1
|
Liu Y, Zhang S, Zou G, An J, Li Y, Lin D, Wang D, Li Y, Chen J, Feng T, Li H, Chen Y, Zhang M, Kumar M, Wang L, Hou R, Liu J. Generation and characterization of giant panda induced pluripotent stem cells. SCIENCE ADVANCES 2024; 10:eadn7724. [PMID: 39303041 DOI: 10.1126/sciadv.adn7724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
The giant panda (Ailuropoda melanoleuca) stands as a flagship and umbrella species, symbolizing global biodiversity. While traditional assisted reproductive technology faces constraints in safeguarding the genetic diversity of giant pandas, induced pluripotent stem cells (iPSCs) known for their capacity to differentiate into diverse cells types, including germ cells, present a transformative potential for conservation of endangered animals. In this study, primary fibroblast cells were isolated from the giant panda, and giant panda iPSCs (GPiPSCs) were generated using a non-integrating episomal vector reprogramming method. Characterization of these GPiPSCs revealed their state of primed pluripotency and demonstrated their potential for differentiation. Furthermore, we innovatively formulated a species-specific chemically defined FACL medium and unraveled the intricate signaling pathway networks responsible for maintaining the pluripotency and fostering cell proliferation of GPiPSCs. This study provides key insights into rare species iPSCs, offering materials for panda characteristics research and laying the groundwork for in vitro giant panda gamete generation, potentially aiding endangered species conservation.
Collapse
Affiliation(s)
- Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Shihao Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoyang Zou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Yuan Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Danni Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Donghui Wang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Jiasong Chen
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Tongying Feng
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Hongyan Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Yijiao Chen
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Mingyue Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Manish Kumar
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Luqin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R.China
| |
Collapse
|
2
|
Rehman A, Fatima I, Noor F, Qasim M, Wang P, Jia J, Alshabrmi FM, Liao M. Role of small molecules as drug candidates for reprogramming somatic cells into induced pluripotent stem cells: A comprehensive review. Comput Biol Med 2024; 177:108661. [PMID: 38810477 DOI: 10.1016/j.compbiomed.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
With the use of specific genetic factors and recent developments in cellular reprogramming, it is now possible to generate lineage-committed cells or induced pluripotent stem cells (iPSCs) from readily available and common somatic cell types. However, there are still significant doubts regarding the safety and effectiveness of the current genetic methods for reprogramming cells, as well as the conventional culture methods for maintaining stem cells. Small molecules that target specific epigenetic processes, signaling pathways, and other cellular processes can be used as a complementary approach to manipulate cell fate to achieve a desired objective. It has been discovered that a growing number of small molecules can support lineage differentiation, maintain stem cell self-renewal potential, and facilitate reprogramming by either increasing the efficiency of reprogramming or acting as a genetic reprogramming factor substitute. However, ongoing challenges include improving reprogramming efficiency, ensuring the safety of small molecules, and addressing issues with incomplete epigenetic resetting. Small molecule iPSCs have significant clinical applications in regenerative medicine and personalized therapies. This review emphasizes the versatility and potential safety benefits of small molecules in overcoming challenges associated with the iPSCs reprogramming process.
Collapse
Affiliation(s)
- Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fatima Noor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan; Department of Bioinformatics and Biotechnology, Government College University of Faisalabad, 38000, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University of Faisalabad, 38000, Pakistan
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinrui Jia
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
3
|
Niemsiri V, Rosenthal SB, Nievergelt CM, Maihofer AX, Marchetto MC, Santos R, Shekhtman T, Alliey-Rodriguez N, Anand A, Balaraman Y, Berrettini WH, Bertram H, Burdick KE, Calabrese JR, Calkin CV, Conroy C, Coryell WH, DeModena A, Eyler LT, Feeder S, Fisher C, Frazier N, Frye MA, Gao K, Garnham J, Gershon ES, Goes FS, Goto T, Harrington GJ, Jakobsen P, Kamali M, Kelly M, Leckband SG, Lohoff FW, McCarthy MJ, McInnis MG, Craig D, Millett CE, Mondimore F, Morken G, Nurnberger JI, Donovan CO, Øedegaard KJ, Ryan K, Schinagle M, Shilling PD, Slaney C, Stapp EK, Stautland A, Tarwater B, Zandi PP, Alda M, Fisch KM, Gage FH, Kelsoe JR. Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis. Mol Psychiatry 2024; 29:6-19. [PMID: 36991131 PMCID: PMC11078741 DOI: 10.1038/s41380-022-01909-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 03/31/2023]
Abstract
Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.
Collapse
Grants
- R01 MH095741 NIMH NIH HHS
- UL1 TR001442 NCATS NIH HHS
- U19 MH106434 NIMH NIH HHS
- U01 MH092758 NIMH NIH HHS
- T32 MH018399 NIMH NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- Department of Veterans Affairs | Veterans Affairs San Diego Healthcare System (VA San Diego Healthcare System)
- The Halifax group (MA, CVC, JG, CO, and CS) is supported by grants from Canadian Institutes of Health Research (#166098), ERA PerMed project PLOT-BD, Research Nova Scotia, Genome Atlantic, Nova Scotia Health Authority and Dalhousie Medical Research Foundation (Lindsay Family Fund).
- U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- U19MH106434, part of the National Cooperative Reprogrammed Cell Research Groups (NCRCRG) to Study Mental Illness. AHA-Allen Initiative in Brain Health and Cognitive Impairment Award (19PABH134610000). The JPB Foundation, Bob and Mary Jane Engman, Annette C Merle-Smith, R01 MH095741, and Lynn and Edward Streim.
Collapse
Affiliation(s)
- Vipavee Niemsiri
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | | | - Adam X Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, La Jolla, CA, USA
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Renata Santos
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- University of Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1261266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, Northwestern University, Chicago, IL, USA
| | - Amit Anand
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yokesh Balaraman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Holli Bertram
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Katherine E Burdick
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Calabrese
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Cynthia V Calkin
- Department of Psychiatry and Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Carla Conroy
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Anna DeModena
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Feeder
- Department of Psychiatry, The Mayo Clinic, Rochester, MN, USA
| | - Carrie Fisher
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicole Frazier
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mark A Frye
- Department of Psychiatry, The Mayo Clinic, Rochester, MN, USA
| | - Keming Gao
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Toyomi Goto
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Petter Jakobsen
- Norment, Division of Psychiatry, Haukeland University Hospital and Department of Clinical medicine, University of Bergen, Bergen, Norway
| | - Masoud Kamali
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Marisa Kelly
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Susan G Leckband
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Falk W Lohoff
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Caitlin E Millett
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francis Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Gunnar Morken
- Division of Mental Health Care, St Olavs University Hospital, and Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Ketil J Øedegaard
- Norment, Division of Psychiatry, Haukeland University Hospital and Department of Clinical medicine, University of Bergen, Bergen, Norway
| | - Kelly Ryan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Martha Schinagle
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Emma K Stapp
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrea Stautland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bruce Tarwater
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Cooke JA, Voigt AP, Collingwood MA, Stone NE, Whitmore SS, DeLuca AP, Burnight ER, Anfinson KR, Vakulskas CA, Reutzel AJ, Daggett HT, Andorf JL, Stone EM, Mullins RF, Tucker BA. Propensity of Patient-Derived iPSCs for Retinal Differentiation: Implications for Autologous Cell Replacement. Stem Cells Transl Med 2023; 12:365-378. [PMID: 37221451 PMCID: PMC10267581 DOI: 10.1093/stcltm/szad028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/26/2023] [Indexed: 05/25/2023] Open
Abstract
Prior to use, newly generated induced pluripotent stem cells (iPSC) should be thoroughly validated. While excellent validation and release testing assays designed to evaluate potency, genetic integrity, and sterility exist, they do not have the ability to predict cell type-specific differentiation capacity. Selection of iPSC lines that have limited capacity to produce high-quality transplantable cells, places significant strain on valuable clinical manufacturing resources. The purpose of this study was to determine the degree and root cause of variability in retinal differentiation capacity between cGMP-derived patient iPSC lines. In turn, our goal was to develop a release testing assay that could be used to augment the widely used ScoreCard panel. IPSCs were generated from 15 patients (14-76 years old), differentiated into retinal organoids, and scored based on their retinal differentiation capacity. Despite significant differences in retinal differentiation propensity, RNA-sequencing revealed remarkable similarity between patient-derived iPSC lines prior to differentiation. At 7 days of differentiation, significant differences in gene expression could be detected. Ingenuity pathway analysis revealed perturbations in pathways associated with pluripotency and early cell fate commitment. For example, good and poor producers had noticeably different expressions of OCT4 and SOX2 effector genes. QPCR assays targeting genes identified via RNA sequencing were developed and validated in a masked fashion using iPSCs from 8 independent patients. A subset of 14 genes, which include the retinal cell fate markers RAX, LHX2, VSX2, and SIX6 (all elevated in the good producers), were found to be predictive of retinal differentiation propensity.
