1
|
Li Y, Song L, Yan X, Chi Y, Hu Y, Wang J, Robeldo D, Mukiibi R, Chen S. Orchestrated immune responses to Mycobacterium marinum natural infection in tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110145. [PMID: 39837399 DOI: 10.1016/j.fsi.2025.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Mycobacterium marinum is a major pathogen in aquaculture, posing a substantial threat to the health and sustainability of tongue sole (Cynoglossus semilaevis) farming. This study investigated the genetic basis of immune response in tongue sole by comparing transcriptome profiles of liver and spleen tissues from symptomatic (susceptible) and healthy (resistant) individuals during a natural M. marinum outbreak. Transcriptomic analyses identified differentially expressed genes and enriched pathways related to immune responses. Key genes, including atp6ap1, gpi, and idh3a, were found to be crucial in immune response to M. marinum infection, involved in immune processes such as signal transduction, antigen processing, and metabolic pathways. Protein-protein interaction networks highlighted central hub genes such as nedd8, jun and junb, which play pivotal roles in immune regulation. These findings provide insights into the orchestrated immune responses to mycobacteriosis, which can inform selective breeding strategies for disease-resistant tongue sole strains. This is the first comprehensive transcriptome analysis of M. marinum natural infection in tongue sole, offering valuable data for future research and disease management in aquaculture.
Collapse
Affiliation(s)
- Yangzhen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Limin Song
- Tianjin Fisheries Research Institute, Tianjin, 300221, China
| | - Xu Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yong Chi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yuanri Hu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jialin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Diego Robeldo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom; Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom; Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport, Shropshire, TF10 8NB, United Kingdom.
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Lai CL, Santner-Nanan B, Maltese PJ, Ong CKS, Palmer DJ, Campbell DE, Makrides M, Gold M, Nanan R, Prescott SL, Hsu PS. Impaired calcium influx underlies skewed T helper cell differentiation in children with IgE-mediated food allergies. Allergy 2025; 80:513-524. [PMID: 39250135 DOI: 10.1111/all.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Reasons for Th2 skewing in IgE-mediated food allergies remains unclear. Clinical observations suggest impaired T cell activation may drive Th2 responses evidenced by increased atopic manifestations in liver transplant patients on tacrolimus (a calcineurin inhibitor). We aimed to assess differentiation potential, T cell activation and calcium influx of naïve CD4+ T cells in children with IgE-mediated food allergies. METHODS Peripheral blood mononuclear cells from infants in the Starting Time for Egg Protein (STEP) Trial were analyzed by flow cytometry to assess Th1/Th2/Treg development. Naïve CD4+ T cells from children with and without food allergies were stimulated for 7 days to assess Th1/Th2/Treg transcriptional factors and cytokines. Store operated calcium entry (SOCE) was measured in children with and without food allergies. The effect of tacrolimus on CD4+ T cell differentiation was assessed by treating stimulated naïve CD4+ T cells from healthy volunteers with tacrolimus for 7 days. RESULTS Egg allergic infants had impaired development of IFNγ+ Th1 cells and FoxP3+ transitional CD4+ T cells compared with non-allergic infants. This parallels reduced T-bet, IFNγ and FoxP3 expression in naïve CD4+ T cells from food allergic children after in vitro culture. SOCE of naïve CD4+ T cells was impaired in food allergic children. Naïve CD4+ T cells treated with tacrolimus had reduced IFNγ, T-bet, and FoxP3, but preserved IL-4 expression. CONCLUSIONS In children with IgE-mediated food allergies, dysregulation of T helper cell development is associated with impaired SOCE, which underlies an intrinsic impairment in Th1 and Treg differentiation. Along with tacrolimus-induced Th2 skewing, this highlights an important role of SOCE/calcineurin pathway in T helper cell differentiation.
Collapse
Affiliation(s)
- C L Lai
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Food Allergy Research (CFAR), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - B Santner-Nanan
- Sydney Medical School Nepean and Charles Perkins Centre Nepean, The University of Sydney, Kingswood, New South Wales, Australia
| | - P J Maltese
- Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
| | - C K S Ong
- Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
| | - D J Palmer
- Centre for Food Allergy Research (CFAR), Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - D E Campbell
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Food Allergy Research (CFAR), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - M Makrides
- South Australian Health and Medical Research Institute, SAHMRI Women and Kids, Adelaide, South Australia, Australia
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - M Gold
- Discipline of Paediatrics, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - R Nanan
- Sydney Medical School Nepean and Charles Perkins Centre Nepean, The University of Sydney, Kingswood, New South Wales, Australia
| | - S L Prescott
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- The ORIGINS Project, Telethon Kids Institute, The University of Western Australia, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Nova Institute for Health, Baltimore, Maryland, USA
| | - P S Hsu
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Food Allergy Research (CFAR), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
3
|
He Y, Wang Y, Wang X, Deng S, Wang D, Huang Q, Lyu G. Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1431200. [PMID: 39735641 PMCID: PMC11671271 DOI: 10.3389/fendo.2024.1431200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex endocrine disorder with various contributing factors. Understanding the molecular mechanisms underlying PCOS is essential for developing effective treatments. This study aimed to identify hub genes and investigate potential molecular mechanisms associated with PCOS through a combination of bioinformatics analysis and Mendelian randomization (MR). Methods This study employed bioinformatics analysis in conjunction with MR methods using publicly available databases to identify hub genes. We employed complementary MR methods, including inverse-variance weighted (IVW), to determine the causal relationship between the hub genes and PCOS. Sensitivity analyses were performed to ensure results reliability. Enrichment analysis and immune infiltration analysis were further conducted to assess the role and mechanisms of hub genes in the development of PCOS. Additionally, we validated hub gene expression in both an animal model and serum samples from PCOS patients using qRT-PCR. Results IVW analysis revealed significant associations between 10 hub genes and the risk of PCOS: CD93 [P= 0.004; OR 95%CI= 1.150 (1.046, 1.264)], CYBB [P= 0.013; OR 95%CI= 1.650 (1.113,2.447)], DOCK8 [P= 0.048; OR 95%CI= 1.223 (1.002,1.494)], IRF1 [P= 0.036; OR 95%CI= 1.343 (1.020,1.769)], MBOAT1 [P= 0.033; OR 95%CI= 1.140 (1.011,1.285)], MYO1F [P= 0.012; OR 95%CI= 1.325 (1.065,1.649)], NLRP1 [P= 0.020; OR 95%CI= 1.143 (1.021,1.280)], NOD2 [P= 0.002; OR 95%CI= 1.139 (1.049,1.237)], PIK3R1 [P= 0.040; OR 95%CI= 1.241 (1.010,1.526)], PTER [P= 0.015; OR 95%CI= 0.923 (0.866,0.984)]. No heterogeneity and pleiotropy were observed. Hub genes mainly enriched in positive regulation of cytokine production and TNF signaling pathway, and exhibited positive or negative correlations with different immune cells in individuals with PCOS. qRT-PCR validation in both the rat model and patient serum samples confirmed hub gene expression trends consistent with our combined analysis results. Conclusions Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.
Collapse
Affiliation(s)
- Yifang He
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanli Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiali Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Departments of Medical Imaging, Quanzhou Medical College, Quanzhou, China
| | - Shuangping Deng
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Dandan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingqing Huang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
5
|
Duval C, Bourreau E, Warrick E, Bastien P, Nouveau S, Bernerd F. A chronic pro-inflammatory environment contributes to the physiopathology of actinic lentigines. Sci Rep 2024; 14:5256. [PMID: 38438410 PMCID: PMC10912228 DOI: 10.1038/s41598-024-53990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Actinic lentigines (AL) or age spots, are skin hyperpigmented lesions associated with age and chronic sun exposure. To better understand the physiopathology of AL, we have characterized the inflammation response in AL of European and Japanese volunteers. Gene expression profile showed that in both populations, 10% of the modulated genes in AL versus adjacent non lesional skin (NL), i.e. 31 genes, are associated with inflammation/immune process. A pro-inflammatory environment in AL is strongly suggested by the activation of the arachidonic acid cascade and the plasmin pathway leading to prostaglandin production, along with the decrease of anti-inflammatory cytokines and the identification of inflammatory upstream regulators. Furthermore, in line with the over-expression of genes associated with the recruitment and activation of immune cells, immunostaining on skin sections revealed a significant infiltration of CD68+ macrophages and CD4+ T-cells in the dermis of AL. Strikingly, investigation of infiltrated macrophage subsets evidenced a significant increase of pro-inflammatory CD80+/CD68+ M1 macrophages in AL compared to NL. In conclusion, a chronic inflammation, sustained by pro-inflammatory mediators and infiltration of immune cells, particularly pro-inflammatory M1 macrophages, takes place in AL. This pro-inflammatory loop should be thus broken to normalize skin and improve the efficacy of age spot treatment.
Collapse
Affiliation(s)
| | | | - Emilie Warrick
- L'Oréal Research and Innovation, Aulnay Sous Bois, France
| | | | | | | |
Collapse
|
6
|
Opoka-Winiarska V, Winiarska N, Lejman M, Gdak M, Gosik K, Lewandowski F, Niedźwiedzka-Rystwej P, Grywalska E. DOCK8 Mutation in Patient with Juvenile Idiopathic Arthritis and Sjögren's Syndrome. Int J Mol Sci 2024; 25:2259. [PMID: 38396937 PMCID: PMC10888949 DOI: 10.3390/ijms25042259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigated the association between autoimmunity and immunodeficiency in pediatric patients, focusing on the case of a 15-year-old female diagnosed with juvenile idiopathic arthritis (JIA) and secondary Sjögren's syndrome. The patient presented with a variety of symptoms, including joint pain, bronchial asthma, leukopenia, and skin lesions. Genetic testing revealed a de novo mutation in the DOCK8 gene, associated with DOCK8 deficiency, a condition usually associated with immunodeficiencies. The clinical course, diagnostic pathway, and treatment history are detailed, highlighting the importance of molecular diagnostics in understanding the genetic basis of rheumatic diseases. This case highlights the need to consider innate immune errors in patients with multiple diseases or atypical symptoms of rheumatic diseases. Furthermore, the study highlights the importance of targeted treatment, including genetic counseling, to improve patient outcomes. The observed association between autoimmunity and immune deficiency reinforces the importance of molecular testing in elucidating the causes of previously idiopathic rheumatic diseases, contributing to improved patient care and quality of life.
