1
|
Liu C, Zhu J, Zhao L, Li G, Sun J, Zhang S, Liang X. Blood MALT1 reflects acute exacerbation risk and inflammation in elderly chronic obstructive pulmonary disease patients. Biomark Med 2024; 18:513-521. [PMID: 39136445 PMCID: PMC11364060 DOI: 10.1080/17520363.2024.2347199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/01/2024] [Indexed: 08/30/2024] Open
Abstract
Aim: This study intended to investigate the ability of blood MALT1 to estimate acute exacerbation risk in elderly chronic obstructive pulmonary disease (COPD) patients.Methods: Blood MALT1 was detected in 176 elderly COPD patients (aged more than 60 years).Results: MALT1 was elevated in patients with COPD acute exacerbation versus patients with stable COPD (p < 0.001). In patients with COPD acute exacerbation, MALT1 was negatively related to forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) (p = 0.024) and FEV1% predicted (p = 0.002), but positively linked with global initiative for chronic obstructive lung disease stage (p = 0.005).Conclusion: Blood MALT1 reflects increased acute exacerbation risk and inflammation in elderly COPD patients.
Collapse
Affiliation(s)
- Cui Liu
- Department of Respiratory Medicine, Cangzhou People's Hospital, Cangzhou061000, China
| | - Jinsong Zhu
- Department of Respiratory Medicine, Cangzhou People's Hospital, Cangzhou061000, China
| | - Lei Zhao
- Department of Respiratory Medicine, Cangzhou People's Hospital, Cangzhou061000, China
| | - Guanying Li
- Department of Respiratory Medicine, Cangzhou People's Hospital, Cangzhou061000, China
| | - Jiawei Sun
- Department of Respiratory Medicine, Cangzhou People's Hospital, Cangzhou061000, China
| | - Shengli Zhang
- Department of Respiratory Medicine, Cangzhou People's Hospital, Cangzhou061000, China
| | - Xijun Liang
- Department of Respiratory Medicine, Cangzhou People's Hospital, Cangzhou061000, China
| |
Collapse
|
2
|
Zhen H, Hu Y, Liu X, Fan G, Zhao S. The protease caspase-1: Activation pathways and functions. Biochem Biophys Res Commun 2024; 717:149978. [PMID: 38718564 DOI: 10.1016/j.bbrc.2024.149978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Caspase-1 is one of the main mediators of inflammatory caspases and has become a correspondent with inflammation, cell death, and several inflammatory diseases. In this review, we systematically summarize both original and recent advances in caspase-1 to provide references for a better understanding of the molecular mechanisms in its activation and functions. This study investigates and summarizes the published articles concerning caspase-1, inflammation, pyroptosis, apoptosis, and cell death by searching academic search systems, including the PubMed, Web of Science, and Google Scholar. Caspase-1 is one of the main mediators of inflammatory caspases and has become a correspondent with inflammation and cell death. In cell death, caspase-1 was originally found to cause apoptosis in fibroblasts. Importantly, caspase-1 was later reported to execute programmed cell death, including pyroptosis and apoptosis, in many immune cells in response to diverse stimuli. It is widely established that different pathways can activate caspase-1 and subsequently mediate cell death and inflammation. It has become increasingly clear that caspase-1 is responsible for the initiation and control of pyroptosis, apoptosis, and inflammation in addition to its well-known function in cleaving IL-1β. The significant advancement in the understanding of caspase-1-controlled cell death and novel substrates inspires new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Yumeng Hu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Guangsen Fan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Shuna Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
3
|
Botella-Asunción P, Rivero-Buceta EM, Vidaurre-Agut C, Lama R, Rey-Campos M, Moreno A, Mendoza L, Mingo-Casas P, Escribano-Romero E, Gutierrez-Adan A, Saiz JC, Smerdou C, Gonzalez G, Prosper F, Argemí J, Miguel JS, Sanchez-Cordón PJ, Figueras A, Quesada-Gomez JM, Novoa B, Montoya M, Martín-Acebes MA, Pineda-Lucena A, Benlloch JM. AG5 is a potent non-steroidal anti-inflammatory and immune regulator that preserves innate immunity. Biomed Pharmacother 2023; 169:115882. [PMID: 37984300 DOI: 10.1016/j.biopha.2023.115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
An archetypal anti-inflammatory compound against cytokine storm would inhibit it without suppressing the innate immune response. AG5, an anti-inflammatory compound, has been developed as synthetic derivative of andrographolide, which is highly absorbable and presents low toxicity. We found that the mechanism of action of AG5 is through the inhibition of caspase-1. Interestingly, we show with in vitro generated human monocyte derived dendritic cells that AG5 preserves innate immune response. AG5 minimizes inflammatory response in a mouse model of lipopolysaccharide (LPS)-induced lung injury and exhibits in vivo anti-inflammatory efficacy in the SARS-CoV-2-infected mouse model. AG5 opens up a new class of anti-inflammatories, since contrary to NSAIDs, AG5 is able to inhibit the cytokine storm, like dexamethasone, but, unlike corticosteroids, preserves adequately the innate immunity. This is critical at the early stages of any naïve infection, but particularly in SARS-CoV-2 infections. Furthermore, AG5 showed interesting antiviral activity against SARS-CoV-2 in humanized mice.
Collapse
Affiliation(s)
- Pablo Botella-Asunción
- Institute of Chemical Technology (ITQ), Universitat Politècnica de Valencia-Spanish National Research Council (CSIC), 46022 Valencia, Spain.
| | - Eva M Rivero-Buceta
- Institute of Chemical Technology (ITQ), Universitat Politècnica de Valencia-Spanish National Research Council (CSIC), 46022 Valencia, Spain
| | - Carla Vidaurre-Agut
- Institute of Chemical Technology (ITQ), Universitat Politècnica de Valencia-Spanish National Research Council (CSIC), 46022 Valencia, Spain
| | - Raquel Lama
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - Alejandro Moreno
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - Laura Mendoza
- Molecular Biomedicine Department, BICS Unit, Centro de Investigaciones Biológicas Margarita Salas (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Juan Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Cristian Smerdou
- DNA & RNA Medicine Division, Centro de Investigación Medica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Gloria Gonzalez
- DNA & RNA Medicine Division, Centro de Investigación Medica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Felipe Prosper
- Hematology Service and Cell Therapy Unit and Program of Hematology-Oncology CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN) and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. Centro de Investigación Biomedica en Red Cancer (CIBERONC) and RICORS TERAV, Madrid, Spain
| | - Josepmaría Argemí
- Hematology Service and Cell Therapy Unit and Program of Hematology-Oncology CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN) and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. Centro de Investigación Biomedica en Red Cancer (CIBERONC) and RICORS TERAV, Madrid, Spain
| | - Jesus San Miguel
- Hematology Service and Cell Therapy Unit and Program of Hematology-Oncology CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN) and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. Centro de Investigación Biomedica en Red Cancer (CIBERONC) and RICORS TERAV, Madrid, Spain
| | - Pedro J Sanchez-Cordón
- Veterinary Pathology Unit, Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28130 Madrid, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - Jose Manuel Quesada-Gomez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - María Montoya
- Molecular Biomedicine Department, BICS Unit, Centro de Investigaciones Biológicas Margarita Salas (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Antonio Pineda-Lucena
- Enabling Technologies Division, Centro de Investigación Medica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona Spain
| | - Jose María Benlloch
- Institute of Instrumentation for Molecular Imaging (I3M), Universitat Politècnica de Valencia-Spanish National Research Council (CSIC), 46011 Valencia, Spain.
| |
Collapse
|
4
|
Zong J, Yang L, Wei L, Wang D, Wang X, Zhang Z. MALT1 Positively Relates to T Helper 1 and T Helper 17 cells, and Serves as a Potential Biomarker for Predicting 30-Day Mortality in Stanford Type A Aortic Dissection Patients. TOHOKU J EXP MED 2023; 261:299-307. [PMID: 37704417 DOI: 10.1620/tjem.2023.j077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Mucosa-associated lymphoid tissue 1 (MALT1) regulates inflammation and T helper (Th) cell differentiation, which may participate in the progression of Stanford type A aortic dissection (TAAD). This study intended to assess the association of MALT1 expression with prognosis in TAAD patients. In this prospective study, MALT1 expression was measured by reverse transcription-quantitative polymerase chain reaction assay from peripheral blood samples in 100 TAAD patients and 100 non-AD controls (non-AD patients with chest pain) before treatment. Besides, Th1, Th2, and Th17 cells of TAAD patients before treatment were measured by flow cytometry assay, and their 30-day mortality was recorded. MALT1 expression was ascended in TAAD patients vs. non-AD controls (P < 0.001). In TAAD patients, elevated MALT1 expression was linked with hypertension complication (P = 0.009), increased systolic blood pressure (r = 0.291, P = 0.003), C-reactive protein (CRP) (r = 0.286, P = 0.004), and D-dimer (r = 0.359, P < 0.001). Additionally, MALT1 expression was positively correlated with Th1 cells (r = 0.312, P = 0.002) and Th17 cells (r = 0.397, P < 0.001), but not linked with Th2 cells (r = -0.166, P = 0.098). Notably, the 30-day mortality of TAAD patients was 28.0%. MALT1 expression [odds ratio (OR) = 1.936, P = 0.004], CRP (OR = 1.108, P = 0.002), D-dimer (OR = 1.094, P = 0.003), and surgery timing (emergency vs. selective) (OR = 8.721, P = 0.024) independently predicted increased risk of death within 30 days in TAAD patients. Furthermore, the combination of the above-mentioned independent factors had an excellent ability in predicting 30-day mortality with the area under curve of 0.949 (95% confidence interval: 0.909-0.989). MALT1 expression relates to increased Th1 cells, Th17 cells, and 30-day mortality risk in TAAD patients.
