, antigen presentation, and chemokine-cell migration signature pathways. CD8 + GZMK + T cells that are varied in nature, including CD161 + Mucosal-associated invariant T (MAIT) cells and CD161- aged-associated T (Taa) cells and CD161-GZMK + GZMB + T cells might account for a higher level of GZMK in CD8 + T cells associated with ESRD. SLE patients have higher TIGIT + , PD1 + , and lower CD127 + cell percentages on CD4 + T cells, higher TIM3 + , TIGIT + , HLA-DR + cell frequency, and lower MFI expression of CD127, CD160 in CD8 T cells. Co-IRs expression in T cells was correlated with soluble PD-1, PDL-2, and TIM3 levels, as well as SLE disease activity, clinical phenotypes, and immune-therapy responses. CONCLUSION The signature of dysfunctional pathways defines a distinct immunity pattern in LN ESRD patients. Expression levels of Co-IRs in peripheral blood T cells and serum levels of soluble PD1/PDL-2/TIM3 can serve as biomarkers for evaluating clinical parameters and therapeutic responses.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan, Republic of China
| | - Yeong-Jian Jan Wu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Jian-Wen Zheng
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Li Yu Huang
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Keng Poo Tan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China.
| |
Collapse
|
7
|
Fu JY, Huang SJ, Wang BL, Yin JH, Chen CY, Xu JB, Chen YL, Xu S, Dong T, Zhou HN, Ma XY, Pu YP, Li H, Yang XJ, Xie LS, Wang ZJ, Luo Q, Shao YX, Ye L, Zong ZR, Wei XD, Xiao WW, Niu ST, Liu YM, Xu HP, Yu CQ, Duan SZ, Zheng LY. Lysine acetyltransferase 6A maintains CD4 + T cell response via epigenetic reprogramming of glucose metabolism in autoimmunity. Cell Metab 2024; 36:557-574.e10. [PMID: 38237601 DOI: 10.1016/j.cmet.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Augmented CD4+ T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4+ T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4+ T cells. KAT6A is required for the proliferation and differentiation of proinflammatory CD4+ T cell subsets in vitro, and mice with KAT6A-deficient CD4+ T cells are less susceptible to experimental autoimmune encephalomyelitis and colitis. Mechanistically, KAT6A orchestrates the abundance of histone acetylation at the chromatin where several glycolytic genes are located, thus affecting glucose metabolic reprogramming and subsequent CD4+ T cell responses. Treatment with KAT6A small-molecule inhibitors in mouse models shows high therapeutic value for targeting KAT6A in autoimmunity. Our study provides novel insights into the epigenetic programming of immunometabolism and suggests potential therapeutic targets for patients with autoimmunity.
Collapse
Affiliation(s)
- Jia-Yao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Shi-Jia Huang
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Bao-Li Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jun-Hao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Chang-Yu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jia-Bao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yan-Lin Chen
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Ting Dong
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hao-Nan Zhou
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Xin-Yi Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yi-Ping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hui Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Xiu-Juan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Li-Song Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Zhi-Jun Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Qi Luo
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yan-Xiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Lei Ye
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Zi-Rui Zong
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Xin-Di Wei
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Wan-Wen Xiao
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Shu-Tong Niu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yi-Ming Liu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - He-Ping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Science, Westlake University, Hangzhou 310024, China
| | - Chuang-Qi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| | - Ling-Yan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| |
Collapse
|
8
|
Burke M, Wong K, Talyansky Y, Mhatre SD, Mitchell C, Juran CM, Olson M, Iyer J, Puukila S, Tahimic CGT, Christenson LK, Lowe M, Rubinstein L, Shirazi-Fard Y, Sowa MB, Alwood JS, Ronca AE, Paul AM. Sexual dimorphism during integrative endocrine and immune responses to ionizing radiation in mice. Sci Rep 2024; 14:7334. [PMID: 38409284 PMCID: PMC10897391 DOI: 10.1038/s41598-023-33629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/16/2023] [Indexed: 02/28/2024] Open
Abstract
Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.
Collapse
Affiliation(s)
- Marissa Burke
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelly Wong
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuli Talyansky
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Siddhita D Mhatre
- KBR, Houston, TX, 77002, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Carol Mitchell
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Cassandra M Juran
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Makaila Olson
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Janani Iyer
- KBR, Houston, TX, 77002, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Universities Space Research Association, Mountain View, CA, 94043, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
| | - Candice G T Tahimic
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Universities Space Research Association, Mountain View, CA, 94043, USA
- The Joseph Sagol Neuroscience Center, Sheba Research Hospital, Ramat Gan 52621, Israel
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
- Departments of Obstetrics & Gynecology, Wake Forest Medical School, Winston-Salem, NC, USA.
| | - Amber M Paul
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA.
| |
Collapse
|
9
|
Rekvig OP. SLE classification criteria: Is "The causality principle" integrated and operative - and do the molecular and genetical network, on which criteria depend on, support the definition of SLE as "a one disease entity" - A theoretical discussion. Autoimmun Rev 2023; 22:103470. [PMID: 37884202 DOI: 10.1016/j.autrev.2023.103470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Molecular and cellular aspects of the autoimmune pathophysiology in SLE is linked to the "The causality principle". SLE Classification Criteria identify per definition disease measures (here: synonymous with classification criteria), but not diagnostic criteria within a classical framework. These two mostly theoretical criteria collections represent a salient conflict between phenomenology and the causality principle - between disease measures and molecular interactions that promote such measures, in other words their cause(s). Essentially, each criterion evolves from immunogenic and inflammatory signals - some are interconnected, some are not. Disparate signals instigated by disparate causes. These may promote clinically heterogenous SLE cohorts with respect to organ affection, autoimmunity, and disease course. There is today no concise measures or arguments that settle whether SLE cohorts evolve from one decisive etiological factor (homogenous cohorts), or if disparate patho-biological factors promote SLE (heterogenous cohorts). Current SLE cohorts are not ideal substrates to serve as study objects if the research aims are to describe etiology, and molecular interactions that cause - and link - primary and secondary pathophysiological events together - events that account for early and progressive SLE. We have to develop SLE criteria allowing us to identify definable categories of SLE in order to describe etiology, pathophysiology and diagnostic criteria of delimitated SLE versions. In this regard, the causality principle is central to define dominant etiologies of individual SLE categories, and subsequent and consequent down-stream diagnostic disease measures. In this sense, we may whether we like it or not identify different SLE categories like "genuine SLE" and "SLE-like non-SLE" syndromes. Many aspects of this problem are thoroughly discussed in this study.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
10
|
Romagnani P, Kitching AR, Leung N, Anders HJ. The five types of glomerulonephritis classified by pathogenesis, activity and chronicity (GN-AC). Nephrol Dial Transplant 2023; 38:ii3-ii10. [PMID: 37218714 PMCID: PMC10635795 DOI: 10.1093/ndt/gfad067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 05/24/2023] Open
Abstract
Glomerulonephritis (GN) is a diverse group of immune-mediated disorders. Currently, GN is classified largely by histological patterns that are difficult to understand and teach, and most importantly, do not indicate treatment choices. Indeed, altered systemic immunity is the primary pathogenic process and the key therapeutic target in GN. Here, we apply a conceptual framework of immune-mediated disorders to GN guided by immunopathogenesis and hence immunophenotyping: (i) infection-related GN require pathogen identification and control; (ii) autoimmunity-related GN, defined by presence of autoantibodies and (iii) alloimmunity-related GN in transplant recipients both require the suppression of adaptive immunity in lymphoid organs and bone marrow; (iv) autoinflammation-related GN, e.g. inborn errors of immunity diagnosed by genetic testing, requires suppression of single cytokine or complement pathways; and (v) Monoclonal gammopathy-related GN requires B or plasma cell clone-directed therapy. A new GN classification should include disease category, immunological activity to tailor the use of the increasing number of immunomodulatory drugs, and chronicity to trigger standard chronic kidney disease care including the evolving spectrum of cardio-renoprotective drugs. Certain biomarkers allow diagnosis and the assessment of immunological activity and disease chronicity without kidney biopsy. The use of these five GN categories and a therapy-focused GN classification is likely to overcome some of the existing hurdles in GN research, management and teaching by reflecting disease pathogenesis and guiding the therapeutic approach.