Collapse
Affiliation(s)
- Jessica A Cooke
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew P Voigt
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Nicholas E Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S Scott Whitmore
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam P DeLuca
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin R Burnight
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kristin R Anfinson
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Austin J Reutzel
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Heather T Daggett
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jeaneen L Andorf
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Quan YZ, Wei W, Ergin V, Rameshbabu A, Huang M, Tian C, Saladi S, Indzhykulian A, Chen ZY. Reprogramming by drug-like molecules leads to regeneration of cochlear hair cell-like cells in adult mice. Proc Natl Acad Sci U S A 2023; 120:e2215253120. [PMID: 37068229 PMCID: PMC10151514 DOI: 10.1073/pnas.2215253120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/02/2023] [Indexed: 04/19/2023] Open
Abstract
Strategies to overcome irreversible cochlear hair cell (HC) damage and loss in mammals are of vital importance to hearing recovery in patients with permanent hearing loss. In mature mammalian cochlea, co-activation of Myc and Notch1 reprograms supporting cells (SC) and promotes HC regeneration. Understanding of the underlying mechanisms may aid the development of a clinically relevant approach to achieve HC regeneration in the nontransgenic mature cochlea. By single-cell RNAseq, we show that MYC/NICD "rejuvenates" the adult mouse cochlea by activating multiple pathways including Wnt and cyclase activator of cyclic AMP (cAMP), whose blockade suppresses HC-like cell regeneration despite Myc/Notch activation. We screened and identified a combination (the cocktail) of drug-like molecules composing of small molecules and small interfering RNAs to activate the pathways of Myc, Notch1, Wnt and cAMP. We show that the cocktail effectively replaces Myc and Notch1 transgenes and reprograms fully mature wild-type (WT) SCs for HC-like cells regeneration in vitro. Finally, we demonstrate the cocktail is capable of reprogramming adult cochlea for HC-like cells regeneration in WT mice with HC loss in vivo. Our study identifies a strategy by a clinically relevant approach to reprogram mature inner ear for HC-like cells regeneration, laying the foundation for hearing restoration by HC regeneration.
Collapse
Affiliation(s)
- Yi-Zhou Quan
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
- Department of Otolaryngology-Head and Necks, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Volkan Ergin
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Mingqian Huang
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Chunjie Tian
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Srinivas Vinod Saladi
- Broad Institute of MIT and Harvard, Cambridge, MA02142
- Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA02114
| | - Artur A. Indzhykulian
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| |
Collapse
|
6
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Lithium and hormesis: Enhancement of adaptive responses and biological performance via hormetic mechanisms. J Trace Elem Med Biol 2023; 78:127156. [PMID: 36958112 DOI: 10.1016/j.jtemb.2023.127156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Biomedical and consumer interest in the health-promoting properties of pure single entities of known or unknown chemical constituents and mixtures has never been greater. Since its "rediscovery" in the 1950s, lithium is an example of such a constituent that represents an array of scientific and public health challenges and medical potentials that may now be understood best when seen through the lens of the dose-response paradigm known as hormesis. The present paper represents the first review of the capacity of lithium to induce hormetic dose responses in a broad range of biological models, organ systems, and endpoints. Of significance is that the numerous hormetic findings occur with extensive concentration/dose response evaluations with the optimal dosing being similar across multiple organ systems. The particular focus of these hormetic dose-response findings was targeted to research with a broad spectrum of stem cell types and neuroprotective effects. These findings suggest that lithium may have critically valuable systemic effects with respect to those therapeutically treated with lithium as well as for exposures that may be achieved via dietary intervention.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Peter Pressman
- Saba University School of Medicine, Caribbean, the Netherlands
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences; School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| |
Collapse
|
7
|
Han J, Ye S, Chen J, Wang K, Jin J, Zeng Z, Xue S. Lysine-Specific Histone Demethylase 1 Promotes Oncogenesis of the Esophageal Squamous Cell Carcinoma by Upregulating DUSP4. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1624-1634. [PMID: 34937541 DOI: 10.1134/s0006297921120117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of esophageal cancer (EC) and has a poor prognosis due to its aggressive nature. Accordingly, it is necessary to find novel prognostic biomarkers and therapeutic targets for ESCC. Lysine-specific histone demethylase 1 (LSD1) plays a core role in the regulation of ESCC oncogenesis. However, the detailed mechanism of LSD1-regulated ESCC growth has not been elucidated. This study aims to explore molecular mechanism underlying the LSD1-regulated ESCC's oncogenesis. After LSD1 silencing, we detected differentially expressed genes (DEGs) in human ESCC cell line, TE-1, by transcriptome sequencing. Subsequently, we investigated expression pattern of the selected molecules in the ESCC tissues and cell lines by qRT-PCR and Western blotting. Furthermore, we explored the roles of selected molecules in ESCC using gene silencing and overexpression assays. Transcriptome sequencing showed that the expression of dual specificity phosphatase 4 (DUSP4) in TE-1 was significantly attenuated after the LSD1 silencing. In addition, the DUSP4 mRNA expression level was significantly higher in the ESCC tissues, especially in those derived from patients with invasion or metastasis. Moreover, the DUSP4 expression was positively associated with the LSD1 expression in the ESCC tissues. DUSP4 overexpression promoted proliferation, invasion, and migration of the ESCC cells, while DUSP4 silencing had an opposite effect. DUSP4 overexpression also enhanced tumorigenicity of the ESCC cells in vivo, while DUSP4 silencing inhibited tumor growth. Importantly, inhibition of cell proliferation, invasion, and migration by the LSD1 inhibitor (ZY0511) was reversed by DUSP4 overexpression. Conclusively, we found that LSD1 promotes ESCC's oncogenesis by upregulating DUSP4, the potential therapeutic and diagnostic target in ESCC.
Collapse
Affiliation(s)
- Junyong Han
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Shixin Ye
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Jinyan Chen
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Kun Wang
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Jingjun Jin
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Zhiyong Zeng
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Shijie Xue
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| |
Collapse
|
8
|
LSD1: Expanding Functions in Stem Cells and Differentiation. Cells 2021; 10:cells10113252. [PMID: 34831474 PMCID: PMC8624367 DOI: 10.3390/cells10113252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) provide a powerful model system to uncover fundamental mechanisms that control cellular identity during mammalian development. Histone methylation governs gene expression programs that play a key role in the regulation of the balance between self-renewal and differentiation of ESCs. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), the first identified histone lysine demethylase, demethylates H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. Moreover, it has also been shown to demethylate non-histone substrates playing a central role in the regulation of numerous cellular processes. In this review, we summarize current knowledge about LSD1 and the molecular mechanism by which LSD1 influences the stem cells state, including the regulatory circuitry underlying self-renewal and pluripotency.
Collapse
|
9
|
Khreesha L, Qaswal AB, Al Omari B, Albliwi MA, Ababneh O, Albanna A, Abunab'ah A, Iswaid M, Alarood S, Guzu H, Alshawabkeh G, Zayed FM, Abuhilaleh MA, Al-Jbour MN, Obeidat S, Suleiman A. Quantum Tunneling-Induced Membrane Depolarization Can Explain the Cellular Effects Mediated by Lithium: Mathematical Modeling and Hypothesis. MEMBRANES 2021; 11:851. [PMID: 34832080 PMCID: PMC8625630 DOI: 10.3390/membranes11110851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Lithium imposes several cellular effects allegedly through multiple physiological mechanisms. Membrane depolarization is a potential unifying concept of these mechanisms. Multiple inherent imperfections of classical electrophysiology limit its ability to fully explain the depolarizing effect of lithium ions; these include incapacity to explain the high resting permeability of lithium ions, the degree of depolarization with extracellular lithium concentration, depolarization at low therapeutic concentration, or the differences between the two lithium isotopes Li-6 and Li-7 in terms of depolarization. In this study, we implemented a mathematical model that explains the quantum tunneling of lithium ions through the closed gates of voltage-gated sodium channels as a conclusive approach that decodes the depolarizing action of lithium. Additionally, we compared our model to the classical model available and reported the differences. Our results showed that lithium can achieve high quantum membrane conductance at the resting state, which leads to significant depolarization. The quantum model infers that quantum membrane conductance of lithium ions emerges from quantum tunneling of lithium through the closed gates of sodium channels. It also differentiates between the two lithium isotopes (Li-6 and Li-7) in terms of depolarization compared with the previous classical model. Moreover, our study listed many examples of the cellular effects of lithium and membrane depolarization to show similarity and consistency with model predictions. In conclusion, the study suggests that lithium mediates its multiple cellular effects through membrane depolarization, and this can be comprehensively explained by the quantum tunneling model of lithium ions.