Collapse
Affiliation(s)
- Junqing Zong
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Lingbo Yang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Lei Wei
- Department of Cardiovascular Surgery, Shanxi Provincial People's Hospital
| | - Dong Wang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Xuening Wang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Zhongjie Zhang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| |
Collapse
|
5
|
Yan B, Belke D, Gui Y, Chen YX, Jiang ZS, Zheng XL. Pharmacological inhibition of MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) induces ferroptosis in vascular smooth muscle cells. Cell Death Discov 2023; 9:456. [PMID: 38097554 PMCID: PMC10721807 DOI: 10.1038/s41420-023-01748-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs). This study aims to investigate the impact of MALT1 inhibition by MI-2 on the functions of vascular SMCs, both in vitro and in vivo. MI-2 treatment led to concentration- and time-dependent cell death of cultured aortic SMCs, which was rescued by the iron chelator deferoxamine (DFO) or ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, but not by inhibitors of apoptosis (Z-VAD-fmk), pyroptosis (Z-YVAD-fmk), or necrosis (Necrostatin-1, Nec-1). MI-2 treatment downregulated the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy polypeptide 1 (FTH1), which was prevented by pre-treatment with DFO or Fer-1. MI-2 treatment also activated autophagy, which was inhibited by Atg7 deficiency or bafilomycin A1 preventing MI-2-induced ferroptosis. MI-2 treatment reduced the cleavage of cylindromatosis (CYLD), a specific substrate of MALT1. Notably, MI-2 treatment led to a rapid loss of contractility in mouse aortas, which was prevented by co-incubation with Fer-1. Moreover, local application of MI-2 significantly reduced carotid neointima lesions and atherosclerosis in C57BL/6J mice and apolipoprotein-E knockout (ApoE-/-) mice, respectively, which were both ameliorated by co-treatment with Fer-1. In conclusion, the present study demonstrated that MALT1 inhibition induces ferroptosis of vascular SMCs, likely contributing to its amelioration of proliferative vascular diseases.
Collapse
Affiliation(s)
- Binjie Yan
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Darrell Belke
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Yong-Xiang Chen
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
6
|
Shen J, Cao F, Huang Z, Ma X, Yang N, Zhang H, Zhang Y, Zhang Z. Chukrasia tabularis limonoid plays anti-inflammatory role by regulating NF- κB signaling pathway in lipopolysaccharide-induced macrophages. Food Nutr Res 2023; 67:9383. [PMID: 37533446 PMCID: PMC10392864 DOI: 10.29219/fnr.v67.9383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 08/04/2023] Open
Abstract
Background Chukrasia tabularisis, a well-known tropical tree native to southeastern China, has anti-inflammatory and antioxidant activities, and contains large amounts of limonoids and triterpenoids. Objective The aim of this study was to investigate the potential anti-inflammatory activity of limonoids from C. tabularis on lipopolysaccharide (LPS)-mediated RAW264.7 cells. Methods and results Using a bioassay-guided approach, the chemical fraction with high anti-inflammatory activity was found and its chemical constituents were investigated. Phytochemical studies on active extracts resulted in the separation of three novel phragmalin limonoids (1-3), together with two known limonoids (4-5) and 11 tirucallane triterpenes (6-16). The activity of these isolated compounds in the production of nitric oxide (NO) on LPS-reated macrophages was evaluated. Limonoid 2 indicated significant anti-inflammatory activities with IC50 value of 4.58 μM. Limonoid 2 notably inhibited the production of NO, interleukin- 6 and tumor necrosis factor-α on macrophage. Signal transduction and activation of STAT and NF-κB activators were effectively blocked by limonoid 2. Conclusions These results indicate that limonoid 2 has an anti-inflammatory effect by the inhibiting JAK2/STAT3, iNOS/eNOS, and NF-κB signaling pathways and regulating inflammatory mediators.
Collapse
Affiliation(s)
- Jinhuang Shen
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Fan Cao
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhiyong Huang
- Department of Plastic Surgery, Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Xinhua Ma
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Nana Yang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Haitao Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yonghong Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhiqiang Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Abdelrahman AH, Ibrahim AA, Eid OM, Hassan M, Eid MM, Nour El Din Abd El Baky AM, Ismail M, Abou-Zekri M, Abd El-Fattah SN. A pilot study on promoter methylation of MTHFR, MALT1 and MAP3K7 genes in pediatric celiac disease. HUMAN GENE 2023; 36:201180. [DOI: 10.1016/j.humgen.2023.201180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Mazi FA, Cakiroglu E, Uysal M, Kalyoncu M, Demirci D, Sozeri PYG, Yilmaz GO, Ozhan SE, Senturk S. The paracaspase MALT1 is a downstream target of Smad3 and potentiates the crosstalk between TGF-β and NF-kB signaling pathways in cancer cells. Cell Signal 2023; 105:110611. [PMID: 36708753 DOI: 10.1016/j.cellsig.2023.110611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
TGF-β signaling mediates its biological effects by engaging canonical Smad proteins and crosstalking extensively with other signaling networks, including the NF-kB pathway. The paracaspase MALT1 is an intracellular signaling molecule essential for NF-kB activation downstream of several key cell surface receptors. Despite intensive research on TGF-β and NF-kB interactions, the significance of MALT1 in this context remains undecoded. Here we provide experimental evidence supporting that MALT1 functions to converge these pathways. Using A549 and Huh7 cancer cell line models, we report that TGF-β stimulation enhances MALT1 protein and transcript levels in a time- and dose-dependent manner. Systematic and selective perturbation of TGF-β signaling components identifies MALT1 as a downstream target of Smad3. Rescue experiments in SMAD3 knockout cells confirm that C-terminal phosphorylation of Smad3 is central to MALT1 induction. Corroborating these data, we document that the expression of SMAD3 and MALT1 genes are positively correlated in TCGA cohorts, and we trace the molecular basis of MALT1 elevation to promoter activation. Functional studies in parental as well as NF-kB p65 signaling reporter engineered cells conclusively reveal that MALT1 is paramount for TGF-β-stimulated nuclear translocation and transcriptional activation of NF-kB p65. Furthermore, we find that BCL10 is also implicated in TGF-β activation of NF-kB target genes, potentially coupling the TGF-β-MALT1-NF-kB signaling axis to the CARMA-BCL10-MALT1 (CBM) signalosome. The novel findings of this study indicate that MALT1 is a downstream target of the canonical TGF-β/Smad3 pathway and plays a critical role in modulating TGF-β and NF-kB crosstalk in cancer.
Collapse
Affiliation(s)
- Fatma Aybuke Mazi
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Uysal
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | - Perihan Yagmur Guneri Sozeri
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
9
|
Yan S, Jiang Y, Yu T, Hou C, Xiao W, Xu J, Wen H, Wang J, Li S, Chen F, Li S, Liu XHT, Zou L, Liu Y, Zhu Y. Shengjiang San alleviated sepsis-induced lung injury through its bidirectional regulatory effect. Chin Med 2023; 18:39. [PMID: 37062835 PMCID: PMC10108513 DOI: 10.1186/s13020-023-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction caused by dysregulated host responses to infection, for which effective therapeutic strategies are still absent. Shengjiang San (SJS), a well-known Traditional Chinese Medicine formula, has been widely used clinically. However, its role in sepsis-induced lung injury remains unclear. METHODS To explore its specific mechanism, we firstly established a sepsis animal model using cecal ligation and puncture (CLP) and treated MH-S cells with LPS plus ATP. Then, UPLC/Q-TOF-MS/MS was utilized to identify its active ingredients. Network pharmacology analysis was performed to uncover the potential mechanism. HE staining and biochemical analysis were conducted to validate its therapeutic effect. ELISA was applied to detect the release of pro-inflammatory and anti-inflammatory cytokines. Western blot was utilized to detect the protein levels of GSDMD, NLRP3, P65, ASC and caspase-1. RESULTS SJS could dramatically increase the survival rate of sepsis. In addition, it is able to inhibit the pro-inflammatory cytokines release at day 1 post CLP while promote their production at day 7, indicating SJS could attenuate uncontrolled inflammatory response in the early stage and improve immunosuppression in the late phase. Network pharmacology analysis showed that pyroptosis is the crucial action SJS exerted in the protection of sepsis-induced lung injury. Western blot data implicated SJS could attenuate pyroptosis in early sepsis while enhance in the late phase. CONCLUSIONS SJS acted to alleviate sepsis-induced lung injury through its bidirectional regulatory effect.
Collapse
Affiliation(s)
- Shifan Yan
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu Jiang
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Ting Yu
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Changmiao Hou
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wen Xiao
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Jing Xu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Huili Wen
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingjing Wang
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Shutong Li
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Fang Chen
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Shentang Li
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiehong Hao Tan Liu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Lianhong Zou
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China
| | - Yanjuan Liu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China.
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China.
| | - Yimin Zhu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), 69 Jiefang Western Road, Changsha, 410000, Hunan, People's Republic of China.
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China.
- Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
10
|
TXNIP shuttling - a key molecular link in regulating inflammation and mitochondrial dysfunction in freeze tolerant wood frogs. Gene 2023; 857:147184. [PMID: 36627089 DOI: 10.1016/j.gene.2023.147184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/27/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Amphibians such as the wood frogs,Rana sylvatica, are a primary example of a freeze-tolerant vertebrate that undergoes whole body freezing. Multiple adaptations including sequestering 65-70% of total body water as extracellular/extra organ ice and producing massive amounts of glucose as a cryoprotectant support this. Interestingly, the high glucose levels induced in response to freezing can amplify oxidative stress's effects (reactive oxygen species, ROS) and induce inflammation and mitochondrial dysfunction. Since both freezing and dehydration stress (independent of freezing) can render wood frogs hyperglycemic, this study focussed on these two stresses to elucidate the role of a scaffold protein thioredoxin interacting protein (TXNIP), which localizes in multiple compartments inside the cell under hyperglycemic conditions and mediate diverse stress responses. The results from this study suggest a stress-specific response of TXNIP in inducing the cell-damaging pathway of inflammasome activation via its cytoplasmic localization during freezing. Interestingly, mitochondrial localization of TXNIP did not leads to increase in its binding to thioredoxin 2 (TRX-2) and activating the dysfunction of this organelle by releasing a mitochondrial protein cytochrome c (Cyt c) in cytoplasm under both freezing and dehydration stresses. Post-translational modifications of TXNIP hinted on changes in the regulating proteins involved in the inflammasome and mitochondrial dysfunction pathways, whereas sequential differences (cytosine residues) of amphibian TXNIP (compared to mammalian) assessed via 3D-modeling attributed to its weak binding to TRX-2. Overall, this study summarizes differential role of proteins activated under freeze and dehydration induced hyperglycemic response in freeze tolerant wood frogs.
