1
|
Nujoom N, Koyakutty M, Biswas L, Rajkumar T, Nair SV. Emerging Gene-editing nano-therapeutics for Cancer. Heliyon 2024; 10:e39323. [PMID: 39524822 PMCID: PMC11550658 DOI: 10.1016/j.heliyon.2024.e39323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Remarkable progress has been made in the field of genome engineering after the discovery of CRISPR/Cas9 in 2012 by Jennifer Doudna and Emmanuelle Charpentier. Compared to any other gene-editing tools, CRISPR/Cas9 attracted the attention of the scientific community because of its simplicity, specificity, and multiplex editing possibilities for which the inventors were awarded the Nobel prize for chemistry in 2020. CRISPR/Cas9 allows targeted alteration of the genomic sequence, gene regulation, and epigenetic modifications using an RNA-guided site-specific endonuclease. Though the impact of CRISPR/Cas9 was undisputed, some of its limitations led to key modifications including the use of miniature-Cas proteins, Cas9 Retron precise Parallel Editing via homologY (CRISPEY), Cas-Clover, or development of alternative methods including retron-recombineering, Obligate Mobile Element Guided Activity(OMEGA), Fanzor, and Argonaute proteins. As cancer is caused by genetic and epigenetic alterations, gene-editing was found to be highly useful for knocking out oncogenes, editing mutations to regain the normal functioning of tumor suppressor genes, knock-out immune checkpoint blockade in CAR-T cells, producing 'off-the-shelf' CAR-T cells, identify novel tumorigenic genes and functional analysis of multiple pathways in cancer, etc. Advancements in nanoparticle-based delivery of guide-RNA and Cas9 complex to the human body further enhanced the potential of CRISPR/Cas9 for clinical translation. Several studies are reported for developing novel delivery methods to enhance the tumor-specific application of CRISPR/Cas9 for anticancer therapy. In this review, we discuss new developments in novel gene editing techniques and recent progress in nanoparticle-based CRISPR/Cas9 delivery specific to cancer applications.
Collapse
Affiliation(s)
- Najma Nujoom
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Thangarajan Rajkumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Shantikumar V. Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| |
Collapse
|
2
|
Xu X, Yang H, Dong H, Li X, Liu Q, Feng Y. Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio ruminis. BIORESOUR BIOPROCESS 2024; 11:94. [PMID: 39373873 PMCID: PMC11458871 DOI: 10.1186/s40643-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Mesophilic Argonautes (Agos) from microbial resources have received significant attention due to their potential applications in genome editing and molecular diagnostics. This study characterizes a novel Ago from Pseudobutyrivibrio ruminis (PrAgo), which can cleave single-stranded DNA using guide DNA (gDNA). PrAgo, functioning as a multi-turnover enzyme, effectively cleaves DNA using 5'-phosphate gDNA, 14-30 nucleotides in length, in the presence of both Mn2+ and Mg2+ ions. PrAgo demonstrates DNA cleavage activity over a broad pH range (pH 4-12), with optimal activity at pH 11. As a mesophilic enzyme, PrAgo cleaves efficiently DNA at temperatures ranging from 25 to 65 °C, particularly at 65 °C. PrAgo does not show strong preferences for the 5'-nucleotide in gDNA. It shows high tolerance for single-base mismatches, except at positions 13 and 15 of gDNA. Continuous double-nucleotide mismatches at positions 10-16 of gDNA significantly reduce cleavage activity. Furthermore, PrAgo mediates DNA-guided DNA cleavage of AT-rich double stranded DNA at 65 °C. Additionally, molecular dynamic simulations suggest that interactions between the PAZ domain and different nucleic acids strongly influence cleavage efficiency. These findings expand our understanding of Protokaryotic Agos and their potential applications in biotechnology.
Collapse
Affiliation(s)
- Xiaoyi Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huarong Dong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
3
|
Zhou J, Pan Q, Xue Y, Dong Y, Chen Y, Huang L, Zhang B, Liu ZQ, Zheng Y. Synthetic biology for Monascus: From strain breeding to industrial production. Biotechnol J 2024; 19:e2400180. [PMID: 39014924 DOI: 10.1002/biot.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Traditional Chinese food therapies often motivate the development of modern medicines, and learning from them will bring bright prospects. Monascus, a conventional Chinese fungus with centuries of use in the food industry, produces various metabolites, including natural pigments, lipid-lowering substances, and other bioactive ingredients. Recent Monascus studies focused on the metabolite biosynthesis mechanisms, strain modifications, and fermentation process optimizations, significantly advancing Monascus development on a lab scale. However, the advanced manufacture for Monascus is lacking, restricting its scale production. Here, the synthetic biology techniques and their challenges for engineering filamentous fungi were summarized, especially for Monascus. With further in-depth discussions of automatic solid-state fermentation manufacturing and prospects for combining synthetic biology and process intensification, the industrial scale production of Monascus will succeed with the help of Monascus improvement and intelligent fermentation control, promoting Monascus applications in food, cosmetic, agriculture, medicine, and environmental protection industries.
Collapse
Affiliation(s)
- Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Qilu Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yinan Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yaping Dong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yihong Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lianggang Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Yang B, Wang H, Kong J, Fang X. Long-term monitoring of ultratrace nucleic acids using tetrahedral nanostructure-based NgAgo on wearable microneedles. Nat Commun 2024; 15:1936. [PMID: 38431675 PMCID: PMC10908814 DOI: 10.1038/s41467-024-46215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Real-time and continuous monitoring of nucleic acid biomarkers with wearable devices holds potential for personal health management, especially in the context of pandemic surveillance or intensive care unit disease. However, achieving high sensitivity and long-term stability remains challenging. Here, we report a tetrahedral nanostructure-based Natronobacterium gregoryi Argonaute (NgAgo) for long-term stable monitoring of ultratrace unamplified nucleic acids (cell-free DNAs and RNAs) in vivo for sepsis on wearable device. This integrated wireless wearable consists of a flexible circuit board, a microneedle biosensor, and a stretchable epidermis patch with enrichment capability. We comprehensively investigate the recognition mechanism of nucleic acids by NgAgo/guide DNA and signal transformation within the Debye distance. In vivo experiments demonstrate the suitability for real-time monitoring of cell-free DNA and RNA with a sensitivity of 0.3 fM up to 14 days. These results provide a strategy for highly sensitive molecular recognition in vivo and for on-body detection of nucleic acid.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Haonan Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
5
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
6
|
Wu Z, Yu L, Shi W, Ma J. Argonaute protein-based nucleic acid detection technology. Front Microbiol 2023; 14:1255716. [PMID: 37744931 PMCID: PMC10515653 DOI: 10.3389/fmicb.2023.1255716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
It is vital to diagnose pathogens quickly and effectively in the research and treatment of disease. Argonaute (Ago) proteins are recently discovered nucleases with nucleic acid shearing activity that exhibit specific recognition properties beyond CRISPR-Cas nucleases, which are highly researched but restricted PAM sequence recognition. Therefore, research on Ago protein-mediated nucleic acid detection technology has attracted significant attention from researchers in recent years. Using Ago proteins in developing nucleic acid detection platforms can enable efficient, convenient, and rapid nucleic acid detection and pathogen diagnosis, which is of great importance for human life and health and technological development. In this article, we introduce the structure and function of Argonaute proteins and discuss the latest advances in their use in nucleic acid detection.