Collapse
Affiliation(s)
- Paola Romagnani
- Department of Experimental and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
- Departments of Nephrology and Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Nelson Leung
- Divisions of Nephrology and Hypertension and of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig- Maximilians-University Munich, Munich, Germany
| |
Collapse
|
11
|
Acencio ML, Ostaszewski M, Mazein A, Rosenstiel P, Aden K, Mishra N, Andersen V, Sidiropoulos P, Banos A, Filia A, Rahmouni S, Finckh A, Gu W, Schneider R, Satagopam V. The SYSCID map: a graphical and computational resource of molecular mechanisms across rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease. Front Immunol 2023; 14:1257321. [PMID: 38022524 PMCID: PMC10646502 DOI: 10.3389/fimmu.2023.1257321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic inflammatory diseases (CIDs), including inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are thought to emerge from an impaired complex network of inter- and intracellular biochemical interactions among several proteins and small chemical compounds under strong influence of genetic and environmental factors. CIDs are characterised by shared and disease-specific processes, which is reflected by partially overlapping genetic risk maps and pathogenic cells (e.g., T cells). Their pathogenesis involves a plethora of intracellular pathways. The translation of the research findings on CIDs molecular mechanisms into effective treatments is challenging and may explain the low remission rates despite modern targeted therapies. Modelling CID-related causal interactions as networks allows us to tackle the complexity at a systems level and improve our understanding of the interplay of key pathways. Here we report the construction, description, and initial applications of the SYSCID map (https://syscid.elixir-luxembourg.org/), a mechanistic causal interaction network covering the molecular crosstalk between IBD, RA and SLE. We demonstrate that the map serves as an interactive, graphical review of IBD, RA and SLE molecular mechanisms, and helps to understand the complexity of omics data. Examples of such application are illustrated using transcriptome data from time-series gene expression profiles following anti-TNF treatment and data from genome-wide associations studies that enable us to suggest potential effects to altered pathways and propose possible mechanistic biomarkers of treatment response.
Collapse
Affiliation(s)
- Marcio Luis Acencio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Vibeke Andersen
- Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Prodromos Sidiropoulos
- Rheumatology and Clinical Immunology, Medical School, University of Crete, Heraklion, Greece
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB-FORTH), Heraklion, Greece
| | - Aggelos Banos
- Autoimmunity and Inflammation Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Anastasia Filia
- Autoimmunity and Inflammation Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Souad Rahmouni
- Unit of Animal Genomics, GIGA-Institute, University of Liège, Liège, Belgium
| | - Axel Finckh
- Rheumatology Division, Geneva University Hospital (HUG), Geneva, Switzerland
- Geneva Center for Inflammation Research (GCIR), University of Geneva (UNIGE), Geneva, Switzerland
| | - Wei Gu
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
12
|
Kuang C, Li D, Zhou X, Lin H, Zhang R, Xu H, Huang S, Tang F, Liu F, Tang D, Dai Y. Proteomic analysis of lysine 2-hydroxyisobutyryl in SLE reveals protein modification alteration in complement and coagulation cascades and platelet activation Pathways. BMC Med Genomics 2023; 16:247. [PMID: 37845672 PMCID: PMC10577913 DOI: 10.1186/s12920-023-01656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Post-translational modifications (PTMs) are considered to be an important factor in the pathogenesis of Systemic lupus erythematosus (SLE). Lysine 2-hydroxyisobutyryl (Khib), as an emerging post-translational modification of proteins, is involved in some important biological metabolic activities. However, there are poor studies on its correlation with diseases, especially SLE. OBJECTIVE We performed quantitative, comparative, and bioinformatic analysis of Khib proteins in Peripheral blood mononuclear cells (PBMCs) of SLE patients and PBMCs of healthy controls. Searching for pathways related to SLE disease progression and exploring the role of Khib in SLE. METHODS Khib levels in SLE patients and healthy controls were compared based on liquid chromatography tandem mass spectrometry, then proteomic analysis was conducted. RESULTS Compared with healthy controls, Khib in SLE patients was up-regulated at 865 sites of 416 proteins and down-regulated at 630 sites of 349 proteins. The site abundance, distribution and function of Khib protein were investigated further. Bioinformatics analysis showed that Complement and coagulation cascades and Platelet activation in immune-related pathways were significantly enriched, suggesting that differentially modified proteins among them may affect SLE. CONCLUSION Khib in PBMCs of SLE patients was significantly up- or down-regulated compared with healthy controls. Khib modification of key proteins in the Complement and coagulation cascades and Platelet activation pathways affects platelet activation and aggregation, coagulation functions in SLE patients. This result provides a new direction for the possible significance of Khib in the pathogenesis of SLE patients.
Collapse
Affiliation(s)
- Chaoying Kuang
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Dandan Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
- Experimental Center, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangdong, 518118, China
| | - Xianqing Zhou
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Hua Lin
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Ruohan Zhang
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Huixuan Xu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Shaoying Huang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Fang Tang
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Fanna Liu
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China.
| | - Yong Dai
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China.
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China.
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.
| |
Collapse
|
13
|
Ma S, Jiang W, Zhang X, Liu W. Insights into the pathogenic role of neutrophils in systemic lupus erythematosus. Curr Opin Rheumatol 2023; 35:82-88. [PMID: 36255744 DOI: 10.1097/bor.0000000000000912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Although dysregulated adaptive immune response has been considered as the main culprit for systemic lupus erythematosus (SLE), emerging studies have indicated that innate immunity, functioning upstream of adaptive immunity, acts as an important trigger of autoimmune diseases and promotes SLE development. Here, we have reviewed the most recent findings to highlight the influence of neutrophils on SLE pathogenesis. RECENT FINDINGS Neutrophils participate in SLE development mainly via promoting self-antigen exposure and autoantibody production, advocating the release of type I interferons (IFNs) and other pro-inflammatory cytokines, and mediating systemic tissue injury. A recent study revealed that neutrophil ferroptosis exerts a strong pathogenic effect in SLE, and that dysregulated innate immunity is adequate to disrupt the homeostasis of immune tolerance. SUMMARY Insights into the pathogenic role of neutrophils in SLE will contribute to a more comprehensive understanding of this disease and may propose novel clinical targets for accurate diagnosis and precision medicine.
Collapse
Affiliation(s)
- Shiliang Ma
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| | - Wanlan Jiang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| |
Collapse
|
14
|
The critical importance of epigenetics in autoimmune-related skin diseases. Front Med 2023; 17:43-57. [PMID: 36811762 DOI: 10.1007/s11684-022-0980-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 02/24/2023]
Abstract
Autoimmune-related skin diseases are a group of disorders with diverse etiology and pathophysiology involved in autoimmunity. Genetics and environmental factors may contribute to the development of these autoimmune disorders. Although the etiology and pathogenesis of these disorders are poorly understood, environmental variables that induce aberrant epigenetic regulations may provide some insights. Epigenetics is the study of heritable mechanisms that regulate gene expression without changing DNA sequences. The most important epigenetic mechanisms are DNA methylation, histone modification, and noncoding RNAs. In this review, we discuss the most recent findings regarding the function of epigenetic mechanisms in autoimmune-related skin disorders, including systemic lupus erythematosus, bullous skin diseases, psoriasis, and systemic sclerosis. These findings will expand our understanding and highlight the possible clinical applications of precision epigenetics approaches.
