1
|
Singh R, Ha SE, Yu TY, Ro S. Dual Roles of miR-10a-5p and miR-10b-5p as Tumor Suppressors and Oncogenes in Diverse Cancers. Int J Mol Sci 2025; 26:415. [DOI: 10.3390/ijms26010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Cancer is a complex genetic disorder characterized by abnormalities in both coding and regulatory non-coding RNAs. microRNAs (miRNAs) are key regulatory non-coding RNAs that modulate cancer development, functioning as both tumor suppressors and oncogenes. miRNAs play critical roles in cancer progression, influencing key processes such as initiation, promotion, and metastasis. They exert their effects by targeting tumor suppressor genes, thereby facilitating cancer progression, while also inhibiting oncogenes to prevent further disease advancement. The miR-10 family, particularly miR-10a-5p and miR-10b-5p (miR-10a/b-5p), is notably involved in cancer progression. Intriguingly, their functions can differ across different cancers, sometimes promoting and at other times suppressing tumor growth depending on the cancer type and target genes. This review explores the dual roles of miR-10a/b-5p as tumor-suppressive miRNAs (TSmiRs) or oncogenic miRNAs (oncomiRs) in various cancers by examining their molecular and cellular mechanisms and their impact on the tumor microenvironment. Furthermore, we discuss the potential of miR-10a/b-5p as therapeutic targets, emphasizing miRNA-based strategies for cancer treatment. The insights discussed in this review aim to advance our understanding of miR-10a/b-5p’s roles in tumor biology and their application in developing innovative cancer therapies.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Tae Yang Yu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- Division of Endocrinology and Metabolism, Department of Medicine, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- RosVivo Therapeutics, Applied Research Facility, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
2
|
Bhowmick R, Campit S, Katkam SK, Keshamouni VG, Chandrasekaran S. Genome-scale modeling identifies dynamic metabolic vulnerabilities during the epithelial to mesenchymal transition. Commun Biol 2024; 7:1704. [PMID: 39730911 DOI: 10.1038/s42003-024-07408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear. In this work, using genome-scale metabolic modeling, we perform a meta-analysis of time-course transcriptomics, time-course proteomics, and single-cell transcriptomics EMT datasets from cell culture models stimulated with TGF-β. We uncovered temporal metabolic dependencies in glycolysis and glutamine metabolism, and experimentally validated isoform-specific dependency on Enolase3 for cell survival during EMT. We derived a prioritized list of metabolic dependencies based on model predictions, literature mining, and CRISPR-Cas9 essentiality screens. Notably, enolase and triose phosphate isomerase reaction fluxes significantly correlate with survival of lung adenocarcinoma patients. Our study illustrates how integration of heterogeneous datasets using a mechanistic computational model can uncover temporal and cell-state-specific metabolic dependencies.
Collapse
Affiliation(s)
- Rupa Bhowmick
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Scott Campit
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shiva Krishna Katkam
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Venkateshwar G Keshamouni
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
- LTC Charles S. Kettles VA Medical Center, Research Service (151), Ann Arbor, MI, USA.
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Si W, Liu J, Wang Y, Mao Y, Zhang Y, Xu S, Guo K, Zhang Y, Hu Y, Zhang F. IL-8 promotes lens capsular residual cells migration by down-regulates expression of E-cadherin and ZO-1 via the CXCR1/2-NF-κB-RhoA signal pathway. Int Immunopharmacol 2024; 142:113074. [PMID: 39244903 DOI: 10.1016/j.intimp.2024.113074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Posterior capsular opacification is a major complication following cataract surgery, marked by proliferation, migration, epithelial-mesenchymal transition, and fibrosis of residual epithelial cells. Various inflammatory cytokines are upregulated and contribute to the development of posterior capsular opacification. The effect of interleukin-8 on residual epithelial cells has not been fully determined. METHODS Aqueous humor and anterior capsules samples were collected from cataract surgery. Capsular bags from rats and pigs were cultured in DMEM media. Protein and mRNA expressions were measured using immunoblot and qPCR. Cell migration was assessed using the transwell assay. RESULTS Interleukin-8 is an early inflammatory factor secreted by residual lens epithelial cells. Migration of lens epithelial cells in aqueous humor positively correlates with interleukin-8 levels, and this effect is inhibited by the receptors of interleukin-8 CXCR1/2 blocker Reparaxin. The expression of tight-junction protein ZO-1 and cell-adhesion protein E-cadherin were down-regulated by administrating interleukin-8, and cell migration of both SRA01/04 cell line in vitro and capsular residual epithelial cells ex vivo were up-regulated via activating RhoA expression and RhoA/GTPase activity. The loss-of- function studies demonstrate that interleukin-8 binding to its receptor CXCR1/2 activates NF-κB/p65, which then turns on the RhoA's expression and RhoA/GTPase activity, and RhoA-modulated the downexpression of E-cadherin and ZO-1 and the increase of cell migration. CONCLUSIONS The upregulation in interleukin-8 occurs early in posterior capsular opacification and contributes to down-regulating tight-junctions among epithelial cells and elevates cell migration via the CXCR1/2-NF-κB-RhoA signaling pathway. These demonstrated that interleukin-8 could be a potential target for preventing posterior capsular opacification.
Collapse
Affiliation(s)
- Wei Si
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Liu
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxuan Wang
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Beijing Tsinghua Changgeng Hospital, Beijing, China
| | - Yi Mao
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhang Zhang
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Xu
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keyu Guo
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yihan Zhang
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanzhong Hu
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; The jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China.
| | - Fengyan Zhang
- Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Carvalho MI, Silva-Carvalho R, Prada J, Pinto C, Gregório H, Lobo L, Pires I, Queiroga FL. TGFβ in malignant canine mammary tumors: relation with angiogenesis, immunologic markers and prognostic role. Vet Q 2024; 44:1-12. [PMID: 39165025 PMCID: PMC11340227 DOI: 10.1080/01652176.2024.2390941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Transforming growth factor-β (TGFβ) and FoxP3 regulatory T cells (Treg) are involved in human breast carcinogenesis. This topic is not well documented in canine mammary tumors (CMT). In this work, the tumoral TGFβ expression was assessed by immunohistochemistry in 67 malignant CMT and its correlation to previously determined FoxP3, VEGF, and CD31 markers and other clinicopathologic parameters was evaluated. The high levels of TGFβ were statistically significantly associated with skin ulceration, tumor necrosis, high histological grade of malignancy (HGM), presence of neoplastic intravascular emboli and presence of lymph node metastases. The observed levels of TGFβ were positively correlated with intratumoral FoxP3 (strong correlation), VEGF (weak correlation) and CD31 (moderate correlation). Tumors that presented a concurrent high expression of TGFβ/FoxP3, TGFβ/VEGF, and TGFβ/CD31 markers were statistically significantly associated with parameters of tumor malignancy (high HGM, presence of vascular emboli and nodal metastasis). Additionally, shorter overall survival (OS) time was statistically significantly associated with tumors with an abundant TGFβ expression and with concurrent high expression of TGFβ/FoxP3, TGFβ/VEGF, and TGFβ/CD31. The presence of lymph node metastasis increased 11 times the risk of disease-related death, arising as an independent predictor of poor prognosis in the multivariable analysis. In conclusion, TGFβ and Treg cells seem involved in tumor progression emerging as potential therapeutic targets for future immunotherapy studies.
Collapse
Affiliation(s)
- Maria Isabel Carvalho
- MVET Research in Veterinary Medicine. Faculty of Veterinary Medicine, Lusófona University – Lisbon Centre, Lisboa, Portugal
| | - Ricardo Silva-Carvalho
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Justina Prada
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carla Pinto
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Hugo Gregório
- Anicura Centro Hospitalar Veterinário, Porto, Portugal
| | - Luis Lobo
- MVET Research in Veterinary Medicine. Faculty of Veterinary Medicine, Lusófona University – Lisbon Centre, Lisboa, Portugal
- Onevet Hospital Veterinário do Porto, Porto, Portugal
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Portugal
| | - Isabel Pires
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina L. Queiroga
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Portugal
| |
Collapse
|
5
|
Delle Cave D, Mangini M, Tramontano C, De Stefano L, Corona M, Rea I, De Luca AC, Lonardo E. Hybrid Biosilica Nanoparticles for in-vivo Targeted Inhibition of Colorectal Cancer Growth and Label-Free Imaging. Int J Nanomedicine 2024; 19:12079-12098. [PMID: 39583322 PMCID: PMC11585298 DOI: 10.2147/ijn.s480168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
Background Metastasis-initiating cells are key players in progression, resistance, and relapse of colorectal cancer (CRC), by leveraging the regulatory relationship between Transforming Growth Factor-beta (TGF-β) signaling and anti-L1 cell adhesion molecule (L1CAM). Methods This study introduces a novel strategy for CRC targeted therapy and imaging based on the use of a hybrid nanosystem made of gold nanoparticles-covered porous biosilica further modified with the (L1CAM) antibody. Results The nanosystem intracellularly delivers galunisertib (LY), a TGF-β inhibitor, aiming to inhibit epithelial-mesenchymal transition (EMT), a process pivotal for metastasis. Anti-L1CAM antibody-functionalized nanoparticles (NPs) target tumor-initiating cells expressing L1CAM, inhibiting cancer growth. The number of antibody molecules conjugated to the single NP is precisely quantified, revealing a high surface coverage that facilitates the tumor targeting. The therapeutic efficacy of the nanosystem is investigated in organoid-like cultures of CRC cells and in vivo mouse models, showing a significant reduction in tumor growth. The spatial distribution of NPs within CRC tumors from mice is investigated using a label-free optical approach based on Raman micro-spectroscopy. Conclusion This research highlights the multifunctional capabilities of engineered biosilica NPs, which offer new insights in targeted CRC therapy and imaging, improving patient outcomes and paving the way for personalized therapies.