Collapse
|
11
|
Zhang Y, Shen J, Ma X, He Y, Zhang Y, Cao D. Anti-Inflammatory Activity of Phenylethanoids from Acanthus ilicifolius var. xiamenensis. J Med Food 2023; 26:135-145. [PMID: 36637805 DOI: 10.1089/jmf.2022.k.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acanthus ilicifolius var. xiamenensis is a traditional herbal medicine in China. In this study, the anti-inflammatory activities of active ingredients of A. ilicifolius var. xiamenensis were investigated in RAW 264.7 cells and Freund's complete adjuvant-induced arthritic rats. Results showed that n-butanol extract exerted antiarthritic potential by reducing paw edema, arthritis score, and altered hematological and biochemical parameters in experimental rats. Phytochemical studies on n-butanol extract resulted in the isolation of five alkaloids (1-5) and five phenylethanoids (6-10). The anti-inflammatory assay of compounds 1-10 on lipopolysaccharide (LPS)-treated RAW 264.7 cells indicated that phenylethanoids 9 and 10 exhibited notable inhibitory activities. The result indicated that compounds 9 and 10 attenuated inflammation by decreasing the production of nuclear factor kappa-B (NF-κB) p65, inhibitory subunit of NF kappa B alpha, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and inducible nitric oxide synthase in LPS-mediated RAW 264.7 macrophages. Phenylethanoids 9 and 10 increased the expression of interleukin-10 and endothelial nitric oxide synthase. Therefore, compounds 9 and 10 showed anti-inflammatory activity by regulation of NF-κB and JAK/STAT signaling pathways.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinhuang Shen
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Ma
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yubin He
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yonghong Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
3D-QSAR, drug-likeness, ADMET prediction, and molecular docking studies in silico of novel 5-oxo-1-thioxo-4,5-dihydro-1H-thiazolo[3,4-a]quinazoline derivatives as MALT1 protease inhibitors for the treatment of B cell lymphoma. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
De Chirico F, Poeta E, Babini G, Piccolino I, Monti B, Massenzio F. New models of Parkinson's like neuroinflammation in human microglia clone 3: Activation profiles induced by INF-γ plus high glucose and mitochondrial inhibitors. Front Cell Neurosci 2022; 16:1038721. [PMID: 36523814 PMCID: PMC9744797 DOI: 10.3389/fncel.2022.1038721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 09/17/2023] Open
Abstract
Microglia activation and neuroinflammation have been extensively studied in murine models of neurodegenerative diseases; however, to overcome the genetic differences between species, a human cell model of microglia able to recapitulate the activation profiles described in patients is needed. Here we developed human models of Parkinson's like neuroinflammation by using the human microglia clone 3 (HMC3) cells, whose activation profile in response to classic inflammatory stimuli has been controversial and reported only at mRNA levels so far. In fact, we showed the increased expression of the pro-inflammatory markers iNOS, Caspase 1, IL-1β, in response to IFN-γ plus high glucose, a non-specific disease stimulus that emphasized the dynamic polarization and heterogenicity of the microglial population. More specifically, we demonstrated the polarization of HMC3 cells through the upregulation of iNOS expression and nitrite production in response to the Parkinson's like stimuli, 6-hydroxidopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the latter depending on the NF-κB pathway. Furthermore, we identified inflammatory mediators that promote the pro-inflammatory activation of human microglia as function of different pathways that can simulate the phenotypic transition according to the stage of the pathology. In conclusion, we established and characterized different systems of HMC3 cells activation as in vitro models of Parkinson's like neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Shen J, Ma X, He Y, Wang Y, Zhong T, Zhang Y. Anti-inflammatory and anti-oxidant properties of Melianodiol on DSS-induced ulcerative colitis in mice. PeerJ 2022; 10:e14209. [PMID: 36312760 PMCID: PMC9615967 DOI: 10.7717/peerj.14209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Background Ulcerative colitis is a unique inflammatory bowel disease with ulcerative lesions of the colonic mucosa. Melianodiol (MN), a triterpenoid, isolated from the fruits of the Chinese medicinal plant Melia azedarach, possesses significant anti-inflammatory properties. Objective The present study investigated the protective effects of MN on lipopolysaccharide (LPS)-induced macrophages and DSS-mediated ulcerative colitis in mice. Methods In the study, mice were given MN (50, 100, and 200 mg/kg) and 5-ASA (500 mg/kg) daily for 9 days after induction by DSS for 1 week. The progress of the disease was monitored daily by observation of changes in clinical signs and body weight. Results The results showed that MN effectively improved the overproduction of inflammatory factors (IL-6, NO, and TNF-α) and suppressed the activation of the NF-κB signalling cascade in LPS-mediated RAW264.7 cells. For DSS-mediated colitis in mice, MN can reduce weight loss and the disease activity index (DAI) score in UC mice, suppress colon shortening, and alleviate pathological colon injury. Moreover, MN treatment notably up regulated the levels of IL-10 and down regulated those of IL-1β and TNF-α, and inhibited the protein expression of p-JAK2, p-STAT3, iNOS, NF-κB P65, p-P65, p-IKKα/β, and p-IκBα in the colon. After MN treatment, the levels of MDA and NO in colonic tissue were remarkably decreased, whereas the levels of GSH, SOD, Nrf-2, Keap-1, HO-1, IκBα, and eNOS protein expression levels were significantly increased. Conclusion These results indicate that MN can activate the Nrf-2 signalling pathway and inhibit the JAK/STAT, iNOS/eNOS, and NF-κB signalling cascades, enhance intestinal barrier function, and effectively reduce the LPS-mediated inflammatory response in mouse macrophages and DSS-induced intestinal injury in UC.
Collapse
Affiliation(s)
| | - Xinhua Ma
- Fujian Medical University, Fuzhou, China
| | - Yubin He
- Fujian Medical University, Fuzhou, China
| | | | - Tianhua Zhong
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | | |
Collapse
|
15
|
Xu J, Zheng Y, Zhao Y, Zhang Y, Li H, Zhang A, Wang X, Wang W, Hou Y, Wang J. Succinate/IL-1β Signaling Axis Promotes the Inflammatory Progression of Endothelial and Exacerbates Atherosclerosis. Front Immunol 2022; 13:817572. [PMID: 35273600 PMCID: PMC8901997 DOI: 10.3389/fimmu.2022.817572] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an important driver of atherosclerosis. Succinate is a new extracellular inflammatory alarm released by activated macrophages. Succinate is sensed by succinate receptor 1 (Sucnr1) and then transferred to effector cells. It is worth exploring whether succinate is capable of facilitating the inflammatory response in atherosclerosis. In this study, we firstly found that arterial serum of Coronary Heart Disease (CHD) patients contained significantly higher succinate and interleukin (IL)-1β than Health control (HC) subjects, and succinate was positively correlated with IL-1β. As demonstrated by the in vitro study, succinate/hypoxia-inducible factor 1α (Hif)-1α/IL-1β signal axis existed and significantly facilitated the inflammatory program in human umbilical vein endothelial cells (HUVECs). Under the coculture, activated macrophages released succinate, which would be transferred to HUVECs via Sucnr1 and then activate Hif-1α to produce a greater amount of IL-1β. Likewise, the aortic sinus’s inflammatory phenotype was found to be more significant within Apoe-/- mice that were injected with succinate. Furthermore, Sucnr1 inhibitor (NF-56-EJ40) could significantly interrupt succinate/IL-1β signal in HUVECs and macrophages. As revealed by this study, glycolytic metabolism following the release of succinate could be found in atherosclerotic pathology, and succinate would drive succinate/IL-1β signal dependent on Sucnr1 and then exacerbate inflammatory responses. Sucnr1 might be a novel target for cutting off the transduction of succinate signal to prevent the inflammation of atherosclerosis.
Collapse
Affiliation(s)
- Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yabing Zheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yaqing Zhao
- College of Second Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujiao Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huilin Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - An Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuehan Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Weizong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiangrong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
16
|
Li Y, Zhang Y, Feng R, Zheng P, Huang H, Zhou S, Ji W, Huang F, Liu H, Zhang G. Cadmium induces testosterone synthesis disorder by testicular cell damage via TLR4/MAPK/NF-κB signaling pathway leading to reduced sexual behavior in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113345. [PMID: 35219259 DOI: 10.1016/j.ecoenv.2022.113345] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a highly toxic metal pollutant that can endanger the life and health of animals. Toll-like receptor 4 (TLR4) can result in testicular cell damage by positively regulating mitogen-activated protein kinase (MAPK)/nuclear factor-kappaB (NF-κB) signaling pathway. Meanwhile, Testosterone (T) synthesis disorder can affect sexual behavior. However, the harmful influence of Cd on animal sexual behavior during its growth and development and the role of TLR4/MAPK/NF-κB signaling pathway in testicular cell damage and testosterone production remained poorly understood. Forty-two-day-old male piglets were fed with diets that contained CdCl2 (20 mg Cd/kg) for 40 days to explore the toxic effects of Cd on sexual behavior. The results showed that Cd activated TLR4, promoted MAPK (p-ERK, p-JNK, and p-p38)/NF-κB expression, induced apoptosis (Caspase-3, Cleaved Caspase3, Bax, Cyt-c, and Caspase-9 expression increased, but Bcl-2 expression decreased) and necroptosis (MLKL, RIPK1, and RIPK3 expression increased) in piglet testis. In addition, Cd exposure decreased mRNA expression of STAR, CYP11A1, 3β-HSD, CYP17A1, and 17β-HSD of testis and the concentrations of T and thyroid-stimulating hormone (TSH). Both the mRNA and protein expression levels of the major genes in TLR4/MAPK/NF-κB signaling pathway, apoptosis signaling pathway, and necroptosis signaling pathway increased significantly and the expression levels of testosterone decreased gradually in pig Leydig cells cultured in vitro after being treated with different concentrations of Cd. Moreover, Cd reduced sexual behavior (the parameters of sniffing, chin resting, and mounting decreased) in piglets. In conclusion, Cd induced testicular cell damage via TLR4/MAPK/NF-κB signaling pathway leading to testosterone synthesis disorder and sexual behavior reduction in piglets.
Collapse
Affiliation(s)
- Yulong Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Fushuo Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China.
| | - Guixue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
17
|
Chang Z, An L, He Z, Zhang Y, Li S, Lei M, Xu P, Lai Y, Jiang Z, Huang Y, Duan X, Wu W. Allicin supressed Escherichia coli-induced urinary tract infections by a Novel MALT1/NF-κB pathway. Food Funct 2022; 13:3495-3511. [PMID: 35246671 DOI: 10.1039/d1fo03853b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Escherichia coli (E. coli) strains cause the majority of urinary tract infections (UTIs) and are resistant to various antibiotics. Therefore, it is imperative to explore novel host-target therapies. As a...