Collapse
|
15
|
Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun 2022:102956. [DOI: 10.1016/j.jaut.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
16
|
Liu L, Hu L, Long H, Zheng M, Hu Z, He Y, Gao X, Du P, Zhao H, Yu D, Lu Q, Zhao M. LncRNA IL21-AS1 interacts with hnRNPU protein to promote IL21 overexpression and aberrant differentiation of Tfh cells in systemic lupus erythematosus. Clin Transl Med 2022; 12:e1117. [PMID: 36447054 PMCID: PMC9708910 DOI: 10.1002/ctm2.1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The aberrant differentiation of T follicular helper (Tfh) cells plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanism of regulating Tfh cells differentiation remains unclear. Long noncoding RNAs (lncRNAs) act as important regulators in the processes of innate and adaptive immune response. Whether lncRNAs are involved in regulating Tfh cell differentiation and autoimmune responses need to be further identified. METHODS The characters and functions of human IL21-AS1 and its mouse homologous lncRNA (mIl21-AS) were investigated by a series of biochemical assays and cell transfection assay. mIl21-AS1 regulating humoral immune response in vivo was explored by keyhole limpet haemocyanin (KLH) and chronic graft versus host disease (cGVHD) model. RESULTS Human IL21-AS1 and its mouse homologous lncRNA (mIl21-AS) were identified and cloned. We uncovered that IL21-AS1 was highly expressed in CD4+ T cells of SLE patients and Tfh cells, which promoted differentiation of Tfh cells. Mechanistically, IL21-AS1 bound heterogeneous nuclear ribonucleoprotein U and recruited acetyltransferases CREB-binding protein to the promoter of IL21, leading to the transcriptional activation of IL21 and Tfh cells differentiation through increasing Histone H3 acetylation level on IL21 promoter. Moreover, Tfh proportion and antibodies production were significantly increased in mIl21-AS knock-in mice immunized with KLH. mIl21-AS1 overexpression also exacerbated the lupus-like phenotype in cGVHD mice model. CONCLUSIONS Our results demonstrate that IL21-AS1 activates IL21 transcription via epigenetic mechanism to promote germinal centre response, adding insight into the molecular regulation of autoimmune pathogenesis and providing a novel target for SLE treatment.
Collapse
Affiliation(s)
- Limin Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Department of Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Longyuan Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Haojun Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Meiling Zheng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Ye He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Xiaofei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Pei Du
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Hongjun Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| |
Collapse
|
17
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Altered meningeal immunity contributing to the autism-like behavior of BTBR T Itpr3/J mice. Brain Behav Immun Health 2022; 26:100563. [DOI: 10.1016/j.bbih.2022.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
|
19
|
Feng X, Li X, Liu N, Hou N, Sun X, Liu Y. Glutaminolysis and CD4+ T-cell metabolism in autoimmunity: From pathogenesis to therapy prospects. Front Immunol 2022; 13:986847. [PMID: 36211442 PMCID: PMC9537545 DOI: 10.3389/fimmu.2022.986847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
The recent increase in the pathogenesis of autoimmune diseases revealed the critical role of T cells. Investigation into immunometabolism has drawn attention to metabolic processes other than glycometabolism. In rapidly dividing immune cells, including T lymphocytes, the consumption of glutamine is similar to or higher than that of glucose even though glucose is abundant. In addition to contributing to many processes critical for cellular integrity and function, glutamine, as the most abundant amino acid, was recently regarded as an immunomodulatory nutrient. A better understanding of the biological regulation of glutaminolysis in T cells will provide a new perspective for the treatment of autoimmune diseases. In this review, we summarized the current knowledge of glutamine catabolism in CD4+ T-cell subsets of autoimmunity. We also focused on potential treatments targeting glutaminolysis in patients with autoimmune diseases. Knowledge of immunometabolism is constantly evolving, and glutamine metabolism may be a potential therapeutic target for autoimmune disease therapy.
Collapse
Affiliation(s)
- Xiaojin Feng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xue Li
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Yongping Liu,
| |
Collapse
|
20
|
Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomed Pharmacother 2022; 151:113158. [PMID: 35644116 DOI: 10.1016/j.biopha.2022.113158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Autoimmune diseases are caused by the overactivity of the immune system towards self-constituents. Risk factors of autoimmune diseases are multiple and include genetic, epigenetic, environmental, and psychological. Autoimmune chronic inflammatory bowel diseases, including celiac and inflammatory diseases (Crohn's disease and ulcerative colitis), constitute a significant health problem worldwide. Besides the complexity of the symptoms of these diseases, their treatments have only been palliative. Numerous investigations showed that natural phytochemicals could be promising strategies to fight against these autoimmune diseases. In this respect, plant-derived natural compounds such as flavonoids, phenolic acids, and terpenoids exhibited significant effects against three autoimmune diseases affecting the intestine, particularly bowel diseases. This review focuses on the role of natural compounds obtained from medicinal plants in modulating inflammatory auto-immune diseases of the intestine. It covers the most recent literature related to the effect of these natural compounds in the treatment and prevention of auto-immune diseases of the intestine.
Collapse
|
21
|
Yadav S, Singh S, Mandal P, Tripathi A. Immunotherapies in the treatment of immunoglobulin E‑mediated allergy: Challenges and scope for innovation (Review). Int J Mol Med 2022; 50:95. [PMID: 35616144 DOI: 10.3892/ijmm.2022.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Immunoglobulin E (IgE)‑mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergen‑specific immunotherapy (AIT) is the only therapeutic strategy that can provide a longer‑lasting symptomatic and clinical break from medications in IgE‑mediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatment‑associated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergen‑specific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'component‑resolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
22
|
Liu Y, Wang Y, Zhang C, Feng Q, Hou M, Peng J, Hu X, Wang S. HDAC3 single-nucleotide polymorphism rs2530223 is associated with increased susceptibility and severity of primary immune thrombocytopenia. Int J Lab Hematol 2022; 44:875-882. [PMID: 35484920 DOI: 10.1111/ijlh.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disorder characterized by a low platelet count and increased risk of bleeding. We previously reported that low-dose chidamide, a histone deacetylase (HDAC) inhibitor, restores immune tolerance in patients with ITP. This study aimed to evaluate the association of a single-nucleotide polymorphism (SNP) rs2530223 in the HDAC3 gene with susceptibility to ITP and its clinical features. METHODS Patients with ITP and age-matched healthy participants were recruited for this case-control study. Genotyping of the HDAC3 rs2530223 polymorphism was performed using MassARRAY platform. RESULTS Individuals with T allele of HDAC3 rs2530223 exhibited a 1.472-fold increased risk of ITP susceptibility (OR 1.472; 95% CI 1.100-1.969; p = .009), while ones with the TT genotype under the codominant and recessive models, and the TC/TT genotypes under the dominant model all revealed increased risk of ITP susceptibility (dominant odds ratio[OR] 1.965; 95% CI: 1.046-3.656; p = .036; codominant OR 2.264; 95% CI 1.175-4.360; p = .015; and recessive OR 1.512; 95% CI 1.028-2.224; p = .036, respectively). Regarding platelet counts in ITP patients, we observed that the TC/TT genotypes exhibited a 3.932-fold increased risk for platelet (PLT) <30 × 109 /L (OR 3.932; 95% CI 1.426-10.842; p = .008). CONCLUSION This study indicates that HDAC3 rs2530223 may be an important genetic factor related to ITP susceptibility and platelet count in ITP patients, providing new perspectives on disease progression, new therapeutic targets, and severity prediction.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Hu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Valdes AZ. Immunological tolerance and autoimmunity. TRANSLATIONAL AUTOIMMUNITY 2022:325-345. [DOI: 10.1016/b978-0-12-822564-6.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Contribution of Dysregulated DNA Methylation to Autoimmunity. Int J Mol Sci 2021; 22:ijms222111892. [PMID: 34769338 PMCID: PMC8584328 DOI: 10.3390/ijms222111892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs are known regulators of gene expression and genomic stability in cell growth, development, and differentiation. Because epigenetic mechanisms can regulate several immune system elements, epigenetic alterations have been found in several autoimmune diseases. The purpose of this review is to discuss the epigenetic modifications, mainly DNA methylation, involved in autoimmune diseases in which T cells play a significant role. For example, Rheumatoid Arthritis and Systemic Lupus Erythematosus display differential gene methylation, mostly hypomethylated 5′-C-phosphate-G-3′ (CpG) sites that may associate with disease activity. However, a clear association between DNA methylation, gene expression, and disease pathogenesis must be demonstrated. A better understanding of the impact of epigenetic modifications on the onset of autoimmunity will contribute to the design of novel therapeutic approaches for these diseases.