Collapse
Affiliation(s)
- Zhiyun Wu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jinhong Ma
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
7
|
Wang X, Gu X, Wang C, He Y, Liu D, Sun S, Li H. Loss of ndrg2 Function Is Involved in Notch Activation in Neuromast Hair Cell Regeneration in Zebrafish. Mol Neurobiol 2023; 60:3100-3112. [PMID: 36800156 DOI: 10.1007/s12035-023-03262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
The regeneration of hair cells in zebrafish is a complex process involving the precise regulation of multiple signaling pathways, but this complicated regulatory network is not fully understood. Current research has primarily focused on finding molecules and pathways that can regulate hair cell regeneration and restore hair cell functions. Here, we show the role of N-Myc downstream regulated gene 2 (ndrg2) in zebrafish hair cell regeneration. We first found that ndrg2 was dynamically expressed in neuromasts of the developing zebrafish, and this expression was increased after neomycin-induced hair cell damage. Then, ndrg2 loss-of-function larvae showed reduced numbers of regenerated hair cells but increased numbers of supporting cells after neomycin exposure. By in situ hybridization, we further observed that ndrg2 loss of function resulted in the activation of Notch signaling and downregulation of atoh1a during hair cell regeneration in vivo. Additionally, blocking Notch signaling rescued the number of regenerated hair cells in ndrg2-deficient larvae. Together, this study provides evidence for the role of ndrg2 in regulating hair cell regeneration in zebrafish neuromasts.
Collapse
Affiliation(s)
- Xin Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaodong Gu
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
| | - Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Yingzi He
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.
| | - Shan Sun
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China.
| | - Huawei Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China.
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
8
|
Dong Z, Chen X, Zhuo R, Li Y, Zhou Z, Sun Y, Liu Y, Liu M. Efficient manipulation of gene expression using Natronobacterium gregoryi Argonaute in zebrafish. BMC Biol 2023; 21:95. [PMID: 37095525 PMCID: PMC10127001 DOI: 10.1186/s12915-023-01599-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Natronobacterium gregoryi Argonaute (NgAgo) was found to reduce mRNA without generating detectable DNA double-strand breaks in a couple of endogenous genes in zebrafish, suggesting its potential as a tool for gene knockdown. However, little is known about how it interacts with nucleic acid molecules to interfere with gene expression. RESULTS In this study, we first confirmed that coinjection of NgAgo and gDNA downregulated target genes, generated gene-specific phenotypes and verified some factors (including 5' phosphorylation, GC ratio, and target positions) of gDNAs affecting gene downregulation. Therein, the sense and antisense gDNAs were equally effective, suggesting that NgAgo possibly binds to DNA. NgAgo-VP64 with gDNAs targeting promoters upregulated the target genes, further providing evidence that NgAgo interacts with genomic DNA and controls gene transcription. Finally, we explain the downregulation of NgAgo/gDNA target genes by interference with the process of gene transcription, which differs from that of morpholino oligonucleotides. CONCLUSIONS The present study provides conclusions that NgAgo may target genomic DNA and that target positions and the gDNA GC ratio influence its regulation efficiency.
Collapse
Affiliation(s)
- Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, China.
| | - Xu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, China
| | - Yuanyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, China
| | - Zhihao Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, China
| | - Ying Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu, 226001, China.
| |
Collapse
|
9
|
Prokaryotic Argonaute Protein from Natronobacterium gregoryi Requires RNAs To Activate for DNA Interference In Vivo. mBio 2022; 13:e0365621. [PMID: 35343788 PMCID: PMC9040764 DOI: 10.1128/mbio.03656-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Argonaute proteins are present in all three domains of life, which are archaea, bacteria, and eukarya. Unlike the eukaryotic Argonaute proteins, which use small RNA guides to target mRNAs, some prokaryotic Argonaute proteins (pAgos) use a small DNA guide to interfere with DNA and/or RNA targets. However, the mechanisms of pAgo natural function remain unknown. Here, we investigate the mechanism by which pAgo from Natronobacterium gregoryi (NgAgo) targets plasmid and bacteriophage T7 DNA using a heterologous Escherichia coli-based model system. We show that NgAgo expressed from a plasmid linearizes its expression vector. Cotransformation assays demonstrate that NgAgo requires an RNA in trans that is transcribed from the bacteriophage T7 promoter to activate cleavage of a cotransformed plasmid, reminiscent of the trans-RNA function in CRISPR/Cas9. We propose a mechanism to explain how NgAgo eliminates invading foreign DNA and bacteriophage. By leveraging this discovery, we show that NgAgo can be programmed to target a plasmid or a chromosome locus.
Collapse
|
10
|
Kropocheva EV, Lisitskaya LA, Agapov AA, Musabirov AA, Kulbachinskiy AV, Esyunina DM. Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Mol Biol 2022; 56:854-873. [PMID: 36060308 PMCID: PMC9427165 DOI: 10.1134/s0026893322060103] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Programmable nucleases are the most important tool for manipulating the genes and genomes of both prokaryotes and eukaryotes. Since the end of the 20th century, many approaches were developed for specific modification of the genome. The review briefly considers the advantages and disadvantages of the main genetic editors known to date. The main attention is paid to programmable nucleases from the family of prokaryotic Argonaute proteins. Argonaute proteins can recognize and cleave DNA sequences using small complementary guide molecules and play an important role in protecting prokaryotic cells from invading DNA. Argonaute proteins have already found applications in biotechnology for targeted cleavage and detection of nucleic acids and can potentially be used for genome editing.
Collapse
Affiliation(s)
- E. V. Kropocheva
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - L. A. Lisitskaya
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Agapov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Musabirov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. V. Kulbachinskiy
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - D. M. Esyunina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
11
|
Xu G, Huang Z, Sheng J, Gao X, Wang X, Garcia JQ, Wei G, Liu D, Gong J. FGF binding protein 3 is required for spinal cord motor neuron development and regeneration in zebrafish. Exp Neurol 2021; 348:113944. [PMID: 34896115 DOI: 10.1016/j.expneurol.2021.113944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor binding protein 3 (Fgfbp3) have been known to be crucial for the process of neural proliferation, differentiation, migration, and adhesion. However, the specific role and the molecular mechanisms of fgfbp3 in regulating the development of motor neurons remain unclear. In this study, we have investigated the function of fgfbp3 in morphogenesis and regeneration of motor neuron in zebrafish. Firstly, we found that fgfbp3 was localized in the motor neurons and loss of fgfbp3 caused the significant decrease of the length and branching number of the motor neuron axons, which could be partially rescued by fgfbp3 mRNA injection. Moreover, the fgfbp3 knockdown (KD) embryos demonstrated similar defects of motor neurons as identified in fgfbp3 knockout (KO) embryos. Furthermore, we revealed that the locomotion and startle response of fgfbp3 KO embryos were significantly restricted, which were partially rescued by the fgfbp3 overexpression. In addition, fgfbp3 KO remarkably compromised axonal regeneration of motor neurons after injury. Lastly, the malformation of motor neurons in fgfbp3 KO embryos was rescued by overexpressing drd1b or neurod6a, respectively, which were screened by transcriptome sequencing. Taken together, our results provide strong cellular and molecular evidence that fgfbp3 is crucial for the axonal morphogenesis and regeneration of motor neurons in zebrafish.