Collapse
Affiliation(s)
- Donatella Delle Cave
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Maria Mangini
- National Research Council, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, Naples, 80131, Italy
| | - Chiara Tramontano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Luca De Stefano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Marco Corona
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Ilaria Rea
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, Naples, 80131, Italy
| | - Enza Lonardo
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| |
Collapse
|
6
|
Heath J, Mirabelli C, Annis MG, Sabourin V, Hebert S, Findlay S, Kim H, Witcher M, Kleinman CL, Siegel PM, Orthwein A, Ursini-Siegel J. The Neurodevelopmental Protein POGZ Suppresses Metastasis in Triple-Negative Breast Cancer by Attenuating TGFβ Signaling. Cancer Res 2024; 84:3743-3760. [PMID: 39137399 DOI: 10.1158/0008-5472.can-23-3887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The pogo transposable element-derived zinc finger protein, POGZ, is notably associated with neurodevelopmental disorders through its role in gene transcription. Many proteins involved in neurological development are often dysregulated in cancer, suggesting a potential role for POGZ in tumor biology. Here, we provided experimental evidence that POGZ influences the growth and metastatic spread of triple-negative breast cancers (TNBC). In well-characterized models of TNBC, POGZ exerted a dual role, both as a tumor promoter and metastasis suppressor. Mechanistically, loss of POGZ potentiated TGFβ pathway activation to exert cytostatic effects while simultaneously increasing the mesenchymal and migratory properties of breast tumors. Although POGZ levels are elevated in human breast cancers, the most aggressive forms of TNBC tumors, including those with increased mesenchymal and metastatic properties, exhibit dampened POGZ levels, and low POGZ expression was associated with inferior clinical outcomes in these tumor types. Taken together, these data suggest that POGZ is a critical suppressor of the early stages of the metastatic cascade. Significance: The POGZ neurodevelopmental protein plays dual functions in triple-negative breast cancers as a tumor promoter and metastasis suppressor, inhibiting TGFβ-regulated EMT to limit breast cancer metastatic progression.
Collapse
Affiliation(s)
- John Heath
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Caitlynn Mirabelli
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Steven Hebert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - HaEun Kim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael Witcher
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Alexandre Orthwein
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
7
|
Du F, Li J, Zhong X, Zhang Z, Zhao Y. Endothelial-to-mesenchymal transition in the tumor microenvironment: Roles of transforming growth factor-β and matrix metalloproteins. Heliyon 2024; 10:e40118. [PMID: 39568849 PMCID: PMC11577214 DOI: 10.1016/j.heliyon.2024.e40118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Cancer is a leading cause of global morbidity and mortality. Tumor cells grow in a complex microenvironment, comprising immune cells, stromal cells, and vascular cells, collaborating to support tumor growth and facilitate metastasis. Transforming growth factor-beta (TGF-β) is a multipotent factor that can not only affect fibrosis promotion but also assume distinct roles in the early and late stages of the tumor. Matrix metalloproteinases (MMPs) primarily function to degrade the extracellular matrix, a pivotal cellular player in tumor progression. Moreover, endothelial-to-mesenchymal transition (EndMT), similar to epithelial-to-mesenchymal transition, is associated with cancer progression by promoting angiogenesis, disrupting the endothelial barrier, and leading to cancer-associated fibroblasts. Recent studies have underscored the pivotal roles of TGF-β and MMPs in EndMT. This review delves into the contributions of TGF-β and MMPs, as well as their regulatory mechanisms, within the tumor microenvironment. This collective understanding offers fresh insights into the potential for combined targeted therapies in the fight against cancer.
Collapse
Affiliation(s)
- Fei Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacy, Meishan TianFu New Area People's Hospital, Meishan, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Li Y, Sun W, Yuan S, Liu X, Zhang Z, Gu R, Li P, Gu X. The role of cuproptosis in gastric cancer. Front Immunol 2024; 15:1435651. [PMID: 39539553 PMCID: PMC11558255 DOI: 10.3389/fimmu.2024.1435651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
As a biologically essential transition metal, copper is widely involved in various enzymatic reactions and crucial biological processes in the body. It plays an increasingly important role in maintaining normal cellular metabolism and supporting the growth and development of the human body. As a trace element, copper maintains the dynamic balance of its concentration in body fluids through active homeostatic mechanisms. Both excess and deficiency of copper ions can impair cell function, ultimately leading to cell damage and death. Cuproptosis is a novel form of cell death where copper ions cause cell death by directly binding to the lipoylated components of the citric acid cycle (CAC) in mitochondrial respiration and interfering with the levels of iron-sulfur cluster (Fe-S cluster) proteins, ultimately causing protein toxic stress. Its primary characteristics are Cu2+ concentration dependence and high expression in mitochondrial respiratory cells. Recent research has revealed that, compared to other forms of programmed cell death such as apoptosis, necrosis, and autophagy, cuproptosis has unique morphological and biochemical features. Cuproptosis is associated with the occurrence and development of various diseases, including cancer, neurodegenerative diseases, and cardiovascular diseases. This article focuses on a review of the relevance of cuproptosis in gastric cancer (GC).
Collapse
Affiliation(s)
- Yixian Li
- Nanjing University of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| | - Wenhao Sun
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Shaolin Yuan
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Xinxin Liu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Ziqi Zhang
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Renjun Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengfei Li
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Angelico R, Bonaccorsi Riani E, De Martin E, Parente A, Foguenne M, Sensi B, Rodríguez-Perálvarez ML. Immunosuppression protocols for emerging oncological indications in liver transplantation: A systematic review and pooled analysis. Liver Transpl 2024:01445473-990000000-00477. [PMID: 39347698 DOI: 10.1097/lvt.0000000000000499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
The evolving field of liver transplant (LT) oncology calls for tailored immunosuppression protocols to minimize the risk of tumor recurrence. We systematically reviewed the available evidence from inception to May 2023 regarding immunosuppression protocols used in patients undergoing LT for cholangiocarcinoma, neuroendocrine tumors (NET), hepatic-endothelial hemangioendothelioma, and colorectal liver metastases (CRLM) to identify common practices and to evaluate their association with oncological outcomes. Studies not involving humans, case reports, and short case series (ie, n < 10) were excluded. Among 3374 screened references, we included 117 studies involving 6797 patients distributed as follows: cholangiocarcinoma (58.1%), NETs (18.8%), hepatic-endothelial hemangioendothelioma (7.7%), CRLM (6.8%), mixed neoplasms (6.8%), or others (1.7%). Only 41% of the studies disclosed details of the immunosuppression protocol, and 20.8% of studies provided drug trough concentrations during follow-up. The immunosuppression protocols described were heterogeneous and broadly mirrored routine practices for nontumoral indications. The only exception was CRLM, where tacrolimus minimization-or even withdrawal-in combination with inhibitors of the mammalian target of rapamycin (mTORi) were consistently reported. None of the studies evaluated the relationship between the immunosuppression protocol and oncological outcomes. In conclusion, based on low-quality and indirect scientific evidence, patients with tumoral indications for LT should receive the lowest tacrolimus level tolerated under close surveillance. The combination with mTORi titrated to achieve the top therapeutic range of trough concentrations could allow complete tacrolimus withdrawal. This approach may be particularly useful in patients with cholangiocarcinoma and CRLM, in whom tumor recurrence is the main cause of death. We propose a tool for reporting immunosuppression protocols, which could be implemented in future transplant oncology studies.