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Lingyue An
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Zhican He
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yuyan Zhang
- Guangzhou Institute of Dermatology, Guangzhou, 510095, China
| | - Shujue Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Min Lei
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Peng Xu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yongchang Lai
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Zheng Jiang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yapeng Huang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Xiaolu Duan
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Wenqi Wu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| |
Collapse
|
18
|
Ye Z, Chen L, Fang Y, Zhao L. Blood MALT1, Th1, and Th17 cells are dysregulated, inter-correlated, and correlated with disease activity in rheumatoid arthritis patients; meanwhile, MALT1 decline during therapy relates to treatment outcome. J Clin Lab Anal 2021; 36:e24112. [PMID: 34788483 PMCID: PMC8761436 DOI: 10.1002/jcla.24112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 12/29/2022] Open
Abstract
Objective Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1) participates in inflammatory and autoimmune diseases via activating various signaling pathways and promoting the differentiation of T‐helper (Th) 1 and Th17 cells; however, it is rarely reported in rheumatoid arthritis (RA). This study aimed to assess the correlation of MALT1 with Th1 and Th17 cells and evaluate its potential as a biomarker for evaluating disease activity and treatment outcomes in RA patients. Methods This study enrolled 139 RA patients and 45 health controls (HCs); then, blood MALT1, Th1, and Th17 cells were determined. For RA patients only, blood MALT1 at week (W) 6 and W12 after treatment was also detected. Additionally, clinical response and remission of RA patients were assessed at W12. Results MALT1 (p < 0.001), Th1 (p = 0.011), and Th17 (p < 0.001) cells were all increased in RA patients than HCs; meanwhile, increased MALT1 was associated with elevated Th1 (p = 0.003) and Th17 (p < 0.001) cells in RA patients. Besides, MALT1, Th1, and Th17 cells were positively correlated with parts of disease activity indexes in RA patients (all p < 0.050). In addition, MALT1 was gradually declined from W0 to W12 (p < 0.001) in RA patients. Specifically, MALT1 at W6 and W12 was lower in response patients than no response patients (both p < 0.010), also in remission patients than no remission patients (both p < 0.050). Conclusion MALT1, Th1, and Th17 cells are dysregulated, inter‐correlated, and correlated with disease activity in RA patients; meanwhile, the decline of MALT1 expression can partly reflect RA treatment response and remission.
Collapse
Affiliation(s)
- Zhuang Ye
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Lu Chen
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Ying Fang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Ling Zhao
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Pisu D, Huang L, Narang V, Theriault M, Lê-Bury G, Lee B, Lakudzala AE, Mzinza DT, Mhango DV, Mitini-Nkhoma SC, Jambo KC, Singhal A, Mwandumba HC, Russell DG. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med 2021; 218:e20210615. [PMID: 34292313 PMCID: PMC8302446 DOI: 10.1084/jem.20210615] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, we detail a novel approach that combines bacterial fitness fluorescent reporter strains with scRNA-seq to simultaneously acquire the host transcriptome, surface marker expression, and bacterial phenotype for each infected cell. This approach facilitates the dissection of the functional heterogeneity of M. tuberculosis-infected alveolar (AMs) and interstitial macrophages (IMs) in vivo. We identify clusters of pro-inflammatory AMs associated with stressed bacteria, in addition to three different populations of IMs with heterogeneous bacterial phenotypes. Finally, we show that the main macrophage populations in the lung are epigenetically constrained in their response to infection, while inter-species comparison reveals that most AMs subsets are conserved between mice and humans. This conceptual approach is readily transferable to other infectious disease agents with the potential for an increased understanding of the roles that different host cell populations play during the course of an infection.
Collapse
MESH Headings
- Animals
- Antitubercular Agents/pharmacology
- Bronchoalveolar Lavage Fluid/microbiology
- CD11 Antigens/immunology
- CD11 Antigens/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation, Bacterial
- Heme/metabolism
- Host-Pathogen Interactions
- Humans
- Lung/microbiology
- Lung/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mice, Inbred C57BL
- Microorganisms, Genetically-Modified
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Sequence Analysis, RNA
- Single-Cell Analysis
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- Mice
Collapse
Affiliation(s)
- Davide Pisu
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
- Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Vipin Narang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Monique Theriault
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Gabrielle Lê-Bury
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Agnes E. Lakudzala
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - David T. Mzinza
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - David V. Mhango
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - Steven C. Mitini-Nkhoma
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - Kondwani C. Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research, Singapore
| | - Henry C. Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David G. Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
20
|
Chen X, Zhang X, Lan L, Xu G, Li Y, Huang S. MALT1 positively correlates with Th1 cells, Th17 cells, and their secreted cytokines and also relates to disease risk, severity, and prognosis of acute ischemic stroke. J Clin Lab Anal 2021; 35:e23903. [PMID: 34273195 PMCID: PMC8418463 DOI: 10.1002/jcla.23903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/07/2022] Open
Abstract
Background This study aimed to explore the association of mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1) with acute ischemic stroke (AIS) risk and also to explore its association with T helper type 1 (Th1) cells, Th17 cells, disease severity, and prognosis in AIS patients. Methods One hundred twenty first‐episode AIS patients and 120 non‐AIS patients with high‐stroke‐risk factors (as controls) were recruited. Besides, in the cluster of differentiation 4‐positive (CD4+) T cells, the MALT1 gene expression was detected by reverse transcription quantitative polymerase chain reaction; meanwhile, Th1 and Th17 were detected by flow cytometry. Moreover, serum interferon (IFN)‐γ and interleukin (IL)‐17 were determined by enzyme‐linked immunosorbent assay. Results MALT1 expression was increased in AIS patients compared with controls and also it could differentiate AIS patients from controls, with an area under curve of 0.905 (95% confidence interval: 0.869–0.941). In AIS patients, MALT1 positively correlated with Th1 cells, Th17 cells, IFN‐γ, and IL‐17. Besides, MALT1 positively correlated with the National Institutes of Health Stroke Scale score. Furthermore, the Kaplan‐Meier curve and univariate Cox's regression analyses showed no correlation of MALT1 high expression with recurrence‐free survival (RFS) in AIS patients, although after adjustment using multivariant Cox's regression, high MALT1 expression independently correlated with worse RFS in AIS patients. Conclusion MALT1 expression is increased and positively correlates with disease severity, Th1 cells, and Th17 cells, whose high expression severs as an independent risk factor for worse RFS in AIS patients.
Collapse
Affiliation(s)
- Xia Chen
- Department of Anatomy, Hunan University of Medicine, Huaihua, China
| | - Xuemei Zhang
- Department of Anatomy, Hunan University of Medicine, Huaihua, China
| | - Ling Lan
- Department of Anatomy, Guangxi Medical University, Nanning, China
| | - Guoyao Xu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Yanchun Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Shaoming Huang
- Department of Anatomy, Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Inhibitor as a Novel Therapeutic Tool for Lung Injury. Int J Mol Sci 2020; 21:ijms21207761. [PMID: 33092214 PMCID: PMC7589767 DOI: 10.3390/ijms21207761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. In this study, the bleomycin experimental model of pulmonary fibrosis was employed to investigate the anti-fibrotic and immunomodulatory activity of the inhibition of MALT1 protease activity. Mice received a single intra-tracheal administration of bleomycin (1 mg/kg) in the presence or absence of MI-2, a selective MALT1 inhibitor, (a dose of 30 mg/kg administered intra-peritoneally 1 h after bleomycin and daily until the end of the experiment). Seven days after bleomycin instillation mice were sacrificed and bronchoalveolar lavage fluid analysis, measurement of collagen content in the lung, histology, molecular analysis and immunohistochemistry were performed. To evaluate mortality and body weight gain a subset of mice was administered daily with MI-2 for 21 days. Mice that received MI-2 showed decreased weight loss and mortality, inflammatory cells infiltration, cytokines overexpression and tissue injury. Moreover, biochemical and immunohistochemical analysis displayed that MI-2 was able to modulate the excessive production of reactive oxygen species and the inflammatory mediator upregulation induced by bleomycin instillation. Additionally, MI-2 demonstrated anti-fibrotic activity by reducing transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA) and receptor associated factor 6 (TRAF6) expression. The underlying mechanisms for the protective effect of MI-2 bleomycin induced pulmonary fibrosis may be attributed to its inhibition on NF-κB pathway. This is the first report showing the therapeutic role of MALT1 inhibition in a bleomycin model of pulmonary fibrosis, thus supporting further preclinical and clinical studies.
Collapse
|
22
|
Bao W, Sun C, Sun X, He M, Yu H, Yan W, Wen F, Zhang L, Yang C. Targeting BCL10 by small peptides for the treatment of B cell lymphoma. Am J Cancer Res 2020; 10:11622-11636. [PMID: 33052237 PMCID: PMC7546004 DOI: 10.7150/thno.47533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Constitutive activation of the NF-κB signalling pathway plays a pivotal role in the pathogenesis of activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCLs), the most aggressive and chemoresistant form of DLBCL. In ABC-DLBCLs, the CARMA1-BCL10 (CB) complex forms a filamentous structure and functions as a supramolecular organizing centre (CB-SMOC) that is required for constitutive NF-κB activation, making it an attractive drug target for ABC-DLBCL treatment. However, a pharmaceutical approach targeting CB-SMOC has been lacking. Here, we developed Bcl10 peptide inhibitors (BPIs) that specifically target the BCL10 filamentation process. Methods: Electron microscopy and immunofluorescence imaging were used to visualize the effect of the BPIs on the BCL10 filamentation process. The cytotoxicity of the tested BPIs was evaluated in DLBCL cell lines according to cell proliferation assays. Different in vitro experiments (pharmacokinetics, immunoprecipitation, western blotting, annexin V and PI staining) were conducted to determine the functional mechanisms of the BPIs. The in vivo therapeutic effect of the BPIs was examined in different xenograft DLBCL mouse models. Finally, Ki67 and TUNEL staining and histopathology analysis were used to evaluate the antineoplastic mechanisms and systemic toxicity of the BPIs. Results: We showed that these BPIs can effectively disrupt the BCL10 filamentation process, destabilize BCL10 and suppress NF-κB signalling in ABC-DLBCL cells. By examining a panel of DLBCL cell lines, we found that these BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL cells by inducing apoptosis and cell cycle arrest. Moreover, by converting the BPIs to acquire a D-retro inverso (DRI) configuration, we developed DRI-BPIs with significantly improved intracellular stability and unimpaired BPI activity. These DRI-BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL tumors in mouse xenograft models without eliciting discernible adverse effects. Conclusion: We developed novel BPIs to target the BCL10 filamentation process and demonstrated that targeting BCL10 by BPIs is a potentially safe and effective pharmaceutical approach for the treatment of ABC-DLBCL and other CB-SMOC-dependent malignancies.