Collapse
Affiliation(s)
- Guangmin Xu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zigang Huang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiajing Sheng
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiang Gao
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Wang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jason Q Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guanyun Wei
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Jie Gong
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
12
|
Qu J, Xie Y, Guo Z, Liu X, Jiang J, Chen T, Li K, Hu Z, Luo D. Identification of a Novel Cleavage Site and Confirmation of the Effectiveness of NgAgo Gene Editing on RNA Targets. Mol Biotechnol 2021; 63:1183-1191. [PMID: 34302285 DOI: 10.1007/s12033-021-00372-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 06/28/2021] [Indexed: 12/18/2022]
Abstract
Clusters of regularly interspaced short palindromic repeats (CRISPR)/Cas systems have a powerful ability to edit DNA and RNA targets. However, the need for a specific recognition site, protospacer adjacent motif (PAM), of the CRISPR/Cas system limits its application in gene editing. Some Argonaute (Ago) proteins have endonuclease functions under the guidance of 5' phosphorylated or hydroxylated guide DNA (gDNA). The NgAgo protein might perform RNA gene editing at 37 °C, suggesting its application in mammalian cells; however, its mechanisms are unclear. In the present study, the target of NgAgo in RNA was confirmed in vitro and in vivo. Then, an in vitro RNA cleavage system was designed and the cleavage site was verified by sequencing. Furthermore, NgAgo and gDNA were transfected into cells to cleave an intracellular target sequence. We demonstrated targeted degradation of GFP, HCV, and AKR1B10 RNAs in a gDNA-dependent manner by NgAgo both in vitro and in vivo, but no effect on DNA was observed. Sequencing demonstrated that the cleavage sites are located at the 3' of the target RNA which is recognized by 5' sequence of the gDNA. These results confirmed that NgAgo-gDNA cleaves RNA not DNA. We observed that the cleavage site is located at the 3' of the target RNA, which is a new finding that has not been reported in the past.
Collapse
Affiliation(s)
- Jiayao Qu
- Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518000, Guangdong, People's Republic of China
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, University of South China, 102 Luojiajing Road, Chenzhou, 432000, Hunan, People's Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Yali Xie
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, University of South China, 102 Luojiajing Road, Chenzhou, 432000, Hunan, People's Republic of China
| | - Zhaoyi Guo
- Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518000, Guangdong, People's Republic of China
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, University of South China, 102 Luojiajing Road, Chenzhou, 432000, Hunan, People's Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Xiangting Liu
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, University of South China, 102 Luojiajing Road, Chenzhou, 432000, Hunan, People's Republic of China
| | - Jing Jiang
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, University of South China, 102 Luojiajing Road, Chenzhou, 432000, Hunan, People's Republic of China
| | - Ting Chen
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, University of South China, 102 Luojiajing Road, Chenzhou, 432000, Hunan, People's Republic of China
| | - Kai Li
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, University of South China, 102 Luojiajing Road, Chenzhou, 432000, Hunan, People's Republic of China
| | - Zheng Hu
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, University of South China, 102 Luojiajing Road, Chenzhou, 432000, Hunan, People's Republic of China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, People's Republic of China.
| | - Dixian Luo
- Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518000, Guangdong, People's Republic of China.
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, University of South China, 102 Luojiajing Road, Chenzhou, 432000, Hunan, People's Republic of China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, People's Republic of China.
- Laboratory Medicine Center, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Guo B, Qi M, Huang S, Zhuo R, Zhang W, Zhang Y, Xu M, Liu M, Guan T, Liu Y. Cadherin-12 Regulates Neurite Outgrowth Through the PKA/Rac1/Cdc42 Pathway in Cortical Neurons. Front Cell Dev Biol 2021; 9:768970. [PMID: 34820384 PMCID: PMC8606577 DOI: 10.3389/fcell.2021.768970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, and differentiation. In this study, we identified Cadherin-12 (CDH12), which encodes a type II classical cadherin, as a gene that promotes neurite outgrowth in an in vitro model of neurons with differentiated intrinsic growth ability. First, the effects of CDH12 on neurons were evaluated via RNA interference, and the results indicated that the knockdown of CDH12 expression restrained the axon extension of E18 neurons. The transcriptome profile of neurons with or without siCDH12 treatment revealed a set of pathways positively correlated with the effect of CDH12 on neurite outgrowth. We further revealed that CDH12 affected Rac1/Cdc42 phosphorylation in a PKA-dependent manner after testing using H-89 and 8-Bromo-cAMP sodium salt. Moreover, we investigated the expression of CDH12 in the brain, spinal cord, and dorsal root ganglia (DRG) during development using immunofluorescence staining. After that, we explored the effects of CDH12 on neurite outgrowth in vivo. A zebrafish model of CDH12 knockdown was established using the NgAgo-gDNA system, and the vital role of CDH12 in peripheral neurogenesis was determined. In summary, our study is the first to report the effect of CDH12 on axonal extension in vitro and in vivo, and we provide a preliminary explanation for this mechanism.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Ma S, Lv J, Feng Z, Rong Z, Lin Y. Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. J Gene Med 2021; 23:e3377. [PMID: 34270141 DOI: 10.1002/jgm.3377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a state-of-the-art tool for versatile genome editing that has advanced basic research dramatically, with great potential for clinic applications. The system consists of two key molecules: a CRISPR-associated (Cas) effector nuclease and a single guide RNA. The simplicity of the system has enabled the development of a wide spectrum of derivative methods. Almost any laboratory can utilize these methods, although new users may initially be confused when faced with the potentially overwhelming abundance of choices. Cas nucleases and their engineering have been systematically reviewed previously. In the present review, we discuss single guide RNA engineering and design strategies that facilitate more efficient, more specific and safer gene editing.
Collapse
Affiliation(s)
- Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zinan Feng
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Lee KZ, Mechikoff MA, Kikla A, Liu A, Pandolfi P, Fitzgerald K, Gimble FS, Solomon KV. NgAgo possesses guided DNA nicking activity. Nucleic Acids Res 2021; 49:9926-9937. [PMID: 34478558 PMCID: PMC8464042 DOI: 10.1093/nar/gkab757] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3' end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.
Collapse
Affiliation(s)
- Kok Zhi Lee
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Michael A Mechikoff
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Archana Kikla
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Arren Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Paula Pandolfi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Kevin Fitzgerald
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Frederick S Gimble
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47906, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Kevin V Solomon
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.,Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
16
|
Huang M, Liu M, Huang L, Wang M, Jia R, Zhu D, Chen S, Zhao X, Zhang S, Gao Q, Zhang L, Cheng A. The activation and limitation of the bacterial natural transformation system: The function in genome evolution and stability. Microbiol Res 2021; 252:126856. [PMID: 34454311 DOI: 10.1016/j.micres.2021.126856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/26/2022]
Abstract
Bacteria can take up exogenous naked DNA and integrate it into their genomes, which has been regarded as a main contributor to bacterial evolution. The competent status of bacteria is influenced by environmental cues and by the immune systems of bacteria. Here, we review recent advances in understanding the working mechanisms underlying activation of the natural transformation system and limitations thereof. Environmental stresses including the presence of antimicrobials can activate the natural transformation system. However, bacterial enzymes (nucleases), non-coding RNAs, specific DNA sequences, the restriction-modification (R-M) systems, CRISPR-Cas systems and prokaryotic Argonaute proteins (Agos) are have been found to be involved in the limitation of the natural transformation system. Together, this review represents an opportunity to gain insight into bacterial genome stability and evolution.