Collapse
Affiliation(s)
- Lubna Khreesha
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Baheth Al Omari
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Omar Ababneh
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmad Albanna
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Mohammad Iswaid
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Salameh Alarood
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Hasan Guzu
- Anesthesia Department, Farah Medical Campus, 18 Mai Zeyadeh Street, Amman 11942, Jordan
| | - Ghadeer Alshawabkeh
- Anesthesia and Pain Management Department, King Hussein Cancer Center, Amman 11942, Jordan
| | | | | | | | - Salameh Obeidat
- Department of Anesthesia, Intensive Care and Pain Management, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Aiman Suleiman
- Department of Anesthesia, Intensive Care and Pain Management, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
10
|
Francia M, Stortz M, Echegaray CV, Oses C, Verneri P, Petrone MV, Toro A, Waisman A, Miriuka S, Cosentino MS, Levi V, Guberman A. SUMO conjugation susceptibility of Akt/protein kinase B affects the expression of the pluripotency transcription factor Nanog in embryonic stem cells. PLoS One 2021; 16:e0254447. [PMID: 34242346 PMCID: PMC8270172 DOI: 10.1371/journal.pone.0254447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-β and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.
Collapse
Affiliation(s)
- Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Victoria Petrone
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ayelen Toro
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Waisman
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - María Soledad Cosentino
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
Chen G, Guo Y, Li C, Li S, Wan X. Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming. Stem Cell Rev Rep 2021; 16:511-523. [PMID: 32185667 DOI: 10.1007/s12015-020-09965-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ground state of embryonic stem cells (ESCs) is closely related to the development of regenerative medicine. Particularly, long-term culture of ESCs in vitro, maintenance of their undifferentiated state, self-renewal and multi-directional differentiation ability is the premise of ESCs mechanism and application research. Induced pluripotent stem cells (iPSC) reprogrammed from mouse embryonic fibroblasts (MEF) cells into cells with most of the ESC characteristics show promise towards solving ethical problems currently facing stem cell research. However, integration into chromosomal DNA through viral-mediated genes may activate proto oncogenes and lead to risk of cancer of iPSC. At the same time, iPS induction efficiency needs to be further improved to reduce the use of transcription factors. In this review, we discuss small molecules that promote self-renewal and reprogramming, including growth factor receptor inhibitors, GSK-3β and histone deacetylase inhibitors, metabolic regulators, pathway modulators as well as EMT/MET regulation inhibitors to enhance maintenance of ESCs and enable reprogramming. Additionally, we summarize the mechanism of action of small molecules on ESC self-renewal and iPSC reprogramming. Finally, we will report on the progress in identification of novel and potentially effective agents as well as selected strategies that show promise in regenerative medicine. On this basis, development of more small molecule combinations and efficient induction of chemically induced pluripotent stem cell (CiPSC) is vital for stem cell therapy. This will significantly improve research in pathogenesis, individualized drug screening, stem cell transplantation, tissue engineering and many other aspects.
Collapse
Affiliation(s)
- Guofang Chen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Yu'e Guo
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuangdi Li
- Departments of Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Diazepam and Its Disinfection Byproduct Promote the Early Development of Nervous System in Zebrafish Embryos. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/8878143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The widely used diazepam, as central nervous system inhibitor, has found to be ubiquitous in surface water and drinking water. Moreover, a series of byproducts such as 2-methylamino-5-chlorobenzophenone (MACB) were generated after the chlorine disinfection process. However, little information is available about the neurobiological effects of these emerging chemicals at low doses, especially on infants and children. Here, we exposed zebrafish (Danio rerio) embryos to diazepam and MACB at 0.05, 0.5, and 5 nM, which were equivalent to environmental levels. Both diazepam and MACB increased the somite number and promoted nervous development of transgenic zebrafish [Tg (elavl3: EGFP) larvae] at 72 hours postfertilization ( hpf). Both diazepam and MACB also disrupted the homeostasis of adenosine monophosphate, valine, methionine, and fumaric acid in zebrafish embryos at 12 hpf. Additionally, the locomotor behavior activity of zebrafish was significantly enhanced after 120-hour sustained exposure to diazepam or MACB. Moreover, the mRNA expression levels of oct4, sox2, and nanog, modulating the pluripotency and self-renewal, were upregulated by diazepam and MACB in zebrafish embryo. Altogether, diazepam and MACB stimulate developmental neurogenesis and may induce neuronal excitotoxicity at quite low doses. These results indicated that the chronic exposure to psychoactive drugs may pose a potential risk to the development of the nervous system in infancy.
Collapse
|
13
|
Stricker SH, Götz M. Epigenetic regulation of neural lineage elaboration: Implications for therapeutic reprogramming. Neurobiol Dis 2020; 148:105174. [PMID: 33171228 DOI: 10.1016/j.nbd.2020.105174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/19/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
The vulnerability of the mammalian brain is mainly due to its limited ability to generate new neurons once fully matured. Direct conversion of non-neuronal cells to neurons opens up a new avenue for therapeutic intervention and has made great strides also for in vivo applications in the injured brain. These great achievements raise the issue of adequate identity and chromatin hallmarks of the induced neurons. This may be particularly important, as aberrant epigenetic settings may reveal their adverse effects only in certain brain activity states. Therefore, we review here the knowledge about epigenetic memory and partially resetting of chromatin hallmarks from other reprogramming fields, before moving to the knowledge in direct neuronal reprogramming, which is still limited. Most importantly, novel tools are available now to manipulate specific epigenetic marks at specific sites of the genome. Applying these will eventually allow erasing aberrant epigenetic memory and paving the way towards new therapeutic approaches for brain repair.
Collapse
Affiliation(s)
- Stefan H Stricker
- Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 82152 Planegg, Germany; Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, 82152 Planegg, Munich, Germany; MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universität, BioMedical Center, Grosshaderner Strasse 9, Planegg-Martinsried 82152, Germany.
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 82152 Planegg, Germany; Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, 82152 Planegg, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, 82152 Planegg, Munich, Germany.
| |
Collapse
|
14
|
Abstract
Derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming somatic cells to a pluripotent state has revolutionized stem cell research. Ensuing this, various groups have used genetic and non-genetic approaches to generate iPSCs from numerous cell types. However, achieving a pluripotent state in most of the reprogramming studies is marred by serious limitations such as low reprogramming efficiency and slow kinetics. These limitations are mainly due to the presence of potent barriers that exist during reprogramming when a mature cell is coaxed to achieve a pluripotent state. Several studies have revealed that intrinsic factors such as non-optimal stoichiometry of reprogramming factors, specific signaling pathways, cellular senescence, pluripotency-inhibiting transcription factors and microRNAs act as a roadblock. In addition, the epigenetic state of somatic cells and specific epigenetic modifications that occur during reprogramming also remarkably impede the generation of iPSCs. In this review, we present a comprehensive overview of the barriers that inhibit reprogramming and the understanding of which will pave the way to develop safe strategies for efficient reprogramming.
Collapse
|
15
|
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP. An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Stem Cell Rev Rep 2020; 15:286-313. [PMID: 30417242 DOI: 10.1007/s12015-018-9861-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade ago, a pioneering study reported generation of induced Pluripotent Stem Cells (iPSCs) by ectopic expression of a cocktail of reprogramming factors in fibroblasts. This study has revolutionized stem cell research and has garnered immense interest from the scientific community globally. iPSCs hold tremendous potential for understanding human developmental biology, disease modeling, drug screening and discovery, and personalized cell-based therapeutic applications. The seminal study identified Oct4, Sox2, Klf4 and c-Myc as a potent combination of genes to induce reprogramming. Subsequently, various reprogramming factors were identified by numerous groups. Most of these studies have used integrating viral vectors to overexpress reprogramming factors in somatic cells to derive iPSCs. However, these techniques restrict the clinical applicability of these cells as they may alter the genome due to random viral integration resulting in insertional mutagenesis and tumorigenicity. To circumvent this issue, alternative integration-free reprogramming approaches are continuously developed that eliminate the risk of genomic modifications and improve the prospects of iPSCs from lab to clinic. These methods establish that integration of transgenes into the genome is not essential to induce pluripotency in somatic cells. This review provides a comprehensive overview of the most promising DNA-free reprogramming techniques that have the potential to derive integration-free iPSCs without genomic manipulation, such as sendai virus, recombinant proteins, microRNAs, synthetic messenger RNA and small molecules. The understanding of these approaches shall pave a way for the generation of clinical-grade iPSCs. Subsequently, these iPSCs can be differentiated into desired cell type(s) for various biomedical applications.