Collapse
Affiliation(s)
- Roberta Angelico
- Department of Surgical Sciences, HPB and Transplant Unit, University of Rome Tor Vergata, Rome, Italy
| | - Eliano Bonaccorsi Riani
- Pole of Experimental Surgery and Transplantation - CHEX, UCLouvain, Brussels, Belgium Abdominal Transplant Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain Brussels, Belgium
| | - Eleonora De Martin
- Centre Hépato-Biliaire, Hôpital Paul Brousse, INSERM Unit, FHU Hepatinov, Villejuif, France
| | - Alessandro Parente
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, UK
| | - Maxime Foguenne
- Pole of Experimental Surgery and Transplantation - CHEX, UCLouvain, Brussels, Belgium Abdominal Transplant Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain Brussels, Belgium
| | - Bruno Sensi
- Department of Surgical Sciences, HPB and Transplant Unit, University of Rome Tor Vergata, Rome, Italy
| | - Manuel L Rodríguez-Perálvarez
- Department of Hepatology and Liver Transplantation, Hospital Universitario Reina Sofía, IMIBIC, CIBERehd, University of Córdoba, Spain
| |
Collapse
|
10
|
Kuriyama S, Thasaneeya K, Itoh G, Kidoaki S, Tanaka M. Glyoxal-methyl-ethylene sulfonic acid fixative enhances the fixation of cytoskeletal structures for Förster resonance energy transfer measurements. Histochem Cell Biol 2024; 162:337-347. [PMID: 38880796 DOI: 10.1007/s00418-024-02304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Förster resonance energy transfer (FRET) serves as a tool for measuring protein-protein interactions using various sensor molecules. The tension sensor module relies on FRET technology. In our study, this module was inserted within the actinin molecule to measure the surface tension of the cells. Given that the decay curve of FRET efficiency correlates with surface tension increase, precise and accurate efficiency measurement becomes crucial. Among the methods of FRET measurements, FRET efficiency remains the most accurate if sample fixation is successful. However, when cells were fixed with 4% paraformaldehyde (PFA), the actinin-FRET sensor diffused across the cytoplasm; this prompted us to explore fixation method enhancements. Glyoxal fixative has been reported to improve cytoskeletal morphologies compared to PFA. However, it was not known whether glyoxal fits FRET measurements. Glyoxal necessitates an acetic acid solution for fixation; however, acidic conditions could compromise fluorescence stability. We observed that the pH working range of glyoxal fixative aligns closely with MES (methyl-ethylene sulfonic acid) Good's buffer. Initially, we switched the acidic solution for MES buffer and optimized the fixation procedure for in vitro and in vivo FRET imaging. By comparing FRET measurements on hydrogels with known stiffness to tumor nodules in mouse lung, we estimated in vivo stiffness. The estimated stiffness of cancerous tissue was harder than the reported stiffness of smooth muscle. This discovery shed lights on how cancer cells perceive environmental stiffness during metastasis.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department Molecular Medicine & Biochemistry, Akita University Fac. & Grad. Sch. Med, Akita City, Akita, 010-8543, Japan.
| | - Kuboki Thasaneeya
- Institute for Materials Chemistry and Engineering, Division Biomolecular Chemistry, Kyushu University, 744 Moto-Oka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Go Itoh
- Department Molecular Medicine & Biochemistry, Akita University Fac. & Grad. Sch. Med, Akita City, Akita, 010-8543, Japan
| | - Satoru Kidoaki
- Institute for Materials Chemistry and Engineering, Division Biomolecular Chemistry, Kyushu University, 744 Moto-Oka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Masamitsu Tanaka
- Department Molecular Medicine & Biochemistry, Akita University Fac. & Grad. Sch. Med, Akita City, Akita, 010-8543, Japan
| |
Collapse
|
11
|
Trehan R, Zhu XB, Huang P, Wang X, Soliman M, Strepay D, Nur A, Kedei N, Arhin M, Ghabra S, Rodríguez-Matos F, Benmebarek MR, Ma C, Korangy F, Greten TF. A Paradoxical Tumor Antigen Specific Response in the Liver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.614002. [PMID: 39372792 PMCID: PMC11451677 DOI: 10.1101/2024.09.19.614002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Functional tumor-specific CD8+ T cells are essential for an effective anti-tumor immune response and the efficacy of immune checkpoint inhibitor therapy. In comparison to other organ sites, we found higher numbers of tumor-specific CD8+ T cells in primary, metastatic liver tumors in murine tumor models. Despite their abundance, CD8+ T cells in the liver displayed an exhausted phenotype. Depletion of CD8+ T cells showed that liver tumor-reactive CD8+ T failed to control liver tumors but was effective against subcutaneous tumors. Similarly, analysis of single-cell RNA sequencing data from patients showed a higher frequency of exhausted tumor-reactive CD8+ T cells in liver metastasis compared to paired primary colon cancer. High-dimensional, multi-omic analysis combining proteomic CODEX and scRNA-seq data revealed enriched interaction of SPP1+ macrophages and CD8+ tumor-reactive T cells in profibrotic, alpha-SMA rich regions in the liver. Liver tumors grew less in Spp1-/- mice and the tumor-specific CD8+ T cells were less exhausted. Differential pseudotime trajectory inference analysis revealed extrahepatic signaling promoting an intermediate cell (IC) population in the liver, characterized by co-expression of VISG4, CSF1R, CD163, TGF-βR, IL-6R, SPP1. scRNA-seq of a third data set of premetastatic adenocarcinoma showed that enrichment of this population may predict liver metastasis. Our data suggests a mechanism by which extrahepatic tumors facilitate the formation of liver metastasis by promoting an IC population inhibiting tumor-reactive CD8+ T cell function.
Collapse
Affiliation(s)
- Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao Bin Zhu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTR, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Arhin
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shadin Ghabra
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodríguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Senior author
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
- Senior author
| |
Collapse
|
12
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
13
|
Nian Z, Wang D, Wang H, Liu W, Ma Z, Yan J, Cao Y, Li J, Zhao Q, Liu Z. Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma. Front Med 2024; 18:690-707. [PMID: 39014137 DOI: 10.1007/s11684-024-1081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 07/18/2024]
Abstract
Neuroblastoma (NB) is one of the most common childhood malignancies. Sixty percent of patients present with widely disseminated clinical signs at diagnosis and exhibit poor outcomes. However, the molecular mechanisms triggering NB metastasis remain largely uncharacterized. In this study, we generated a transcriptomic atlas of 15 447 NB cells from eight NB samples, including paired samples of primary tumors and bone marrow metastases. We used time-resolved analysis to chart the evolutionary trajectory of NB cells from the primary tumor to the metastases in the same patient and identified a common 'starter' subpopulation that initiates tumor development and metastasis. The 'starter' population exhibited high expression levels of multiple cell cycle-related genes, indicating the important role of cell cycle upregulation in NB tumor progression. In addition, our evolutionary trajectory analysis demonstrated the involvement of partial epithelial-to-mesenchymal transition (p-EMT) along the metastatic route from the primary site to the bone marrow. Our study provides insights into the program driving NB metastasis and presents a signature of metastasis-initiating cells as an independent prognostic indicator and potential therapeutic target to inhibit the initiation of NB metastasis.
Collapse
Affiliation(s)
- Zhe Nian
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hao Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wenxu Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenyi Ma
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2024. [PMID: 39083441 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Nima Taefehshokr
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Faculty Academy of Silesia, Faculty of Medicine, Katowice, Poland
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
15
|
Li X, Sun X, Chen H, Wang Y, Chen H, Gao Y. Boron Dipyrromethene-Based Nanotheranostic System for Sonophotoassisted Therapy and Simultaneous Monitoring of Tumor Immune Microenvironment Reprogramming. ACS NANO 2024; 18:18230-18245. [PMID: 38950337 DOI: 10.1021/acsnano.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Therapy-induced modulation of the tumor microenvironment (TME) to overcome the immunosuppressive TME is considered to be an opportunity for cancer treatment. However, monitoring of TME modulation during the therapeutic process to accurately determine immune responses and adjust treatment plans in a timely manner remains to be challenging. Herein, we report a carrier-free nanotheranostic system (CANPs) assembled by two boron dipyrromethene (BODIPY) dyes, a sonophotosensitizer C-BDP, and a nitric oxide (NO) probe amino-BODIPY (A-BDP). CANPs can exert combined sonophototherapeutic effects of C-BDP under ultrasound and light irradiation and simultaneously induce inflammatory TME, as well as emit bright fluorescence via A-BDP by monitoring tumor-associated macrophages (TAMs) repolarization through the released NO in vitro and in vivo. Of note, transforming growth factor-β (TGF-β) could be the key cytokine involved in the sonophototherapy-induced TME reprogramming. By virtue of high physiological stability, good biocompatibility, and effective tumor targetability, CANPs could be a potential nanotheranostic system for the simultaneous induction and detection of TME reprogramming triggered by sonophototherapy.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Hui Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
16
|
Mansour MA, Hassan GS, Serya RAT, Jaballah MY, Abouzid KAM. Advances in the discovery of activin receptor-like kinase 5 (ALK5) inhibitors. Bioorg Chem 2024; 147:107332. [PMID: 38581966 DOI: 10.1016/j.bioorg.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Activin receptor‑like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-β (TGF-β) family. (TGF-β) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.
Collapse
Affiliation(s)
- Mai A Mansour
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt.