Collapse
Affiliation(s)
- Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
17
|
Jin S, Zhan J, Zhou Y. Argonaute proteins: structures and their endonuclease activity. Mol Biol Rep 2021; 48:4837-4849. [PMID: 34117606 DOI: 10.1007/s11033-021-06476-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/05/2021] [Indexed: 01/12/2023]
Abstract
Argonaute proteins are highly conserved and widely expressed in almost all organisms. They not only play a critical role in the biogenesis of small RNAs but also defend against invading nucleic acids via small RNA or DNA-mediated gene silencing pathways. One functional mechanism of Argonaute proteins is acting as a nucleic-acid-guided endonuclease, which can cleave targets complementary to DNA or RNA guides. The cleavage then leads to translational silencing directly or indirectly by recruiting additional silencing proteins. Here, we summarized the latest research progress in structural and biological studies of Argonaute proteins and pointed out their potential applications in the field of gene editing.
Collapse
Affiliation(s)
- Shujuan Jin
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jian Zhan
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Yaoqi Zhou
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia.
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
18
|
Expression and Functional Analysis of the Argonaute Protein of Thermus thermophilus (TtAgo) in E. coli BL21(DE3). Biomolecules 2021; 11:biom11040524. [PMID: 33807395 PMCID: PMC8067300 DOI: 10.3390/biom11040524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
The prokaryotic Argonaute proteins (pAgos) have been reported to cleave or interfere with DNA targets in a guide-dependent or independent manner. It is often difficult to characterize pAgos in vivo due to the extreme environments favored by their hosts. In the present study, we expressed functional Thermus thermophilus pAgo (TtAgo) in E. coli BL21 (DE3) cells at 37 °C. Initial attempts to express TtAgo in BL21(DE3) cells at 37 °C failed. This was not because of TtAgo mediated general toxicity to the host cells, but instead because of TtAgo-induced loss of its expression plasmid. We employed this discovery to establish a screening system for isolating loss-of-function mutants of TtAgo. The E. colifabI gene was used to help select for full-length TtAgo loss of function mutants, as overexpression of fabI renders the cell to be resistant to the triclosan. We isolated and characterized eight mutations in TtAgo that abrogated function. The ability of TtAgo to induce loss of its expression vector in vivo at 37 °C is an unreported function that is mechanistically different from its reported in vitro activity. These results shed light on the mechanisms by which TtAgo functions as a defense against foreign DNA invasion.
Collapse
|
19
|
Fricke T, Smalakyte D, Lapinski M, Pateria A, Weige C, Pastor M, Kolano A, Winata C, Siksnys V, Tamulaitis G, Bochtler M. Targeted RNA Knockdown by a Type III CRISPR-Cas Complex in Zebrafish. CRISPR J 2020; 3:299-313. [PMID: 32833532 PMCID: PMC7469701 DOI: 10.1089/crispr.2020.0032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNA interference is a powerful experimental tool for RNA knockdown, but not all organisms are amenable. Here, we provide a proof of principle demonstration that a type III Csm effector complex can be used for programmable mRNA transcript degradation in eukaryotes. In zebrafish, Streptococcus thermophilus Csm complex (StCsm) proved effective for knockdown of maternally expressed EGFP in germ cells of Tg(ddx4:ddx4-EGFP) fish. It also led to significant, albeit less drastic, fluorescence reduction at one day postfertilization in Tg(myl7:GFP) and Tg(fli1:EGFP) fish that express EGFP zygotically. StCsm targeted against the endogenous tdgf1 elicited the characteristic one-eyed phenotype with greater than 50% penetrance, and hence with similar efficiency to morpholino-mediated knockdown. We conclude that Csm-mediated knockdown is very efficient for maternal transcripts and can also be used for mixed maternal/early zygotic and early zygotic transcripts, in some cases reaching comparable efficiency to morpholino-based knockdown without significant off-target effects.
Collapse
Affiliation(s)
- Thomas Fricke
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Dalia Smalakyte
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Maciej Lapinski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Abhishek Pateria
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Charles Weige
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michal Pastor
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Agnieszka Kolano
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| |
Collapse
|
20
|
Xu B, Tang X, Jin M, Zhang H, Du L, Yu S, He J. Unifying developmental programs for embryonic and postembryonic neurogenesis in the zebrafish retina. Development 2020; 147:dev.185660. [PMID: 32467236 DOI: 10.1242/dev.185660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 05/13/2020] [Indexed: 01/14/2023]
Abstract
The zebrafish retina grows for a lifetime. Whether embryonic and postembryonic retinogenesis conform to the same developmental program is an outstanding question that remains under debate. Using single-cell RNA sequencing of ∼20,000 cells of the developing zebrafish retina at four different stages, we identified seven distinct developmental states. Each state explicitly expresses a gene set. Disruption of individual state-specific marker genes results in various defects ranging from small eyes to the loss of distinct retinal cell types. Using a similar approach, we further characterized the developmental states of postembryonic retinal stem cells (RSCs) and their progeny in the ciliary marginal zone. Expression pattern analysis of state-specific marker genes showed that the developmental states of postembryonic RSCs largely recapitulated those of their embryonic counterparts, except for some differences in rod photoreceptor genesis. Thus, our findings reveal the unifying developmental program used by the embryonic and postembryonic retinogenesis in zebrafish.
Collapse
Affiliation(s)
- Baijie Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Xia Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Mengmeng Jin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Lei Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
21
|
Wu J, Yang J, Cho WC, Zheng Y. Argonaute proteins: Structural features, functions and emerging roles. J Adv Res 2020; 24:317-324. [PMID: 32455006 PMCID: PMC7235612 DOI: 10.1016/j.jare.2020.04.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Argonaute proteins are highly conserved in almost all organisms. They not only involve in the biogenesis of small regulatory RNAs, but also regulate gene expression and defend against foreign pathogen invasion via small RNA-mediated gene silencing pathways. As a key player in these pathways, the abnormal expression and/or mis-modifications of Argonaute proteins lead to the disorder of small RNA biogenesis and functions, thus influencing multiply biological processes and disease development, especially cancer. In this review, we focus on the post-translational modifications and novel functions of Argonaute proteins in alternative splicing, host defense and genome editing.