Collapse
Affiliation(s)
- Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Poulomi Adhikari
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
16
|
Cuyàs E, Gumuzio J, Verdura S, Brunet J, Bosch-Barrera J, Martin-Castillo B, Alarcón T, Encinar JA, Martin ÁG, Menendez JA. The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: a potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes. Aging (Albany NY) 2020; 12:4794-4814. [PMID: 32191225 PMCID: PMC7138538 DOI: 10.18632/aging.102887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
SOX2 is a core pluripotency-associated transcription factor causally related to cancer initiation, aggressiveness, and drug resistance by driving the self-renewal and seeding capacity of cancer stem cells (CSC). Here, we tested the ability of the clinically proven inhibitor of the lysine-specific demethylase 1 (LSD1/KDM1A) iadademstat (ORY-100) to target SOX2-driven CSC in breast cancer. Iadademstat blocked CSC-driven mammosphere formation in breast cancer cell lines that are dependent on SOX2 expression to maintain their CSC phenotype. Iadademstat prevented the activation of an LSD1-targeted stemness-specific SOX2 enhancer in CSC-enriched 3-dimensional spheroids. Using high-throughput transcriptional data available from the METABRIC dataset, high expression of SOX2 was significantly more common in luminal-B and HER2-enriched subtypes according to PAM50 classifier and in IntClust1 (high proliferating luminal-B) and IntClust 5 (luminal-B and HER2-amplified) according to integrative clustering. Iadademstat significantly reduced mammospheres formation by CSC-like cells from a multidrug-resistant luminal-B breast cancer patient-derived xenograft but not of those from a treatment-naïve luminal-A patient. Iadademstat reduced the expression of SOX2 in luminal-B but not in luminal-A mammospheres, likely indicating a selective targeting of SOX2-driven CSC. The therapeutic relevance of targeting SOX2-driven breast CSC suggests the potential clinical use of iadademstat as an epigenetic therapy in luminal-B and HER2-positive subtypes.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | | | - Tomás Alarcón
- ICREA, Barcelona, Spain.,Centre de Recerca Matemàtica (CRM), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain
| | | | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
17
|
Han F, Hu B. Stem Cell Therapy for Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:21-38. [PMID: 33105493 DOI: 10.1007/978-981-15-4370-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases caused by specific degeneration and loss of dopamine neurons in substantia nigra of the midbrain. PD is clinically characterized by motor dysfunctions and non-motor symptoms. Even though the dopamine replacement can improve the motor symptoms of PD, it cannot stop the neural degeneration and disease progression. Electrical deep brain stimulation (DBS) to the specific brain areas can improve the symptoms, but it eventually loses the effectiveness. Stem cell transplantation provides an exciting potential for the treatment of PD. Current available cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs) isolated from blastocyst, and induced pluripotent stem cells (iPSCs) reprogrammed from the somatic cells such as the fibroblasts and blood cells. Here, we summarize the research advance in experimental and clinical studies to transplant these cells into animal models and clinical patients, and specifically highlight the studies to use hESCs /iPSCs-derived dopaminergic precursor cells and dopamine neurons for the treatment of PD, at last propose future challenges for developing clinical-grade dopaminergic cells for treating the PD.
Collapse
Affiliation(s)
- Fabin Han
- The Institute for Translational Medicine, Affiliated Hospital, Shandong University, Jinan, Shandong, China. .,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, China. .,Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Qin G, Zhao J, Huang J. RepSox Increases Porcine Cloning Efficiency by Improving Pluripotency of Donor Nuclei. Cell Reprogram 2019; 21:181-186. [PMID: 31313941 DOI: 10.1089/cell.2018.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that a low pluripotency of donor nuclei might lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). To improve the pluripotency of SCNT embryo, RepSox, a defined small-molecule compound that functions in inhibiting the transforming growth factor β signaling pathway, was used to treat nuclear-transferred porcine oocytes after activation. We found that the developmental ability of porcine SCNT embryos (defined as the blastocyst rate) was significantly increased (13.5% vs. 21.8%) when 25 μm RepSox was added to the porcine embryo culturing system for 14-16 hours after activation. Of note, RepSox treatment significantly increased the transcriptional expression of the pluripotency gene NANOG at the four- and eight-cell stages. Furthermore, according to the TUNEL (TdT-mediated dUTP nick end labeling) staining and expression levels of the apoptosis-regulated gene Caspase 3 and proapoptotic gene Bax, the percentage of apoptotic cells in blastocyst cells was not affected after RepSox treatment. These results indicated that treatment with RepSox enhanced the developmental competence of porcine SCNT embryos through improvements in nuclear pluripotency.
Collapse
Affiliation(s)
- Guosong Qin
- 1College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,2State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhao
- 2State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Huang
- 1College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,2State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Abu-Dawud R, Graffmann N, Ferber S, Wruck W, Adjaye J. Pluripotent stem cells: induction and self-renewal. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0213. [PMID: 29786549 DOI: 10.1098/rstb.2017.0213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) lie at the heart of modern regenerative medicine due to their properties of unlimited self-renewal in vitro and their ability to differentiate into cell types representative of the three embryonic germ layers-mesoderm, ectoderm and endoderm. The derivation of induced PSCs bypasses ethical concerns associated with the use of human embryonic stem cells and also enables personalized cell-based therapies. To exploit their regenerative potential, it is essential to have a firm understanding of the molecular processes associated with their induction from somatic cells. This understanding serves two purposes: first, to enable efficient, reliable and cost-effective production of excellent quality induced PSCs and, second, to enable the derivation of safe, good manufacturing practice-grade transplantable donor cells. Here, we review the reprogramming process of somatic cells into induced PSCs and associated mechanisms with emphasis on self-renewal, epigenetic control, mitochondrial bioenergetics, sub-states of pluripotency, naive ground state, naive and primed. A meta-analysis identified genes expressed exclusively in the inner cell mass and in the naive but not in the primed pluripotent state. We propose these as additional biomarkers defining naive PSCs.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- R Abu-Dawud
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Zahrawi Street, Riyadh 11211, Saudi Arabia
| | - N Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - S Ferber
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - W Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - J Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Epigenetics of Neurodevelopmental Disorders Comes of Age with Roles in Clinical and Educational Applications. Int J Mol Sci 2018; 19:ijms19092720. [PMID: 30213026 PMCID: PMC6163238 DOI: 10.3390/ijms19092720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is a gene regulation mechanism that does not depend on genomic DNA sequences, but depends instead on chemical modifications of DNA and histone proteins. [...]
Collapse
|
21
|
Hu J, Zhao Q, Feng Y, Li N, Gu Y, Sun R, Duan L, Wu Y, Shan Z, Lei L. Embryonic germ cell extracts erase imprinted genes and improve the efficiency of induced pluripotent stem cells. Sci Rep 2018; 8:10955. [PMID: 30026469 PMCID: PMC6053380 DOI: 10.1038/s41598-018-29339-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) have the potential to be useful in the treatment of human diseases. While prior studies have reported multiple methods to generate iPSCs, DNA methylation continues to limit the totipotency and reprogramming efficiency of iPSCs. Here, we first show the competency of embryonic germ cells (EGCs) as a reprogramming catalyst capable of effectively promoting reprogramming induced by four defined factors, including Oct4, Sox2, Klf4 and c-Myc. Combining EGC extracts with these four factors resulted in formation of more embryonic stem cell-like colonies than did factors alone. Notably, expression of imprinted genes was higher with combined induction than with factors alone. Moreover, iPSCs derived from the combined inductors tended to have more global hypomethylation. Our research not only provides evidence that EGC extracts could activate DNA demethylation and reprogram imprinted genes, but also establishes a new way to enhance reprogramming of iPSCs, which remains a critical safety concern for potential use of iPSCs in regenerative medicine.
Collapse
Affiliation(s)
- Jing Hu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China.,Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Qiaoshi Zhao
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yukuan Feng
- Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Na Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yanli Gu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Lian Duan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China.