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Maiy Y Jaballah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt.
| |
Collapse
|
17
|
Park JH, Mortaja M, Son HG, Zhao X, Sloat LM, Azin M, Wang J, Collier MR, Tummala KS, Mandinova A, Bardeesy N, Semenov YR, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat Commun 2024; 15:4099. [PMID: 38816352 PMCID: PMC11139893 DOI: 10.1038/s41467-024-48441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Mahsa Mortaja
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xutu Zhao
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren M Sloat
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael R Collier
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Krishna S Tummala
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Quantitative Biosciences, Merck Research Laboratories, Boston, MA, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Skirzynska A, Xue C, Shoichet MS. Engineering Biomaterials to Model Immune-Tumor Interactions In Vitro. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310637. [PMID: 38349174 DOI: 10.1002/adma.202310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Engineered biomaterial scaffolds are becoming more prominent in research laboratories to study drug efficacy for oncological applications in vitro, but do they have a place in pharmaceutical drug screening pipelines? The low efficacy of cancer drugs in phase II/III clinical trials suggests that there are critical mechanisms not properly accounted for in the pre-clinical evaluation of drug candidates. Immune cells associated with the tumor may account for some of these failures given recent successes with cancer immunotherapies; however, there are few representative platforms to study immune cells in the context of cancer as traditional 2D culture is typically monocultures and humanized animal models have a weakened immune composition. Biomaterials that replicate tumor microenvironmental cues may provide a more relevant model with greater in vitro complexity. In this review, the authors explore the pertinent microenvironmental cues that drive tumor progression in the context of the immune system, discuss how these cues can be incorporated into hydrogel design to culture immune cells, and describe progress toward precision oncological drug screening with engineered tissues.
Collapse
Affiliation(s)
- Arianna Skirzynska
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Chang Xue
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Molly S Shoichet
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 College Street, Toronto, ON, M5S 3H4, Canada
| |
Collapse
|
21
|
Bentivoglio V, Galli F, Varani M, Ranieri D, Nayak P, D’Elia A, Soluri A, Massari R, Lauri C, Signore A. Radiolabelled FGF-2 for Imaging Activated Fibroblasts in the Tumor Micro-Environment. Biomolecules 2024; 14:491. [PMID: 38672507 PMCID: PMC11047989 DOI: 10.3390/biom14040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor associated fibroblasts (TAFs) play a key role in tumor growth and metastatization. TAFs overexpress different biomarkers that are usually expressed at low levels in physiological conditions. Among them are the fibroblast growth factor receptors (FGFRs) that bind the fibroblast growth factors (FGFs). In particular, the overexpression of FGFR-2c in tumors has been associated with advanced clinical stages and increased metastatization. Here, we developed a non-invasive tool to evaluate, in vivo, the expression of FGFR-2c in metastatic cancer. This is based on 99mTc-labelled FGF-2. METHODS 99mTc-FGF-2 was tested in vitro and in vivo in mice bearing allografts of sarcoma cells. Images of 99mTc-FGF-2 were acquired using a new portable high-resolution ultra-sensitive gamma camera for small animal imaging. RESULTS FGF-2 was labeled with high specific activity but low labelling efficiency, thus requiring post-labeling purification by gel-filtration chromatography. In vitro binding to 2C human keratinocytes showed a Kd of 3.36 × 10-9 M. In mice bearing J774A.1 cell allografts, we observed high and rapid tumor uptake of 99mTc-FGF-2 with a high Tumor/Blood ratio at 24 h post-injection (26.1 %ID/g and 12.9 %ID) with low kidney activity and moderate liver activity. CONCLUSIONS we labeled FGF-2 with 99mTc and showed nanomolar Kd in vitro with human keratinocytes expressing FGF-2 receptors. In mice, 99mTc-FGF-2 rapidly and efficiently accumulated in tumors expressing FGF-2 receptors. This new radiopharmaceutical could be used in humans to image TAFs.
Collapse
Affiliation(s)
- Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Danilo Ranieri
- Department of Life Sciences, Health and Healthcare Professions, University “Link Campus University”, 00189 Rome, Italy;
| | - Pallavi Nayak
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Annunziata D’Elia
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), 00015 Monterotondo Scalo, Italy; (A.D.); (A.S.); (R.M.)
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), 00015 Monterotondo Scalo, Italy; (A.D.); (A.S.); (R.M.)
- Unit of Molecular Neurosciences, University Campus Bio-Medico, 00128 Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), 00015 Monterotondo Scalo, Italy; (A.D.); (A.S.); (R.M.)
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| |
Collapse
|
22
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
23
|
Elaasser B, Arakil N, Mohammad KS. Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective. Int J Mol Sci 2024; 25:2846. [PMID: 38474093 PMCID: PMC10932255 DOI: 10.3390/ijms25052846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of patients with advanced cancer poses clinical problems due to the complications that arise as the disease progresses. Bone metastases are a common problem that cancer patients may face, and currently, there are no effective drugs to treat these individuals. Prostate, breast, and lung cancers often spread to the bone, causing significant and disabling health conditions. The bone is a highly active and dynamic tissue and is considered a favorable environment for the growth of cancer. The role of osteoblasts and osteoclasts in the process of bone remodeling and the way in which their interactions change during the progression of metastasis is critical to understanding the pathophysiology of this disease. These interactions create a self-perpetuating loop that stimulates the growth of metastatic cells in the bone. The metabolic reprogramming of both cancer cells and cells in the bone microenvironment has serious implications for the development and progression of metastasis. Insight into the process of bone remodeling and the systemic elements that regulate this process, as well as the cellular changes that occur during the progression of bone metastases, is critical to the discovery of a cure for this disease. It is crucial to explore different therapeutic options that focus specifically on malignancy in the bone microenvironment in order to effectively treat this disease. This review will focus on the bone remodeling process and the effects of metabolic disorders as well as systemic factors like hormones and cytokines on the development of bone metastases. We will also examine the various therapeutic alternatives available today and the upcoming advances in novel treatments.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (B.E.); (N.A.)
| |
Collapse
|
24
|
Sahu P, Mitra A, Ganguly A. Targeting KRAS and SHP2 signaling pathways for immunomodulation and improving treatment outcomes in solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:167-222. [PMID: 38782499 DOI: 10.1016/bs.ircmb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Historically, KRAS has been considered 'undruggable' inspite of being one of the most frequently altered oncogenic proteins in solid tumors, primarily due to the paucity of pharmacologically 'druggable' pockets within the mutant isoforms. However, pioneering developments in drug design capable of targeting the mutant KRAS isoforms especially KRASG12C-mutant cancers, have opened the doors for emergence of combination therapies comprising of a plethora of inhibitors targeting different signaling pathways. SHP2 signaling pathway, primarily known for activation of intracellular signaling pathways such as KRAS has come up as a potential target for such combination therapies as it emerged to be the signaling protein connecting KRAS and the immune signaling pathways and providing the link for understanding the overlapping regions of RAS/ERK/MAPK signaling cascade. Thus, SHP2 inhibitors having potent tumoricidal activity as well as role in immunomodulation have generated keen interest in researchers to explore its potential as combination therapy in KRAS mutant solid tumors. However, the excitement with these combination therapies need to overcome challenges thrown up by drug resistance and enhanced toxicity. In this review, we will discuss KRAS and SHP2 signaling pathways and their roles in immunomodulation and regulation of tumor microenvironment and also analyze the positive effects and drawbacks of the different combination therapies targeted at these signaling pathways along with their present and future potential to treat solid tumors.
Collapse
Affiliation(s)
- Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| |
Collapse
|
25
|
Gaba S, Jain U. Advanced biosensors for nanomaterial-based detection of transforming growth factor alpha and beta, a class of major polypeptide regulators. Int J Biol Macromol 2024; 257:128622. [PMID: 38065462 DOI: 10.1016/j.ijbiomac.2023.128622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Transforming growth factors (TGFs) regulate several cellular processes including, differentiation, growth, migration, extracellular matrix production, and apoptosis. TGF alpha (TGF-α) is a heterogeneous molecule containing 160 amino acid residues. It is a potent angiogenesis promoter that is activated by JAK-STAT signaling. Whereas TGF beta (TGF-β) consists of 390-412 amino acids. Smad and non-Smad signaling both occur in TGF beta. It is linked to immune cell activation, differentiation, and proliferation. It also triggers pre-apoptotic responses and inhibits cell proliferation. Both growth factors have a promising role in the development and homeostasis of tissues. Defects such as autoimmune diseases and cancer develop mechanisms to modulate checkpoints of the immune system resulting in altered growth factors profile. An accurate amount of these growth factors is essential for normal functioning, but an exceed or fall behind the normal level is alarming as it is linked to several disorders. This demands techniques for TGF-α and TGF-β profiling to effectively diagnose diseases, monitor their progression, and assess the efficacy of immunotherapeutic drugs. Quantitative detection techniques including the emergence of biosensing technology seem to accomplish the purpose. Until the present time, few biosensors have been designed in the context of TGF-α and TGF-β for disease detection, analyzing receptor binding, and interaction with carriers. In this paper, we have reviewed the physiology of transforming growth factor alpha and beta, including the types, structure, function, latent/active forms, signaling, and defects caused. It involves the description of biosensors on TGF-α and TGF-β, advances in technology, and future perspectives.