Collapse
|
25
|
Micheli C, Parma A, Tani C, Di Bello D, Falaschi A, Chiaramonte A, Testi S, Mosca M, Scarpato R. UCTD and SLE patients show increased levels of oxidative and DNA damage together with an altered kinetics of DSB repair. Mutagenesis 2021; 36:429-436. [PMID: 34559237 DOI: 10.1093/mutage/geab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/23/2021] [Indexed: 01/13/2023] Open
Abstract
Immunological tolerance is a critical feature of the immune system; its loss might lead to an abnormal response of lymphocytes causing autoimmune diseases. One of the most important groups belonging to autoimmune disorders is the connective tissue diseases (CTD). CTD are classified among systemic rheumatic diseases and include pathologies such as systemic lupus erythematosus (SLE), and undifferentiated CTD (UCTD). In this study, we evaluated oxidative and genome damage in peripheral blood lymphocytes from patients with SLE and UCTD, further classified on the basis of disease activity and the presence/absence of a serological profile. Oxidative damage was evaluated in cell membrane using the fluorescent fatty acid analogue BODIPY 581/591 C11. The percentage of oxidised lymphocytes in both SLE and UCTD patients was higher than in the control group, and the oxidative stress correlated positively with both disease activity and autoantibody profile. The γH2AX focus assay was used to quantify the presence of spontaneous double strand breaks (DSBs), and to assess the abilities of DSBs repair system after T cells were treated with mitomycin C (MMC). Subjects with these autoimmune disorders showed a higher number of γH2AX foci than healthy controls, but no correlation with diseases activity and presence of serological profile was observed. In addition, patients displayed an altered response to MMC-induced DSBs, which led their peripheral cells to greatly increase apoptosis. Taken together our results confirmed an interplay among oxidative stress, DNA damage and impaired DNA repair, which are directly correlated to the aggressiveness and clinical progression of the diseases. We propose the evaluation of these molecular markers to better characterize SLE and UCTD, aiming to improve the treatment plan and the quality of the patients' life.
Collapse
Affiliation(s)
- Consuelo Micheli
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Alice Parma
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Chiara Tani
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Domenica Di Bello
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Aurora Falaschi
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Anna Chiaramonte
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Serena Testi
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Marta Mosca
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Roberto Scarpato
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| |
Collapse
|
26
|
Patel AM, Liu YS, Davies SP, Brown RM, Kelly DA, Scheel-Toellner D, Reynolds GM, Stamataki Z. The Role of B Cells in Adult and Paediatric Liver Injury. Front Immunol 2021; 12:729143. [PMID: 34630404 PMCID: PMC8495195 DOI: 10.3389/fimmu.2021.729143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
B lymphocytes are multitasking cells that direct the immune response by producing pro- or anti-inflammatory cytokines, by presenting processed antigen for T cell activation and co-stimulation, and by turning into antibody-secreting cells. These functions are important to control infection in the liver but can also exacerbate tissue damage and fibrosis as part of persistent inflammation that can lead to end stage disease requiring a transplant. In transplantation, immunosuppression increases the incidence of lymphoma and often this is of B cell origin. In this review we bring together information on liver B cell biology from different liver diseases, including alcohol-related and metabolic fatty liver disease, autoimmune hepatitis, primary biliary and primary sclerosing cholangitis, viral hepatitis and, in infants, biliary atresia. We also discuss the impact of B cell depletion therapy in the liver setting. Taken together, our analysis shows that B cells are important in the pathogenesis of liver diseases and that further research is necessary to fully characterise the human liver B cell compartment.
Collapse
Affiliation(s)
- Arzoo M. Patel
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Yuxin S. Liu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Scott P. Davies
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rachel M. Brown
- Department of Histopathology, Queen Elizabeth Hospital, Birmingham Women’s and Children’s National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Deirdre A. Kelly
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Dagmar Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Gary M. Reynolds
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Hamamoto Filho PT, Fragoso G, Sciutto E, Fleury A. Inflammation in neurocysticercosis: clinical relevance and impact on treatment decisions. Expert Rev Anti Infect Ther 2021; 19:1503-1518. [PMID: 33794119 DOI: 10.1080/14787210.2021.1912592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Neurocysticercosis is caused by the localization of Taenia solium larvae in the central nervous system. The disease remains endemic in most countries of Latin America, Asia and Africa. While major improvements have been made in its diagnosis and treatment, uncertainties persist regarding the clinical implications and treatment of the inflammatory reaction associated with the disease. AREAS COVERED In this review, based on PubMed searches, the authors describe the characteristics of the immune-inflammatory response in patients with neurocysticercosis, its clinical implications and the treatment currently administered. The dual role of inflammation (participating in both, the death of the parasite, and the precipitation of serious complications) is discussed. New therapeutic strategies of potential interest are presented. EXPERT OPINION Inflammatory reaction is the main pathogenic mechanism associated to neurocysticercosis. Its management is mainly based on corticosteroids administration. This strategy had improved prognostic of patients as it allows for the control of most of the inflammatory complications. On the other side, it might be involved in the persistence of parasites in some patients, despite cysticidal treatment, due to its immunosuppressive properties. New strategies are needed to improve therapeutical management, particularly in the severest presentations.
Collapse
Affiliation(s)
- Pedro T Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, UNESP-Univ Estadual Paulista, Botucatu Medical School, Botucatu, Brazil
| | - Gladis Fragoso
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Edda Sciutto
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Agnès Fleury
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Neurocysticercosis Clinic, Instituto Nacional de Neurología Y Neurocirugía, Ciudad de México, Mexico, mexico.,Neuroinflammation Unit, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México/INNN/Facultad de Medicina-UNAM, Ciudad de México, Mexico
| |
Collapse
|
28
|
El-Shebiny EM, Zahran ES, Shoeib SA, Habib ES. Bridging autoinflammatory and autoimmune diseases. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.1186/s43162-021-00040-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autoimmunity is used to cause by impairment of adaptive immunity alone, whereas autoinflammatory was originally defined as a consequence of unregulated innate immunity. So, the pathogenetic mechanisms of autoimmune diseases were well-thought-out to be mediated by B and T lymphocytes. Whereas, autoinflammatory diseases were defined as unprovoked times of inflammation with the absence of a high titre of autoantibodies.
Main body of the abstract
Autoimmune and autoinflammatory diseases were split into two groups, but considering the similarities, it can be considered as only one group of diseases with a large immune pathological and clinical spectrum which involves at one end pure autoimmune diseases and the other pure autoinflammatory diseases.
Conclusions
We can safely conclude that there is bridging between autoinflammatory and autoimmune diseases.