Collapse
|
23
|
Lu T, Connolly PJ, Philippar U, Sun W, Cummings MD, Barbay K, Gys L, Van Nuffel L, Austin N, Bekkers M, Shen F, Cai A, Attar R, Meerpoel L, Edwards J. Discovery and optimization of a series of small-molecule allosteric inhibitors of MALT1 protease. Bioorg Med Chem Lett 2019; 29:126743. [DOI: 10.1016/j.bmcl.2019.126743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022]
|
24
|
Nakano K, Iwanaga M, Utsunomiya A, Uchimaru K, Watanabe T. Functional Analysis of Aberrantly Spliced Caspase8 Variants in Adult T-Cell Leukemia Cells. Mol Cancer Res 2019; 17:2522-2536. [DOI: 10.1158/1541-7786.mcr-19-0313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/31/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
|
25
|
Feng J, Yang W, Wang J, Pu Z, Han Y, Wan L. Z-VRPR-FMK can inhibit the growth and invasiveness of diffuse large B-cell lymphoma by depressing NF-κB activation and MMP expression induced by MALT1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1947-1955. [PMID: 31934017 PMCID: PMC6949647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the therapeutic effect of the mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) on diffuse large B-cell lymphoma (DLBCL) and its underlying molecular mechanism through the application of Z-Val-Arg-Pro-DL-Arg-fluoromethyl ketone (Z-VRPR-FMK). Cultured OCI-LY10 cells and their xenografts in nude mice were treated with Z-VRPR-FMK. The growth and invasiveness of the tumor were observed. The components of the NF-κB signaling pathways, such as P65, MALT1, A20, matrix metalloproteinase 2 (MMP2) and MMP9, were detected using a real-time fluorescent quantitative polymerase chain reaction, immunohistochemical staining, and a Western blot analysis. Z-VRPR-FMK inhibited the growth and invasiveness of OCI-LY10 cells and their xenografts. The increase in the tumor volume was slower in the experimental group than it was in the control group, and the weight of the nude mice was significantly different between the two groups on the 11th and 13th days of treatment. The expression of P65 was significantly lower at the gene level in cultured OCI-LY10 cells and transplanted tumors than in the controls after treatment with Z-VRPR-FMK. The nuclear expression of the P65 protein of xenografts also decreased, but the nuclear expression of the A20 protein followed a reverse pattern. The expressions of the MALT1, MMP2, and MMP9 proteins were lower in the OCI-LY10 cells and transplanted tumors treated with Z-VRPR-FMK compared with the controls. This study indicates that MALT1 might serve as an effective therapeutic target for activated B-cell (ABC)-like DLBCL. Z-VRPR-FMK inhibits the growth and invasiveness of ABC-like DLBCL by depressing the proteolysis of A20, the activation of NF-κB, and the expression of MMP9 and MMP2 induced by the MALT1 protein.
Collapse
Affiliation(s)
- Jianglong Feng
- Department of Pathology, Affiliated Hospital, Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Wenxiu Yang
- Department of Pathology, Affiliated Hospital, Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Jiarui Wang
- Department of Pathology, Maternal and Child Health Hospital of Guiyang CityGuiyang, Guizhou, China
| | - Zhenhong Pu
- Department of Pathology, Affiliated Hospital, Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Ying Han
- Department of Pathology, Guizhou Medical UniversityGuiyang 550025, Guizhou, China
| | - Long Wan
- Department of Pathology, Guizhou Medical UniversityGuiyang 550025, Guizhou, China
| |
Collapse
|
26
|
Thom SR, Bhopale VM, Yang M. Microparticle-induced vascular injury in mice following decompression is inhibited by hyperbaric oxygen: effects on microparticles and interleukin-1β. J Appl Physiol (1985) 2019; 126:1006-1014. [PMID: 30763157 DOI: 10.1152/japplphysiol.01109.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hyperbaric oxygen (HBO2) became a mainstay for treating decompression sickness (DCS) because bubbles are associated with the disorder. Inflammatory processes including production of circulating microparticles (MPs) have now been shown to occur with DCS, leading to questions regarding pathophysiology and the role for HBO2. We investigated effects of HBO2 on mice exposed to 790 kPa air pressure for 2 h, which triggers elevations of MPs ladened with interleukin (IL)-1β that cause diffuse vascular injuries. Exposure to 283 kPa O2 (HBO2) inhibited MP elevations at 2 h postdecompression by 50% when applied either prophylactically or as treatment after decompression, and the MP number remained suppressed for 13 h in the prophylactic group. Particle content of IL-1β at 2 h postdecompression was 139.3 ± 16.2 [means ± SE; n = 11, P < 0.05) pg/million MPs vs. 8.2 ± 1.0 ( n = 15) in control mice, whereas it was 31.5 ± 6.1 ( n = 6, not significant vs. control (NS)] in mice exposed to HBO2 prophylactically, and 16.6 ± 6.3 ( n = 7, NS) when HBO2 was administered postdecompression. IL-1β content in MPs was similar in HBO2-exposed mice at 13 h postdecompression. HBO2 also inhibited decompression-associated neutrophil activation and diffuse vascular leak. Immunoprecipitation studies demonstrated that HBO2 inhibits high-pressure-mediated neutrophil nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome oligomerization. Furthermore, MPs isolated from decompressed mice cause vascular injuries when injected into naïve mice, but if decompressed mice were exposed to HBO2 before MP harvest, vascular injuries were inhibited. We conclude that HBO2 impedes high-pressure/decompression-mediated inflammatory events by inhibiting inflammasome formation and IL-1β production. NEW & NOTEWORTHY High pressure/decompression causes vascular damage because it stimulates production of microparticles that contain high concentrations of interleukin-1β, and hyperbaric oxygen can prevent injuries.
Collapse
Affiliation(s)
- Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Veena M Bhopale
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The mechanisms underlying the overlap of, and relationship between, atopy and immunodeficiency are just beginning to be recognized, through the identification of novel genetic conditions and the reexamination of well known primary immunodeficiencies. The present review seeks both to frame the topic and to highlight the most recent literature combining allergy in the context of immunodeficiency. RECENT FINDINGS The true prevalence of atopic disorders in the setting of primary immunodeficiency as a whole is difficult to pinpoint, however there have been recent attempts to measure prevalence. Individual immunodeficiency disorders have been more carefully dissected for atopic disease and the mechanisms underlying the atopic phenotypic, whereas several newly described immune deficiencies because of single gene mutations are highly associated with atopic phenotypes. Finally, a number of novel genetic conditions with atopy being the primary feature, even in the absence of overt immune deficiency, have been described, providing instrumental clues into the diagnostic dilemmas these syndromes create. SUMMARY Defining and examining diseases with primary features of atopy and infection allow for a better understanding of the interplay between the two in rare disease, and hopefully sheds light on fundamental pathways involved in atopy and host defense in the general population.
Collapse
|
28
|
Kasperkiewicz P, Kołt S, Janiszewski T, Groborz K, Poręba M, Snipas SJ, Salvesen GS, Drąg M. Determination of extended substrate specificity of the MALT1 as a strategy for the design of potent substrates and activity-based probes. Sci Rep 2018; 8:15998. [PMID: 30375474 PMCID: PMC6207715 DOI: 10.1038/s41598-018-34476-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/16/2018] [Indexed: 11/10/2022] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) belongs to the CD clan of cysteine proteases. MALT1 is a unique enzyme among this clan because it recognizes the basic amino acid arginine in the P1 pocket. Previous studies carried out with natural amino acids revealed the substrate specificity of the P4-P1 pockets of MALT1 but have provided only limited information about the catalytic preferences of this enzyme. In this study, we exploited Hybrid Combinatorial Substrate Library and Internally Quenched Fluorescence substrate technologies to interrogate the extended substrate specificity profile of the S5-S2' active site pockets using unnatural amino acids. This strategy resulted in the design of a peptide-based fluorogenic substrate, which exhibited significant activity toward MALT1. Subsequently, the substrate sequence was further utilized to develop potent, irreversible activity-based probes.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Sonia Kołt
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Tomasz Janiszewski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Poręba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.,NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Scott J Snipas
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Guy S Salvesen
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| | - Marcin Drąg
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
29
|
Nam SY, Kim HM, Jeong HJ. Cysteine ameliorates allergic inflammatory reactions by suppressing thymic stromal lymphopoietin production in activated human mast cells. Nutr Res 2018; 49:79-87. [PMID: 29420995 DOI: 10.1016/j.nutres.2017.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) derived by mast cells is recognized as a critical factor in many allergic inflammatory disorders. Cysteine is a well-known amino acid which exhibits anti-inflammatory activities. However, the effect and mechanism of cysteine on TSLP production have not been investigated. Thus, we hypothesized that cysteine may regulate TSLP production from mast cells. To test this hypothesis, the anti-inflammatory effects and signaling pathways of cysteine were investigated in phorbol 12-myristate 13-acetate 4 and calcium ionophore A23187 (PMACI)-stimulated human mast cell line HMC-1. Cysteine dramatically attenuated the levels of TSLP of both mRNA and protein without cytotoxicity. Moreover, cysteine suppressed caspase-1 activation and nuclear factor-κB translocation. The phosphorylation of p38 and c-Jun N-terminal kinase was downregulated in all cases in PMACI-stimulated HMC-1 cells treated with cysteine. In addition, cysteine decreased PMACI-induced proinflammatory cytokines in terms of both protein and mRNA levels. In conclusion, cysteine regulates TSLP production by blocking caspase-1, nuclear factor-κB, p38, and c-Jun N-terminal kinase-dependent pathways in activated HMC-1 cells, suggesting its potential as a regulator of allergic inflammatory diseases.