Collapse
Affiliation(s)
- Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
26
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
27
|
Papadakos S, Issa H, Alamri A, Alamri A, Semlali A. Rapamycin as a Potential Alternative Drug for Squamous Cell Gingiva Carcinoma (Ca9-22): A Focus on Cell Cycle, Apoptosis and Autophagy Genetic Profile. Pharmaceuticals (Basel) 2024; 17:131. [PMID: 38276004 PMCID: PMC10818555 DOI: 10.3390/ph17010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Oral cancer is considered as one of the most common malignancies worldwide. Its conventional treatment primarily involves surgery with or without postoperative adjuvant therapy. The targeting of signaling pathways implicated in tumorigenesis is becoming increasingly prevalent in the development of new anticancer drug candidates. Based on our recently published data, Rapamycin, an inhibitor of the mTOR pathway, exhibits selective antitumor activity in oral cancer by inhibiting cell proliferation and inducing cancer cell apoptosis, autophagy, and cellular stress. In the present study, our focus is on elucidating the genetic determinants of Rapamycin's action and the interaction networks accountable for tumorigenesis suppression. To achieve this, gingival carcinoma cell lines (Ca9-22) were exposed to Rapamycin at IC50 (10 µM) for 24 h. Subsequently, we investigated the genetic profiles related to the cell cycle, apoptosis, and autophagy, as well as gene-gene interactions, using QPCR arrays and the Gene MANIA website. Overall, our results showed that Rapamycin at 10 µM significantly inhibits the growth of Ca9-22 cells after 24 h of treatment by around 50% by suppression of key modulators in the G2/M transition, namely, Survivin and CDK5RAP1. The combination of Rapamycin with Cisplatin potentializes the inhibition of Ca9-22 cell proliferation. A P1/Annexin-V assay was performed to evaluate the effect of Rapamycin on cell apoptosis. The results obtained confirm our previous findings in which Rapamycin at 10 μM induces a strong apoptosis of Ca9-22 cells. The live cells decreased, and the late apoptotic cells increased when the cells were treated by Rapamycin. To identify the genes responsible for cell apoptosis induced by Rapamycin, we performed the RT2 Profiler PCR Arrays for 84 apoptotic genes. The blocked cells were believed to be directed towards cell death, confirmed by the downregulation of apoptosis inhibitors involved in both the extrinsic and intrinsic pathways, including BIRC5, BNIP3, CD40LG, DAPK1, LTA, TNFRSF21 and TP73. The observed effects of Rapamycin on tumor suppression are likely to involve the autophagy process, evidenced by the inhibition of autophagy modulators (TGFβ1, RGS19 and AKT1), autophagosome biogenesis components (AMBRA1, ATG9B and TMEM74) and autophagy byproducts (APP). Identifying gene-gene interaction (GGI) networks provided a comprehensive view of the drug's mechanism and connected the studied tumorigenesis processes to potential functional interactions of various kinds (physical interaction, co-expression, genetic interactions etc.). In conclusion, Rapamycin shows promise as a clinical agent for managing Ca9-22 gingiva carcinoma cells.
Collapse
Affiliation(s)
- Sofia Papadakos
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada; (S.P.); (H.I.)
| | - Hawraa Issa
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada; (S.P.); (H.I.)
| | - Abdulaziz Alamri
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Abdullah Alamri
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada; (S.P.); (H.I.)
| |
Collapse
|
28
|
Catalanotto M, Vaz JM, Abshire C, Youngblood R, Chu M, Levine H, Jolly MK, Dragoi AM. Dual role of CASP8AP2/FLASH in regulating epithelial-to-mesenchymal transition plasticity (EMP). Transl Oncol 2024; 39:101837. [PMID: 37984255 PMCID: PMC10689956 DOI: 10.1016/j.tranon.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a developmental program that consists of the loss of epithelial features concomitant with the acquisition of mesenchymal features. Activation of EMT in cancer facilitates the acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition between multiple hybrid states in which cancer cells display both epithelial and mesenchymal markers, confers survival advantages for cancer cells in constantly changing environments during metastasis. METHODS RNAseq analysis was performed to assess genome-wide transcriptional changes in cancer cells depleted for histone regulators FLASH, NPAT, and SLBP. Quantitative PCR and Western blot were used for the detection of mRNA and protein levels. Computational analysis was performed on distinct sets of genes to determine the epithelial and mesenchymal score in cancer cells and to correlate FLASH expression with EMT markers in the CCLE collection. RESULTS We demonstrate that loss of FLASH in cancer cells gives rise to a hybrid E/M phenotype with high epithelial scores even in the presence of TGFβ, as determined by computational methods using expression of predetermined sets of epithelial and mesenchymal genes. Multiple genes involved in cell-cell junction formation are similarly specifically upregulated in FLASH-depleted cells, suggesting that FLASH acts as a repressor of the epithelial phenotype. Further, FLASH expression in cancer lines is inversely correlated with the epithelial score. Nonetheless, subsets of mesenchymal markers were distinctly up-regulated in FLASH, NPAT, or SLBP-depleted cells. CONCLUSIONS The ZEB1low/SNAILhigh/E-cadherinhigh phenotype described in FLASH-depleted cancer cells is driving a hybrid E/M phenotype in which epithelial and mesenchymal markers coexist.
Collapse
Affiliation(s)
| | - Joel Markus Vaz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Reneau Youngblood
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA
| | - Min Chu
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA; Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA.
| |
Collapse
|
29
|
Yadav N, Purow BW. Understanding current experimental models of glioblastoma-brain microenvironment interactions. J Neurooncol 2024; 166:213-229. [PMID: 38180686 PMCID: PMC11056965 DOI: 10.1007/s11060-023-04536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Glioblastoma (GBM) is a common and devastating primary brain tumor, with median survival of 16-18 months after diagnosis in the setting of substantial resistance to standard-of-care and inevitable tumor recurrence. Recent work has implicated the brain microenvironment as being critical for GBM proliferation, invasion, and resistance to treatment. GBM does not operate in isolation, with neurons, astrocytes, and multiple immune populations being implicated in GBM tumor progression and invasiveness. The goal of this review article is to provide an overview of the available in vitro, ex vivo, and in vivo experimental models for assessing GBM-brain interactions, as well as discuss each model's relative strengths and limitations. Current in vitro models discussed will include 2D and 3D co-culture platforms with various cells of the brain microenvironment, as well as spheroids, whole organoids, and models of fluid dynamics, such as interstitial flow. An overview of in vitro and ex vivo organotypic GBM brain slices is also provided. Finally, we conclude with a discussion of the various in vivo rodent models of GBM, including xenografts, syngeneic grafts, and genetically-engineered models of GBM.
Collapse
Affiliation(s)
- Niket Yadav
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Benjamin W Purow
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA.
| |
Collapse
|
30
|
Fernandes S, Oliver-De La Cruz J, Morazzo S, Niro F, Cassani M, Ďuríková H, Caravella A, Fiore P, Azzato G, De Marco G, Lauria A, Izzi V, Bosáková V, Fric J, Filipensky P, Forte G. TGF-β induces matrisome pathological alterations and EMT in patient-derived prostate cancer tumoroids. Matrix Biol 2024; 125:12-30. [PMID: 37944712 DOI: 10.1016/j.matbio.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Extracellular matrix (ECM) tumorigenic alterations resulting in high matrix deposition and stiffening are hallmarks of adenocarcinomas and are collectively defined as desmoplasia. Here, we thoroughly analysed primary prostate cancer tissues obtained from numerous patients undergoing radical prostatectomy to highlight reproducible structural changes in the ECM leading to the loss of the glandular architecture. Starting from patient cells, we established prostate cancer tumoroids (PCTs) and demonstrated they require TGF-β signalling pathway activity to preserve phenotypical and structural similarities with the tissue of origin. By modulating TGF-β signalling pathway in PCTs, we unveiled its role in ECM accumulation and remodelling in prostate cancer. We also found that TGF-β-induced ECM remodelling is responsible for the initiation of prostate cell epithelial-to-mesenchymal transition (EMT) and the acquisition of a migratory, invasive phenotype. Our findings highlight the cooperative role of TGF-β signalling and ECM desmoplasia in prompting prostate cell EMT and promoting tumour progression and dissemination.
Collapse
Affiliation(s)
- Soraia Fernandes
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic.