Collapse
|
29
|
Zhao M, Wang Z, Yang M, Ding Y, Zhao M, Wu H, Zhang Y, Lu Q. The Roles of Orphan G Protein-Coupled Receptors in Autoimmune Diseases. Clin Rev Allergy Immunol 2021; 60:220-243. [PMID: 33411320 DOI: 10.1007/s12016-020-08829-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors in nature and mediate the effects of a variety of extracellular signals, such as hormone, neurotransmitter, odor, and light signals. Due to their involvement in a broad range of physiological and pathological processes and their accessibility, GPCRs are widely used as pharmacological targets of treatment. Orphan G protein-coupled receptors (oGPCRs) are GPCRs for which no natural ligands have been found, and they not only play important roles in various physiological functions, such as sensory perception, reproduction, development, growth, metabolism, and responsiveness, but are also closely related to many major diseases, such as central nervous system (CNS) diseases, metabolic diseases, and cancer. Recently, many studies have reported that oGPCRs play increasingly important roles as key factors in the occurrence and progression of autoimmune diseases. Therefore, oGPCRs are likely to become potential therapeutic targets and may provide a breakthrough in the study of autoimmune diseases. In this article, we focus on reviewing the recent research progress and clinical treatment effects of oGPCRs in three common autoimmune diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE), shedding light on novel strategies for treatments.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheyu Wang
- University of South China, Hengyang, Hunan, China.,Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Ding
- Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China.,Hainan Province Dermatol Disease Hospital, Haikou, Hainan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China. .,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, 310058, China. .,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
30
|
Liu L, Hu L, Yang L, Jia S, Du P, Min X, Wu J, Wu H, Long H, Lu Q, Zhao M. UHRF1 downregulation promotes T follicular helper cell differentiation by increasing BCL6 expression in SLE. Clin Epigenetics 2021; 13:31. [PMID: 33568199 PMCID: PMC7874639 DOI: 10.1186/s13148-021-01007-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background Transcription factor B cell lymphoma 6 (BCL6) is a master regulator of T follicular helper (Tfh) cells, which play a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanisms by which BCL6 expression is regulated are poorly understood. Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an important epigenetic factor that regulates DNA methylation and histone modifications. In the present study, we assessed whether UHRF1 can regulate BCL6 expression and influence the differentiation and proliferation of Tfh cells. Results Compared to healthy controls, the mean fluorescence intensity of UHRF1 (UHRF1-MFI) in Tfh cells from SLE patients was significantly downregulated, whereas that of BCL6 (BCL6-MFI) was significantly upregulated. In vitro, UHRF1 knockdown led to BCL6 overexpression and promoted Tfh cell differentiation. In contrast, UHRF1 overexpression led to BCL6 downregulation and decreased Tfh cell differentiation. In vivo, conditional UHRF1 gene knockout (UHRF1-cKO) in mouse T cells revealed that UHRF1 depletion can enhance the proportion of Tfh cells and induce an augmented GC reaction in mice treated with NP-keyhole limpet hemocyanin (NP-KLH). Mechanistically, UHRF1 downregulation can decrease DNA methylation and H3K27 trimethylation (H3K27me3) levels in the BCL6 promoter region of Tfh cells. Conclusions Our results demonstrated that UHRF1 downregulation leads to increased BCL6 expression by decreasing DNA methylation and H3K27me3 levels, promoting Tfh cell differentiation in vitro and in vivo. This finding reveals the role of UHRF1 in regulating Tfh cell differentiation and provides a potential target for SLE therapy.
Collapse
Affiliation(s)
- Limin Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Longyuan Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Linxuan Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Sujie Jia
- Department of Pharmacy, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Pei Du
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Xiaoli Min
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Jiali Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Hai Long
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China. .,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China.
| |
Collapse
|
31
|
Ali MY, Akter Z, Mei Z, Zheng M, Tania M, Khan MA. Thymoquinone in autoimmune diseases: Therapeutic potential and molecular mechanisms. Biomed Pharmacother 2020; 134:111157. [PMID: 33370631 DOI: 10.1016/j.biopha.2020.111157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (AUDs) are a multifactorial disease, among which rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis are more prevalent. Several anti-inflammatory, biologics, and AUD-modifying drugs are found effective against them, but their repeated use are associated with various adverse effects. In this review article, we have focused on the regulation of inflammatory molecules, molecular signaling pathways, immune cells, and epigenetics by natural product thymoquinone on AUDs. Studies indicate that thymoquinone can regulate inflammatory molecules including interferons, interleukins, tumor necrosis factor-α (TNF-α), oxidative stress, regulatory T cells, and various signaling pathways such as nuclear factor kappa beta (NF-κβ), janus kinase/signal transduction and activator of transcription (JAK-STAT), mitogen-activated protein kinase (MAPK) at the molecular level and epigenetic alteration. As these molecules and signaling pathways with defective immune function play an important role in AUD development, controlling these molecules and deregulated molecular mechanism is a significant feature of AUD therapeutics. Interestingly thymoquinone is reported to possess all these potential. This article reviewed the deregulated mechanism of AUDs, and the action of thymoquinone on inflammatory molecules, immune cells, signaling pathways, and epigenetic machinery. Thymoquinone can be regarded as a potential drug candidate for AUD treatment.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Zakia Akter
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Mousumi Tania
- Research Division, Nature Study Society of Bangladesh, Dhaka, Bangladesh; Division of Molecular Cancer Biology, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
32
|
Elhag DA, Kumar M, Al Khodor S. Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. Int J Mol Sci 2020; 22:ijms22010125. [PMID: 33374418 PMCID: PMC7795494 DOI: 10.3390/ijms22010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disorder characterized by a complex interaction between the host immune system and various environmental factors in genetically susceptible individuals. Genome-wide association studies (GWAS) identified different T1D risk and protection alleles, however, little is known about the environmental factors that can be linked to these alleles. Recent evidence indicated that, among those environmental factors, dysbiosis (imbalance) in the gut microbiota may play a role in the pathogenesis of T1D, affecting the integrity of the gut and leading to systemic inflammation and auto-destruction of the pancreatic β cells. Several studies have identified changes in the gut microbiome composition in humans and animal models comparing T1D subjects with controls. Those changes were characterized by a higher abundance of Bacteroides and a lower abundance of the butyrate-producing bacteria such as Clostridium clusters IV and XIVa. The mechanisms by which the dysbiotic bacteria and/or their metabolites interact with the genome and/or the epigenome of the host leading to destructive autoimmunity is still not clear. As T1D is a multifactorial disease, understanding the interaction between different environmental factors such as the gut microbiome, the genetic and the epigenetic determinants that are linked with the early appearance of autoantibodies can expand our knowledge about the disease pathogenesis. This review aims to provide insights into the interaction between the gut microbiome, susceptibility genes, epigenetic factors, and the immune system in the pathogenesis of T1D.
Collapse
|
33
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
34
|
Epigenetics, pregnancy and autoimmune rheumatic diseases. Autoimmun Rev 2020; 19:102685. [PMID: 33115633 DOI: 10.1016/j.autrev.2020.102685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
Autoimmune rheumatic diseases (ARDs) are chronic conditions with a striking female predominance, frequently affecting women of childbearing age. Sex hormones and gender dimorphism of immune response are major determinants in the multifactorial pathogenesis of ARDs, with significant implications throughout reproductive life. Particularly, pregnancy represents a challenging condition in the context of autoimmunity, baring profound hormonal and immunologic changes, which are responsible for the bi-directional interaction between ARDs outcome and pregnancy course. In the latest years epigenetics has proven to be an important player in ARDs pathogenesis, finely modulating major immune functions and variably tuning the significant gender effects in autoimmunity. Additionally, epigenetics is a recognised influencer of the physiological dynamic modifications occurring during pregnancy. Still, there is currently little evidence on the pregnancy-related epigenetic modulation of immune response in ARDs patients. This review aims to overview the current knowledge of the role of epigenetics in the context of autoimmunity, as well as during physiologic and pathologic pregnancy, discussing under-regarded aspects in the interplay between ARDs and pregnancy pathology. The outline of a new ongoing European project will be presented.