Collapse
Affiliation(s)
- Violetta Opoka-Winiarska
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Natalia Winiarska
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Małgorzata Gdak
- University Children’s Hospital in Lublin, 20-093 Lublin, Poland;
| | - Krzysztof Gosik
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (K.G.); (E.G.)
| | - Filip Lewandowski
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (K.G.); (E.G.)
| |
Collapse
|
7
|
Khatiwada A, Yilmaz AS, Wolf BJ, Pietrzak M, Chung D. multi-GPA-Tree: Statistical approach for pleiotropy informed and functional annotation tree guided prioritization of GWAS results. PLoS Comput Biol 2023; 19:e1011686. [PMID: 38060592 PMCID: PMC10729974 DOI: 10.1371/journal.pcbi.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/19/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Genome-wide association studies (GWAS) have successfully identified over two hundred thousand genotype-trait associations. Yet some challenges remain. First, complex traits are often associated with many single nucleotide polymorphisms (SNPs), most with small or moderate effect sizes, making them difficult to detect. Second, many complex traits share a common genetic basis due to 'pleiotropy' and and though few methods consider it, leveraging pleiotropy can improve statistical power to detect genotype-trait associations with weaker effect sizes. Third, currently available statistical methods are limited in explaining the functional mechanisms through which genetic variants are associated with specific or multiple traits. We propose multi-GPA-Tree to address these challenges. The multi-GPA-Tree approach can identify risk SNPs associated with single as well as multiple traits while also identifying the combinations of functional annotations that can explain the mechanisms through which risk-associated SNPs are linked with the traits. First, we implemented simulation studies to evaluate the proposed multi-GPA-Tree method and compared its performance with existing statistical approaches. The results indicate that multi-GPA-Tree outperforms existing statistical approaches in detecting risk-associated SNPs for multiple traits. Second, we applied multi-GPA-Tree to a systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), and to a Crohn's disease (CD) and ulcertive colitis (UC) GWAS, and functional annotation data including GenoSkyline and GenoSkylinePlus. Our results demonstrate that multi-GPA-Tree can be a powerful tool that improves association mapping while facilitating understanding of the underlying genetic architecture of complex traits and potential mechanisms linking risk-associated SNPs with complex traits.
Collapse
Affiliation(s)
- Aastha Khatiwada
- Department of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, United States of America
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Bethany J. Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
8
|
Bai J, Zhu L, Mi W, Gao Z, Ouyang M, Sheng W, Song L, Bao L, Ma Y, Xu Y. Multiscale integrative analyses unveil immune-related diagnostic signature for the progression of MASLD. Hepatol Commun 2023; 7:e0298. [PMID: 37851406 PMCID: PMC10586828 DOI: 10.1097/hc9.0000000000000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease prevalent worldwide, with an increasing incidence associated with obesity, diabetes, and metabolic syndrome. The progression of MASLD to metabolic dysfunction-associated steatohepatitis (MASH) poses a pressing health concern, highlighting the significance of accurately identifying MASLD and its progression to MASH as a primary challenge in the field. In this study, a systematic integration of 66 immune cell types was conducted. Comprehensive analyses were performed on bulk, single-cell RNA-Seq, and clinical data to investigate the immune cell types implicated in MASLD progression thoroughly. Multiple approaches, including immune infiltration, gene expression trend analysis, weighted gene coexpression network analysis, and 4 machine learning algorithms, were used to examine the dynamic changes in genes and immune cells during MASLD progression. C-X-C motif chemokine receptor 4 and dedicator of cytokinesis 8 have been identified as potential diagnostic biomarkers for MASLD progression. Furthermore, cell communication analysis at the single-cell level revealed that the involvement of C-X-C motif chemokine receptor 4 and dedicator of cytokinesis 8 in MASLD progression is mediated through their influence on T cells. Overall, our study identified vital immune cells and a 2-gene diagnostic signature for the progression of MASLD, providing a new perspective on the diagnosis and immune-related molecular mechanisms of MASLD. These findings have important implications for developing innovative diagnostic tools and therapies for MASLD.
Collapse
Affiliation(s)
- Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhengzheng Gao
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minyue Ouyang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanlu Sheng
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Lin Song
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Hohhot Mongolian Medicine of Traditional Chinese Medicine Hospital, Hohhot, China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
9
|
Mandato E, Yan Q, Ouyang J, Paczkowska J, Qin Y, Hao Y, Bojarczuk K, Hansen J, Chapuy B, Rodig SJ, Khan SJ, Redd RA, Shipp MA. MYD88L265P augments proximal B-cell receptor signaling in large B-cell lymphomas via an interaction with DOCK8. Blood 2023; 142:1219-1232. [PMID: 37467575 DOI: 10.1182/blood.2023019865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease with at least 5 recognized molecular subtypes. Cluster 5 (C5)/MCD tumors frequently exhibit concurrent alterations in the toll-like receptor (TLR) and B-cell receptor (BCR) pathway members, MYD88L265P and CD79B, and have a less favorable prognosis. In healthy B cells, the synergy between TLR and BCR signaling pathways integrates innate and adaptive immune responses and augments downstream NF-κB activation. In addition, physiologic TLR9 pathway engagement via MYD88, protein tyrosine kinase 2 (PYK2), and dedicator of cytokinesis 8 (DOCK8) increases proximal BCR signaling in healthy murine B cells. Although C5/MCD DLBCLs are selectively sensitive to Bruton tyrosine kinase (BTK) inhibition in in vitro studies and certain clinical trials, the role of mutated MYD88 in proximal BCR signaling remains undefined. Using engineered DLBCL cell line models, we found that concurrent MYD88L265P and CD79B alterations significantly increased the magnitude and duration of proximal BCR signaling, at the level of spleen tyrosine kinase and BTK, and augmented PYK2-dependent DOCK8 phosphorylation. MYD88L265P DLBCLs have significantly increased colocalization of DOCK8 with both MYD88 and the proximal BCR-associated Src kinase, LYN, in comparison with MYD88WT DLBCLs, implicating DOCK8 in MYD88L265P/proximal BCR cross talk. Additionally, DOCK8 depletion selectively decreased proximal BCR signaling, cellular proliferation, and viability of DLBCLs with endogenous MYD88L265P/CD79BY196F alterations and increased the efficacy of BTK blockade in these lymphomas. Therefore, MYD88L265P/DOCK8-enhanced proximal BCR signaling is a likely mechanism for the increased sensitivity of C5/MCD DLBCLs to BTK blockade.
Collapse
Affiliation(s)
- Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Qingsheng Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Bristol Myers Squibb, Cambridge, MA
| | - Julia Paczkowska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yan Qin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Parthenon Therapeutics, Boston, MA
| | - Yansheng Hao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Kamil Bojarczuk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julia Hansen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Björn Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Oncology, and Tumor Immunology, Charité - University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Sumbul Jawed Khan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Margaret A Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
10
|
Gutierrez-Ruiz OL, Johnson KM, Krueger EW, Nooren RE, Cruz-Reyes N, Heppelmann CJ, Hogenson TL, Fernandez-Zapico ME, McNiven MA, Razidlo GL. Ectopic expression of DOCK8 regulates lysosome-mediated pancreatic tumor cell invasion. Cell Rep 2023; 42:113042. [PMID: 37651233 PMCID: PMC10591794 DOI: 10.1016/j.celrep.2023.113042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Amplified lysosome activity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) orchestrated by oncogenic KRAS that mediates tumor growth and metastasis, though the mechanisms underlying this phenomenon remain unclear. Using comparative proteomics, we found that oncogenic KRAS significantly enriches levels of the guanine nucleotide exchange factor (GEF) dedicator of cytokinesis 8 (DOCK8) on lysosomes. Surprisingly, DOCK8 is aberrantly expressed in a subset of PDAC, where it promotes cell invasion in vitro and in vivo. DOCK8 associates with lysosomes and regulates lysosomal morphology and motility, with loss of DOCK8 leading to increased lysosome size. DOCK8 promotes actin polymerization at the surface of lysosomes while also increasing the proteolytic activity of the lysosomal protease cathepsin B. Critically, depletion of DOCK8 significantly reduces cathepsin-dependent extracellular matrix degradation and impairs the invasive capacity of PDAC cells. These findings implicate ectopic expression of DOCK8 as a key driver of KRAS-driven lysosomal regulation and invasion in pancreatic cancer cells.