Collapse
Affiliation(s)
- Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hyun-Ja Jeong
- Department of Food Science & Technology, Hoseo University, Asan, Chungnam, 31499, Republic of Korea.
| |
Collapse
|
30
|
Wu W, Ma B, Ye H, Wang T, Wang X, Yang J, Wei Y, Zhu J, Chen L. Millepachine, a potential topoisomerase II inhibitor induces apoptosis via activation of NF-κB pathway in ovarian cancer. Oncotarget 2018; 7:52281-52293. [PMID: 27447570 PMCID: PMC5239551 DOI: 10.18632/oncotarget.10739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/16/2016] [Indexed: 02/05/2023] Open
Abstract
Millepachine (MIL) was a novel chalcone that was separated from Millettia pachycarpa Benth (Leguminosae). We found MIL induced apoptosis through activating NF-κB pathway both in SK-OV-3 and A2780S cells. Western blot showed that MIL increased the levels of IKKα, p-IKKα/β, p-IκBα and NF-κB (p65) proteins, and decreased the expression of IκBα protein. Immunohistochemistry analysis indicated that translocation of NF-κB into the nucleus increased in both ovarian cancer cells. EMSA assay proved MIL enhanced NF-κB DNA-binding activity in the nuclear. That specific NF-κB inhibitors alleviated MIL-induced apoptosis suggested NF-κB activation showed a pro-apoptotic function in SK-OV-3 and A2780S cells. Since NF-κB could be activated by double strand breaks and showed a pro-apoptotic function in the DNA damage response, SCGE assay and western blot revealed that MIL caused DNA strand breaks and significantly increased the level of p-ATM protein and further increased the levels of p-IKKα/β and NF-κB (p65) protein in SK-OV-3 and A2780S cells, while a specific ATM inhibitor could alleviated these effects. Moreover, Topoisomerase II drug screening kit and computer modeling assay were used to prove that MIL induced the production of linear DNA and inhibited the activity of topoisomerase II through binding with Topoisomerase II-Cleaved DNA complex to stabilize the complex. Taken together, our results identified that MIL exhibited anti-tumor activity through inhibiting topoisomerase II activity to induce tumor cells DNA damage, and MIL-activated NF-κB pathway showed a pro-apoptotic function in response to DNA damage.
Collapse
Affiliation(s)
- Wenshuang Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China.,Department of Thyroid and Breast Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Buyun Ma
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Taijin Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid and Breast Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Thi Do T, Phoomak C, Champattanachai V, Silsirivanit A, Chaiyarit P. New evidence of connections between increased O-GlcNAcylation and inflammasome in the oral mucosa of patients with oral lichen planus. Clin Exp Immunol 2018; 192:129-137. [PMID: 29247492 DOI: 10.1111/cei.13091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Oral lichen planus (OLP) is considered a chronic inflammatory immune-mediated disease of the oral mucosa. Immunopathogenesis of OLP is thought to be associated with cell-mediated immune dysregulation. O-GlcNAcylation is a form of reversible glycosylation. It has been demonstrated that O-GlcNAcylation promoted nuclear factor kappa B (NF-κB) signalling. Activation of NF-кB can induce expression of nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, which is a large intracellular multi-protein complex involving an immune response. Dysregulated expression of the NLRP3 inflammasome was reported to be associated with autoinflammatory diseases. No integrative studies between O-GlcNAcylation and NLRP3 inflammasome in OLP patients have been reported. The present study aimed to determine the immunohistochemical expression of O-GlcNAcylation, NF-κB signalling molecules and NLRP3 inflammasome in oral mucosae of OLP patients. Oral tissue samples were collected from 30 OLP patients and 30 healthy individuals. Immunohistochemical staining and analyses of immunostaining scores were performed to evaluate expression of O-GlcNAcylation, NF-κB signalling molecules and NLRP3 inflammasome. According to observations in this study, significantly higher levels of O-GlcNAcylation, NF-κB signalling molecules and NLRP3 inflammasome were demonstrated in OLP patients compared with control subjects (P < 0·001). Positive correlations among O-GlcNAcylation, NF-κB signalling molecules and NLRP3 inflammasome were also observed in OLP samples (P < 0·01). In conclusion, the present study provides supportive evidence that increased O-GlcNAcylation is associated with increased expression of NLRP3 inflammasome via the NF-κB signalling pathway. These findings provide a new perspective on immunopathogenesis of OLP in relation to autoinflammation.
Collapse
Affiliation(s)
- T Thi Do
- Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand.,Department of Oral Pathology and Periodontology, Faculty of Dentistry, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - C Phoomak
- Department of Biochemistry, Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - V Champattanachai
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - A Silsirivanit
- Department of Biochemistry, Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - P Chaiyarit
- Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
32
|
Liu W, Guo W, Hang N, Yang Y, Wu X, Shen Y, Cao J, Sun Y, Xu Q. MALT1 inhibitors prevent the development of DSS-induced experimental colitis in mice via inhibiting NF-κB and NLRP3 inflammasome activation. Oncotarget 2017; 7:30536-49. [PMID: 27105502 PMCID: PMC5058699 DOI: 10.18632/oncotarget.8867] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/31/2016] [Indexed: 12/25/2022] Open
Abstract
Mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1), a paracaspase and essential regulator for nuclear factor kB (NF-κB) activation, plays an important role in innate and adaptive immunity. Suppression of MALT1 protease activity with small molecule inhibitors showed promising efficacies in subtypes of B cell lymphoma and improvement in experimental autoimmune encephalomyelitis model. However, whether MALT1 inhibitors could ameliorate colitis remains unclear. In the present study, we examined the pharmacological effect of two specific MALT1 inhibitors MI-2 and mepazine on the dextran sulfate sodium (DSS)-induced experimental colitis in mice, followed by mechanistic analysis on NF-κB and NLRP3 inflammasome activation. Treatment with MI-2 and mepazine dose-dependently attenuated symptoms of colitis in mice, evidenced by reduction in the elevated disease activity index, the shortening of colon length as well as the histopathologic improvement. Moreover, protein and mRNA levels of DSS-induced proinflammatory cytokines in colon, including TNF, IL-1β, IL-6, IL-18, IL-17A and IFN-γ, were markedly suppressed by MALT1 inhibitors. The underlying mechanisms for the protective effect of MALT1 inhibitors in DSS-induced colitis may be attributed to its inhibition on NF-κB and NLRP3 inflammasome activation in macrophages. The in vitro study showed that MALT1 inhibitors decreased production of IL-1β/IL-18 in phorbol myristate acetate-differentiated THP-1 cells and bone marrow derived macrophage via suppressing the activation of NF-κB and NLRP3 inflammasome. Taken together, our results demonstrated that inhibition of the protease activity of MALT1 might be a viable strategy to treat inflammatory bowel disease and the NLRP3 inflammasome and NF-κB activation are critical components in MALT1 signaling cascades in this disease model.
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Nan Hang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jingsong Cao
- Eternity Bioscience Inc, Cranbury, NJ 08512, USA
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
33
|
Wang Y, Zhang G, Jin J, Degan S, Tameze Y, Zhang JY. MALT1 promotes melanoma progression through JNK/c-Jun signaling. Oncogenesis 2017; 6:e365. [PMID: 28759024 PMCID: PMC5541718 DOI: 10.1038/oncsis.2017.68] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Mucosa-associated lymphoma antigen 1 (MALT1) is a lymphoma oncogene that regulates signal transduction as a paracaspase and an adaptor protein. Yet, the role of MALT1 in other solid cancers such as melanoma is not well-understood. Here, we demonstrate that MALT1 is overexpressed in malignant melanoma cells, and predicts a poor disease-free survival. MALT1 inhibition via shRNA-mediated gene silencing or pharmacologically with MI-2 compound markedly reduced cell growth and migration of A2058 and A375 melanoma cell lines in vitro. Subcutaneous tumor growth analysis revealed that MALT1 gene silencing significantly reduced tumor growth and metastasis to the lung. Consistently, the subcutaneous tumors with MALT1 loss had increased cell apoptosis and decreased proliferation. In addition, these tumors showed signs of mesenchymal–epithelial transition as indicated by the upregulation of E-cadherin and downregulation of N-cadherin and β1-intergrin. Further molecular analysis revealed that MALT1 is required for c-Jun and nuclear factor-κB (NF-κB) activation by tumor necrosis factor-α. Forced expression of the c-Jun upstream activator MKK7 reversed the cell growth and migration defects caused by MALT1 loss. In contrast, NF-κB activation via expression of p65ER, a fusion protein containing NF-κB p65 and the tamoxifen-responsive mutant estrogen receptor, induced minimal effects on cell proliferation, but diminished cell death induced by MALT1 loss and TRAIL treatment. Together, these findings demonstrate that MALT1 promotes melanoma cell proliferation and motility through JNK/c-Jun, and enhances melanoma cell survival through NF-κB, underscoring MALT1 as a potential therapeutic target and biomarker for malignant melanoma.
Collapse
Affiliation(s)
- Y Wang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - G Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Department of Dermatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - J Jin
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - S Degan
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC, USA
| | - Y Tameze
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - J Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
34
|
Caspases control antiviral innate immunity. Cell Mol Immunol 2017; 14:736-747. [PMID: 28690332 DOI: 10.1038/cmi.2017.44] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
Caspases are a family of cysteine proteases whose functions have been scrutinized intensively in recent years. Beyond their established roles in programmed cell death and inflammatory response, some caspases are also fundamental players in antiviral immunity by fine-tuning the levels of antiviral signaling adapters and cytokines, such as type I interferons, which serves as a major, sophisticated weapon against viruses. Viral infections can result in inflammasome activation and the initiation of cell death, including apoptosis and pyroptosis, and multiple caspases are significantly involved in these processes. This review will focus on the cutting-edge discoveries regarding the multifaceted roles of caspases in antiviral innate immunity.
Collapse
|
35
|
Niu Z, Tang J, Zhang W, Chen Y, Huang Y, Chen B, Li J, Shen P. Caspase-1 promotes monocyte-macrophage differentiation by repressing PPARγ. FEBS J 2017; 284:568-585. [PMID: 28052562 DOI: 10.1111/febs.13998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022]
Abstract
Monocyte-to-macrophage differentiation is tightly controlled in vivo, as disruption of the normal differentiation program can lead to diverse disorders. Caspase-1, the first identified member of the caspase family, regulates differentiation in various cell types such as Th17 cells and adipocytes. However, the contribution of caspase-1 in monocyte-macrophage differentiation remains elusive. Here we report that caspase-1 is significantly downregulated in leukemia cells from patients with acute monocytic leukemia. By using the phorbol 12-myristate 13-acetate-induced cell differentiation model, we found that caspase-1 activation was required for the differentiation of human monocytes to macrophages. Further analysis of peroxisome proliferator-activated receptor γ (PPARγ) protein levels revealed that the monocyte-macrophage differentiation program could be divided into two stages. Caspase-1-mediated downregulation of PPARγ was important in the late stage of monocyte-macrophage differentiation; however, PPARγ protein levels had little effect on the early stage differentiation. Accumulation of PPARγ protein by troglitazone treatment potently suppressed the late stage of macrophage differentiation, which might be linked to inhibition of nuclear factor-κB activity. The data provide a plausible mechanistic basis by which caspase-1 promotes the differentiation of macrophages from monocytes.