Collapse
|
35
|
Dent EL, Broome HJ, Sasser JM, Ryan MJ. Blood pressure and albuminuria in a female mouse model of systemic lupus erythematosus: impact of long-term high salt consumption. Am J Physiol Regul Integr Comp Physiol 2020; 319:R448-R454. [PMID: 32813539 DOI: 10.1152/ajpregu.00070.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension and kidney involvement are common in patients with autoimmune disease. Sodium intake is linked to hypertension in both human and animal studies. Evidence suggests that dietary salt may be an important environmental factor that promotes autoimmune activity. Therefore, we hypothesized that a long-term high-salt diet would accelerate the progression of autoimmunity, hypertension, and albuminuria during systemic lupus erythematosus (SLE), an autoimmune disease that predominantly affects young women and has a high prevalence of hypertension and renal disease. To test this hypothesis, an established experimental model of SLE (female NZBWF1 mice) that develops hypertension and renal disease was used. SLE mice were fed a high-salt (4% NaCl) or normal (0.4% NaCl) diet for 24 wk beginning at 10 wk of age and ending at 34 wk of age, a time by which female NZBWF1 mice typically have hypertension and exhibit signs of renal disease. Plasma anti-dsDNA autoantibodies were measured as an indicator of active SLE disease, and urinary albumin was monitored longitudinally as a marker of renal disease. Arterial pressure was measured in conscious, freely moving mice at 34 wk of age. Urinary endothelin-1 (ET-1) excretion, renal endothelin A and B receptor protein expression, and renal mRNA expression of NOS1, NOS2, NOX2, MCP-1, TNF-α, serum- and glucocorticoid-regulated kinase 1, and interleukin-2 (IL-2) were assessed to determine the impact on gene products commonly altered by a high-salt diet. SLE mice fed a high-salt diet had increased circulating autoantibodies, but the high-salt diet did not significantly affect albuminuria or arterial pressure. Urinary ET-1 excretion was increased, whereas renal endothelin A receptor and IL-2 expression were decreased in response to a high-salt diet. These data suggest that a chronic high-salt diet may not accelerate cardiovascular and renal consequences commonly associated with SLE.
Collapse
Affiliation(s)
- Elena L Dent
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Hanna J Broome
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,G.V (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi
| |
Collapse
|
36
|
Abstract
Immune tolerance is defined by an active state of immune system unresponsiveness to foreign and self-antigens. Loss of immune tolerance to self-antigens and the resulting overexpression of autoantibodies can lead to tissue injury and development of various autoimmune diseases. In drug development, the goal of newly emerging immune tolerance therapies is to treat autoimmune disorders by restoring the immunoregulatory capacity of the immune system. Development of immune tolerance targets is initiated with the establishment of pharmacological efficacy in relevant disease animal models, followed by their stepwise translation to humans. This review discusses the major challenges to developing tolerance inducing pharmaceutical drugs, including the selection of appropriate disease models to establish efficacy, adequate, and acceptable in vitro and in vivo safety assessments, relevant biomarkers of human safety and efficacy, and finally, some regulatory guidelines to successfully develop immune tolerance therapeutics. [Box: see text].
Collapse
Affiliation(s)
- Zaher A Radi
- Pfizer Worldwide Research, Development and Medical, 2253Pfizer Inc, Cambridge, MA, USA
| | - Thomas A Wynn
- Pfizer Worldwide Research, Development and Medical, 2253Pfizer Inc, Cambridge, MA, USA
| |
Collapse
|
37
|
Petzl-Erler ML. Beyond the HLA polymorphism: A complex pattern of genetic susceptibility to pemphigus. Genet Mol Biol 2020; 43:e20190369. [PMID: 32639508 PMCID: PMC7341728 DOI: 10.1590/1678-4685-gmb-2019-0369] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Pemphigus is a group of autoimmune bullous skin diseases that result in
significant morbidity. As for other multifactorial autoimmune disorders,
environmental factors may trigger the disease in genetically susceptible
individuals. The goals of this review are to summarize the state of knowledge
about the genetic variation that may affect the susceptibility and pathogenesis
of pemphigus vulgaris and pemphigus foliaceus – both the endemic and the
sporadic forms –, to compare and discuss the possible meaning of the
associations reported, and to propose recommendations for new research
initiatives. Understanding how genetic variants translate into pathogenic
mechanisms and phenotypes remains a mystery for most of the polymorphisms that
contribute to disease susceptibility. However, genetic studies provide a strong
foundation for further developments in this field by generating testable
hypotheses. Currently, results still have limited influence on disease
prevention and prognosis, drug development, and clinical practice, although the
perspectives for future applications for the benefit of patients are
encouraging. Recommendations for the continued advancement of our understanding
as to the impact of genetic variation on pemphigus include these partially
overlapping goals: (1) Querying the functional effect of genetic variants on the
regulation of gene expression through their impact on the nucleotide sequence of
cis regulatory DNA elements such as promoters and enhancers, the splicing of
RNA, the structure of regulatory RNAs and proteins, binding of these regulatory
molecules to regulatory DNA elements, and alteration of epigenetic marks; (2)
identifying key cell types and cell states that are implicated in pemphigus
pathogenesis and explore their functional genomes; (3) integrating structural
and functional genomics data; (4) performing disease-progression longitudinal
studies to disclose the causal relationships between genetic and epigenetic
variation and intermediate disease phenotypes; (5) understanding the influence
of genetic and epigenetic variation in the response to treatment and the
severity of the disease; (6) exploring gene-gene and genotype-environment
interactions; (7) developing improved pemphigus-prone and non-prone animal
models that are appropriate for research about the mechanisms that link
genotypes to pemphigus. Achieving these goals will demand larger samples of
patients and controls and multisite collaborations.
Collapse
Affiliation(s)
- Maria Luiza Petzl-Erler
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
38
|
Li X, Zhong T, Tang R, Wu C, Xie Y, Liu F, Zhou Z. PD-1 and PD-L1 Expression in Peripheral CD4/CD8+ T Cells Is Restored in the Partial Remission Phase in Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5814248. [PMID: 32236416 DOI: 10.1210/clinem/dgaa130] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Partial remission (PR) in type 1 diabetes (T1D) is accompanied by downregulation of the immune response. Programmed cell death-1 (PD-1) and its ligand (PD-L1) are important immunosuppressive molecules, but their changes in the PR phase are unclear. OBJECTIVE We investigated the dynamic changes of PD-1/PD-L1 expression on T cells around the PR phase in T1D. METHODS Ninety-eight T1D patients were recruited cross-sectionally and grouped according to PR status into nonremitters (individuals who did not undergo PR during the disease course; n = 39), pre-PR (n = 15), mid-PR (n = 30), and post-PR (n = 14) subgroups. PR was defined according to C-peptide level ≥300 pmol/L or index of insulin-adjusted hemoglobin A1c ≤9 as recommended. Among all the 98 patients, 29 newly diagnosed individuals were prospectively followed up for 1 year. The dynamic changes of PD-1/PD-L1 expression, frequency of regulatory T cells (Tregs) and IL-35+ Tregs among peripheral CD4/CD8+ T cells were determined. RESULTS PD-1/PD-L1 on CD4+/CD8+ T cells showed a dynamic change around the PR phase: lowest in pre-PR phase, restored in mid-PR phase, and declined again in post-PR phase. Conversely, this pattern did not occur for nonremitters. Notably, PD-1 expression on CD8+ T cells in mid-PR was positively correlated with the length of the PR phase. The percentages of circulating Tregs and IL-35+ Tregs showed no relation to PR. CONCLUSIONS The PR phase is associated with restoration of PD-1/PD-L1 on CD4+ and CD8+ T cells, suggesting that PD-1/PD-L1 may be a potential target for prolonging this phase in T1D.
Collapse
Affiliation(s)
- Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Ting Zhong
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Rong Tang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Chao Wu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Yuting Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Fang Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
39
|
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with non-suppurative destruction of the intrahepatic bile ducts. The interplay of genetics and environmental triggers contributes to the onset of the disease and subsequently results in cholestasis and progressive fibrosis. Recently, genome-wide association studies (GWAS) have identified multiple genes influencing the susceptibility to PBC in HLA and non-HLA loci. However, it is estimated that the known risk variants merely account for no more than 20% of the heritability of PBC and causes of the remaining heritability remain uncertain. Increasing evidence suggests that the presence of epigenetic abnormalities may explain the "missing heritability" that cannot be captured by GWAS. Among these epigenetic mechanisms, DNA methylation, histone modification, and noncoding RNAs (i.e. miRNA and lncRNA) are involved in the pathogenesis of PBC. Additionally, telomere dysregulation in biliary epithelial cells (BECs) may play a role in disease onset, whereas a deficiency in sex chromosome and skewed gene expression in the X chromosome may to some extent explain the female dominance in PBC.