Collapse
Affiliation(s)
- Omar L Gutierrez-Ruiz
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine M Johnson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eugene W Krueger
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roseanne E Nooren
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole Cruz-Reyes
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Tara L Hogenson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A McNiven
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Ruan J, Cui X, Yan H, Jia C, Ou T, Shang Z. Expression profiles of circular RNAs and interaction networks of competing endogenous RNAs in neurogenic bladder of rats following suprasacral spinal cord injury. PeerJ 2023; 11:e16042. [PMID: 37744239 PMCID: PMC10512963 DOI: 10.7717/peerj.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Background Neurogenic bladder (NB) following suprasacral spinal cord injury (SSCI) is an interstitial disease with the structural remodeling of bladder tissue and matrix over-deposition. Circular RNAs (circRNAs) are involved in fibrotic disease development through their post-transcriptional regulatory functions. This study aimed to use transcriptome high-throughput sequencing to investigate the process of NB and bladder fibrosis after SSCI. Methods Spinal cord transection at the T10-T11 level was used to construct the SSCI model in rats (10-week-old female Wistar rats, weighing 200 ± 20 g). The bladders were collected without (sham group) and with (SSCI 1-3 groups) NB status. Morphological examination was conducted to assess the extent of bladder fibrosis. Additionally, RNA sequencing was utilized to determine mRNAs and circRNAs expression patterns. The dynamic changes of differentially expressed mRNAs (DEMs) and circRNAs (DECs) in different periods of SSCI were further analyzed. Results Bladder weight, smooth muscle cell hypertrophy, and extracellular matrix gradually increased after SSCI. Compared with the sham group, 3,255 DEMs and 1,339 DECs, 3,449 DEMs and 1,324 DECs, 884 DEMs, and 1,151 DECs were detected in the SSCI 1-3 groups, respectively. Specifically, circRNA3621, circRNA0617, circRNA0586, and circRNA4426 were significant DECs common to SSCI 1-3 groups compared with the sham group. Moreover, Gene Ontology (GO) enrichment suggested that inflammatory and chronic inflammatory responses were the key events in NB progression following SSCI. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment associated with the "Chemokine signaling pathway", the "IL-17 signaling pathway", and the "TGF-beta signaling pathway" suggests their potential involvement in regulating biological processes. The circRNA-miRNA-mRNA interaction networks of DECs revealed rno-circ-2239 (micu2) as the largest node, indicating that the rno-circ-2239-miRNA-mRNA-mediated network may play a critical role in the pathogenesis of SSCI-induced NB. Conclusions This study offers a comprehensive outlook on the possible roles of DEMs and DECs in bladder fibrosis and NB progression following SSCI. These findings have the potential to serve as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jimeng Ruan
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xin Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Chunsong Jia
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhenhua Shang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Wilkie H, Timilshina M, Rahmayanti S, Das M, Pelovitz T, Geha RS. DOCK8 is essential for neutrophil mediated clearance of cutaneous S. aureus infection. Clin Immunol 2023; 254:109681. [PMID: 37385324 PMCID: PMC10529992 DOI: 10.1016/j.clim.2023.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
DOCK8 deficient patients are susceptible to skin infection with Staphylococcus aureus which is normally cleared by neutrophils. We examined the mechanism of this susceptibility in mice. Dock8-/- mice had delayed clearance of S. aureus from skin mechanically injured by tape stripping. The numbers and viability of neutrophils in infected but not in uninfected, tape stripped skin were significantly reduced in Dock8-/- mice compared to WT controls. This is despite comparable numbers of circulating neutrophils, and normal to elevated cutaneous expression of Il17a and IL-17A inducible neutrophil attracting chemokines Cxcl1, Cxcl2 and Cxcl3. DOCK8 deficient neutrophils were significantly more susceptible to cell death upon in vitro exposure to S. aureus and exhibited reduced phagocytosis of S. aureus bioparticles but had a normal respiratory burst. Impaired neutrophil survival in infected skin and defective neutrophil phagocytosis likely underlie the susceptibility to cutaneous S. aureus infection in DOCK8 deficiency.
Collapse
Affiliation(s)
- Hazel Wilkie
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Maheshwor Timilshina
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Siti Rahmayanti
- Division of Plastic & Reconstructive Surgery, Brigham and Womens Hospital, Harvard Medical School, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Tyler Pelovitz
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Zhou X, Hu J, Xu D, Zhang S, Wang Q. DOCK8 interference alleviates Aβ‑induced damage of BV2 cells by inhibiting STAT3/NLRP3/NF‑κB signaling. Exp Ther Med 2023; 25:134. [PMID: 36845964 PMCID: PMC9947585 DOI: 10.3892/etm.2023.11833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Dementia is defined as memory loss and other cognitive decline and it severely influences daily life. Alzheimer's disease (AD) is the most common cause of dementia. Dedicator of cytokinesis 8 (DOCK8) is reported to be involved in neurological diseases. The present study focused on investigating the role that DOCK8 serves in AD and addressing its hidden regulatory mechanism. Initially, Aβ1-42 (Aβ) was applied for the administration of BV2 cells. Subsequently, the mRNA and protein expression levels of DOCK8 were evaluated utilizing reverse transcription-quantitative PCR (RT-qPCR) and western blotting. After the DOCK8 silencing, immunofluorescence staining (IF), ELISA, wound healing and Transwell assays were applied to assess ionized calcium binding adapter molecule-1 (IBA-1) expression, release of inflammatory factors, migration and invasion in Aβ-induced BV2 cells. IF was used to evaluate cluster of differentiation (CD)11b expression. RT-qPCR and western blotting were to analyze the levels of M1 cell markers inducible nitric oxide synthase (iNOS) and CD86. The expression of STAT3/NLR family pyrin domain containing 3 (NLRP3)/NF-κB signaling-related proteins were determined by western blotting. Finally, the viability and apoptosis in hippocampal HT22 cells with DOCK8 depletion were estimated. Results revealed that Aβ induction greatly stimulated the expression levels of IBA-1 and DOCK8. DOCK8 silencing suppressed Aβ-induced inflammation, migration and invasion of BV2 cells. Additionally, DOCK8 deficiency conspicuously decreased the expression levels of CD11b, iNOS and CD86. The expression of phosphorylated (p-)STAT3, NLRP3, ASC, caspase1 and p-p65 was downregulated in Aβ-induced BV2 cells after DOCK8 depletion. STAT3 activator Colivelin reversed the effects of DOCK8 knockdown on IBA-1 expression, inflammation, migration, invasion and M1 cell polarization. In addition, the viability and apoptosis in hippocampal HT22 cells stimulated by neuroinflammatory release of BV2 cells were repressed following DOCK8 deletion. Collectively, DOCK8 interference alleviated Aβ-induced damage of BV2 cells by inhibiting STAT3/NLRP3/NF-κB signaling.
Collapse
Affiliation(s)
- Xueying Zhou
- Department of Psychiatry, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Deyi Xu
- Department of Psychiatry, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Sheng Zhang
- Department of Psychiatry, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Qianyan Wang
- Department of Cardiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| |
Collapse
|
14
|
Zhang S, Xia K, Chang Y, Wei Y, Xiong Y, Tang F, Peng J, Ouyang Y. LRP2 and DOCK8 Are Potential Antigens for mRNA Vaccine Development in Immunologically 'Cold' KIRC Tumours. Vaccines (Basel) 2023; 11:vaccines11020396. [PMID: 36851274 PMCID: PMC9966310 DOI: 10.3390/vaccines11020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The administration of mRNA-based tumour vaccines is considered a promising strategy in tumour immunotherapy, although its application against kidney renal clear cell carcinoma (KIRC) is still at its infancy stage. The purpose of this study was to identify potential antigens and to further select suitable patients for vaccination. Gene expression data and clinical information were retrieved from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. GEPIA2 was used to evaluate the prognostic value of selected antigens. The relationship of antigens presenting cell infiltration with antigen expression was evaluated by TIMER, and immune subtypes were determined using unsupervised cluster analysis. Tumour antigens LRP2 and DOCK8, which are associated with prognosis and tumour-infiltrating antigen-presenting cells, were identified in KIRC. A total of six immune subtypes were identified, and patients with immune subtype 1-4 (IS1-4) tumours had an immune 'cold' phenotype, a higher tumour mutation burden, and poor survival. Moreover, these immune subtypes showed significant differences in the expression of immune checkpoint and immunogenic cell death modulators. Finally, the immune landscape of KIRC revealed the immune-related cell components in individual patients. This study suggests that LRP2 and DOCK8 are potential KIRC antigens in the development of mRNA vaccines, and patients with immune subtypes IS1-4 are suitable for vaccination.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Kaide Xia
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yue Chang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yimei Wei
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yu Xiong
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
- Correspondence:
| | - Jian Peng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
15
|
Chong AC, Visitsunthorn K, Ong PY. Genetic/Environmental Contributions and Immune Dysregulation in Children with Atopic Dermatitis. J Asthma Allergy 2022; 15:1681-1700. [PMID: 36447957 PMCID: PMC9701514 DOI: 10.2147/jaa.s293900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin conditions in humans. AD affects up to 20% of children worldwide and results in morbidity for both patients and their caregivers. The basis of AD is an interplay between genetics and the environment characterized by immune dysregulation. A myriad of mutations that compromise the skin barrier and/or immune function have been linked to AD. Of these, filaggrin gene (FLG) mutations are the most evidenced. Many other mutations have been implicated in isolated studies that are often unreplicated, creating an archive of genes with potential but unconfirmed relevance to AD. Harnessing big data, polygenic risk scores (PRSs) and genome-wide association studies (GWAS) may provide a more practical strategy for identifying the genetic signatures of AD. Epigenetics may also play a role. Staphylococcus aureus is the most evidenced microbial contributor to AD. Cutaneous dysbiosis may result in over-colonization by pathogenic strains and aberrant skin immunity and inflammation. Aeroallergens, air pollution, and climate are other key environmental contributors to AD. The right climate and/or commensals may improve AD for some patients.
Collapse
Affiliation(s)
- Albert C Chong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Peck Y Ong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Zhang L, Cao Y, Dai X, Zhang X. Deciphering the role of DOCK8 in tumorigenesis by regulating immunity and the application of nanotechnology in DOCK8 deficiency therapy. Front Pharmacol 2022; 13:1065029. [PMID: 36386145 PMCID: PMC9664064 DOI: 10.3389/fphar.2022.1065029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome is a severe immune disorder and characterized by serum IgE levels elevation, fungal and viral infections, dermatitis and food allergies. It was well known that DOCK8 is crucial for the survival and function of multiple immune related cells. However, the critical role of DOCK8 on tumorigenesis through regulating immunity is poorly investigated. Accumulating evidences indicated that DOCK8 could affect tumorigenesis by regulating the immunity through immune cells, including NK cells, T cells, B cells and dendritic cells. Here, we summarized and discussed the critical role of DOCK8 in cytoskeleton reconstruction, CD4+ T cell differentiation, immune synaptic formation, tumor immune infiltration, tumor immune surveillance and tumorigenesis. Furthermore, the potential roles of nanotechnology in improving the hematopoietic stem cell transplantation-based therapy for DOCK8 deficiency diseases are also highlighted and discussed.