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China.
| |
Collapse
|
22
|
Vougiouklakis T, Nakamura Y, Saloura V. Critical roles of protein methyltransferases and demethylases in the regulation of embryonic stem cell fate. Epigenetics 2018; 12:1015-1027. [PMID: 29099285 DOI: 10.1080/15592294.2017.1391430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has recently shown that protein methyltransferases and demethylases are crucial regulators in either maintaining pluripotent states or inducing differentiation of embryonic stem cells. These enzymes control pluripotent signatures by mediating activation or repression of histone marks, or through direct methylation of non-histone proteins. Importantly, chromatin modifiers can influence the fate of many differentiation-related genes by loosening chromatin and allowing for transcriptional activation of lineage-specific genes. Genome-wide studies have unraveled diverse changes in methylation patterns following embryonic stem cell differentiation, with redistribution of heterochromatic and euchromatic marks, underlying the importance of chromatin modifiers in governing the fate of embryonic stemness. Furthermore, the development of small molecule inhibitors targeting these agents may shed light in potential clinical implementation to reprogram embryonic stem cells for biomedical therapeutics. Ever since the pioneering introduction of induced pluripotent stem cells, the challenge for application in regenerative medicine and broader medical therapeutics has commenced.
Collapse
Affiliation(s)
- Theodore Vougiouklakis
- a Section of Hematology/Oncology, Department of Medicine , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA
| | - Yusuke Nakamura
- a Section of Hematology/Oncology, Department of Medicine , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA.,b Department of Surgery , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA
| | - Vassiliki Saloura
- a Section of Hematology/Oncology, Department of Medicine , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA
| |
Collapse
|
23
|
Stem cells, pluripotency and glial cell markers in peripheral blood of bipolar patients on long-term lithium treatment. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 28625858 DOI: 10.1016/j.pnpbp.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND We investigated the effect of long-term lithium treatment on very-small embryonic-like stem cells (VSELs) and the mRNA expression of pluripotency and glial markers, in peripheral blood, in patients with bipolar disorder (BD). METHODS Fifteen BD patients (aged 53±7years) not treated with lithium, with duration of illness >10years, 15 BD patients (aged 55±6years) treated with lithium for 8-40years (mean 16years) and 15 control subjects (aged 50±5years) were included. The number of VSELs was measured by flow cytometric analysis. Assessment of the mRNA levels of pluripotency markers (Oct-4, Sox 2 and Nanog) and glial markers (glial fibrillary acidic protein - GFAP, Olig1 and Olig2) was performed, using the Real-time quantitative reverse transcription PCR. RESULTS In BD patients not taking lithium, the number of VSELs was significantly higher than in control subjects and correlated with the duration of illness. The expression of pluripotency markers was significantly higher than in the controls and correlated with the number of VSELs. The mRNA levels of the Olig1 and Olig 2 were higher than in the controls and those of the GFAP were higher than in patients receiving lithium. In lithium-treated BD patients the number of VSELs was similar to controls and correlated negatively with the duration of lithium treatment and serum lithium concentration. The mRNA levels of Oct-4, Sox-2, GFAP and Olig1 were not different from controls. The mRNA expression of Nanog was significantly higher and correlated with the number of VSELs. The mRNA expression of Olig 2 was higher than in the BD patients not taking lithium. CONCLUSION Long-term treatment with lithium may suppress the activation of regenerative processes by reducing the number of VSELs circulating in PB. These cells, in BD patients not treated with lithium, may provide a new potential biological marker of the illness and its clinical progress. The higher expression of peripheral mRNA markers in BD patients may involve ongoing inflammatory process, compensatory mechanisms and regenerative responses. Long-term lithium treatment may attenuate these mechanisms, especially in relation to the transcription factors Oct-4, Sox-2, GFAP and Olig1.
Collapse
|
24
|
Kubota T. Preemptive Epigenetic Medicine Based on Fetal Programming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:85-95. [PMID: 29956197 DOI: 10.1007/978-981-10-5526-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The developmental origins of health and disease (DOHaD) refers to the concept that environmental stress during pregnancy alters the programmed fetal development and subsequently causes disorders, such as cardiovascular and metabolic diseases, in adulthood. Epigenetics is a gene regulation mechanism that does not depend on DNA sequence but on chemical modifications of DNA. Several lines of evidence suggest that environmental stress in the fetal period alters the epigenetic state of genes, leading to permanent gene dysregulation, which may be associated with disorders that emerge after birth. Such stresses include malnutrition, which may be associated with type 2 diabetes, and mental stress, which may be associated with neurodevelopmental disorders. It has also been demonstrated that environmental stress-induced epigenetic alterations can be transmitted to the next generation via disease phenotypes. However, since epigenetic modification is an internal system based on attachment and detachment of chemical residues on a DNA sequence, it is reversible and potentially treatable. In fact, recent studies demonstrated that some drugs and early interventions are effective at preventing epigenetic disorders. Therefore, preventive and preemptive medicine is possible for disorders caused by alterations in programming during fetal and early periods.
Collapse
Affiliation(s)
- Takeo Kubota
- Faculty of Child Studies, Seitoku University, Matsudo, Chiba, Japan.
| |
Collapse
|
25
|
Lee SB, Han SH, Kim MJ, Shim S, Shin HY, Lee SJ, Kim HW, Jang WS, Seo S, Jang S, Lee Y, Park S. Post-irradiation promotes susceptibility to reprogramming to pluripotent state in human fibroblasts. Cell Cycle 2017; 16:2119-2127. [PMID: 28902577 DOI: 10.1080/15384101.2017.1371887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ionizing radiation causes not only targeted effects in cells that have been directly irradiated but also non-targeted effects in several cell generations after initial exposure. Recent studies suggest that radiation can enrich for a population of stem cells, derived from differentiated cells, through cellular reprogramming. Here, we elucidate the effect of irradiation on reprogramming, subjected to two different responses, using an induced pluripotent stem cell (iPSC) model. iPSCs were generated from non-irradiated cells, directly-irradiated cells, or cells subsequently generated after initial radiation exposure. We found that direct irradiation negatively affected iPSC induction in a dose-dependent manner. However, in the post-irradiated group, after five subsequent generations, cells became increasingly sensitive to the induction of reprogramming compared to that in non-irradiated cells as observed by an increased number of Tra1-81-stained colonies as well as enhanced alkaline phosphatase and Oct4 promoter activity. Comparative analysis, based on reducing the number of defined factors utilized for reprogramming, also revealed enhanced efficiency of iPSC generation in post-irradiated cells. Furthermore, the phenotypic acquisition of characteristics of pluripotent stem cells was observed in all resulting iPSC lines, as shown by morphology, the expression of pluripotent markers, DNA methylation patterns of pluripotency genes, a normal diploid karyotype, and teratoma formation. Overall, these results suggested that reprogramming capability might be differentially modulated by altered radiation-induced responses. Our findings provide that susceptibility to reprogramming in somatic cells might be improved by the delayed effects of non-targeted response, and contribute to a better understanding of the biological effects of radiation exposure.