Collapse
Affiliation(s)
- Zhiyuan Niu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Jiajin Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Yongjun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Yahong Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Jiahong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China
| |
Collapse
|
36
|
Shen W, Du R, Li J, Luo X, Zhao S, Chang A, Zhou W, Gao R, Luo D, Wang J, Hao N, Liu Y, Chen Y, Luo Y, Sun P, Yang S, Luo N, Xiang R. TIFA suppresses hepatocellular carcinoma progression via MALT1-dependent and -independent signaling pathways. Signal Transduct Target Ther 2016; 1:16013. [PMID: 29263897 PMCID: PMC5661659 DOI: 10.1038/sigtrans.2016.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/23/2016] [Accepted: 07/04/2016] [Indexed: 02/05/2023] Open
Abstract
TIFA, also called T2BP, was first identified using yeast two-hybrid screening. Our previous work showed that TIFA suppresses hepatocellular carcinoma (HCC) progression via apoptosis and cell cycle arrest. However, the mechanism by which this TIFA suppression occurs remains unclear. Here we demonstrated that TIFA-induced apoptosis demonstrates two distinct time patterns (i.e., at 48 h and >7 days) when TIFA reconstitution occurs. Moreover, we found that MALT1 (a competitor of TIFA) plays a crucial role in short-duration TIFA reconstitution. In this regard, MALT1 silencing with shRNA markedly enhances TIFA-induced apoptosis in vitro and in vivo. In addition, TIFA overexpression triggers JNK and p38 activation in long-duration TIFA reconstitution through TRAF6 binding. In particular, JNK activation leads to TIFA-induced apoptosis while p38 activation governs TIFA-induced cell cycle arrest by p53-p21 signaling in vitro and in vivo. Our data suggest a novel mechanism by which TIFA suppresses HCC progression via both MALT1-dependent and MALT1-independent signaling pathways. This may provide insights into a novel targets where HCC progression may be vulnerable to clinical treatment.
Collapse
Affiliation(s)
- Wenzhi Shen
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Renle Du
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Jun Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Xiaohe Luo
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Shuangtao Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Antao Chang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Wei Zhou
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Ruifang Gao
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Dehong Luo
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Juan Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Na Hao
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Yanhua Liu
- International Joint Center for Biomedical Research of the Ministry of Education, Tianjin, China
| | - Yanan Chen
- International Joint Center for Biomedical Research of the Ministry of Education, Tianjin, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Peiqing Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, North Carolina, USA
| | - Shengyong Yang
- West China Hospital, Molecular Medicine Research Centre, State Key Lab Biotherapy, Sichuan University, Chengdu, China
| | - Na Luo
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
- International Joint Center for Biomedical Research of the Ministry of Education, Tianjin, China
| |
Collapse
|
37
|
QiNan W, XiaGuang G, XiaoTian L, WuQuan D, Ling Z, Bing C. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity. J Diabetes Res 2016; 2016:4692478. [PMID: 27340675 PMCID: PMC4906207 DOI: 10.1155/2016/4692478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4)/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER) stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces islet β cell apoptosis remains unknown. We used a high glucose/palmitate intervention to mimic type 2 diabetes in vitro. We demonstrated that the high glucose/palmitate intervention induced the expression and secretion of Par-4. It also causes increased expression and activation of NF-κB, which induced NIT-1 cell apoptosis and dysfunction. Overexpression of Par-4 potentiates these effects, whereas downregulation of Par-4 attenuates them. Inhibition of NF-κB inhibited the Par-4-induced apoptosis. Furthermore, these effects occurred through the ER stress cell membrane and mitochondrial pathway of apoptosis. Our findings reveal a novel role for Par-4/NF-κB in islet β cell apoptosis and type 2 diabetes.
Collapse
Affiliation(s)
- Wu QiNan
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Gan XiaGuang
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Lei XiaoTian
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Deng WuQuan
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Zhang Ling
- Outpatient Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Chen Bing
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| |
Collapse
|
38
|
Panday A, Inda ME, Bagam P, Sahoo MK, Osorio D, Batra S. Transcription Factor NF-κB: An Update on Intervention Strategies. Arch Immunol Ther Exp (Warsz) 2016; 64:463-483. [PMID: 27236331 DOI: 10.1007/s00005-016-0405-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
The nuclear factor (NF)-κB family of transcription factors are ubiquitous and pleiotropic molecules that regulate the expression of more than 150 genes involved in a broad range of processes including inflammation, immunity, cell proliferation, differentiation, and survival. The chronic activation or dysregulation of NF-κB signaling is the central cause of pathogenesis in many disease conditions and, therefore, NF-κB is a major focus of therapeutic intervention. Because of this, understanding the relationship between NF-κB and the induction of various downstream signaling molecules is imperative. In this review, we provide an updated synopsis of the role of NF-κB in DNA repair and in various ailments including cardiovascular diseases, HIV infection, asthma, herpes simplex virus infection, chronic obstructive pulmonary disease, and cancer. Furthermore, we also discuss the specific targets for selective inhibitors and future therapeutic strategies.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional Rosario, Suipacha 531, Santa Fe, Argentina
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Environmental Toxicology PhD Program, 207 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Diana Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sanjay Batra
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Laboratory of Pulmonary Immunotoxicology, Environmental Toxicology PhD Program, 207 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
39
|
Hulpiau P, Driege Y, Staal J, Beyaert R. MALT1 is not alone after all: identification of novel paracaspases. Cell Mol Life Sci 2016; 73:1103-16. [PMID: 26377317 PMCID: PMC11108557 DOI: 10.1007/s00018-015-2041-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/18/2015] [Accepted: 09/07/2015] [Indexed: 01/08/2023]
Abstract
Paracaspases and metacaspases are two families of caspase-like proteins identified in 2000. Up until now paracaspases were considered a single gene family with one known non-metazoan paracaspase in the slime mold Dictyostelium and a single animal paracaspase called MALT1. Human MALT1 is a critical signaling component in many innate and adaptive immunity pathways that drive inflammation, and when it is overly active, it can also cause certain forms of cancer. Here, we report the identification and functional analysis of two new vertebrate paracaspases, PCASP2 and PCASP3. Functional characterization indicates that both scaffold and protease functions are conserved across the three vertebrate paralogs. This redundancy might explain the loss of two of the paralogs in mammals and one in Xenopus. Several of the vertebrate paracaspases currently have incorrect or ambiguous annotations. We propose to annotate them accordingly as PCASP1, PCASP2, and PCASP3 similar to the caspase gene nomenclature. A comprehensive search in other metazoans and in non-metazoan species identified additional new paracaspases. We also discovered the first animal metacaspase in the sponge Amphimedon. Comparative analysis of the active site suggests that paracaspases constitute one of the several subclasses of metacaspases that have evolved several times independently.
Collapse
Affiliation(s)
- Paco Hulpiau
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Yasmine Driege
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Jens Staal
- Inflammation Research Center, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Rudi Beyaert
- Inflammation Research Center, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
40
|
Li CX, Li HG, Zhang H, Cheng RH, Li M, Liang JY, Gu Y, Ling B, Yao ZR, Yu H. Andrographolide suppresses thymic stromal lymphopoietin in phorbol myristate acetate/calcium ionophore A23187-activated mast cells and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like mice model. Drug Des Devel Ther 2016; 10:781-91. [PMID: 26929603 PMCID: PMC4767106 DOI: 10.2147/dddt.s94056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is one of the most common inflammatory cutaneous diseases. Thymic stromal lymphopoietin (TSLP) has been demonstrated to be an important immunologic factor in the pathogenesis of AD. The production of TSLP can be induced by a high level of intracellular calcium concentration and activation of the receptor-interacting protein 2/caspase-1/NF-κB pathway. Andrographolide (ANDRO), a natural bicyclic diterpenoid lactone, has been found to exert anti-inflammatory effects in gastrointestinal inflammatory disorders through suppressing the NF-κB pathway. OBJECTIVE To explore the effect of ANDRO on the production of TSLP in human mast cells and AD mice model. METHODS We utilized enzyme-linked immunosorbent assay, real-time reverse transcription polymerase chain reaction analysis, Western blot analysis, and immunofluorescence staining assay to investigate the effects of ANDRO on AD. RESULTS ANDRO ameliorated the increase in the intracellular calcium, protein, and messenger RNA levels of TSLP induced by phorbol myristate acetate/calcium ionophore A23187, through the blocking of the receptor-interacting protein 2/caspase-1/NF-κB pathway in human mast cell line 1 cells. ANDRO, via oral or local administration, also attenuated clinical symptoms in 2,4-dinitrofluorobenzene-induced AD mice model and suppressed the levels of TSLP in lesional skin. CONCLUSION Taken together, ANDRO may be a potential therapeutic agent for AD through suppressing the expression of TSLP.
Collapse
Affiliation(s)
- Chun-xiao Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hua-guo Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ru-hong Cheng
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian-ying Liang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Gu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bo Ling
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhi-rong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong Yu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom. Toxins (Basel) 2016; 8:38. [PMID: 26861394 PMCID: PMC4773791 DOI: 10.3390/toxins8020038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action.
Collapse
|
42
|
Hydrogen sulfide diminishes the levels of thymic stromal lymphopoietin in activated mast cells. Arch Dermatol Res 2016; 308:103-13. [DOI: 10.1007/s00403-016-1619-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/14/2015] [Accepted: 01/08/2016] [Indexed: 12/30/2022]
|
43
|
Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB. Oncogene 2015; 35:3399-409. [DOI: 10.1038/onc.2015.398] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/03/2015] [Accepted: 08/22/2015] [Indexed: 12/25/2022]
|
44
|
Afonina IS, Elton L, Carpentier I, Beyaert R. MALT1--a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression. FEBS J 2015; 282:3286-97. [PMID: 25996250 DOI: 10.1111/febs.13325] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/19/2015] [Indexed: 12/27/2022]
Abstract
The paracaspase MALT1 (mucosa associated lymphoid tissue lymphoma translocation gene 1) is an intracellular signaling protein that plays a key role in innate and adaptive immunity. It is essential for nuclear factor κB (NF-κB) activation and proinflammatory gene expression downstream of several cell surface receptors. MALT1 has been most studied in the context of T-cell receptor-induced NF-κB signaling, supporting T-cell activation and proliferation. In addition, MALT1 hyperactivation is associated with specific subtypes of B-cell lymphoma, where it controls tumor cell proliferation and survival. For a long time, MALT1 was believed to function solely as a scaffold protein, providing a platform for the assembly of other NF-κB signaling proteins. However, this view changed dramatically when MALT1 was found to have proteolytic activity that further fine-tunes signaling. MALT1 proteolytic activity is essential for T-cell activation and lymphomagenesis, suggesting that MALT1 is a promising therapeutic target for the treatment of autoimmune diseases and distinct lymphoma entities. However, interference with MALT1 activity may pose a dangerous threat to the normal functioning of the immune system and should be evaluated with great care. Here we discuss the current knowledge on the scaffold and protease functions of MALT1, including an overview of its substrates and the functional implications of their cleavage.