Collapse
Affiliation(s)
- Longhui Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yang Cao
- Clinical Laboratory, The Eastern Division of the First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
He Z, Gu J, Luan T, Li H, Li C, Chen Z, Luo E, Wang J, Huang Y, Ding M. Comprehensive analyses of a tumor-infiltrating lymphocytes-related gene signature regarding the prognosis and immunologic features for immunotherapy in bladder cancer on the basis of WGCNA. Front Immunol 2022; 13:973974. [PMID: 36211333 PMCID: PMC9540212 DOI: 10.3389/fimmu.2022.973974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-infiltrating lymphocyte (TIL) is a class of cells with important immune functions and plays a crucial role in bladder cancer (BCa). Several studies have shown the clinical significance of TIL in predicting the prognosis and immunotherapy efficacy. TIL-related gene module was screened utilizing weighted gene coexpression network analysis. We screened eight TIL-related genes utilizing univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and multivariate Cox regression analysis. Then, we established a TIL-related signature model containing the eight selected genes and subsequently classified all patients into two groups, that is, the high-risk as well as low-risk groups. Gene mutation status, prognosis, immune cell infiltration, immune subtypes, TME, clinical features, and immunotherapy response were assessed among different risk subgroups. The results affirmed that the TIL-related signature model was a reliable predictor of overall survival (OS) for BCa and was determined as an independent risk factor for BCa patients in two cohorts. Moreover, the risk score was substantially linked to age, tumor staging, TNM stage, and pathological grade. And there were different mutational profiles, biological pathways, immune scores, stromal scores, and immune cell infiltration in the tumor microenvironment (TME) between the two risk groups. In particular, immune checkpoint genes’ expression was remarkably different between the two risk groups, with patients belonging to the low-risk group responding better to immune checkpoint inhibition (ICI) therapy. In conclusion, our study demonstrates that the TIL-related model was a reliable signature in anticipating prognosis, immune status, and immunotherapy response, which can help in screening patients who respond to immunotherapy.
Collapse
Affiliation(s)
- Zexi He
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Gu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haihao Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Charles Li
- Zhongke Jianlan Medical Research Institute, Beijing, China
| | - Zhenjie Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Enxiu Luo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Mingxia Ding, ; Yinglong Huang,
| | - Mingxia Ding
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Mingxia Ding, ; Yinglong Huang,
| |
Collapse
|
18
|
Wu L, Xue R, Chen J, Xu J. dock8 deficiency attenuates microglia colonization in early zebrafish larvae. Cell Death Dis 2022; 8:366. [PMID: 35977943 PMCID: PMC9386030 DOI: 10.1038/s41420-022-01155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Microglia are tissue-resident macrophages that carry out immune functions in the brain. The deficiency or dysfunction of microglia has been implicated in many neurodegenerative disorders. DOCK8, a member of the DOCK family, functions as a guanine nucleotide exchange factor and plays key roles in immune regulation and neurological diseases. The functions of DOCK8 in microglia development are not fully understood. Here, we generated zebrafish dock8 mutants by CRISPR/Cas9 genome editing and showed that dock8 mutations attenuate microglia colonization in the zebrafish midbrain at early larvae stages. In vivo time-lapse imaging revealed that the motility of macrophages was reduced in the dock8 mutant. We further found that cdc42/cdc42l, which encode the small GTPase activated by Dock8, also regulate microglia colonization in zebrafish. Collectively, our study suggests that the Dock8-Cdc42 pathway is required for microglia colonization in zebrafish larvae.
Collapse
Affiliation(s)
- Linxiu Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiahao Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Jin Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
19
|
Liquidano-Pérez E, Maza-Ramos G, Yamazaki-Nakashimada MA, Barragán-Arévalo T, Lugo-Reyes SO, Scheffler-Mendoza S, Espinosa-Padilla SE, González-Serrano ME. [Combined immunodeficiency due to DOCK8 deficiency. State of the art]. REVISTA ALERGIA MÉXICO 2022; 69:31-47. [PMID: 36927749 DOI: 10.29262/ram.v69i1.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Combinedimmunodeficiency (CID) due to DOCK8 deficiency is an inborn error of immunity (IBD) characterized by dysfunctional T and B lymphocytes; The spectrum of manifestations includes allergy, autoimmunity, inflammation, predisposition to cancer, and recurrent infections. DOCK8 deficiency can be distinguished from other CIDs or within the spectrum of hyper-IgE syndromes by exhibiting profound susceptibility to viral skin infections, associated skin cancers, and severe food allergies. The 9p24.3 subtelomeric locus where DOCK8 is located includes numerous repetitive sequence elements that predispose to the generation of large germline deletions and recombination-mediated somatic DNA repair. Residual production DOCK8 protein contributes to the variable phenotype of the disease. Severe viral skin infections and varicella-zoster virus (VZV)-associated vasculopathy, reflect an essential role of the DOCK8 protein, which is required to maintain lymphocyte integrity as cells migrate through the tissues. Loss of DOCK8 causes immune deficiencies through other mechanisms, including a cell survival defect. In addition, there are alterations in the response of dendritic cells, which explains susceptibility to virus infection and regulatory T lymphocytes that could help explain autoimmunity in patients. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment; it improves eczema, allergies, and susceptibility to infections.
Collapse
Affiliation(s)
- Eduardo Liquidano-Pérez
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | | | - Tania Barragán-Arévalo
- Fundación de Asistencia Privada, Instituto de Oftalmología Conde de Valenciana, Departamento de Genética, Ciudad de México, México
| | - Saúl Oswaldo Lugo-Reyes
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | - Sara Elva Espinosa-Padilla
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | |
Collapse
|
20
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Hyper IgE syndromes: A clinical approach. Clin Immunol 2022; 237:108988. [DOI: 10.1016/j.clim.2022.108988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
|
22
|
Abstract
INTRODUCTION As the prevalence of food allergies (FA) increases worldwide, our understanding of its pathophysiology and risk factors is markedly expanding. In the past decades, an increasing number of genes have been linked to FA. Identification of such genes may help in predicting the genetic risk for FA development, age of onset, clinical manifestation, causative allergen(s), and possibly the optimal treatment strategies. Furthermore, identification of these genetic factors can help to understand the complex interactions between genes and the environment in predisposition to FA. AREAS COVERED We outline the recent important progress in determining genetic variants and disease-associated genes in IgE-mediated FA. We focused on the monogenic inborn errors of immunity (IEI) where FA is one of the clinical manifestations, emphasizing the genes and gene variants which were linked to FA with some of the most robust evidence. EXPERT OPINION Genetics play a significant role, either directly or along with environmental factors, in the development of FA. Since FA is a multifactorial disease, it is expected that multiple genes and genetic loci contribute to the risk for its development. Identification of the involved genes should contribute to the area of FA regarding pathogenesis, prediction, recognition, prognosis, prevention, and possibly therapeutic interventions.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| | - Sami Bahna
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| |
Collapse
|
23
|
Feitosa MF, Wojczynski MK, Anema JA, Daw EW, Wang L, Santanasto AJ, Nygaard M, Province MA. Genetic pleiotropy between pulmonary function and age-related traits: The Long Life Family Study. J Gerontol A Biol Sci Med Sci 2022; 79:glac046. [PMID: 35180297 PMCID: PMC10873520 DOI: 10.1093/gerona/glac046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pulmonary function (PF) progressively declines with aging. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) are predictors of morbidity of pulmonary and cardiovascular diseases and all-cause mortality. In addition, reduced PF is associated with elevated chronic low-grade systemic inflammation, glucose metabolism, body fatness, and low muscle strength. It may suggest pleiotropic genetic effects between PF with these age-related factors. METHODS We evaluated whether FEV1 and FVC share common pleiotropic genetic effects factors with interleukin-6, high-sensitivity C-reactive protein, body mass index, muscle (grip) strength, plasma glucose, and glycosylated hemoglobin in 3,888 individuals (age range: 26-106). We employed sex-combined and sex-specific correlated meta-analyses to test whether combining genome-wide association p-values from two or more traits enhances the ability to detect variants sharing effects on these correlated traits. RESULTS We identified 32 loci for PF, including 29 novel pleiotropic loci associated with pulmonary function and (i) body fatness (CYP2U1/SGMS2), (ii) glucose metabolism (CBWD1/DOCK8 and MMUT/CENPQ), (iii) inflammatory markers (GLRA3/HPGD, TRIM9, CALN1, CTNNB1/ZNF621, GATA5/SLCO4A1/NTSR1, and NPVF/C7orf31/CYCS), and (iv) muscle strength (MAL2, AC008825.1/LINC02103, AL136418.1). CONCLUSIONS The identified genes/loci for PF and age-related traits suggest their underlying shared genetic effects, which can explain part of their phenotypic correlations. Integration of gene expression and genomic annotation data shows enrichment of our genetic variants in lung, blood, adipose, pancreas, and muscles, among others. Our findings highlight the critical roles of identified gene/locus in systemic inflammation, glucose metabolism, strength performance, PF, and pulmonary disease, which are involved in accelerated biological aging.