Collapse
Affiliation(s)
- Seung Bum Lee
- a Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Sung-Hoon Han
- a Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Min-Jung Kim
- a Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Sehwan Shim
- a Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Hye-Yun Shin
- a Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Sun-Joo Lee
- a Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Hye Won Kim
- a Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Won-Suk Jang
- a Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Songwon Seo
- b Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Seongjae Jang
- c Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Yanghee Lee
- c Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| | - Sunhoo Park
- a Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science , Seoul , Republic of Korea
| |
Collapse
|
26
|
Guo R, Tang W, Yuan Q, Hui L, Wang X, Xie X. Chemical Cocktails Enable Hepatic Reprogramming of Mouse Fibroblasts with a Single Transcription Factor. Stem Cell Reports 2017; 9:499-512. [PMID: 28757167 PMCID: PMC5550014 DOI: 10.1016/j.stemcr.2017.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
Liver or hepatocytes transplantation is limited by the availability of donor organs. Functional hepatocytes independent of the donor sources may have wide applications in regenerative medicine and the drug industry. Recent studies have demonstrated that chemical cocktails may induce reprogramming of fibroblasts into a range of functional somatic cells. Here, we show that mouse fibroblasts can be transdifferentiated into the hepatocyte-like cells (iHeps) using only one transcription factor (TF) (Foxa1, Foxa2, or Foxa3) plus a chemical cocktail. These iHeps show typical epithelial morphology, express multiple hepatocyte-specific genes, and acquire hepatocyte functions. Genetic lineage tracing confirms the fibroblast origin of these iHeps. More interestingly, these iHeps are expandable in vitro and can reconstitute the damaged hepatic tissues of the fumarylacetoacetate hydrolase-deficient (Fah−/−) mice. Our study provides a strategy to generate functional hepatocyte-like cells by using a single TF plus a chemical cocktail and is one step closer to generate the full-chemical iHeps. Fibroblasts are converted to iHeps using only one TF plus a chemical cocktail Genetic lineage tracing confirms the fibroblast origin of these iHeps The iHeps are expendable and functional both in vitro and in vivo
Collapse
Affiliation(s)
- Ren Guo
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Tang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qianting Yuan
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Lijian Hui
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy for Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Xin Wang
- Key Laboratory of National Education, Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010021, China; Department of Laboratory Medicine and Pathology, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China; Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
27
|
Baranek M, Belter A, Naskręt-Barciszewska MZ, Stobiecki M, Markiewicz WT, Barciszewski J. Effect of small molecules on cell reprogramming. MOLECULAR BIOSYSTEMS 2017; 13:277-313. [PMID: 27918060 DOI: 10.1039/c6mb00595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The essential idea of regenerative medicine is to fix or replace tissues or organs with alive and patient-specific implants. Pluripotent stem cells are able to indefinitely self-renew and differentiate into all cell types of the body which makes them a potent substantial player in regenerative medicine. The easily accessible source of induced pluripotent stem cells may allow obtaining and cultivating tissues in vitro. Reprogramming refers to regression of mature cells to its initial pluripotent state. One of the approaches affecting pluripotency is the usage of low molecular mass compounds that can modulate enzymes and receptors leading to the formation of pluripotent stem cells (iPSCs). It would be great to assess the general character of such compounds and reveal their new derivatives or modifications to increase the cell reprogramming efficiency. Many improvements in the methods of pluripotency induction have been made by various groups in order to limit the immunogenicity and tumorigenesis, increase the efficiency and accelerate the kinetics. Understanding the epigenetic changes during the cellular reprogramming process will extend the comprehension of stem cell biology and lead to potential therapeutic approaches. There are compounds which have been already proven to be or for now only putative inducers of the pluripotent state that may substitute for the classic reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc) in order to improve the time and efficiency of pluripotency induction. The effect of small molecules on gene expression is dosage-dependent and their application concentration needs to be strictly determined. In this review we analysed the role of small molecules in modulations leading to pluripotency induction, thereby contributing to our understanding of stem cell biology and uncovering the major mechanisms involved in that process.
Collapse
Affiliation(s)
- M Baranek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - A Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Z Naskręt-Barciszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - W T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - J Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
28
|
Brouwer M, Zhou H, Nadif Kasri N. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Stem Cell Rev Rep 2016; 12:54-72. [PMID: 26424535 PMCID: PMC4720703 DOI: 10.1007/s12015-015-9622-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Marinka Brouwer
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, 6500, HB, The Netherlands.
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience, Nijmegen, 6525, AJ, The Netherlands.
| |
Collapse
|
29
|
Fornaro M, Nardi AE, De Berardis D, Carta MG. Experimental drugs for bipolar psychosis. Expert Opin Investig Drugs 2016; 25:1371-1375. [DOI: 10.1080/13543784.2016.1256390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Ferensztajn-Rochowiak E, Tarnowski M, Samochowiec J, Michalak M, Ratajczak MZ, Rybakowski JK. Peripheral mRNA expression of pluripotency markers in bipolar disorder and the effect of long-term lithium treatment. Pharmacol Rep 2016; 68:1042-5. [DOI: 10.1016/j.pharep.2016.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
|
31
|
Tai D, Liu P, Gao J, Jin M, Xu T, Zuo Y, Liang H, Liu D. Generation of Arbas Cashmere Goat Induced Pluripotent Stem Cells Through Fibroblast Reprogramming. Cell Reprogram 2016; 17:297-305. [PMID: 26731591 DOI: 10.1089/cell.2014.0107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Various factors affect the process of obtaining stable Arbas cashmere goat embryonic stem cells (ESCs), for example, the difficulty in isolating cells at the appropriate stage of embryonic development, the in vitro culture environment, and passage methods. With the emergence of induced pluripotent stem cell (iPSC) technology, it has become possible to use specific genes to induce somatic cell differentiation in PSCs. We transferred OCT4, SOX2, c-MYC, and KLF4 into Arbas cashmere goat fetal fibroblasts, then induced and cultured them using a drug-inducible system to obtain Arbas goat iPSCs that morphologically resembled mouse iPSCs. After identification, the obtained goat iPSCs expressed ESC markers, had a normal karyotype, could differentiate into embryoid bodies in vitro, and could differentiate into three germ layer cell types and form teratomas in vivo. We used microarray gene expression profile analysis to elucidate the reprogramming process. Our results provide the experimental basis for establishing cashmere goat iPSC lines and for future in-depth studies on molecular mechanism of cashmere goat somatic cell reprogramming.
Collapse
Affiliation(s)
- Dapeng Tai
- 1 Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University , Inner Mongolia, Hohhot, 010021, China .,2 These authors contributed equally to this work
| | - Pengxia Liu
- 1 Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University , Inner Mongolia, Hohhot, 010021, China .,2 These authors contributed equally to this work
| | - Jing Gao
- 1 Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University , Inner Mongolia, Hohhot, 010021, China
| | - Muzi Jin
- 1 Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University , Inner Mongolia, Hohhot, 010021, China
| | - Teng Xu
- 1 Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University , Inner Mongolia, Hohhot, 010021, China
| | - Yongchun Zuo
- 1 Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University , Inner Mongolia, Hohhot, 010021, China
| | - Hao Liang
- 1 Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University , Inner Mongolia, Hohhot, 010021, China
| | - Dongjun Liu
- 1 Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University , Inner Mongolia, Hohhot, 010021, China
| |
Collapse
|
32
|
Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. Sci Rep 2016; 6:30903. [PMID: 27481483 PMCID: PMC4969595 DOI: 10.1038/srep30903] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/08/2016] [Indexed: 01/04/2023] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1) regulates histone methylation and influences the epigenetic state of cells during the generation of induced pluripotent stem cells (iPSCs). Here we reported that LSD1 inhibition via shRNA or specific inhibitor, tranylcypromine, promoted reprogramming at early stage via two mechanisms. At early stage of reprogramming, LSD1 inhibition increased the retrovirus-mediated exogenous expression of Oct4, Klf4, and Sox2 by blocking related H3K4 demethylation. Since LSD1 inhibition still promoted reprogramming even when iPSCs were induced with small-molecule compounds in a virus-free system, additional mechanisms should be involved. When RNA-seq was used for analysis, it was found that LSD1 inhibition reversed some gene expression changes induced by OKS, which subsequently promoted reprogramming. For example, by partially rescuing the decreased expression of Hif1α, LSD1 inhibition reversed the up-regulation of genes in oxidative phosphorylation pathway and the down-regulation of genes in glycolysis pathway. Such effects facilitated the metabolic switch from oxidative phosphorylation to glycolysis and subsequently promoted iPSCs induction. In addition, LSD1 inhibition also promoted the conversion from pre-iPSCs to iPSCs by facilitating the similar metabolic switch. Therefore, LSD1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch.
Collapse
|
33
|
Tafreshi AP, Sylvain A, Sun G, Herszfeld D, Schulze K, Bernard CCA. Lithium chloride improves the efficiency of induced pluripotent stem cell-derived neurospheres. Biol Chem 2016; 396:923-8. [PMID: 25719317 DOI: 10.1515/hsz-2014-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/17/2015] [Indexed: 11/15/2022]
Abstract
Induced pluripotent stem cell (iPSC)-derived neurospheres, which consist mainly of neural progenitors, are considered to be a good source of neural cells for transplantation in regenerative medicine. In this study, we have used lithium chloride, which is known to be a neuroprotective agent, in an iPSC-derived neurosphere model, and examined both the formation rate and size of the neurospheres as well as the proliferative and apoptotic status of their contents. Our results showed that lithium enhanced the formation and the sizes of the iPSC-derived neurospheres, increased the number of Ki67-positive proliferating cells, but reduced the number of the TUNEL-positive apoptotic cells. This increased number of Ki67 proliferating cells was secondary to the decreased apoptosis and not to the stimulation of cell cycle entry, as the expression of the proliferation marker cyclin D1 mRNA did not change after lithium treatment. Altogether, we suggest that lithium enhances the survival of neural progenitors and thus the quality of the iPSC-derived neurospheres, which may strengthen the prospect of using lithium-treated pluripotent cells and their derivatives in a clinical setting.