Collapse
Key Words
- AKT3, AKT serine/threonine kinase 3
- Argonaute protein
- CCR4-NOT, carbon catabolite repressor 4-negative on TATA
- CRISPR-Cas9, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (cas9)
- DGCR8, DiGeorge syndrome critical region gene 8
- EGFR, epidermal growth factor receptor
- GW182 protein, glycine/tryptophan repeats-containing protein with molecular weight of 182 kDa
- H3K9, histone H3 lysine 9
- Hsp70/90, heat shock proteins 70/90
- JEV, Japanese encephalitis virus
- KRAS, Kirsten rat sarcoma oncogene
- P4H, prolyl 4-hydroxylase
- PAM, protospacer adjacent motif
- PAZ, PIWI-argonaute-zwille
- PIWI, P-element-induced wimpy testis
- Post-translational modification
- RISCs, small RNA-induced silencing complexes
- Small RNA
- TRBP, the transactivating response (TAR) RNA-binding protein
- TRIM71/LIN41, tripartite motif-containing 71, known as Lin41
- WSSV, white spot syndrome virus
- miRNAs
- piRNAs
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
22
|
Jiang L, Yu M, Zhou Y, Tang Z, Li N, Kang J, He B, Huang J. AGONOTES: A Robot Annotator for Argonaute Proteins. Interdiscip Sci 2019; 12:109-116. [PMID: 31741225 DOI: 10.1007/s12539-019-00349-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/06/2019] [Accepted: 10/30/2019] [Indexed: 12/01/2022]
Abstract
The argonaute protein (Ago) exists in almost all organisms. In eukaryotes, it functions as a regulatory system for gene expression. In prokaryotes, it is a type of defense system against foreign invasive genomes. The Ago system has been engineered for gene silencing and genome editing and plays an important role in biological studies. With an increasing number of genomes and proteomes of various microbes becoming available, computational tools for identifying and annotating argonaute proteins are urgently needed. We introduce AGONOTES (Argonaute Notes). It is a web service especially designed for identifying and annotating Ago. AGONOTES uses the BLASTP similarity search algorithm to categorize all submitted proteins into three groups: prokaryotic argonaute protein (pAgo), eukaryotic argonaute protein (eAgo), and non-argonaute protein (non-Ago). Argonaute proteins can then be aligned to the corresponding standard set of Ago sequences using the multiple sequence alignment program MUSCLE. All functional domains of Ago can further be curated from the alignment results and visualized easily through Bio::Graphic modules in the BioPerl bundle. Compared with existing tools such as CD-Search and available databases such as UniProt and AGONOTES showed a much better performance on domain annotations, which is fundamental in studying the new Ago. AGONOTES can be freely accessed at http://i.uestc.edu.cn/agonotes/. AGONOTES is a friendly tool for annotating Ago domains from a proteome or a series of protein sequences.
Collapse
Affiliation(s)
- Lixu Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 637111, China
| | - Min Yu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 637111, China
| | - Yuwei Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 637111, China
| | - Zhongjie Tang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 637111, China
| | - Ning Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 637111, China
| | - Juanjuan Kang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 637111, China
| | - Bifang He
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 637111, China.,School of Medicine, Guizhou University, Guiyang, China
| | - Jian Huang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 637111, China.
| |
Collapse
|
23
|
Fu L, Xie C, Jin Z, Tu Z, Han L, Jin M, Xiang Y, Zhang A. The prokaryotic Argonaute proteins enhance homology sequence-directed recombination in bacteria. Nucleic Acids Res 2019; 47:3568-3579. [PMID: 30698806 PMCID: PMC6468240 DOI: 10.1093/nar/gkz040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 02/01/2023] Open
Abstract
Argonaute proteins are present and conserved in all domains of life. Recently characterized prokaryotic Argonaute proteins (pAgos) participates in host defense by DNA interference. Here, we report that the Natronobacterium gregoryi Argonaute (NgAgo) enhances gene insertions or deletions in Pasteurella multocida and Escherichia coli at efficiencies of 80–100%. Additionally, the effects are in a homologous arms-dependent but guide DNA- and potential enzyme activity-independent manner. Interestingly, such effects were also observed in other pAgos fragments including Thermus thermophilus Argonaute (TtAgo), Aquifex aeolicus Argonaute (AaAgo) and Pyrococcus furiosus Argonaute (PfAgo). The underlying mechanism of the NgAgo system is a positive selection process mainly through its PIWI-like domain interacting with recombinase A (recA) to enhance recA-mediated DNA strand exchange. Our study reveals a novel system for enhancing homologous sequence-guided gene editing in bacteria.
Collapse
Affiliation(s)
- Lei Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Caiyun Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zehua Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zizhuo Tu
- Shanghai East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products (Ministry of Agriculture), International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei 430070, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products (Ministry of Agriculture), International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei 430070, China
| |
Collapse
|
24
|
Kumar A, Birnbaum MD, Moorthy BT, Singh J, Palovcak A, Patel DM, Zhang F. Insertion/deletion-activated frame-shift fluorescence protein is a sensitive reporter for genomic DNA editing. BMC Genomics 2019; 20:609. [PMID: 31340764 PMCID: PMC6657097 DOI: 10.1186/s12864-019-5963-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Reporter methods to quantitatively measure the efficiency and specificity of genome editing tools are important for the development of novel editing techniques and successful applications of available ones. However, the existing methods have major limitations in sensitivity, accuracy, and/or readiness for in vivo applications. Here, we aim to develop a straight-forward method by using nucleotide insertion/deletion resulted from genome editing. In this system, a target sequence with frame-shifting length is inserted after the start codon of a cerulean fluorescence protein (CFP) to inactivate its fluorescence. As such, only a new insertion/deletion event in the target sequence will reactivate the fluorescence. This reporter is therefore termed as "Insertion/deletion-activated frame-shift fluorescence protein". To increase its traceability, an internal ribosome entry site and a red fluorescence protein mCherryFP are placed downstream of the reporter. The percentage of CFP-positive cells can be quantified by fluorescence measuring devices such as flow cytometer as the readout for genome editing frequency. RESULTS To test the background noise level, sensitivity, and quantitative capacity of this new reporter, we applied this approach to examine the efficiency of genome editing of CRISPR/Cas9 on two different targeting sequences and in three different cell lines, in the presence or absence of guide-RNAs with or without efficiency-compromising mutations. We found that the insertion/deletion-activated frame-shift fluorescence protein has very low background signal, can detect low-efficiency genome editing events driven by mutated guideRNAs, and can quantitatively distinguish genome editing by normal or mutated guideRNA. To further test whether the positive editing event detected by this reporter indeed correspond to genuine insertion/deletion on the genome, we enriched the CFP-positive cells to examine their fluorescence under confocal microscope and to analyze the DNA sequence of the reporter in the genome by Sanger sequencing. We found that the positive events captured by this reporter indeed correlates with genuine DNA insertion/deletion in the expected genome location. CONCLUSION The insertion/deletion-activated frame-shift fluorescence protein reporter has very low background, high sensitivity, and is quantitative in nature. It will be able to facilitate the development of new genome editing tools as well as the application of existing tools.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
- Present address: Department of Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Michael D. Birnbaum
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| | - Balaji T. Moorthy
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| | - Jayanti Singh
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| | - Anna Palovcak
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| | - Devang M. Patel
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
25
|
Why does the zebrafish cloche mutant develop lens cataract? PLoS One 2019; 14:e0211399. [PMID: 30861003 PMCID: PMC6413905 DOI: 10.1371/journal.pone.0211399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
The zebrafish has become a valuable model for examining ocular lens development, physiology and disease. The zebrafish cloche mutant, first described for its loss of hematopoiesis, also shows reduced eye and lens size, interruption in lens cell differentiation and a cataract likely caused by abnormal protein aggregation. To facilitate the use of the cloche mutant for studies on cataract development and prevention we characterized variation in the lens phenotype, quantified changes in gene expression by qRT-PCR and RNA-Seq and compared the ability of two promoters to drive expression of introduced proteins into the cloche lens. We found that the severity of cloche embryo lens cataract varied, while the decrease in lens diameter and retention of nuclei in differentiating lens fiber cells was constant. We found very low expression of both αB-crystallin genes (cryaba and cryabb) at 4 days post fertilization (dpf) by both qRT-PCR and RNA-Seq in cloche, cloche sibling and wildtype embryos and no significant difference in αA-crystallin (cryaa) expression. RNA-Seq analysis of 4 dpf embryos identified transcripts from 25,281 genes, with 1,329 showing statistically significantly different expression between cloche and wildtype samples. Downregulation of eight lens β- and γM-crystallin genes and 22 retinal related genes may reflect a general reduction in eye development and growth. Six stress response genes were upregulated. We did not find misregulation of any known components of lens development gene regulatory networks. These results suggest that the cloche lens cataract is not caused by loss of αA-crystallin or changes to lens gene regulatory networks. Instead, we propose that the cataract results from general physiological stress related to loss of hematopoiesis. Our finding that the zebrafish αA-crystallin promoter drove strong GFP expression in the cloche lens demonstrates its use as a tool for examining the effects of introduced proteins on lens crystallin aggregation and cataract prevention.