Collapse
Affiliation(s)
- Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jason A Anema
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adam J Santanasto
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marianne Nygaard
- Epidemiology, Biostatistics, and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Reynolds EGM, Lopdell T, Wang Y, Tiplady KM, Harland CS, Johnson TJJ, Neeley C, Carnie K, Sherlock RG, Couldrey C, Davis SR, Harris BL, Spelman RJ, Garrick DJ, Littlejohn MD. Non-additive QTL mapping of lactation traits in 124,000 cattle reveals novel recessive loci. Genet Sel Evol 2022; 54:5. [PMID: 35073835 PMCID: PMC8785530 DOI: 10.1186/s12711-021-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deleterious recessive conditions have been primarily studied in the context of Mendelian diseases. Recently, several deleterious recessive mutations with large effects were discovered via non-additive genome-wide association studies (GWAS) of quantitative growth and developmental traits in cattle, which showed that quantitative traits can be used as proxies of genetic disorders when such traits are indicative of whole-animal health status. We reasoned that lactation traits in cattle might also reflect genetic disorders, given the increased energy demands of lactation and the substantial stresses imposed on the animal. In this study, we screened more than 124,000 cows for recessive effects based on lactation traits. RESULTS We discovered five novel quantitative trait loci (QTL) that are associated with large recessive impacts on three milk yield traits, with these loci presenting missense variants in the DOCK8, IL4R, KIAA0556, and SLC25A4 genes or premature stop variants in the ITGAL, LRCH4, and RBM34 genes, as candidate causal mutations. For two milk composition traits, we identified several previously reported additive QTL that display small dominance effects. By contrasting results from milk yield and milk composition phenotypes, we note differing genetic architectures. Compared to milk composition phenotypes, milk yield phenotypes had lower heritabilities and were associated with fewer additive QTL but had a higher non-additive genetic variance and were associated with a higher proportion of loci exhibiting dominance. CONCLUSIONS We identified large-effect recessive QTL which are segregating at surprisingly high frequencies in cattle. We speculate that the differences in genetic architecture between milk yield and milk composition phenotypes derive from underlying dissimilarities in the cellular and molecular representation of these traits, with yield phenotypes acting as a better proxy of underlying biological disorders through presentation of a larger number of major recessive impacts.
Collapse
Affiliation(s)
| | - Thomas Lopdell
- Livestock Improvement Corporation, Hamilton, New Zealand
| | - Yu Wang
- Livestock Improvement Corporation, Hamilton, New Zealand
| | - Kathryn M. Tiplady
- Massey University, Palmerston North, New Zealand
- Livestock Improvement Corporation, Hamilton, New Zealand
| | | | | | | | - Katie Carnie
- Livestock Improvement Corporation, Hamilton, New Zealand
| | | | | | | | | | | | | | - Mathew D. Littlejohn
- Massey University, Palmerston North, New Zealand
- Livestock Improvement Corporation, Hamilton, New Zealand
| |
Collapse
|
25
|
Gertie JA, Zhang B, Liu EG, Hoyt LR, Yin X, Xu L, Long LL, Soldatenko A, Gowthaman U, Williams A, Eisenbarth SC. Oral anaphylaxis to peanut in a mouse model is associated with gut permeability but not with Tlr4 or Dock8 mutations. J Allergy Clin Immunol 2022; 149:262-274. [PMID: 34051223 PMCID: PMC8626534 DOI: 10.1016/j.jaci.2021.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The etiology of food allergy is poorly understood; mouse models are powerful systems to discover immunologic pathways driving allergic disease. C3H/HeJ mice are a widely used model for the study of peanut allergy because, unlike C57BL/6 or BALB/c mice, they are highly susceptible to oral anaphylaxis. However, the immunologic mechanism of this strain's susceptibility is not known. OBJECTIVE We aimed to determine the mechanism underlying the unique susceptibility to anaphylaxis in C3H/HeJ mice. We tested the role of deleterious Toll-like receptor 4 (Tlr4) or dedicator of cytokinesis 8 (Dock8) mutations in this strain because both genes have been associated with food allergy. METHODS We generated C3H/HeJ mice with corrected Dock8 or Tlr4 alleles and sensitized and challenged them with peanut. We then characterized the antibody response to sensitization, anaphylaxis response to both oral and systemic peanut challenge, gut microbiome, and biomarkers of gut permeability. RESULTS In contrast to C3H/HeJ mice, C57BL/6 mice were resistant to anaphylaxis after oral peanut challenge; however, both strains undergo anaphylaxis with intraperitoneal challenge. Restoring Tlr4 or Dock8 function in C3H/HeJ mice did not protect from anaphylaxis. Instead, we discovered enhanced gut permeability resulting in ingested allergens in the bloodstream in C3H/HeJ mice compared to C57BL/6 mice, which correlated with an increased number of goblet cells in the small intestine. CONCLUSIONS Our work highlights the potential importance of gut permeability in driving anaphylaxis to ingested food allergens; it also indicates that genetic loci outside of Tlr4 and Dock8 are responsible for the oral anaphylactic susceptibility of C3H/HeJ mice.
Collapse
Affiliation(s)
- Jake A Gertie
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Biyan Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Singapore Immunology Network (SIgN), Singapore
| | - Elise G Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, Conn
| | - Laura R Hoyt
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Lauren L Long
- The Jackson Laboratory for Genomic Medicine, Farmington, Conn
| | - Arielle Soldatenko
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Department of Pathology, University of Massachusetts Medical School, Worcester, Mass
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Conn; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Conn.
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, Conn.
| |
Collapse
|
26
|
Tomalka JA, Pelletier AN, Fourati S, Latif MB, Sharma A, Furr K, Carlson K, Lifton M, Gonzalez A, Wilkinson P, Franchini G, Parks R, Letvin N, Yates N, Seaton K, Tomaras G, Tartaglia J, Robb ML, Michael NL, Koup R, Haynes B, Santra S, Sekaly RP. The transcription factor CREB1 is a mechanistic driver of immunogenicity and reduced HIV-1 acquisition following ALVAC vaccination. Nat Immunol 2021; 22:1294-1305. [PMID: 34556879 PMCID: PMC8525330 DOI: 10.1038/s41590-021-01026-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/30/2021] [Indexed: 12/02/2022]
Abstract
Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.
Collapse
Affiliation(s)
- Jeffrey Alan Tomalka
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Nicolas Pelletier
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Bilal Latif
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ashish Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathryn Furr
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Carlson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ana Gonzalez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Wilkinson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Genoveffa Franchini
- Center for Cancer Research Vaccine Branch, National Cancer Institute NIH, Bethesda, MD, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Norman Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole Yates
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kelly Seaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Georgia Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Merlin L Robb
- Military HIV Research Program, Henry Jackson Foundation and Walter Reed Army Institute for Research, Bethesda and Silver Spring, MD, USA
| | - Nelson L Michael
- Military HIV Research Program, Henry Jackson Foundation and Walter Reed Army Institute for Research, Bethesda and Silver Spring, MD, USA
| | - Richard Koup
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Barton Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Rafick Pierre Sekaly
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
27
|
Pellegrini S, Elefanti L, Dall’Olmo L, Menin C. The Interplay between Nevi and Melanoma Predisposition Unravels Nevi-Related and Nevi-Resistant Familial Melanoma. Genes (Basel) 2021; 12:1077. [PMID: 34356093 PMCID: PMC8303673 DOI: 10.3390/genes12071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Genetic susceptibility to nevi may affect the risk of developing melanoma, since common and atypical nevi are the main host risk factors implicated in the development of cutaneous melanoma. Recent genome-wide studies defined a melanoma polygenic risk score based on variants in genes involved in different pathways, including nevogenesis. Moreover, a predisposition to nevi is a hereditary trait that may account for melanoma clustering in some families characterized by cases with a high nevi density. On the other hand, familial melanoma aggregation may be due to a Mendelian inheritance of high/moderate-penetrance pathogenic variants affecting melanoma risk, regardless of the nevus count. Based on current knowledge, this review analyzes the complex interplay between nevi and melanoma predisposition in a familial context. We review familial melanoma, starting from Whiteman's divergent pathway model to overall melanoma development, distinguishing between nevi-related (cases with a high nevus count and a high polygenic risk score) and nevi-resistant (high/moderate-penetrance variant-carrier cases) familial melanoma. This distinction could better direct future research on genetic factors useful to identify high-risk subjects.
Collapse
Affiliation(s)
- Stefania Pellegrini
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy; (S.P.); (L.D.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Lisa Elefanti
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Luigi Dall’Olmo
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy; (S.P.); (L.D.)
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| |
Collapse
|
28
|
Hashim IF, Ahmad Mokhtar AM. Small Rho GTPases and their associated RhoGEFs mutations promote immunological defects in primary immunodeficiencies. Int J Biochem Cell Biol 2021; 137:106034. [PMID: 34216756 DOI: 10.1016/j.biocel.2021.106034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023]
Abstract
Primary immunodeficiencies (PIDs) are associated with deleterious mutations of genes that encode proteins involved in actin cytoskeleton reorganisation. This deficiency affects haematopoietic cells. PID results in the defective function of immune cells, such as impaired chemokine-induced motility, receptor signalling, development and maturation. Some of the genes mutated in PIDs are related to small Ras homologous (Rho) guanosine triphosphatase (GTPase), one of the families of the Ras superfamily. Most of these genes act as molecular switches by cycling between active guanosine triphosphate-bound and inactive guanosine diphosphate-bound forms to control multiple cellular functions. They are best studied for their role in promoting cytoskeleton reorganisation, cell adhesion and motility. Currently, only three small Rho GTPases, namely, Rac2, Cdc42 and RhoH, have been identified in PIDs. However, several other Rho small G proteins might also contribute to the deregulation and phenotype observed in PIDs. Their contribution in PIDs may involve their main regulator, Rho guanine nucleotide exchange factors such as DOCK2 and DOCK8, wherein mutations may result in the impairment of small Rho GTPase activation. Thus, this review outlines the potential contribution of several small Rho GTPases to the promotion of PIDs.