Collapse
|
34
|
Spitalieri P, Talarico VR, Murdocca M, Novelli G, Sangiuolo F. Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J Stem Cells 2016; 8:118-35. [PMID: 27114745 PMCID: PMC4835672 DOI: 10.4252/wjsc.v8.i4.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/21/2016] [Accepted: 02/14/2016] [Indexed: 02/06/2023] Open
Abstract
Recent and advanced protocols are now available to derive human induced pluripotent stem cells (hiPSCs) from patients affected by genetic diseases. No curative treatments are available for many of these diseases; thus, hiPSCs represent a major impact on patient' health. hiPSCs represent a valid model for the in vitro study of monogenic diseases, together with a better comprehension of the pathogenic mechanisms of the pathology, for both cell and gene therapy protocol applications. Moreover, these pluripotent cells represent a good opportunity to test innovative pharmacological treatments focused on evaluating the efficacy and toxicity of novel drugs. Today, innovative gene therapy protocols, especially gene editing-based, are being developed, allowing the use of these cells not only as in vitro disease models but also as an unlimited source of cells useful for tissue regeneration and regenerative medicine, eluding ethical and immune rejection problems. In this review, we will provide an up-to-date of modelling monogenic disease by using hiPSCs and the ultimate applications of these in vitro models for cell therapy. We consider and summarize some peculiar aspects such as the type of parental cells used for reprogramming, the methods currently used to induce the transcription of the reprogramming factors, and the type of iPSC-derived differentiated cells, relating them to the genetic basis of diseases and to their inheritance model.
Collapse
Affiliation(s)
- Paola Spitalieri
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Valentina Rosa Talarico
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Michela Murdocca
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Giuseppe Novelli
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Federica Sangiuolo
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
35
|
Prader-Willi Syndrome: The Disease that Opened up Epigenomic-Based Preemptive Medicine. Diseases 2016; 4:diseases4010015. [PMID: 28933395 PMCID: PMC5456307 DOI: 10.3390/diseases4010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/20/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a congenital neurodevelopmental disorder caused by loss of function of paternally expressed genes on chromosome 15 due to paternal deletion of 15q11–q13, maternal uniparental disomy for chromosome 15, or an imprinting mutation. We previously developed a DNA methylation-based PCR assay to identify each of these three genetic causes of PWS. The assay enables straightforward and rapid diagnosis during infancy and therefore allows early intervention such as nutritional management, physical therapy, or growth hormone treatment to prevent PWS patients from complications such as obesity and type 2 diabetes. It is known that various environmental factors induce epigenomic changes during the perinatal period, which increase the risk of adult diseases such as type 2 diabetes and intellectual disabilities. Therefore, a similar preemptive approach as used in PWS would also be applicable to acquired disorders and would make use of environmentally-introduced “epigenomic signatures” to aid development of early intervention strategies that take advantage of “epigenomic reversibility”.
Collapse
|
36
|
Chen X, Zhai Y, Yu D, Cui J, Hu JF, Li W. Valproic Acid Enhances iPSC Induction From Human Bone Marrow-Derived Cells Through the Suppression of Reprogramming-Induced Senescence. J Cell Physiol 2015; 231:1719-27. [PMID: 26620855 DOI: 10.1002/jcp.25270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/23/2015] [Indexed: 01/19/2023]
Abstract
Reprogramming of human somatic cells into pluripotent cells (iPSCs) by defined transcription factors is an extremely inefficient process. Treatment with the histone deacetylase inhibitor valproic acid (VPA) during reprogramming can improve the induction of iPSCs. To examine the specific mechanism underlying the role of VPA in reprogramming, we transfected human bone marrow-derived cells (HSC-J2 and HSC-L1) with lentiviruses carrying defined factors (OCT4, SOX2, KLF4, and c-MYC, OSKM) in the presence of VPA. We found that, OSKM lentiviruses caused significant senescence in transfected cells. Administration of VPA, however, significantly suppressed this reprogramming-induced stress. Notably, VPA treatment improved cell proliferation in the early stages of reprogramming, and this was related to the down-regulation of the activated p16/p21 pathway. In addition, VPA also released the G2/M phase blockade in lentivirus-transfected cells. This study demonstrates a new mechanistic role of the histone deacetylase inhibitor in enhancing the induction of pluripotency. J. Cell. Physiol. 231: 1719-1727, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xi Chen
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Yingying Zhai
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Dehai Yu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
37
|
Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells Int 2015; 2016:9451492. [PMID: 26798367 PMCID: PMC4699068 DOI: 10.1155/2016/9451492] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells have the ability to undergo self-renewal and to give rise to all cells of the tissues of the body. However, this definition has been recently complicated by the existence of distinct cellular states that display these features. Here, we provide a detailed overview of the family of pluripotent cell lines derived from early mouse and human embryos and compare them with induced pluripotent stem cells. Shared and distinct features of these cells are reported as additional hallmark of pluripotency, offering a comprehensive scenario of pluripotent stem cells.
Collapse
|
38
|
Brouwer M, Zhou H, Nadif Kasri N. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Stem Cell Rev Rep 2015. [PMID: 26424535 DOI: 10.1007/s12015‐015‐9622‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Marinka Brouwer
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, 6500, HB, The Netherlands.
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience, Nijmegen, 6525, AJ, The Netherlands.
| |
Collapse
|
39
|
Zomer HD, Vidane AS, Gonçalves NN, Ambrósio CE. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:125-34. [PMID: 26451119 PMCID: PMC4592031 DOI: 10.2147/sccaa.s88036] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells have awakened a great deal of interest in regenerative medicine due to their plasticity, and immunomodulatory and anti-inflammatory properties. They are high-yield and can be acquired through noninvasive methods from adult tissues. Moreover, they are nontumorigenic and are the most widely studied. On the other hand, induced pluripotent stem (iPS) cells can be derived directly from adult cells through gene reprogramming. The new iPS technology avoids the embryo destruction or manipulation to generate pluripotent cells, therefore, are exempt from ethical implication surrounding embryonic stem cell use. The pre-differentiation of iPS cells ensures the safety of future approaches. Both mesenchymal stem cells and iPS cells can be used for autologous cell transplantations without the risk of immune rejection and represent a great opportunity for future alternative therapies. In this review we discussed the therapeutic perspectives using mesenchymal and iPS cells.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Atanásio S Vidane
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Natalia N Gonçalves
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos E Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
40
|
Han F, Baremberg D, Gao J, Duan J, Lu X, Zhang N, Chen Q. Development of stem cell-based therapy for Parkinson's disease. Transl Neurodegener 2015; 4:16. [PMID: 26339485 PMCID: PMC4559356 DOI: 10.1186/s40035-015-0039-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders of aging, characterized by the degeneration of dopamine neurons (DA neurons) in the substantial nigra, leading to the advent of both motor symptoms and non-motor symptoms. Current treatments include electrical stimulation of the affected brain areas and dopamine replacement therapy. Even though both categories are effective in treating PD patients, the disease progression cannot be stopped. The research advance into cell therapies provides exciting potential for the treatment of PD. Current cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and directly induced dopamine neurons (iDA neurons). Here, we evaluate the research progress in different cell sources with a focus on using iPSCs as a valuable source and propose key challenges for developing cells suitable for large-scale clinical applications in the treatment of PD.
Collapse
Affiliation(s)
- Fabin Han
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Deborah Baremberg
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Junyu Gao
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Jing Duan
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Xianjie Lu
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Nan Zhang
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Qingfa Chen
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| |
Collapse
|
41
|
|
42
|
Kubota T, Miyake K, Hariya N, Mochizuki K. Epigenomic-basis of Preemptive Medicine for Neurodevelopmental Disorders. Curr Genomics 2015; 16:175-82. [PMID: 26069457 PMCID: PMC4460221 DOI: 10.2174/1389202916666150216221312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022] Open
Abstract
Neurodevelopmental disorders (NDs) are currently thought to be caused by either genetic
defects or various environmental factors. Recent studies have demonstrated that congenital NDs can
result not only from changes in DNA sequence in neuronal genes but also from changes to the secondary
epigenomic modifications of DNA and histone proteins. Thus, epigenomic assays, as well as genomic
assays, are currently performed for diagnosis of the congenital NDs. It is recently known that
the epigenomic modifications can be altered by various environmental factors, which potentially cause
acquired NDs. Furthermore these alterations can potentially be restored taking advantage of use of reversibility in epigenomics.