Collapse
|
26
|
Vogel KM, Ouagrham-Gormley SB. Anticipating Emerging Biotechnology Threats: A case study of CRISPR. Politics Life Sci 2018; 37:203-219. [PMID: 31120699 DOI: 10.1017/pls.2018.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This article discusses the contingencies and complexities of CRISPR. It outlines key problems regarding off-target effects and replication of experimental work that are important to consider in light of CRISPR's touted ease of use and diffusion. In light of literature on the sociotechnical dimensions of the life sciences and biotechnology and literature on former bioweapons programs, this article argues that we need more detailed empirical case studies of the social and technical factors shaping CRISPR and related gene-editing techniques in order to better understand how they may be different from other advances in biotechnology-or whether similar features remain. This information will be critical to better inform intelligence practitioners and policymakers about the security implications of new gene-editing techniques.
Collapse
|
27
|
Vimalraj S, Saravanan S, Anuradha D, Chatterjee S. Models to investigate intussusceptive angiogenesis: A special note on CRISPR/Cas9 based system in zebrafish. Int J Biol Macromol 2018; 123:1229-1240. [PMID: 30468812 DOI: 10.1016/j.ijbiomac.2018.11.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 01/05/2023]
Abstract
Angiogenesis is a distinct process which follows sprouting angiogenesis (SA) and intussusceptive angiogenesis (IA) forming the basis for various physiological and pathological scenarios. Angiogenesis is a double edged sword exerting both desirable and discernible effects owing to the referred microenvironment. Therapeutic interventions to promote angiogenesis in regenerative medicine is essential to achieve functional syncytium of tissue constructs while, angiogenic inhibition is a key therapeutic target to suppress tumor growth. In the recent years, clustered regularly interspaced short palindromic repeats associated 9 (CRISPR-Cas9) based gene editing approaches have been gaining considerable attention in the field of biomedical research owing to its ease in tailoring targeted genome in living organisms. The Zebrafish model, with adequately high-throughput fitness, is a likely option for genome editing and angiogenesis research. In this review, we focus on the implication of Zebrafish as a model to study IA and furthermore enumerate CRISPR/Cas9 based genome editing in Zebrafish as a candidate for modeling different types of angiogenesis and support its candidature as a model organism.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 044, Tamil Nadu, India.
| | - Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | | | - Suvro Chatterjee
- Centre for Biotechnology, Anna University, Chennai 600 044, Tamil Nadu, India
| |
Collapse
|
28
|
Simone BW, Martínez-Gálvez G, WareJoncas Z, Ekker SC. Fishing for understanding: Unlocking the zebrafish gene editor's toolbox. Methods 2018; 150:3-10. [PMID: 30076892 PMCID: PMC6590056 DOI: 10.1016/j.ymeth.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The rapid growth of the field of gene editing can largely be attributed to the discovery and optimization of designer endonucleases. These include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regular interspersed short palindromic repeat (CRISPR) systems including Cas9, Cas12a, and structure-guided nucleases. Zebrafish (Danio rerio) have proven to be a powerful model system for genome engineering testing and applications due to their external development, high fecundity, and ease of housing. As the zebrafish gene editing toolkit continues to grow, it is becoming increasingly important to understand when and how to utilize which of these technologies for maximum efficacy in a particular project. While CRISPR-Cas9 has brought broad attention to the field of genome engineering in recent years, designer endonucleases have been utilized in genome engineering for more than two decades. This chapter provides a brief overview of designer endonuclease and other gene editing technologies in zebrafish as well as some of their known functional benefits and limitations depending on specific project goals. Finally, selected prospects for additional gene editing tools are presented, promising additional options for directed genomic programming of this versatile animal model system.
Collapse
Affiliation(s)
- Brandon W Simone
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Lao Y, Li M, Gao MA, Shao D, Chi C, Huang D, Chakraborty S, Ho T, Jiang W, Wang H, Wang S, Leong KW. HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or Natronobacterium gregoryi Argonaute. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700540. [PMID: 30027026 PMCID: PMC6051382 DOI: 10.1002/advs.201700540] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/01/2018] [Indexed: 05/25/2023]
Abstract
CRISPR/Cas9 technology enables targeted gene editing; yet, the efficiency and specificity remain unsatisfactory, particularly for the nonvirally delivered, plasmid-based CRISPR/Cas9 system. To tackle this, a self-assembled micelle is developed and evaluated for human papillomavirus (HPV) E7 oncogene disruption. The optimized micelle enables effective delivery of Cas9 plasmid with a transient transgene expression profile, benefiting the specificity of Cas9 recognition. Furthermore, the feasibility of using the micelle is explored for another nucleic acid-guided nuclease system, Natronobacterium gregoryi Argonaute (NgAgo). Both systems are tested in vitro and in vivo to evaluate their therapeutic potential. Cas9-mediated E7 knockout leads to significant inhibition of HPV-induced cancerous activity both in vitro and in vivo, while NgAgo does not show significant E7 inhibition on the xenograft mouse model. Collectively, this micelle represents an efficient delivery system for nonviral gene editing, adding to the armamentarium of gene editing tools to advance safe and effective precision medicine-based therapeutics.