Collapse
Affiliation(s)
- Ilie Fadzilah Hashim
- Primary Immunodeficiency Diseases Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia.
| | - Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia.
| |
Collapse
|
29
|
Pekmezovic M, Hovhannisyan H, Gresnigt MS, Iracane E, Oliveira-Pacheco J, Siscar-Lewin S, Seemann E, Qualmann B, Kalkreuter T, Müller S, Kamradt T, Mogavero S, Brunke S, Butler G, Gabaldón T, Hube B. Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells. Nat Microbiol 2021; 6:643-657. [PMID: 33753919 DOI: 10.1038/s41564-021-00875-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Vaginal candidiasis is an extremely common disease predominantly caused by four phylogenetically diverse species: Candida albicans; Candida glabrata; Candida parapsilosis; and Candida tropicalis. Using a time course infection model of vaginal epithelial cells and dual RNA sequencing, we show that these species exhibit distinct pathogenicity patterns, which are defined by highly species-specific transcriptional profiles during infection of vaginal epithelial cells. In contrast, host cells exhibit a homogeneous response to all species at the early stages of infection, which is characterized by sublethal mitochondrial signalling inducing a protective type I interferon response. At the later stages, the transcriptional response of the host diverges in a species-dependent manner. This divergence is primarily driven by the extent of epithelial damage elicited by species-specific mechanisms, such as secretion of the toxin candidalysin by C. albicans. Our results uncover a dynamic, biphasic response of vaginal epithelial cells to Candida species, which is characterized by protective mitochondria-associated type I interferon signalling and a species-specific damage-driven response.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Hrant Hovhannisyan
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine, Barcelona, Spain
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Elise Iracane
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - João Oliveira-Pacheco
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Eric Seemann
- Institute for Biochemistry I, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Till Kalkreuter
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sylvia Müller
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. .,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain. .,Mechanisms of Disease Department, Institute for Research in Biomedicine, Barcelona, Spain.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany. .,Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
30
|
Zhang Z, Bao Y, Zhou L, Ye Y, Fu W, Sun C. DOCK8 Serves as a Prognostic Biomarker and Is Related to Immune Infiltration in Patients With HPV Positive Head and Neck Squamous Cell Carcinoma. Cancer Control 2021; 28:10732748211011951. [PMID: 33910393 PMCID: PMC8482706 DOI: 10.1177/10732748211011951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose: Dedicator of cytokinesis 8 (DOCK8) was reported to have a vital link to immunoregulation. However, the mechanisms by which it drives immune infiltration in cancer remain uncertain. We tried to assess the role of DOCK8 in patients with cancer, especially human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC). Methods: Data on the expression and survival of DOCK8 in patients with various cancers were analyzed using the Oncomine and TIMER databases. The TIMER database assessed the relationship of DOCK8 with immune infiltration levels and various markers of multiple immune cells. Gene set enrichment analysis revealed tumor-associated biological processes related to DOCK8. ENCODE database was used to explore relevant transcription factors of DOCK8, and a PPI network was constructed using GENEMINIA. The expression and survival role of DOCK8 was confirmed in patients from independent GEO datasets. Results: We determined that DOCK8 expression was upregulated or downregulated in various cancers unlike in healthy tissues. A high expression of DOCK8 was significantly correlated with a favorable prognosis in HPV-positive HNSCC and lung adenocarcinoma (LUAD). Furthermore, multivariate Cox regression analysis revealed that DOCK8 was an independent prognostic factor of HPV-positive HNSCC. Additionally, elevated DOCK8 expression was positively correlated with multiple immune cell infiltration levels and immune marker expression associated with particular immune cell subsets. Also, 14 pathways involved in immune activities and carcinogenesis, 22 potential TFs, and co-expression proteins of DOCK8 indicated DOCK8 to be related to tumor-associated biological processes. Ultimately, we verified that DOCK8 is upregulated and confers a favorable overall survival and progression-free survival status in patients with HPV-positive HNSCC. Conclusion: These results elucidate that high expression of DOCK8 indicates a favorable prognosis in patients with HPV-positive HNSCC as well as increased microenvironmental immune infiltration levels. It would provide new insights into the prognosis predicting and clinical regimen decision making in patients with HPV-positive HNSCC.
Collapse
Affiliation(s)
- Zeying Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China.,Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, Liaoning, China.,Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yandong Bao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lu Zhou
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China.,Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, Liaoning, China
| | - Yanling Ye
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China.,Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, Liaoning, China
| | - Weineng Fu
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Changfu Sun
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China.,Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
31
|
Thompson AP, Bitsina C, Gray JL, von Delft F, Brennan PE. RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors. J Biol Chem 2021; 296:100521. [PMID: 33684443 PMCID: PMC8063744 DOI: 10.1016/j.jbc.2021.100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
The human dedicator of cytokinesis (DOCK) family consists of 11 structurally conserved proteins that serve as atypical RHO guanine nucleotide exchange factors (RHO GEFs). These regulatory proteins act as mediators in numerous cellular cascades that promote cytoskeletal remodeling, playing roles in various crucial processes such as differentiation, migration, polarization, and axon growth in neurons. At the molecular level, DOCK DHR2 domains facilitate nucleotide dissociation from small GTPases, a process that is otherwise too slow for rapid spatiotemporal control of cellular signaling. Here, we provide an overview of the biological and structural characteristics for the various DOCK proteins and describe how they differ from other RHO GEFs and between DOCK subfamilies. The expression of the family varies depending on cell or tissue type, and they are consequently implicated in a broad range of disease phenotypes, particularly in the brain. A growing body of available structural information reveals the mechanism by which the catalytic DHR2 domain elicits nucleotide dissociation and also indicates strategies for the discovery and design of high-affinity small-molecule inhibitors. Such compounds could serve as chemical probes to interrogate the cellular function and provide starting points for drug discovery of this important class of enzymes.
Collapse
Affiliation(s)
- Andrew P Thompson
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Christina Bitsina
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Janine L Gray
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Frank von Delft
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom; Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Paul E Brennan
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
32
|
Zlobin AS, Nikulin PS, Volkova NA, Zinovieva NA, Iolchiev BS, Bagirov VA, Borodin PM, Aksenovich TI, Tsepilov YA. Multivariate Analysis Identifies Eight Novel Loci Associated with Meat Productivity Traits in Sheep. Genes (Basel) 2021; 12:367. [PMID: 33806625 PMCID: PMC8002146 DOI: 10.3390/genes12030367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/27/2022] Open
Abstract
Despite their economic value, sheep remain relatively poorly studied animals in terms of the number of known loci and genes associated with commercially important traits. This gap in our knowledge can be filled in by performing new genome-wide association studies (GWAS) or by re-analyzing previously documented data using novel powerful statistical methods. This study is focused on the search for new loci associated with meat productivity and carcass traits in sheep. With a multivariate approach applied to publicly available GWAS results, we identified eight novel loci associated with the meat productivity and carcass traits in sheep. Using an in silico follow-up approach, we prioritized 13 genes in these loci. One of eight novel loci near the FAM3C and WNT16 genes has been replicated in an independent sample of Russian sheep populations (N = 108). The novel loci were added to our regularly updated database increasing the number of known loci to more than 140.
Collapse
Affiliation(s)
- Alexander S. Zlobin
- Kurchatov Genomics Center of IC&G, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Pavel S. Nikulin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.S.N.); (P.M.B.); (T.I.A.)
| | - Natalia A. Volkova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia; (N.A.V.); (N.A.Z.); (B.S.I.); (V.A.B.)
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia; (N.A.V.); (N.A.Z.); (B.S.I.); (V.A.B.)
| | - Baylar S. Iolchiev
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia; (N.A.V.); (N.A.Z.); (B.S.I.); (V.A.B.)
| | - Vugar A. Bagirov
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia; (N.A.V.); (N.A.Z.); (B.S.I.); (V.A.B.)
| | - Pavel M. Borodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.S.N.); (P.M.B.); (T.I.A.)
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia; (N.A.V.); (N.A.Z.); (B.S.I.); (V.A.B.)
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatiana I. Aksenovich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.S.N.); (P.M.B.); (T.I.A.)
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia; (N.A.V.); (N.A.Z.); (B.S.I.); (V.A.B.)
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Yakov A. Tsepilov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.S.N.); (P.M.B.); (T.I.A.)
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia; (N.A.V.); (N.A.Z.); (B.S.I.); (V.A.B.)
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
33
|
Sakurai T, Kukimoto-Niino M, Kunimura K, Yamane N, Sakata D, Aihara R, Yasuda T, Yokoyama S, Shirouzu M, Fukui Y, Uruno T. A conserved PI(4,5)P2-binding domain is critical for immune regulatory function of DOCK8. Life Sci Alliance 2021; 4:4/4/e202000873. [PMID: 33574036 PMCID: PMC7893821 DOI: 10.26508/lsa.202000873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
This study uncovers a critical role of DOCK8 in coupling PI(4,5)P2 signaling with Cdc42 activation through its DHR-1 domain during interstitial leukocyte migration. DOCK8 is a Cdc42-specific guanine-nucleotide exchange factor that is essential for development and functions of various subsets of leukocytes in innate and acquired immune responses. Although DOCK8 plays a critical role in spatial control of Cdc42 activity during interstitial leukocyte migration, the mechanism remains unclear. We show that the DOCK homology region (DHR)-1 domain of DOCK8 binds specifically to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and is required for its recruitment to the plasma membrane. Structural and biochemical analyses reveal that DOCK8 DHR-1 domain consists of a C2 domain-like core with loops creating the upper surface pocket, where three basic residues are located for stereospecific recognition of phosphoinositides. Substitution of the two basic residues, K576 and R581, with alanine abolished PI(4,5)P2 binding in vitro, ablated the ability of DOCK8 to activate Cdc42 and support leukocyte migration in three-dimensional collagen gels. Dendritic cells carrying the mutation exhibited defective interstitial migration in vivo. Thus, our study uncovers a critical role of DOCK8 in coupling PI(4,5)P2 signaling with Cdc42 activation for immune regulation.