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Sofia Morazzo
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Francesco Niro
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Marco Cassani
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Helena Ďuríková
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Alessio Caravella
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Piergiuseppe Fiore
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Giulia Azzato
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Giuseppe De Marco
- Information Technology Center (ICT), University of Calabria (UNICAL), Via P. Bucci, Cubo 22B, Rende (CS) 87036, Italy
| | - Agostino Lauria
- Department of Engineering for Innovation, University of Salento (UNISALENTO), Corpo Z, Campus Ecotekne, SP.6 per Monteroni, Lecce (LE), Italy
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; Faculty of Medicine, BioIM Research Unit, University of Oulu, Oulu FI-90014, Finland; Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Jan Fric
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Filipensky
- Department of Urology, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE5 9NU, UK.
| |
Collapse
|
31
|
Ruiz-Mitjana A, Vidal-Sabanés M, Navaridas R, Perramon-Güell A, Yeramian A, Nicholson-Sabaté N, Egea J, Encinas M, Matias-Guiu X, Dolcet X. Metformin exhibits antineoplastic effects on Pten-deficient endometrial cancer by interfering with TGF-β and p38/ERK MAPK signalling. Biomed Pharmacother 2023; 168:115817. [PMID: 37925934 DOI: 10.1016/j.biopha.2023.115817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Metformin is a widespread antidiabetic agent that is commonly used as a treatment against type 2 diabetes mellitus patients. Regarding its therapeutic potential, multiple studies have concluded that Metformin exhibits antineoplastic activity on several types of cancer, including endometrial carcinoma. Although Metformin's antineoplastic activity is well documented, its cellular and molecular anticancer mechanisms are still a matter of controversy because a plethora of anticancer mechanisms have been proposed for different cancer cell types. In this study, we addressed the cellular and molecular mechanisms of Metformin's antineoplastic activity by using both in vitro and in vivo studies of Pten-loss driven carcinoma mouse models. In vivo, Metformin reduced endometrial neoplasia initiated by Pten-deficiency. Our in vitro studies using Pten-deficient endometrial organoids focused on both cellular and molecular levels in Metformin's tumor suppressive action. At cellular level, we showed that Metformin is involved in not only the proliferation of endometrial epithelial cells but also their regulation via a variety of mechanisms of epithelial-to-mesenchymal transition (EMT) as well as TGF-β-induced apoptosis. At the molecular level, Metformin was shown to affect the TGF-β signalling., a widely known signal that plays a pivotal role in endometrial carcinogenesis. In this respect, Metformin restored TGF-β-induced apoptosis of Pten-deficient endometrial organoids through a p38-dependent mechanism and inhibited TGF-β-induced EMT on no-polarized endometrial epithelial cells by inhibiting ERK/MAPK signalling. These results provide new insights into the link between the cellular and molecular mechanism for Metformin's antineoplastic activity in Pten-deficient endometrial cancers.
Collapse
Affiliation(s)
- Anna Ruiz-Mitjana
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Maria Vidal-Sabanés
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Aida Perramon-Güell
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Nathan Nicholson-Sabaté
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, CIBERONC, Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
32
|
MaruYama T, Miyazaki H, Komori T, Osana S, Shibata H, Owada Y, Kobayashi S. Curcumin analog GO-Y030 inhibits tumor metastasis and glycolysis. J Biochem 2023; 174:511-518. [PMID: 37656908 PMCID: PMC11002536 DOI: 10.1093/jb/mvad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
Tumor metastasis is one of the worst prognostic features of cancer. Although metastasis is a major cause of cancer-related deaths, an effective treatment has not yet been established. Here, we explore the antitumor effects of GO-Y030, a curcumin analog, via various mechanisms using a mouse model. GO-Y030 treatment of B16-F10 melanoma cells inhibited TGF-β expression and glycolysis. The invasion assay results showed almost complete invasion inhibition following GO-Y030 treatment. Mouse experiments demonstrated that GO-Y030 administration inhibited lung tumor metastasis without affecting vascular endothelial cells. Consistent with this result, GO-Y030 treatment led to the downregulation of MMP2 and VEGFα, inhibiting tumor invasion and metastasis. The silencing of eIF4B, a downstream molecule of S6, attenuated MMP2 expression. Our study demonstrates the novel efficacy of GO-Y030 in inhibiting tumor metastasis by regulating metastasis-associated gene expression via inhibiting dual access, glycolytic and TGF-β pathways.
Collapse
Affiliation(s)
- Takashi MaruYama
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
- Department of Immunology, Akita University, Graduate School of Medicine, Hondo 1-1, Akita, Akita, 010-8543, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research(NIDCR), National Institutes of Health, 30 convent drive, Building 30, Bethesda, MD, 20892, USA
| | - Shion Osana
- Department of Engineering Science, University of Electro-Communications, Graduate School of Informatics and Engineering, Chofugaoka 1-5-1, Chofu, Tokyo, 182-8585, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University, Graduate School of Medicine, Hondo 1-1, Akita, Akita, 010-8543, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
33
|
Jiang Z, Ju YJ, Ali A, Chung PED, Wang DY, Liu JC, Li H, Vorobieva I, Mwewa E, Ghanbari-Azarnier R, Shrestha M, Ben-David Y, Zacksenhaus E. Thinking (Metastasis) outside the (Primary Tumor) Box. Cancers (Basel) 2023; 15:5315. [PMID: 38001575 PMCID: PMC10670606 DOI: 10.3390/cancers15225315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The metastasis of tumor cells into vital organs is a major cause of death from diverse types of malignancies [...].
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Young-Jun Ju
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Amjad Ali
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Philip E. D. Chung
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Jeff C. Liu
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
| | - Huiqin Li
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Ioulia Vorobieva
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ethel Mwewa
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China;
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Eldad Zacksenhaus
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
34
|
Zhang Y, Zheng H, Xu M, Maeda N, Tsunedomi R, Kishi H, Nagano H, Kobayashi S. Fyn-Mediated Paxillin Tyrosine 31 Phosphorylation Regulates Migration and Invasion of Breast Cancer Cells. Int J Mol Sci 2023; 24:15980. [PMID: 37958964 PMCID: PMC10647795 DOI: 10.3390/ijms242115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Metastasis is the leading cause of death in breast cancer patients due to the lack of effective therapies. Elevated levels of paxillin expression have been observed in various cancer types, with tyrosine phosphorylation shown to play a critical role in driving cancer cell migration. However, the specific impact of the distinct tyrosine phosphorylation events of paxillin in the progression of breast cancer remains to be fully elucidated. Here, we found that paxillin overexpression in breast cancer tissue is associated with a patient's poor prognosis. Paxillin knockdown inhibited the migration and invasion of breast cancer cells. Furthermore, the phosphorylation of paxillin tyrosine residue 31 (Tyr31) was significantly increased upon the TGF-β1-induced migration and invasion of breast cancer cells. Inhibiting Fyn activity or silencing Fyn decreases paxillin Tyr31 phosphorylation. The wild-type and constitutively active Fyn directly phosphorylate paxillin Tyr31 in an in vitro system, indicating that Fyn directly phosphorylates paxillin Tyr31. Additionally, the non-phosphorylatable mutant of paxillin at Tyr31 reduces actin stress fiber formation, migration, and invasion of breast cancer cells. Taken together, our results provide direct evidence that Fyn-mediated paxillin Tyr31 phosphorylation is required for breast cancer migration and invasion, suggesting that targeting paxillin Tyr31 phosphorylation could be a potential therapeutic strategy for mitigating breast cancer metastasis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan;
| | - Huanyu Zheng
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan (H.N.)
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan (H.N.)
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan (H.N.)
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan (H.N.)
| | - Hiroko Kishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan;
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan (H.N.)
| | - Sei Kobayashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan;
| |
Collapse
|
35
|
Tsai YC, Hsin MC, Liu RJ, Li TW, Ch’ang HJ. Krüppel-like Factor 10 as a Prognostic and Predictive Biomarker of Radiotherapy in Pancreatic Adenocarcinoma. Cancers (Basel) 2023; 15:5212. [PMID: 37958386 PMCID: PMC10648792 DOI: 10.3390/cancers15215212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The prognosis of pancreatic adenocarcinoma (PDAC) remains poor, with a 5-year survival rate of 12%. Although radiotherapy is effective for the locoregional control of PDAC, it does not have survival benefits compared with systemic chemotherapy. Most patients with localized PDAC develop distant metastasis shortly after diagnosis. Upfront chemotherapy has been suggested so that patients with localized PDAC with early distant metastasis do not have to undergo radical local therapy. Several potential tissue markers have been identified for selecting patients who may benefit from local radiotherapy, thereby prolonging their survival. This review summarizes these biomarkers including SMAD4, which is significantly associated with PDAC failure patterns and survival. In particular, Krüppel-like factor 10 (KLF10) is an early response transcription factor of transforming growth factor (TGF)-β. Unlike TGF-β in advanced cancers, KLF10 loss in two-thirds of patients with PDAC was associated with rapid distant metastasis and radioresistance; thus, KLF10 can serve as a predictive and therapeutic marker for PDAC. For patients with resectable PDAC, a combination of KLF10 and SMAD4 expression in tumor tissues may help select those who may benefit the most from additional radiotherapy. Future trials should consider upfront systemic therapy or include molecular biomarker-enriched patients without early distant metastasis.