Collapse
|
40
|
Liao J, Luo S, Yang M, Lu Q. Overexpression of CXCR5 in CD4+ T cells of SLE patients caused by excessive SETD3. Clin Immunol 2020; 214:108406. [DOI: 10.1016/j.clim.2020.108406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
|
41
|
Zhang J, Chen C, Fu H, Yu J, Sun Y, Huang H, Tang Y, Shen N, Duan Y. MicroRNA-125a-Loaded Polymeric Nanoparticles Alleviate Systemic Lupus Erythematosus by Restoring Effector/Regulatory T Cells Balance. ACS NANO 2020; 14:4414-4429. [PMID: 32203665 DOI: 10.1021/acsnano.9b09998] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Systemic lupus erythematosus (SLE), a common lethal autoimmune disease, is characterized by effector/regulatory T cells imbalance. Current therapies are either inefficient or have severe side effects. MicroRNA-125a (miR-125a) can stabilize Treg-mediated self-tolerance by targeting effector programs, but it is significantly downregulated in peripheral T cells of patients with SLE. Therefore, overexpression of miR-125a may have therapeutic potential to treat SLE. Considering the stability and targeted delivery of miRNA remains a major challenge in vivo, we constructed a monomethoxy (polyethylene glycol)-poly(d,l-lactide-co-glycolide)-poly(l-lysine) (mPEG-PLGA-PLL) nanodelivery system to deliver miR-125a into splenic T cells. Results demonstrate that miR-125a-loaded mPEG-PLGA-PLL (PEALmiR-125a) nanoparticles (NPs) exhibit good biocompatibility and protect miR-125a from degradation, thereby prolonging the circulatory time of miRNA in vivo. In addition, PEALmiR-125a NPs are preferentially enriched in a pathological spleen and efficiently deliver miR-125a into the splenic T cells in SLE mice models. The PEALmiR-125a NPs treatment significantly alleviates SLE disease progression by reversing the imbalance of effector/regulatory T cells. Collectively, the PEALmiR-125a NPs show excellent therapeutic efficacy and safety, which may provide an effective treatment for SLE.
Collapse
Affiliation(s)
- Jiali Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hui Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
42
|
Kotyla PJ, Islam MA. MicroRNA (miRNA): A New Dimension in the Pathogenesis of Antiphospholipid Syndrome (APS). Int J Mol Sci 2020; 21:ijms21062076. [PMID: 32197340 PMCID: PMC7139820 DOI: 10.3390/ijms21062076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, endogenous RNA molecules that play a significant role in the regulation of gene expression as well as cell development, differentiation, and function. Recent data suggest that these small molecules are responsible for the regulation of immune responses. Therefore, they may act as potent modulators of the immune system and play an important role in the development of several autoimmune diseases. Antiphospholipid syndrome (APS) is an autoimmune systemic disease characterized by venous and/or arterial thromboses and/or recurrent fetal losses in the presence of antiphospholipid antibodies (aPLs). Several lines of evidence suggest that like other autoimmune disorders, miRNAs are deeply involved in the pathogenesis of APS, interacting with the function of innate and adaptive immune responses. In this review, we characterize miRNAs in the light of having a functional role in the immune system and autoimmune responses focusing on APS. In addition, we also discuss miRNAs as potential biomarkers and target molecules in treating APS.
Collapse
Affiliation(s)
- Przemysław J. Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Faculty in Katowice, Medical University of Silesia, 40-635 Katowice, Poland
- Correspondence: (P.J.K.); (M.A.I.)
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (P.J.K.); (M.A.I.)
| |
Collapse
|
43
|
Zhang L, Wu H, Zhao M, Lu Q. Identifying the differentially expressed microRNAs in autoimmunity: A systemic review and meta-analysis. Autoimmunity 2020; 53:122-136. [DOI: 10.1080/08916934.2019.1710135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lian Zhang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| |
Collapse
|
44
|
Wu H, Chang C, Lu Q. The Epigenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:185-207. [PMID: 32445096 DOI: 10.1007/978-981-15-3449-2_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a life-threatening autoimmune disease that is characterized by dysregulated dendritic cells, T and B cells, and abundant autoantibodies. The pathogenesis of lupus remains unclear. However, increasing evidence has shown that environment factors, genetic susceptibilities, and epigenetic regulation contribute to abnormalities in the immune system. In the past decades, several risk gene loci have been identified, such as MHC and C1q. However, genetics cannot explain the high discordance of lupus incidence in homozygous twins. Environmental factor-induced epigenetic modifications on immune cells may provide some insight. Epigenetics refers to inheritable changes in a chromosome without altering DNA sequence. The primary mechanisms of epigenetics include DNA methylation, histone modifications, and non-coding RNA regulations. Increasing evidence has shown the importance of dysregulated epigenetic modifications in immune cells in pathogenesis of lupus, and has identified epigenetic changes as potential biomarkers and therapeutic targets. Environmental factors, such as drugs, diet, and pollution, may also be the triggers of epigenetic changes. Therefore, this chapter will summarize the up-to-date progress on epigenetics regulation in lupus, in order to broaden our understanding of lupus and discuss the potential roles of epigenetic regulations for clinical applications.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Kronzer VL, Crowson CS, Sparks JA, Myasoedova E, Davis JM. Comorbidities As Risk Factors for Rheumatoid Arthritis and Their Accrual After Diagnosis. Mayo Clin Proc 2019; 94:2488-2498. [PMID: 31759675 PMCID: PMC6907158 DOI: 10.1016/j.mayocp.2019.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To determine the prevalence of comorbidities in rheumatoid arthritis (RA), discover which comorbidities might predispose to developing RA, and identify which comorbidities are more likely to develop after RA. PATIENTS AND METHODS We performed a case-control study using a single-center biobank, identifying 821 cases of RA (143 incident RA) between January 1, 2009, and February 28, 2018, defined as 2 diagnosis codes plus a disease-modifying antirheumatic drug. We matched each case to 3 controls based on age and sex. Participants self-reported the presence and onset of 74 comorbidities. Logistic regression models adjusted for race, body mass index, education, smoking, and Charlson comorbidity index. RESULTS After adjustment for confounders and multiple comparisons, 11 comorbidities were associated with RA, including epilepsy (odds ratio [OR], 2.13; P=.009), obstructive sleep apnea (OR, 1.49; P=.001), and pulmonary fibrosis (OR, 4.63; P<.001), but cancer was not. Inflammatory bowel disease (OR, 3.82; P<.001), type 1 diabetes (OR, 3.07; P=.01), and venous thromboembolism (VTE; OR, 1.80; P<.001) occurred more often before RA diagnosis compared with controls. In contrast, myocardial infarction (OR, 3.09; P<.001) and VTE (OR, 1.84; P<.001) occurred more often after RA diagnosis compared with controls. Analyses restricted to incident RA cases and their matched controls mirrored these results. CONCLUSION Inflammatory bowel disease, type 1 diabetes, and VTE might predispose to RA development, whereas cardiovascular disease, VTE, and obstructive sleep apnea can result from RA. These findings have important implications for RA pathogenesis, early detection, and recommended screening.