Collapse
Affiliation(s)
- Tetsuya Sakurai
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Nana Yamane
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryosuke Aihara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yasuda
- Division of Immunology and Genome Biology, Department of Molecular and Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Benítez-Burraco A, Fernández-Urquiza M, Jiménez-Romero MS. Language Impairment with a Partial Duplication of DOCK8. Mol Syndromol 2021; 11:243-263. [PMID: 33510598 DOI: 10.1159/000511972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Duplications of the distal region of the short arm of chromosome 9 are rare, but are associated with learning disabilities and behavioral disturbances. We report in detail the cognitive and language features of a child with a duplication in the 9p24.3 region, arr[hg19] 9p24.3(266,045-459,076)×3. The proband exhibits marked expressive and receptive problems, which affect both structural and functional aspects of language. These problems might result from a severe underlying deficit in working memory. Regarding the molecular causes of the observed symptoms, they might result from the altered expression of selected genes involved in procedural learning, particularly some of components of the SLIT/ROBO/FOXP2 network, strongly related to the development and evolution of language. Dysregulation of specific components of this network can result in turn from an altered interaction between DOCK8, affected by the microduplication, and CDC42, acting as the hub component of the network encompassing language-related genes.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain
| | | | | |
Collapse
|
35
|
López-Carrasco A, Martín-Vañó S, Burgos-Panadero R, Monferrer E, Berbegall AP, Fernández-Blanco B, Navarro S, Noguera R. Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuroblastoma cell line. J Exp Clin Cancer Res 2020; 39:226. [PMID: 33109237 PMCID: PMC7592549 DOI: 10.1186/s13046-020-01729-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible. METHODS We applied high density SNPa and NGS techniques to in vivo and in vitro models (orthotropic xenograft vitronectin knock-out mice and 3D bioprinted hydrogels with different stiffness) using two representative neuroblastoma cell lines (the MYCN-amplified SK-N-BE(2) and the ALK-mutated SH-SY5Y), to discern how tumor genomics patterns and clonal heterogeneity of the two cell lines are affected. RESULTS We describe a remarkable subclonal selection of genomic aberrations in SK-N-BE(2) cells grown in knock-out vitronectin xenograft mice that also emerged when cultured for long times in stiff hydrogels. In particular, we detected an enlarged subclonal cell population with chromosome 9 aberrations in both models. Similar abnormalities were found in human high-risk neuroblastoma with MYCN amplification. The genomics of the SH-SY5Y cell line remained stable when cultured in both models. CONCLUSIONS Focus on heterogeneous intratumor segmental chromosome aberrations and mutations, as a mirror image of tumor microenvironment, is a vital area of future research.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Susana Martín-Vañó
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Rebeca Burgos-Panadero
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Ezequiel Monferrer
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | | | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain.
- CIBERONC, Madrid, Spain.
| |
Collapse
|
36
|
Haskologlu S, Kostel Bal S, Islamoglu C, Aytekin C, Guner S, Sevinc S, Keles S, Kendirli T, Ceylaner S, Dogu F, Ikinciogullari A. Clinical, immunological features and follow up of 20 patients with dedicator of cytokinesis 8 (DOCK8) deficiency. Pediatr Allergy Immunol 2020; 31:515-527. [PMID: 32108967 PMCID: PMC7228270 DOI: 10.1111/pai.13236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/27/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Biallelic mutations in the dedicator of cytokinesis 8 gene (DOCK8) cause a progressive combined immunodeficiency (CID) characterized by susceptibility to severe viral skin infections, atopic diseases, recurrent respiratory infections, and malignancy. Hematopoietic stem cell transplantation (HSCT) is only curative treatment for the disease. However, there is limited information about long-term outcome of HSCT and its effect to protect against cancer development in DOCK8-deficient patients. In this study, we retrospectively evaluated clinical and immunologic characteristics of 20 DOCK8-deficient patients and outcome of 11 patients who underwent HSCT. We aimed to report the experience of our center and the result of the largest transplantation series of DOCK8 deficiency in our country. Median follow-up time is 71 months (min-max: 16-172) in all patients and 48 months (min-max: 5-84) in transplanted patients. Atopic dermatitis (18/20), recurrent respiratory tract infections (17/20), and food allergy (14/20) were the most frequent clinical manifestations. Failure to thrive (13/20), liver problems (12/20), bronchiectasis (11/20), chronic diarrhea (10/21), and autism spectrum disorders (3/20) were remarkable findings in our series. Elevated IgE level (20/20) and eosinophilia (17/20), low IgM level (15/20), and decreased CD3+ T (10/20) and CD4+ T (11/20) cell count were prominent laboratory findings. HSCT was performed in 11 patients. All patients achieved adequate engraftment and showed improvement in their clinical and immunologic findings. Atopic dermatitis and food allergies improved in all patients, and their dietary restriction was stopped except one patient who was transplanted recently. The frequency of infections was decreased. The overall survival is 91% in HSCT-received patients and 80% in all. HSCT at the earliest possible period with most suitable donor- and patient-specific appropriate conditioning regimen and GvHD prophylaxis is lifesaving for DOCK8 deficiency cases.
Collapse
Affiliation(s)
- Sule Haskologlu
- Department of Pediatrics, Division of Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sevgi Kostel Bal
- Department of Pediatrics, Division of Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Candan Islamoglu
- Department of Pediatrics, Division of Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr.Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Sukru Guner
- Department of Pediatrics, Division of Immunology and Allergy, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Selin Sevinc
- Department of Pediatrics, Division of Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sevgi Keles
- Department of Pediatrics, Division of Immunology and Allergy, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Tanil Kendirli
- Pediatric Intensive Care Unit, Ankara University School of Medicine, Ankara, Turkey
| | | | - Figen Dogu
- Department of Pediatrics, Division of Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogullari
- Department of Pediatrics, Division of Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
37
|
Lehman H, Gordon C. The Skin as a Window into Primary Immune Deficiency Diseases: Atopic Dermatitis and Chronic Mucocutaneous Candidiasis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:788-798. [PMID: 30832893 DOI: 10.1016/j.jaip.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Primary immune deficiency diseases characteristically present with recurrent, severe, or unusual infections. These infections may often involve the skin, with mucocutaneous candidal infections seen in a variety of different primary immune deficiencies. Primary immune deficiencies may also present with noninfectious cutaneous complications, of which eczema is the most common. In a patient with suspected primary immune deficiency, the presence of eczema or candidal skin infections offers critical information about the underlying immune defect, either the presence of atopy or defect in the TH17 pathway, respectively. These skin manifestations also are often early or heralding findings of the underlying immunologic disease. Therefore, awareness of associations between these skin findings and specific immune deficiencies may aide in the early detection and treatment of serious or life-threatening immunologic defects. This review specifically will focus on the primary immune deficiencies commonly associated with eczema or mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Heather Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY.
| | - Christopher Gordon
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
38
|
Dai K, Chen Z, She S, Shi J, Zhu J, Huang Y. Leucine rich repeats and calponin homology domain containing 1 inhibits NK-92 cell cytotoxicity through attenuating Src signaling. Immunobiology 2020; 225:151934. [PMID: 32173150 DOI: 10.1016/j.imbio.2020.151934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/08/2020] [Indexed: 11/30/2022]
Abstract
NK-92 cell line has been used as anti-tumor cytotoxic effector cells in immunotherapy. Leucine-rich repeats and calponin homology domain containing 1 (LRCH1) is a novel gene of which the function is unclear. In the present study, we investigated the role of LRCH1 in NK-92 cell cytotoxicity. LRCH1 was ablated in NK-92 cells through CRISP-Cas9-mediated knockout. LRCH1 knockout did not influence the basal behavior of NK-92 cells such as cell survival, expression of natural cytotoxicity receptors, and proliferation. However, upon the contact with tumor cells, LRCH1 knockout promoted NK-92 cell cytotoxicity to tumor cells. Besides, LRCH1 knockout increased the production of cytotoxic mediators such as IFN-γ, TNF-α, IL-2, and granzyme B in NK-92 cells after tumor cell contact. Similarly, LRCH1 knockout increased the production of cytokines and granzyme B upon NKp30 engagement. Further experiments revealed that LRCH1 knockout enhanced the activation of Src and Lck kinase which are important for natural killer cell cytotoxicity. The in vivo assay confirmed the up-regulation of the tumoricidal activity of LRCH1-/- NK-92 cells, as demonstrated by more robust tumor cell killing. Importantly, human primary natural killer cells exhibited a similar increase in the production of IFN-γ and TNF-α when LRCH1 was knocked out. In conclusion, our study revealed the role of LRCH1 as a negative regulator of NK-92 cell cytotoxicity.
Collapse
Affiliation(s)
- Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Zubing Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sha She
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinzhi Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiling Zhu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
39
|
Fan M, Wang J, Wang S, Li T, Pan H, Liu H, Xu H, Zhernakova DV, O'Brien SJ, Feng Z, Chang L, Dai E, Lu J, Xi H, Yu Y, Zhang J, Wang B, Zeng Z. New Gene Variants Associated with the Risk of Chronic HBV Infection. Virol Sin 2020; 35:378-387. [PMID: 32297155 DOI: 10.1007/s12250-020-00200-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Some patients with chronic hepatitis B virus (HBV) infection failed to clear HBV, even persistently continue to produce antibodies to HBV. Here we performed a two stage genome wide association study in a cohort of Chinese patients designed to discover single nucleotide variants that associate with HBV infection and clearance of HBV. The first stage involved genome wide exome sequencing of 101 cases (HBsAg plus anti-HBs positive) compared with 102 control patients (anti-HBs positive, HBsAg negative). Over 80% of individual sequences displayed 20 × sequence coverage. Adapters, uncertain bases > 10% or low-quality base calls (> 50%) were filtered and compared to the human reference genome hg19. In the second stage, 579 chronic HBV infected cases and 439 HBV clearance controls were sequenced with selected genes from the first stage. Although there were no significant associated gene variants in the first stage, two significant gene associations were discovered when the two stages were assessed in a combined analysis. One association showed rs506121-"T" allele [within the dedicator of cytokinesis 8 (DOCK8) gene] was higher in chronic HBV infection group than that in clearance group (P = 0.002, OR = 0.77, 95% CI [0.65, 0.91]). The second association involved rs2071676-A allele within the Carbonic anhydrase (CA9) gene that was significantly elevated in chronic HBV infection group compared to the clearance group (P = 0.0003, OR = 1.35, 95% CI [1.15, 1.58]). Upon replication these gene associations would suggest the influence of DOCK8 and CA9 as potential risk genetic factors in the persistence of HBV infection.