Collapse
Affiliation(s)
- Yi-Chih Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Min-Chieh Hsin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Rui-Jun Liu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Ting-Wei Li
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Hui-Ju Ch’ang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
36
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
37
|
Wu S, Luwor RB, Zhu HJ. Dynamics of transforming growth factor β signaling and therapeutic efficacy. Growth Factors 2023; 41:82-100. [PMID: 37229558 DOI: 10.1080/08977194.2023.2215335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFβ signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFβ signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFβ signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFβ signalling in cancer, pointing to a new direction of research on TGFβ-targeted therapeutics.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Rodney Brian Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
38
|
Hosseini R, Hosseinzadeh N, Asef-Kabiri L, Akbari A, Ghezelbash B, Sarvnaz H, Akbari ME. Small extracellular vesicle TGF-β in cancer progression and immune evasion. Cancer Gene Ther 2023; 30:1309-1322. [PMID: 37344681 DOI: 10.1038/s41417-023-00638-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Transforming growth factor-β (TGF-β) is a well-known cytokine that controls various processes in normal physiology and disease context. Strong preclinical and clinical literature supports the crucial roles of the TGF-β in several aspects of cancer biology. Recently emerging evidence reveals that the release of TGF-β from tumor/immune/stromal cells in small extracellular vesicles (sEVs) plays an important part in tumor development and immune evasion. Hence, this review aims to address the packaging, release, and signaling pathways of TGF-β carried in sEVs (sEV-TGF-β) in cancer, and to explore its underpinning roles in tumor development, growth, progression, metastasis, etc. We also highlight key progresses in deciphering the roles of sEV-TGF-β in subverting anti-tumor immune responses. The paper ends with a focus on the clinical significance of TGF-β carried in sEVs and draws attention to its diagnostic, therapeutic, and prognostic importance.
Collapse
Affiliation(s)
- Reza Hosseini
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nashmin Hosseinzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
39
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
40
|
An YF, Pu N, Jia JB, Wang WQ, Liu L. Therapeutic advances targeting tumor angiogenesis in pancreatic cancer: Current dilemmas and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188958. [PMID: 37495194 DOI: 10.1016/j.bbcan.2023.188958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies, which is generally resistant to various treatments. Tumor angiogenesis is deemed to be a pivotal rate-determining step for tumor growth and metastasis. Therefore, anti-angiogenetic therapy is a rational strategy to treat various cancers. However, numerous clinical trials on anti-angiogenetic therapies for PC are overwhelmingly disappointing. The unique characteristics of tumor blood vessels in PC, which are desperately lacking and highly compressed by the dense desmoplastic stroma, are reconsidered to explore some optimized strategies. In this review, we mainly focus on its specific characteristics of tumor blood vessels, discuss the current dilemmas of anti-angiogenic therapy in PC and their underlying mechanisms. Furthermore, we point out the future directions, including remodeling the abnormal vasculature or even reshaping the whole tumor microenvironment in which they are embedded to improve tumor microcirculation, and then create therapeutic vulnerabilities to the current available therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Fei An
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Basic Medicine, Chang Zhi Medical College, Changzhi 046000,China; Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Bin Jia
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
41
|
Yang X, Zhang Q, Li S, Devarajan R, Luo B, Tan Z, Wang Z, Giannareas N, Wenta T, Ma W, Li Y, Yang Y, Manninen A, Wu S, Wei GH. GATA2 co-opts TGFβ1/SMAD4 oncogenic signaling and inherited variants at 6q22 to modulate prostate cancer progression. J Exp Clin Cancer Res 2023; 42:198. [PMID: 37550764 PMCID: PMC10408074 DOI: 10.1186/s13046-023-02745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/30/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Aberrant somatic genomic alteration including copy number amplification is a hallmark of cancer genomes. We previously profiled genomic landscapes of prostate cancer (PCa), yet the underlying causal genes with prognostic potential has not been defined. It remains unclear how a somatic genomic event cooperates with inherited germline variants contribute to cancer predisposition and progression. METHODS We applied integrated genomic and clinical data, experimental models and bioinformatic analysis to identify GATA2 as a highly prevalent metastasis-associated genomic amplification in PCa. Biological roles of GATA2 in PCa metastasis was determined in vitro and in vivo. Global chromatin co-occupancy and co-regulation of GATA2 and SMAD4 was investigated by coimmunoprecipitation, ChIP-seq and RNA-seq assays. Tumor cellular assays, qRT-PCR, western blot, ChIP, luciferase assays and CRISPR-Cas9 editing methods were performed to mechanistically understand the cooperation of GATA2 with SMAD4 in promoting TGFβ1 and AR signaling and mediating inherited PCa risk and progression. RESULTS In this study, by integrated genomics and experimental analysis, we identified GATA2 as a prevalent metastasis-associated genomic amplification to transcriptionally augment its own expression in PCa. Functional experiments demonstrated that GATA2 physically interacted and cooperated with SMAD4 for genome-wide chromatin co-occupancy and co-regulation of PCa genes and metastasis pathways like TGFβ signaling. Mechanistically, GATA2 was cooperative with SMAD4 to enhance TGFβ and AR signaling pathways, and activated the expression of TGFβ1 via directly binding to a distal enhancer of TGFβ1. Strinkingly, GATA2 and SMAD4 globally mediated inherited PCa risk and formed a transcriptional complex with HOXB13 at the PCa risk-associated rs339331/6q22 enhancer, leading to increased expression of the PCa susceptibility gene RFX6. CONCLUSIONS Our study prioritizes causal genomic amplification genes with prognostic values in PCa and reveals the pivotal roles of GATA2 in transcriptionally activating the expression of its own and TGFβ1, thereby co-opting to TGFβ1/SMAD4 signaling and RFX6 at 6q22 to modulate PCa predisposition and progression.
Collapse
Affiliation(s)
- Xiayun Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shuxuan Li
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Raman Devarajan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Binjie Luo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zenglai Tan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zixian Wang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Nikolaos Giannareas
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Wenlong Ma
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Yuqing Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Yuehong Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China.
- Institute of Urology, South China Hospital of Shenzhen University, Shenzhen, China.
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Noshita S, Kubo Y, Kajiwara K, Okuzaki D, Nada S, Okada M. A TGF-β-responsive enhancer regulates SRC expression and epithelial-mesenchymal transition-associated cell migration. J Cell Sci 2023; 136:jcs261001. [PMID: 37439249 PMCID: PMC10445741 DOI: 10.1242/jcs.261001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
The non-receptor tyrosine kinase SRC is overexpressed and/or hyperactivated in various human cancers, and facilitates cancer progression by promoting invasion and metastasis. However, the mechanisms underlying SRC upregulation are poorly understood. In this study, we demonstrate that transforming growth factor-β (TGF-β) induces SRC expression at the transcriptional level by activating an intragenic the SRC enhancer. In the human breast epithelial cell line MCF10A, TGF-β1 stimulation upregulated one of the SRC promotors, the 1A promoter, resulting in increased SRC mRNA and protein levels. Chromatin immunoprecipitation (ChIP)-sequencing analysis revealed that the SMAD complex is recruited to three enhancer regions ∼15 kb upstream and downstream of the SRC promoter, and one of them is capable of activating the SRC promoter in response to TGF-β. JUN, a member of the activator protein (AP)-1 family, localises to the enhancer and regulates TGF-β-induced SRC expression. Furthermore, TGF-β-induced SRC upregulation plays a crucial role in epithelial-mesenchymal transition (EMT)-associated cell migration by activating the SRC-focal adhesion kinase (FAK) circuit. Overall, these results suggest that TGF-β-induced SRC upregulation promotes cancer cell invasion and metastasis in a subset of human malignancies.
Collapse
Affiliation(s)
- Soshi Noshita
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Kubo
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Human Immunology lab, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory of Oncogene research, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Jiang Z, Ju Y, Ali A, Chung PED, Skowron P, Wang DY, Shrestha M, Li H, Liu JC, Vorobieva I, Ghanbari-Azarnier R, Mwewa E, Koritzinsky M, Ben-David Y, Woodgett JR, Perou CM, Dupuy A, Bader GD, Egan SE, Taylor MD, Zacksenhaus E. Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer. Nat Commun 2023; 14:4313. [PMID: 37463901 PMCID: PMC10354065 DOI: 10.1038/s41467-023-39935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFβ and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - YoungJun Ju
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Amjad Ali
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Philip E D Chung
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Huiqin Li
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Jeff C Liu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ioulia Vorobieva
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ethel Mwewa
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | | | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, 550014, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada.