Collapse
Affiliation(s)
- Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Mingqiang Li
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Madeleine A. Gao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Dan Shao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Chun‐Wei Chi
- Department of Biomedical EngineeringCUNY—City College of New YorkNew YorkNY10031USA
| | - Dantong Huang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | | | - Tzu‐Chieh Ho
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Weiqian Jiang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Hong‐Xia Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Sihong Wang
- Department of Biomedical EngineeringCUNY—City College of New YorkNew YorkNY10031USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Systems BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
30
|
Tang BL. When the research is not reproducible: the importance of author-initiated and institution-driven responses and investigations. Account Res 2018; 25:273-289. [PMID: 29781310 DOI: 10.1080/08989621.2018.1479257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Important and potentially useful findings in the sciences are under more intense public scrutiny now more than ever. Other researchers in the field dive into replicating and expanding the findings while the media swamps the community and the public with peripheral reporting and analyses. How should authors and the hosting/funding institutions respond when other workers in the field could not reproduce or replicate their published results? To illustrate the importance of author-initiated and institution-driven investigations in response to outcries of research irreproducibility, I draw on comparisons between three recent and well-publicized cases in the life sciences: betatrophin, Stimulus-Triggered Acquisition of Pluripotency (STAP) cells, and Natronobacterium gregoryi Argonaute (NgAgo). Swift, transparent responses and investigations facilitate activation of the self-correcting mechanism of science and are likely also critical in preserving the community's resources, public trust, and the reputation of the institutions and individuals concerned. Operational guidelines for "author and institutional responses" towards external reports of irreproducibility should therefore be in place for all research intensive institutions.
Collapse
Affiliation(s)
- Bor Luen Tang
- a NUS Graduate School for Integrative Sciences and Engineering, Research Compliance and Integrity Office and Department of Biochemistry , National University of Singapore , Singapore
| |
Collapse
|
31
|
Cai M, Si Y, Zhang J, Tian Z, Du S. Zebrafish Embryonic Slow Muscle Is a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:168-181. [PMID: 29374849 DOI: 10.1007/s10126-018-9794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Zebrafish embryonic slow muscle cells, with their superficial localization and clear sarcomere organization, provide a useful model system for genetic analysis of muscle cell differentiation and sarcomere assembly. To develop a quick assay for testing CRISPR-mediated gene editing in slow muscles of zebrafish embryos, we targeted a red fluorescence protein (RFP) reporter gene specifically expressed in slow muscles of myomesin-3-RFP (Myom3-RFP) zebrafish embryos. We demonstrated that microinjection of RFP-sgRNA with Cas9 protein or Cas9 mRNA resulted in a mosaic pattern in loss of RFP expression in slow muscle fibers of the injected zebrafish embryos. To uncover gene functions in sarcomere organization, we targeted two endogenous genes, slow myosin heavy chain-1 (smyhc1) and heat shock protein 90 α1 (hsp90α1), which are specifically expressed in zebrafish muscle cells. We demonstrated that injection of Cas9 protein or mRNA with respective sgRNAs targeted to smyhc1 or hsp90a1 resulted in a mosaic pattern of myosin thick filament disruption in slow myofibers of the injected zebrafish embryos. Moreover, Myom3-RFP expression and M-line localization were also abolished in these defective myofibers. Given that zebrafish embryonic slow muscles are a rapid in vivo system for testing genome editing and uncovering gene functions in muscle cell differentiation, we investigated whether microinjection of Natronobacterium gregoryi Argonaute (NgAgo) system could induce genetic mutations and muscle defects in zebrafish embryos. Single-strand guide DNAs targeted to RFP, Smyhc1, or Hsp90α1 were injected with NgAgo mRNA into Myom3-RFP zebrafish embryos. Myom3-RFP expression was analyzed in the injected embryos. The results showed that, in contrast to the CRISPR/Cas9 system, injection of the NgAgo-gDNA system did not affect Myom3-RFP expression and sarcomere organization in myofibers of the injected embryos. Sequence analysis failed to detect genetic mutations at the target genes. Together, our studies demonstrate that zebrafish embryonic slow muscle is a rapid model for testing gene editing technologies in vivo and uncovering gene functions in muscle cell differentiation.
Collapse
Affiliation(s)
- Mengxin Cai
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710062, China
| | - Yufeng Si
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Hunan, 250014, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710062, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA.
- Department of Bioengineering and Environmental Science, Changsha University, Hunan, 250014, China.
| |
Collapse
|
32
|
O’Geen H, Ren C, Coggins NB, Bates SL, Segal DJ. Unexpected binding behaviors of bacterial Argonautes in human cells cast doubts on their use as targetable gene regulators. PLoS One 2018; 13:e0193818. [PMID: 29584750 PMCID: PMC5870970 DOI: 10.1371/journal.pone.0193818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
Prokaryotic Argonaute proteins (pAgos) have been proposed as an alternative to the CRISPR/Cas9 platform for gene editing. Although Argonaute from Natronobacterium gregoryi (NgAgo) was recently shown unable to cleave genomic DNA in mammalian cells, the utility of NgAgo or other pAgos as a targetable DNA-binding platform for epigenetic editing has not been explored. In this report, we evaluated the utility of two prokaryotic Argonautes (NgAgo and TtAgo) as DNA-guided DNA-binding proteins. NgAgo showed no meaningful binding to chromosomal targets, while TtAgo displayed seemingly non-specific binding to chromosomal DNA even in the absence of guide DNA. The observed lack of DNA-guided targeting and unexpected guide-independent genome sampling under the conditions in this study provide evidence that these pAgos might be suitable for neither gene nor epigenome editing in mammalian cells.
Collapse
Affiliation(s)
- Henriette O’Geen
- Genome Center, University of California, Davis, California, United States of America
| | - Chonghua Ren
- Genome Center, University of California, Davis, California, United States of America
| | - Nicole B. Coggins
- Genome Center, University of California, Davis, California, United States of America
| | - Sofie L. Bates
- Genome Center, University of California, Davis, California, United States of America
| | - David J. Segal
- Genome Center, University of California, Davis, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One 2017; 12:e0186056. [PMID: 29016691 PMCID: PMC5634636 DOI: 10.1371/journal.pone.0186056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Goat's milk, considered a substitute for cow's milk, has a high nutritional value. However, goat's milk contains various allergens, predominantly β-lactoglobulin (BLG). In this study, we employed the CRISPR/Cas9 system to target the BLG locus in goat fibroblasts for sgRNA optimization and generate BLG knock-out goats through co-injection of Cas9 mRNA and small guide RNAs (sgRNAs) into goat embryos at the one-cell stage. We firstly tested sgRNA editing efficiencies in goat fibroblast cells, and approximately 8.00%-9.09% of the cells were modified in single sgRNA-guided targeting experiment. Among the kids, the genome-targeting efficiencies of single sgRNA were 12.5% (10 ng/μL sg1) and 0% (10 ng/μL sg2) and efficiencies of dual sgRNAs were 25.0% (25 ng/μL sg2+sg3 group) and 28.6% (50 ng/μL sg2+sg3 group). Relative expression of BLG in BLG knock-out goat mammary glands significantly (p < 0.01) decreased as well as other milk protein coding genes, such as CSN1S1, CSN1S2, CSN2, CSN3 and LALBA (p < 0.05). As expected, BLG protein had been abolished in the milk of the BLG knock-out goat. In addition, most of the targeted kids were chimeric (3/4), and their various body tissues were edited simultaneously. Our study thus provides a basis for optimizing the quality of goat milk, which can be applied to biomedical and agricultural research.