Therefore, epigenome-based early diagnosis and subsequent intervention, by using drugs that restore epigenomic
alterations, will open up a new era of preemptive medicine for congenital and acquired NDs.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Kunio Miyake
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Natsuyo Hariya
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Japan
| |
Collapse
|
43
|
Reprogramming with Small Molecules instead of Exogenous Transcription Factors. Stem Cells Int 2015; 2015:794632. [PMID: 25922608 PMCID: PMC4397468 DOI: 10.1155/2015/794632] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs.
Collapse
|
44
|
Revilla A, González C, Iriondo A, Fernández B, Prieto C, Marín C, Liste I. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. J Tissue Eng Regen Med 2015; 10:893-907. [PMID: 25758460 DOI: 10.1002/term.2021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022]
Abstract
Over the last few years, the generation of induced pluripotent stem cells (iPSCs) from human somatic cells has proved to be one of the most potentially useful discoveries in regenerative medicine. iPSCs are becoming an invaluable tool to study the pathology of different diseases and for drug screening. However, several limitations still affect the possibility of applying iPS cell-based technology in therapeutic prospects. Most strategies for iPSCs generation are based on gene delivery via retroviral or lentiviral vectors, which integrate into the host's cell genome, causing a remarkable risk of insertional mutagenesis and oncogenic transformation. To avoid such risks, significant advances have been made with non-integrative reprogramming strategies. On the other hand, although many different kinds of somatic cells have been employed to generate iPSCs, there is still no consensus about the ideal type of cell to be reprogrammed. In this review we present the recent advances in the generation of human iPSCs, discussing their advantages and limitations in terms of safety and efficiency. We also present a selection of somatic cell sources, considering their capability to be reprogrammed and tissue accessibility. From a translational medicine perspective, these two topics will provide evidence to elucidate the most suitable combination of reprogramming strategy and cell source to be applied in each human iPSC-based therapy. The wide variety of diseases this technology could treat opens a hopeful future for regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ana Revilla
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Clara González
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Amaia Iriondo
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Bárbara Fernández
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Cristina Prieto
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Carlos Marín
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
45
|
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis refers to the concept that 'malnutrition during the fetal period induces a nature of thrift in fetuses, such that they have a higher change of developing non-communicable diseases, such as obesity and diabetes, if they grow up in the current well-fed society.' Epigenetics is a chemical change in DNA and histones that affects how genes are expressed without alterations of DNA sequences. Several lines of evidence suggest that malnutrition during the fetal period alters the epigenetic expression status of metabolic genes in the fetus and that this altered expression can persist, and possibly lead to metabolic disorders. Similarly, mental stress during the neonatal period can alter the epigenetic expression status of neuronal genes in neonates. Moreover, such environmental, stress-induced, epigenetic changes are transmitted to the next generation via an acquired epigenetic status in sperm. The advantage of epigenetic modifications over changes in genetic sequences is their potential reversibility; thus, epigenetic alterations are potentially reversed with gene expression. Therefore, we potentially establish 'preemptive medicine,' that, in combination with early detection of abnormal epigenetic status and early administration of epigenetic-restoring drugs may prevent the development of disorders associated with the DOHaD.
Collapse
|
46
|
Lim R, Lappas M. A novel role for GSK3 in the regulation of the processes of human labour. Reproduction 2015; 149:189-202. [DOI: 10.1530/rep-14-0493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Preterm birth remains the largest single cause of neonatal death and morbidity. Infection and/or inflammation are strongly associated with preterm delivery. Glycogen synthase kinase 3 (GSK3) is known to be a crucial mediator of inflammation homeostasis. The aims of this study were to determine the effect of spontaneous human labour in foetal membranes and myometrium on GSK3α/β expression, and the effect of inhibition of GSK3α/β on pro-labour mediators in foetal membranes and myometrium stimulated with Toll-like receptor (TLR) ligands and pro-inflammatory cytokines. Term and preterm labour in foetal membranes was associated with significantly decreased serine phosphorylated GSK3α and β expression, and thus increased GSK3 activity. There was no effect of term labour on serine phosphorylated GSK3β expression in myometrium. The specific GSK3α/β inhibitor CHIR99021 significantly decreased lipopolysaccharide (ligand to TLR4)-stimulated pro-inflammatory cytokine gene expression and release;COX2gene expression and prostaglandin release; andMMP9gene expression and pro MMP9 release in foetal membranes and/or myometrium. CHIR99021 also decreased FSL1 (TLR2 ligand) and flagellin (TLR5 ligand)-induced pro-inflammatory cytokine gene expression and release andCOX2mRNA expression and prostaglandin release.GSK3βsiRNA knockdown in primary myometrial cells was associated with a significant decrease in IL1β and TNFα-induced pro-inflammatory cytokine and prostaglandin release. In conclusion, GSK3α/β activity is increased in foetal membranes after term and preterm labour. Pharmacological blockade of the kinase GSK3 markedly reduced pro-inflammatory and pro-labour mediators in human foetal membranes and myometrium, providing a possible therapeutics for the management of preterm labour.
Collapse
|
47
|
Li M, Li L, Zhang J, Verma V, Liu Q, Shi D, Huang B. An Insight on Small Molecule Induced Foot-Print Free Naive Pluripotent Stem Cells in Livestock. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/scd.2015.51001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Generation of pluripotent stem cells without the use of genetic material. J Transl Med 2015; 95:26-42. [PMID: 25365202 DOI: 10.1038/labinvest.2014.132] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 01/18/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) provide a platform to obtain patient-specific cells for use as a cell source in regenerative medicine. Although iPSCs do not have the ethical concerns of embryonic stem cells, iPSCs have not been widely used in clinical applications, as they are generated by gene transduction. Recently, iPSCs have been generated without the use of genetic material. For example, protein-induced PSCs and chemically induced PSCs have been generated by the use of small and large (protein) molecules. Several epigenetic characteristics are important for cell differentiation; therefore, several small-molecule inhibitors of epigenetic-modifying enzymes, such as DNA methyltransferases, histone deacetylases, histone methyltransferases, and histone demethylases, are potential candidates for the reprogramming of somatic cells into iPSCs. In this review, we discuss what types of small chemical or large (protein) molecules could be used to replace the viral transduction of genes and/or genetic reprogramming to obtain human iPSCs.
Collapse
|
49
|
Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2014; 169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future.
Collapse
|
50
|
Chen G, Xu X, Zhang L, Fu Y, Wang M, Gu H, Xie X. Blocking autocrine VEGF signaling by sunitinib, an anti-cancer drug, promotes embryonic stem cell self-renewal and somatic cell reprogramming. Cell Res 2014; 24:1121-36. [PMID: 25145356 PMCID: PMC4152737 DOI: 10.1038/cr.2014.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/16/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022] Open
Abstract
Maintaining the self-renewal of embryonic stem cells (ESCs) could be achieved by activating the extrinsic signaling, i.e., the use of leukemia inhibitory factor (LIF), or blocking the intrinsic differentiation pathways, i.e., the use of GSK3 and MEK inhibitors (2i). Here we found that even in medium supplemented with LIF, mESCs still tend to differentiate toward meso-endoderm lineages after long-term culture and the culture spontaneously secretes vascular endothelial growth factors (VEGFs). Blocking VEGF signaling with sunitinib, an anti-cancer drug and a receptor tyrosine kinase (RTK) inhibitor mainly targeting VEGF receptors (VEGFRs), is capable of maintaining the mESCs in the undifferentiated state without the need for feeder cells or LIF. Sunitinib facilitates the derivation of mESCs from blastocysts, and the mESCs maintained in sunitinib-containing medium remain pluripotent and are able to contribute to chimeric mice. Sunitinib also promotes iPSC generation from MEFs with only Oct4. Knocking down VEGFR2 or blocking it with neutralizing antibody mimicks the effect of sunitinib, indicating that blocking VEGF/VEGFR signaling is indeed beneficial to the self-renewal of mESCs. We also found that hypoxia-inducible factor alpha (HIF1α) and endoplasmic reticulum (ER) stress are involved in the production of VEGF in mESCs. Blocking both pathways inhibits the expression of VEGF and prevents spontaneous differentiation of mESCs. Interestingly, LIF may also exert its effect by downregulating HIF1α and ER stress pathways and subsequent VEGF expression. These results indicate the existence of an intrinsic differentiation pathway in mESCs by activating the autocrine VEGF signaling. Blocking VEGF signaling with sunitinib or other small molecules help to maintain the mESCs in the ground state of pluripotency.
Collapse
Affiliation(s)
- Guofang Chen
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Xinxiu Xu
- 1] CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China [2] Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lihong Zhang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Yanbin Fu
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Haifeng Gu
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Xin Xie
- 1] CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China [2] Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|