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Hu Q, Saleem K, Pandey J, Charania AN, Zhou Y, He C. Cell Adhesion Molecules in Fibrotic Diseases. Biomedicines 2023; 11:1995. [PMID: 37509634 PMCID: PMC10377070 DOI: 10.3390/biomedicines11071995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanisms underlying the pathogenesis of tissue fibrosis remain incompletely understood. Emerging evidence suggests that cell adhesion molecules (CAMs) are critical in fibrotic progression in many organs, including lung, kidney, skin, and liver. CAMs promote cell-cell and cell-extracellular matrix (ECM) interactions to maintain tissue architecture and normal function in homeostasis. However, dysregulated expression and function of CAMs can lead to chronic inflammation and tissue fibrosis. The major families of CAMs include integrins, cadherins, selectins, and immunoglobulins. Here, we review the role of the CAMs in fibrosis development across various organs with a focus on integrins and cadherins, and discuss their respective roles in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qianjiang Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Komal Saleem
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jyotsana Pandey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arzoo N. Charania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
45
|
Guo Y, Xu T, Chai Y, Chen F. TGF-β Signaling in Progression of Oral Cancer. Int J Mol Sci 2023; 24:10263. [PMID: 37373414 DOI: 10.3390/ijms241210263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a common malignancy worldwide, accounting for 1.9% to 3.5% of all malignant tumors. Transforming growth factor β (TGF-β), as one of the most important cytokines, is found to play complex and crucial roles in oral cancers. It may act in a pro-tumorigenic and tumor-suppressive manner; activities of the former include cell cycle progression inhibition, tumor microenvironment preparation, apoptosis promotion, stimulation of cancer cell invasion and metastasis, and suppression of immune surveillance. However, the triggering mechanisms of these distinct actions remain unclear. This review summarizes the molecular mechanisms of TGF-β signal transduction, focusing on oral squamous cell and salivary adenoid systemic carcinomas as well as keratocystic odontogenic tumors. Both the supporting and contrary evidence of the roles of TGF-β is discussed. Importantly, the TGF-β pathway has been the target of new drugs developed in the past decade, some having demonstrated promising therapeutic effects in clinical trials. Therefore, the achievements of TGF-β pathway-based therapeutics and their challenges are also assessed. The summarization and discussion of the updated knowledge of TGF-β signaling pathways will provide insight into the design of new strategies for oral cancer treatment, leading to an improvement in oral cancer outcomes.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tiansong Xu
- Central Laboratory, Peking University School of Stomatology, Beijing 100081, China
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Central Laboratory, Peking University School of Stomatology, Beijing 100081, China
| |
Collapse
|
46
|
Hao Y, Li G. Prediction of distant organ metastasis and overall survival of lung cancer patients: a SEER population-based cohort study. Front Oncol 2023; 13:1075385. [PMID: 37377915 PMCID: PMC10291234 DOI: 10.3389/fonc.2023.1075385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Background Distant organ metastasis is a common event in lung cancer (LC). However, the preferential metastatic pattern of different pathological types of LC and its effect on prognosis have not been comprehensively elucidated. This study aimed to explore the distant metastasis pattern and construct nomograms predicting the metastasis and survival of LC patients using the Surveillance, Epidemiology, and End Results (SEER) database. Methods LC data were downloaded from the SEER database to conduct logistic regression and investigate risk factors for developing organ metastasis. A Cox regression analysis was conducted to investigate prognostic factors of LC. A Kaplan-Meier analysis was used to estimate overall survival outcomes. Nomograms were constructed to predict the probability of organ metastasis and the 1-, 3- and 5-year survival probability of LC patients. Receiver operating characteristic curves were used to evaluate the diagnostic accuracy of the nomograms. All statistical analyses were conducted within R software. Results The liver is the most common metastatic organ of small cell carcinoma. The brain is the most likely metastasis site of large cell carcinoma, and bone is the most likely metastasis site for squamous cell carcinoma and adenocarcinoma. Patients with triple metastases (brain-bone-liver) have the worst prognosis, and for nonsquamous carcinoma with single organ metastasis, liver metastases conferred the worst prognosis. Our nomograms based on clinical factors could predict the metastasis and prognosis of LC patients. Conclusion Different pathological types of LC have different preferential metastatic sites. Our nomograms showed good performance in predicting distant metastasis and overall survival. These results will provide a reference for clinicians and contribute to clinical evaluations and individualized therapeutic strategies.
Collapse
|
47
|
Ilter D, Drapela S, Schild T, Ward NP, Adhikari E, Low V, Asara J, Oskarsson T, Lau EK, DeNicola GM, McReynolds MR, Gomes AP. NADK-mediated de novo NADP(H) synthesis is a metabolic adaptation essential for breast cancer metastasis. Redox Biol 2023; 61:102627. [PMID: 36841051 PMCID: PMC9982641 DOI: 10.1016/j.redox.2023.102627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Metabolic reprogramming and metabolic plasticity allow cancer cells to fine-tune their metabolism and adapt to the ever-changing environments of the metastatic cascade, for which lipid metabolism and oxidative stress are of particular importance. NADPH is a central co-factor for both lipid and redox homeostasis, suggesting that cancer cells may require larger pools of NADPH to efficiently metastasize. NADPH is recycled through reduction of NADP+ by several enzymatic systems in cells; however, de novo NADP+ is synthesized only through one known enzymatic reaction, catalyzed by NAD+ kinase (NADK). Here, we show that NADK is upregulated in metastatic breast cancer cells enabling de novo production of NADP(H) and the expansion of the NADP(H) pools thereby increasing the ability of these cells to adapt to the challenges of the metastatic cascade and efficiently metastasize. Mechanistically, we found that metastatic signals lead to a histone H3.3 variant-mediated epigenetic regulation of the NADK promoter, resulting in increased NADK levels in cells with metastatic ability. Together, our work presents a previously uncharacterized role for NADK and de novo NADP(H) production as a contributor to breast cancer progression and suggests that NADK constitutes an important and much needed therapeutic target for metastatic breast cancers.
Collapse
Affiliation(s)
- Didem Ilter
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Tanya Schild
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathan P Ward
- Department of Cancer Physiology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Emma Adhikari
- Department of Tumor Biology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Vivien Low
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - John Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thordur Oskarsson
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Eric K Lau
- Department of Tumor Biology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA; Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
48
|
Khadivar P, Alipour M. Synergic effect of bone marrow derived mesenchymal stem cells and differentiated keratinocytes-like cells with a novel cellulose and collagen nanoscaffold on wound healing in rats. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
49
|
Baiken Y, Markhametova Z, Ashimova A, Zhulamanova A, Nogaibayeva A, Kozina L, Matkarimov B, Aituov B, Gaipov A, Myngbay A. Elevated Levels of Plasma Collagen Triple Helix Repeat Containing 1 (CTHRC1) Is Strongly Associated with eGFR and Albuminuria in Chronic Kidney Disease. Medicina (B Aires) 2023; 59:medicina59040651. [PMID: 37109608 PMCID: PMC10146339 DOI: 10.3390/medicina59040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Chronic kidney disease (CKD) has various etiologies, making it impossible to fully understand its complex pathophysiology. Elevated levels of plasma creatinine, proteinuria, and albuminuria and declined eGFR are traits observed in CKD patients. The current study attempts to highlight the collagen triple helix repeat containing 1 (CTHRC1) protein as a putative blood biomarker for CKD in addition to existing recognized indicators of CKD progression. Methods: A total of 26 CKD patients and 18 healthy controls were enrolled in this study. Clinical characteristics and complete blood and biochemical analyses were collected, and human ELISA kits were used to detect possible CKD biomarkers. Results: The study’s findings showed that CTHRC1 correlates with key clinical markers of kidney function such as 24 h urine total protein, creatinine, urea, and uric acid. In addition, CTHRC1 demonstrated a strong significant difference (p ≤ 0.0001) between the CKD and control group. Conclusions: Our research demonstrates that the plasma level of CTHRC1 can distinguish between those with CKD and healthy patients. Plasma CTHRC1 levels may aid in the diagnosis of CKD given the current state of knowledge, and these results call for further investigation in a wider, more diverse patient group.
Collapse
|
50
|
Ji X, Chu G, Chen Y, Jiao J, Lv T, Yao Q. Comprehensive analysis of novel prognosis-related proteomic signature effectively improve risk stratification and precision treatment for patients with cervical cancer. Arch Gynecol Obstet 2023; 307:903-917. [PMID: 35713693 DOI: 10.1007/s00404-022-06642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Cervical cancer (CC) is one of the most common types of malignant female cancer, and its incidence and mortality are not optimistic. Protein panels can be a powerful prognostic factor for many types of cancer. The purpose of our study was to investigate a proteomic panel to predict the survival of patients with common CC. METHODS AND RESULTS The protein expression and clinicopathological data of CC were downloaded from The Cancer Proteome Atlas and The Cancer Genome Atlas database, respectively. We selected the prognosis-related proteins (PRPs) by univariate Cox regression analysis and found that the results of functional enrichment analysis were mainly related to apoptosis. We used Kaplan-Meier analysis and multivariable Cox regression analysis further to screen PRPs to establish a prognostic model, including BCL2, SMAD3, and 4EBP1-pT70. The signature was verified to be independent predictors of OS by Cox regression analysis and the area under curves. Nomogram and subgroup classification were established based on the signature to verify its clinical application. Furthermore, we looked for the co-expressed proteins of three-protein panel as potential prognostic proteins. CONCLUSION A proteomic signature independently predicted OS of CC patients, and the predictive ability was better than the clinicopathological characteristics. This signature can help improve prediction for clinical outcome and provides new targets for CC treatment.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Guangdi Chu
- Department of Urology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yulong Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Jinwen Jiao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Teng Lv
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China.
| |
Collapse
|