Collapse
Affiliation(s)
- Inna S Afonina
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lynn Elton
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Isabelle Carpentier
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
45
|
Radu M, Dinu D, Sima C, Burlacu R, Hermenean A, Ardelean A, Dinischiotu A. Magnetite nanoparticles induced adaptive mechanisms counteract cell death in human pulmonary fibroblasts. Toxicol In Vitro 2015; 29:1492-502. [PMID: 26065626 DOI: 10.1016/j.tiv.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
Abstract
Magnetite nanoparticles (MNP) have attracted great interest for biomedical applications due to their unique chemical and physical properties, but the MNP impact on human health is not fully known. Consequently, our study proposes to highlight the biochemical mechanisms that underline the toxic effects of MNP on a human lung fibroblast cell line (MRC-5). The cytotoxicity generated by MNP in MRC-5 cells was dose and time-dependent. MNP-treated MRC-5 cells accumulated large amount of iron and reactive oxygen species (ROS) and exhibited elevated antioxidant scavenger enzymes. Reduced glutathione (GSH) depletion and enhanced lipid peroxidation (LPO) processes were also observed. The cellular capacity to counteract the oxidative damage was sustained by high levels of heat shock protein 60 (Hsp60), a protein that confers resistance against ROS attack and inhibition of cell death. While significant augmentations in nitric oxide (NO) and prostaglandine E2 (PGE2) levels were detected after 72 h of MNP-exposure only, caspase-1 was activated earlier starting with 24h post-treatment. Taken together, our results suggest that MRC-5 cells have the capacity to develop cell protection mechanisms against MNP. Detailed knowledge of the mechanisms induced by MNP in cell culture could be essential for their prospective use in various in vivo biochemical applications.
Collapse
Affiliation(s)
- Mihaela Radu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Department of Histology, Faculty of Medicine, Pharmacy and Dentistry, Vasile Goldis Western University of Arad, 1 Feleacului, Arad 310396, Romania
| | - Diana Dinu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Cornelia Sima
- Laser Department, National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor, Bucharest-Magurele 077125, Romania
| | - Radu Burlacu
- Department of Mathematics, University of Agriculture Sciences and Veterinary Medicine, 59 Marasti, Bucharest 011464, Romania
| | - Anca Hermenean
- Department of Histology, Faculty of Medicine, Pharmacy and Dentistry, Vasile Goldis Western University of Arad, 1 Feleacului, Arad 310396, Romania; Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania
| | - Aurel Ardelean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| |
Collapse
|
46
|
Ketelut-Carneiro N, Silva GK, Rocha FA, Milanezi CM, Cavalcanti-Neto FF, Zamboni DS, Silva JS. IL-18 triggered by the Nlrp3 inflammasome induces host innate resistance in a pulmonary model of fungal infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4507-17. [PMID: 25825440 DOI: 10.4049/jimmunol.1402321] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/25/2015] [Indexed: 12/23/2022]
Abstract
Pathogens are sensed by innate immune receptors that initiate an efficient adaptive immune response upon activation. The elements of the innate immune recognition process for Paracoccidioides brasiliensis include TLR-2, TLR-4, and dectin-1. However, there are additional receptors necessary for the host immune responses to P. brasiliensis. The nucleotide-binding oligomerization domain-like receptor (NLRs), which activate inflammasomes, are candidate receptors that deserve renewed investigation. After pathogen infection, the NLRs form large signaling platforms called inflammasomes, which lead to caspase-1 activation and maturation of proinflammatory cytokines (IL-18 and IL-1β). In this study, we showed that NLR family pyrin domain-containing 3 (Nlrp3) is required to induce caspase-1 activation and further secretion of IL-1β and IL-18 by P. brasiliensis-infected macrophages. Additionally, potassium efflux and lysosomal acidification induced by the fungus were important steps in the caspase-1 activation mechanism. Notably, Nlrp3 and caspase-1 knockout mice were more susceptible to infection than were the wild-type animals, suggesting that the Nlrp3-dependent inflammasomes contribute to host protection against P. brasiliensis. This protective effect occurred owing to the inflammatory response mediated by IL-18, as shown by an augmented fungus burden in IL-18 knockout mice. Taken together, our results show that the Nlrp3 inflammasome is essential for resistance against P. brasiliensis because it orchestrates robust caspase-1 activation and triggers an IL-18-dependent proinflammatory response.
Collapse
Affiliation(s)
- Natália Ketelut-Carneiro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Grace Kelly Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Agostini Rocha
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Cristiane Maria Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | - Dario Simões Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil;
| |
Collapse
|
47
|
Karim ZA, Vemana HP, Khasawneh FT. MALT1-ubiquitination triggers non-genomic NF-κB/IKK signaling upon platelet activation. PLoS One 2015; 10:e0119363. [PMID: 25748427 PMCID: PMC4352082 DOI: 10.1371/journal.pone.0119363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
We have recently shown that IKK complex plays an important non-genomic role in platelet function, i.e., regulates SNARE machinery-dependent membrane fusion. In this connection, it is well known that MALT1, whose activity is modulated by proteasome, plays an important role in the regulation of IKK complex. Therefore, the present studies investigated the mechanism by which IKK signaling is regulated in the context of the platelet proteasome. It was found that platelets express a functional proteasome, and form CARMA/MALT1/Bcl10 (CBM) complex when activated. Using a pharmacological inhibitor, the proteasome was found to regulate platelet function (aggregation, integrin activation, secretion, phosphatidylserine exposure and changes in intracellular calcium). It was also found to regulate thrombogenesis and physiologic hemostasis. We also observed, upon platelet activation, that MALT1 is ubiquitinated, and this coincides with the activation of the IKK/NF-κB-signaling pathway. Finally, we observed that the proteasome inhibitor blocks CBM complex formation and the interaction of IKKγ and MALT1; abrogates SNARE formation, and the association of MALT1 with TAK1 and TAB2, which are upstream of the CBM complex. Thus, our data demonstrate that MALT1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing platelet signals to the NF-κB pathway.
Collapse
Affiliation(s)
- Zubair A. Karim
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, United States of America
- * E-mail:
| | - Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| | - Fadi T. Khasawneh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| |
Collapse
|
48
|
Hamilton KS, Phong B, Corey C, Cheng J, Gorentla B, Zhong X, Shiva S, Kane LP. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci Signal 2014; 7:ra55. [PMID: 24917592 DOI: 10.1126/scisignal.2005169] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Signaling to the mechanistic target of rapamycin (mTOR) regulates diverse cellular processes, including protein translation, cellular proliferation, metabolism, and autophagy. Most models place Akt upstream of the mTOR complex, mTORC1; however, in T cells, Akt may not be necessary for mTORC1 activation. We found that the adaptor protein Carma1 [caspase recruitment domain (CARD)-containing membrane-associated protein 1] and at least one of its associated proteins, the paracaspase MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1), were required for optimal activation of mTOR in T cells in response to stimulation of the T cell receptor (TCR) and the co-receptor CD28. However, Bcl10, which binds to Carma1 and MALT1 to form a complex that mediates signals from the TCR to the transcription factor NF-κB (nuclear factor κB), was not required. The catalytic activity of MALT1 was required for the proliferation of stimulated CD4+ T cells, but not for early TCR-dependent activation events. Consistent with an effect on mTOR, MALT1 activity was required for the increased metabolic flux in activated CD4+ T cells. Together, our data suggest that Carma1 and MALT1 play previously unappreciated roles in the activation of mTOR signaling in T cells after engagement of the TCR.
Collapse
Affiliation(s)
- Kristia S Hamilton
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Binh Phong
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Catherine Corey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jing Cheng
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Balachandra Gorentla
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiaoping Zhong
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
49
|
Zhao Y, Lei M, Wang Z, Qiao G, Yang T, Zhang J. TCR-induced, PKC-θ-mediated NF-κB activation is regulated by a caspase-8-caspase-9-caspase-3 cascade. Biochem Biophys Res Commun 2014; 450:526-31. [PMID: 24924627 DOI: 10.1016/j.bbrc.2014.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 02/08/2023]
Abstract
It has been documented that caspase-8, a central player in apoptosis, is also crucial for TCR-mediated NF-κB activation. However, whether other caspases are also involved this process is unknown. In this report, we showed that in addition to caspase-8, caspase-9 is required for TCR-mediated NF-κB activation. Caspase-9 induces activation of PKC-θ, phosphorylation of Bcl10 and NF-κB activation in a caspase-3-dependent manner, but it appears that Bcl10 phosphorylation is uncoupled from NF-κB activation. Furthermore, caspase-8 lies upstream of caspase-9 during T cell activation. Therefore, TCR ligation elicits a caspase cascade involving caspase-8, caspase-9 and caspase-3 which initiates PKC-θ-dependent pathway leading to NF-κB activation and PKC-θ-independent Bcl10 phosphorylation which limits NF-kB activity.
Collapse
Affiliation(s)
- Yixia Zhao
- Department of Cardiology, Xiangya Hospital, Central South University, Hunan 41000, China; Department of Microbial Infection and Immunity, The Ohio State University, OH 43210, United States
| | - Minxiang Lei
- Section of Nephrology, Department of Medicine, The University of Chicago, IL 60637, United States
| | - Zhaoyuan Wang
- Section of Nephrology, Department of Medicine, The University of Chicago, IL 60637, United States
| | - Guilin Qiao
- Section of Nephrology, Department of Medicine, The University of Chicago, IL 60637, United States
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Hunan 41000, China.
| | - Jian Zhang
- Section of Nephrology, Department of Medicine, The University of Chicago, IL 60637, United States; Department of Microbial Infection and Immunity, The Ohio State University, OH 43210, United States.
| |
Collapse
|
50
|
Jeong HJ, Han NR, Kim KY, Choi IS, Kim HM. Gomisin A decreases the LPS-induced expression of iNOS and COX-2 and activation of RIP2/NF-κB in mouse peritoneal macrophages. Immunopharmacol Immunotoxicol 2014; 36:195-201. [DOI: 10.3109/08923973.2014.909848] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|