Collapse
Affiliation(s)
- Mengjie Fan
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Jing Wang
- Department of Medical Genetics and Development Biology, School of Medical Basic, Capital Medical University, Beijing, 100069, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Sa Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Hong Pan
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Hankui Liu
- BGI-Shenzhen, Shenzhen, 518083, China.,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huifang Xu
- BGI-Shenzhen, Shenzhen, 518083, China.,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Daria V Zhernakova
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia, 197101
| | - Stephen J O'Brien
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia, 197101.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Ft Lauderdale, FL, 33004, USA
| | - Zhenru Feng
- Department of Laboratory Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Le Chang
- Department of Laboratory Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Erhei Dai
- The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050024, China
| | - Jianhua Lu
- The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050024, China
| | - Hongli Xi
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Jianguo Zhang
- BGI-Shenzhen, Shenzhen, 518083, China. .,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China.
| | - Zheng Zeng
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
40
|
Dell'Edera D, Debellis L, Mitidieri A, Anna Epifania A, Cuscianna E, Allegretti A. Cardiofaciocutaneous syndrome with rare structural variant in DOCK8 gene associated with neurodevelopmental disorders. Clin Case Rep 2020; 8:539-544. [PMID: 32185055 PMCID: PMC7069886 DOI: 10.1002/ccr3.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 11/07/2022] Open
Abstract
We describe a girl with clinical signs of cardiofaciocutaneous syndrome who simultaneously presents a mutation in the BRAF gene and a 9p24.3 microduplication. This genetic condition has never been described in the literature and could explain the phenotypic variability observed in the girl.
Collapse
Affiliation(s)
- Domenico Dell'Edera
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| | - Lucantonio Debellis
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| | - Angela Mitidieri
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| | | | - Eustachio Cuscianna
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| | - Arianna Allegretti
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| |
Collapse
|
41
|
Gowthaman U, Chen JS, Zhang B, Flynn WF, Lu Y, Song W, Joseph J, Gertie JA, Xu L, Collet MA, Grassmann JDS, Simoneau T, Chiang D, Berin MC, Craft JE, Weinstein JS, Williams A, Eisenbarth SC. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 2019; 365:science.aaw6433. [PMID: 31371561 PMCID: PMC6901029 DOI: 10.1126/science.aaw6433] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
Cross-linking of high-affinity immunoglobulin E (IgE) results in the life-threatening allergic reaction anaphylaxis. Yet the cellular mechanisms that induce B cells to produce IgE in response to allergens remain poorly understood. T follicular helper (TFH) cells direct the affinity and isotype of antibodies produced by B cells. Although TFH cell-derived interleukin-4 (IL-4) is necessary for IgE production, it is not sufficient. We report a rare population of IL-13-producing TFH cells present in mice and humans with IgE to allergens, but not when allergen-specific IgE was absent or only low-affinity. These "TFH13" cells have an unusual cytokine profile (IL-13hiIL-4hiIL-5hiIL-21lo) and coexpress the transcription factors BCL6 and GATA3. TFH13 cells are required for production of high- but not low-affinity IgE and subsequent allergen-induced anaphylaxis. Blocking TFH13 cells may represent an alternative therapeutic target to ameliorate anaphylaxis.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Biyan Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Yisi Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Magalie A Collet
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | - Tregony Simoneau
- The Asthma Center, CT Children's Medical Center, Hartford, CT 06106, USA
| | - David Chiang
- Jaffe Food Allergy Institute and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph E Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA. .,The Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Interaction of septin 7 and DOCK8 in equine lymphocytes reveals novel insights into signaling pathways associated with autoimmunity. Sci Rep 2018; 8:12332. [PMID: 30120291 PMCID: PMC6098150 DOI: 10.1038/s41598-018-30753-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/22/2018] [Indexed: 01/21/2023] Open
Abstract
The GTP-binding protein septin 7 is involved in various cellular processes, including cytoskeleton organization, migration and the regulation of cell shape. Septin 7 function in lymphocytes, however, is poorly characterized. Since the intracellular signaling role of septin 7 is dependent on its interaction network, interaction proteomics was applied to attain novel knowledge about septin 7 function in hematopoietic cells. Our previous finding of decreased septin 7 expression in blood-derived lymphocytes in ERU, a spontaneous animal model for autoimmune uveitis in man, extended the role of septin 7 to a potential key player in autoimmunity. Here, we revealed novel insights into septin 7 function by identification of DOCK8 as an interaction partner in primary blood-derived lymphocytes. Since DOCK8 is associated with important immune functions, our finding of significantly decreased DOCK8 expression and altered DOCK8 interaction network in ERU might explain changes in immune response and shows the contribution of DOCK8 in pathomechanisms of spontaneous autoimmune diseases. Moreover, our analyses revealed insights in DOCK8 function, by identifying the signal transducer ILK as a DOCK8 interactor in lymphocytes. Our finding of the enhanced enrichment of ILK in ERU cases indicates a deviant influence of DOCK8 on inter- and intracellular signaling in autoimmune disease.
Collapse
|
43
|
Rare structural variants in the DOCK8 gene identified in a cohort of 439 patients with neurodevelopmental disorders. Sci Rep 2018; 8:9449. [PMID: 29930340 PMCID: PMC6013431 DOI: 10.1038/s41598-018-27824-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/08/2018] [Indexed: 01/05/2023] Open
Abstract
Detection of copy number variations (CNVs) is a first-tier clinical diagnostic test for children with neurodevelopmental disorders (NDD), which reveals the genetic cause of the disorder in more than 20%. These are mostly known microdeletion/microduplication syndromes, but variants of unknown clinical significance (VOUS) and ambiguous CNVs can also be detected. An example of the last two are abnormalities in the DOCK8 gene. Conflicting interpretations of CNVs affecting DOCK8 can be found in the literature. Deletions were predicted to have a impact in carriers with variable clinical manifestations, where duplications have been proposed as benign variants. In our study, CNV screening was performed in a cohort involving 439 probands with suspected NDD. We identified known microdeletion/microduplication syndromes in 19% and VOUS CNVs in 8% of patients. Among these, three patients had a CNV encompassing the DOCK8 gene. Although diverse clinical presentations are noted in our three patients, comparison of their phenotypes revealed that abnormalities in cognition and communication, aggressive behaviour and mood swings are common to all of them. Therefore, a clinical relevance, in terms of influencing the psychiatric clinical picture of patients, is proposed for the CNVs disrupting the DOCK8 gene, regardless of whether it is a deletion or duplication.
Collapse
|
44
|
Kearney CJ, Vervoort SJ, Ramsbottom KM, Freeman AJ, Michie J, Peake J, Casanova JL, Picard C, Tangye SG, Ma CS, Johnstone RW, Randall KL, Oliaro J. DOCK8 Drives Src-Dependent NK Cell Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:ji1700751. [PMID: 28794229 DOI: 10.4049/jimmunol.1700751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Mutations in the dedicator of cytokinesis 8 (DOCK8) gene cause an autosomal recessive form of hyper-IgE syndrome, characterized by chronic immunodeficiency with persistent microbial infection and increased incidence of malignancy. These manifestations suggest a defect in cytotoxic lymphocyte function and immune surveillance. However, how DOCK8 regulates NK cell-driven immune responses remains unclear. In this article, we demonstrate that DOCK8 regulates NK cell cytotoxicity and cytokine production in response to target cell engagement or receptor ligation. Genetic ablation of DOCK8 in human NK cells attenuated cytokine transcription and secretion through inhibition of Src family kinase activation, particularly Lck, downstream of target cell engagement or NKp30 ligation. PMA/Ionomycin treatment of DOCK8-deficient NK cells rescued cytokine production, indicating a defect proximal to receptor ligation. Importantly, NK cells from DOCK8-deficient patients had attenuated production of IFN-γ and TNF-α upon NKp30 stimulation. Taken together, we reveal a novel molecular mechanism by which DOCK8 regulates NK cell-driven immunity.
Collapse
Affiliation(s)
- Conor J Kearney
- Immune Defence Laboratory, Cancer Immunology Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stephin J Vervoort
- Gene Regulation Laboratory, Cancer Therapeutics Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Kelly M Ramsbottom
- Immune Defence Laboratory, Cancer Immunology Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Andrew J Freeman
- Immune Defence Laboratory, Cancer Immunology Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Jessica Michie
- Immune Defence Laboratory, Cancer Immunology Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Jane Peake
- University of Queensland and Lady Cilento Children's Hospital, Brisbane, Queensland 4006, Australia
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Medical School, University Paris Descartes, 75015 Paris, France
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- St. Giles Laboratory of Human Genetics and Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, New York, NY 10065
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Medical School, University Paris Descartes, 75015 Paris, France
- St. Giles Laboratory of Human Genetics and Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, Australia
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
- Gene Regulation Laboratory, Cancer Therapeutics Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Katrina L Randall
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia; and
- Australian National University Medical School, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Jane Oliaro
- Immune Defence Laboratory, Cancer Immunology Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|