Collapse
Affiliation(s)
| | - Cynthia S Crowson
- Division of Rheumatology, Mayo Clinic, Rochester, MN; Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Jeffrey A Sparks
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA
| | | | - John M Davis
- Division of Rheumatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
46
|
Pal Y, Bandyopadhyay N, Pal RS, Ahmed S, Bandopadhyay S. Perspective and Potential of A2A and A3 Adenosine Receptors as Therapeutic Targets for the Treatment of Rheumatoid Arthritis. Curr Pharm Des 2019; 25:2859-2874. [DOI: 10.2174/1381612825666190710111658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 01/10/2023]
Abstract
Adenosine is a purine nucleoside which is an effective controller of inflammation. The inflammatory effect of adenosine is expressed via its four receptor subtypes viz. A1, A2A, A2B and A3. The various inflammatory conditions including rheumatoid arthritis (RA) are initiated by adenosine receptors of which A2A and A3 play a vital role. RA primarily is an auto-immune disorder which is manifested as chronic inflammation in the synovial lining of joints. In order to develop an effective treatment, the role of cytokines, IL–1, TNF-α and IL–6 is crucial. Besides, the knowledge of PI3K-PKB/Akt and NF-kB signaling pathway is also important to understand the antiinflammatory targets. Methotrexate along with various other molecules like, NSAIDs and DMARDs are presently used as treatment lines for controlling RA. The enhanced knowledge of the preclinical stages and pathogenesis along with recent potent therapeutics raises the hopes that RA can be prevented in the near future.
Collapse
Affiliation(s)
- Yogendra Pal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Nabamita Bandyopadhyay
- Molecular Biology Division, National Institute of Malarial Research (NIMR), Dwarka, New Delhi, Delhi 110077, India
| | - Rashmi S. Pal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Sarfaraz Ahmed
- Global Institute of Pharmaceutical Education and Research, Kashipur, Udham Singh Nagar, Uttarakhand 244713, India
| | - Shantanu Bandopadhyay
- Faculty of Pharmacy, Naraina Vidya Peeth Group of Institutions, Panki, Kanpur, Uttar Pradesh 208020, India
| |
Collapse
|
47
|
Gonzalez Badillo FE, Zisi Tegou F, Abreu MM, Masina R, Sha D, Najjar M, Wright SH, Bayer AL, Korpos É, Pugliese A, Molano RD, Tomei AA. CCL21 Expression in β-Cells Induces Antigen-Expressing Stromal Cell Networks in the Pancreas and Prevents Autoimmune Diabetes in Mice. Diabetes 2019; 68:1990-2003. [PMID: 31371518 PMCID: PMC6754241 DOI: 10.2337/db19-0239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/21/2019] [Indexed: 12/31/2022]
Abstract
Tumors induce tolerance toward their antigens by producing the chemokine CCL21, leading to the formation of tertiary lymphoid organs (TLOs). Ins2-CCL21 transgenic, nonobese diabetic (NOD) mice express CCL21 in pancreatic β-cells and do not develop autoimmune diabetes. We investigated by which mechanisms CCL21 expression prevented diabetes. Ins2-CCL21 mice develop TLOs by 4 weeks of age, consisting of naive CD4+ T cells compartmentalized within networks of CD45-gp38+CD31- fibroblastic reticular cell (FRC)-like cells. Importantly, 12-week-old Ins2-CCL21 TLOs contained FRC-like cells with higher contractility, regulatory, and anti-inflammatory properties and enhanced expression of β-cell autoantigens compared with nontransgenic NOD TLOs found in inflamed islets. Consistently, transgenic mice harbored fewer autoreactive T cells and a higher proportion of regulatory T cells in the islets. Using adoptive transfer and islet transplantation models, we demonstrate that TLO formation in Ins2-CCL21 transgenic islets is critical for the regulation of autoimmunity, and although the effect is systemic, the induction is mediated locally likely by lymphocyte trafficking through TLOs. Overall, our findings suggest that CCL21 promotes TLOs that differ from inflammatory TLOs found in type 1 diabetic islets in that they resemble lymph nodes, contain FRC-like cells expressing β-cell autoantigens, and are able to induce systemic and antigen-specific tolerance leading to diabetes prevention.
Collapse
Affiliation(s)
- Freddy E Gonzalez Badillo
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Flavia Zisi Tegou
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Maria M Abreu
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Riccardo Masina
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Divya Sha
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Mejdi Najjar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Shane H Wright
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Éva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion, Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
48
|
Ding S, Zhang Q, Luo S, Gao L, Huang J, Lu J, Chen J, Zeng Q, Guo A, Zeng J, Lu Q. BCL-6 suppresses miR-142-3p/5p expression in SLE CD4 + T cells by modulating histone methylation and acetylation of the miR-142 promoter. Cell Mol Immunol 2019; 17:474-482. [PMID: 31431691 PMCID: PMC7192839 DOI: 10.1038/s41423-019-0268-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
The reduced expression of miR-142-3p/5p in CD4+ T cells of SLE patients caused T cell hyperactivity and B cell hyperstimulation. This study aimed to investigate the mechanisms of regulating miR-142-3p/5p expression in SLE CD4+ T cells. The BCL-6 expression was significantly increased in SLE CD4+ T cells compared with normal controls, and the BCL-6 expression was inversely correlated with miR-142-3p/5p expression. BCL-6 suppresses the expression of miR-142-3p/5p by increasing H3K27me3 level and reducing H3K9/K14ac levels in SLE CD4+ T cells. BCL-6 regulates histone modifications in miR-142 promoter by recruiting EZH2 and HDAC5. Furthermore, we observed significantly decreased CD40L, ICOS, and IL-21 expression levels in SLE CD4+ T cells with BCL-6 interference, and obviously reduced autoantibody IgG production in autologous B cells co-cultured with BCL-6 inhibited SLE CD4+ T cells. Our study found that increased BCL-6 up-regulates H3K27me3 and down-regulates H3K9/14ac at miR-142 promoter in SLE CD4+ T cells. These factors induce a declination in miR-142-3p/5p expression, consequently resulting in CD4+ T cell hyperactivity.
Collapse
Affiliation(s)
- Shu Ding
- Department of Dermatology, The Third Xiangya Hospital of Central South University, #138 Tong Zipo Road, 410013, Changsha, Hunan, China
| | - Qing Zhang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, #139 Renmin Middle Road, 410011, Changsha, Hunan, China
| | - Shuangyan Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, #139 Renmin Middle Road, 410011, Changsha, Hunan, China
| | - Lihua Gao
- Department of Dermatology, The Third Xiangya Hospital of Central South University, #138 Tong Zipo Road, 410013, Changsha, Hunan, China
| | - Jinhua Huang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, #138 Tong Zipo Road, 410013, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital of Central South University, #138 Tong Zipo Road, 410013, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, The Third Xiangya Hospital of Central South University, #138 Tong Zipo Road, 410013, Changsha, Hunan, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, #138 Tong Zipo Road, 410013, Changsha, Hunan, China
| | - Aiyuan Guo
- Department of Dermatology, The Third Xiangya Hospital of Central South University, #138 Tong Zipo Road, 410013, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, #138 Tong Zipo Road, 410013, Changsha, Hunan, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, #139 Renmin Middle Road, 410011, Changsha, Hunan, China.
| |
Collapse
|
49
|
Transcriptional and epigenetic regulation of immune tolerance: roles of the NF-κB family members. Cell Mol Immunol 2019; 16:315-323. [PMID: 30872809 DOI: 10.1038/s41423-019-0202-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Immune tolerance is a highly regulated state and involves diverse mechanisms. Central to the induction of tolerance is the targeted modulation of T-cell activities (both effector and regulatory), in which transcription factors play a significant role. The nuclear factor kappa-B (NF-κB) family is a family of transcription factors that not only are critically involved in diverse T-cell responses but also are regulated by many mechanisms to maintain tolerance and T-cell homeostasis. NF-κB, as a transcription factor, has been extensively studied in recent decades, and the molecular mechanisms that regulate NF-κB activities have been well documented. However, recent studies have revealed exciting new roles for NF-κB; in addition to its transcriptional activity, NF-κB can also activate diverse epigenetic mechanisms that mediate extensive chromatin remodeling of target genes to regulate T-cell activities. In this review article, we highlight recent discoveries and emerging opportunities in targeting NF-κB family members as well as their associated chromatin modifiers in the induction of immune tolerance and in the clinical treatment of immune diseases.
Collapse
|
50
|
Regulation of Inflammation in Autoimmune Disease. J Immunol Res 2019; 2019:7403796. [PMID: 30944837 PMCID: PMC6421792 DOI: 10.1155/2019/7403796] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023] Open
|