Collapse
Affiliation(s)
- Wenjun Zhou
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Rihong Guo
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Zhen Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| |
Collapse
|
34
|
Molecular tools for gene manipulation in filamentous fungi. Appl Microbiol Biotechnol 2017; 101:8063-8075. [PMID: 28965220 DOI: 10.1007/s00253-017-8486-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 10/18/2022]
Abstract
Functional genomics of filamentous fungi has gradually uncovered gene information for constructing 'cell factories' and controlling pathogens. Available gene manipulation methods of filamentous fungi include random integration methods, gene targeting technology, gene editing with artificial nucleases and RNA technology. This review describes random gene integration constructed by restriction enzyme-mediated integration (REMI); Agrobacterium-mediated transformation (AMT); transposon-arrayed gene knockout (TAGKO); gene targeting technology, mainly about homologous recombination; and modern gene editing strategies containing transcription activator-like effector nucleases (TALENs) and a clustered regularly interspaced short palindromic repeat/associated protein system (CRISPR/Cas) developed in filamentous fungi and RNA technology including RNA interference (RNAi) and ribozymes. This review describes historical and modern gene manipulation methods in filamentous fungi and presents the molecular tools available to researchers investigating filamentous fungi. The biggest difference of this review from the previous ones is the addition of successful application and details of the promising gene editing tool CRISPR/Cas9 system in filamentous fungi.
Collapse
|
35
|
Gong J, Wang X, Zhu C, Dong X, Zhang Q, Wang X, Duan X, Qian F, Shi Y, Gao Y, Zhao Q, Chai R, Liu D. Insm1a Regulates Motor Neuron Development in Zebrafish. Front Mol Neurosci 2017; 10:274. [PMID: 28894416 PMCID: PMC5581358 DOI: 10.3389/fnmol.2017.00274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
Insulinoma-associated1a (insm1a) is a zinc-finger transcription factor playing a series of functions in cell formation and differentiation of vertebrate central and peripheral nervous systems and neuroendocrine system. However, its roles on the development of motor neuron have still remained uncovered. Here, we provided evidences that insm1a was a vital regulator of motor neuron development, and provided a mechanistic understanding of how it contributes to this process. Firstly, we showed the localization of insm1a in spinal cord, and primary motor neurons (PMNs) of zebrafish embryos by in situ hybridization, and imaging analysis of transgenic reporter line Tg(insm1a: mCherry)ntu805. Then we demonstrated that the deficiency of insm1a in zebrafish larvae lead to the defects of PMNs development, including the reduction of caudal primary motor neurons (CaP), and middle primary motor neurons (MiP), the excessive branching of motor axons, and the disorganized distance between adjacent CaPs. Additionally, knockout of insm1 impaired motor neuron differentiation in the spinal cord. Locomotion analysis showed that swimming activity was significantly reduced in the insm1a-null zebrafish. Furthermore, we showed that the insm1a loss of function significantly decreased the transcript levels of both olig2 and nkx6.1. Microinjection of olig2 and nkx6.1 mRNA rescued the motor neuron defects in insm1a deficient embryos. Taken together, these data indicated that insm1a regulated the motor neuron development, at least in part, through modulation of the expressions of olig2 and nkx6.1.
Collapse
Affiliation(s)
- Jie Gong
- School of Life Science, Nantong UniversityNantong, China
| | - Xin Wang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Chenwen Zhu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Xiaohua Dong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Qinxin Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Xiaoning Wang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Xuchu Duan
- School of Life Science, Nantong UniversityNantong, China
| | - Fuping Qian
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Yunwei Shi
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Yu Gao
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| |
Collapse
|
36
|
|
37
|
|
38
|
Retraction: DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol 2017; 35:797. [PMID: 28787423 DOI: 10.1038/nbt0817-797a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Abstract
Argonaute proteins constitute a highly diverse family of nucleic acid-guided proteins. They were first discovered in eukaryotes as key proteins in RNA interference systems, but homologous prokaryotic Argonaute proteins (pAgos) have also been found in archaea and bacteria. In this Progress article, we focus on long pAgo variants, a class of pAgos that are involved in nucleic acid-guided host defence against invading nucleic acids, and discuss the potential of pAgos in genome editing.
Collapse
|
40
|
NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA. Antiviral Res 2017; 145:20-23. [PMID: 28709658 DOI: 10.1016/j.antiviral.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022]
Abstract
Covalently closed circular DNA (cccDNA) in the hepatocytes nucleus is responsible for persistent infection of Hepatitis B virus (HBV). Current antiviral therapy drugs nucleos(t)ide analogs or interferon fail to eradicate HBV cccDNA. Genome editing technique provides an effective approach for HBV treatment through targeting viral cccDNA. Natronobacterium gregoryi Argonaute (NgAgo)-guide DNA (gDNA) system with powerful genome editing prompts us to explore its application in inhibiting HBV replication. Preliminary function verification indicated that NgAgo/EGFP-gDNA obviously inhibited EGFP expression. To further explore the potential role of NgAgo in restricting HBV replication, 10 of gDNAs targeting the critical region of viral genome were designed, only S-142, P-263 and P-2166 gDNAs led to significant inhibition on HBsAg, HBeAg and pregenomic RNA (pgRNA) level in Huh7 and HepG2 cells transfected with pcDNA-HBV1.1 plasmid. Similar results were also found in HBV infected HLCZ01 cells and Huh7-NTCP cells. However, we failed to detect any DNA editing in S-142, P-263 and P-2166 targeting region through T7E1 assay and Sanger sequencing. Remarkably, we found that NgAgo/P-2166 significantly accelerated the decay of viral pgRNA. Taken together, our results firstly demonstrate the potential of NgAgo/gDNA in inhibiting HBV replication through accelerating pgRNA degradation, but not DNA editing.
Collapse
|
41
|
Khin NC, Lowe JL, Jensen LM, Burgio G. No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo). PLoS One 2017; 12:e0178768. [PMID: 28609472 PMCID: PMC5469460 DOI: 10.1371/journal.pone.0178768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/18/2017] [Indexed: 01/31/2023] Open
Abstract
A recently published research article reported that the extreme halophile archaebacterium Natronobacterium gregoryi Argonaute enzyme (NgAgo) could cleave the cellular DNA under physiological temperature conditions in cell line and be implemented as an alternative to CRISPR/Cas9 genome editing technology. We assessed this claim in mouse zygotes for four loci (Sptb, Tet-1, Tet-2 and Tet-3) and in the human HEK293T cell line for the EMX1 locus. Over 100 zygotes were microinjected with nls-NgAgo-GK plasmid provided from Addgene and various concentrations of 5’-phosphorylated guide DNA (gDNA) from 2.5 ng/μl to 50 ng/μl and cultured to blastocyst stage of development. The presence of indels was verified using T7 endonuclease 1 assay (T7E1) and Sanger sequencing. We reported no evidence of successful editing of the mouse genome. We then assessed the lack of editing efficiency in HEK293T cell line for the EMX1 endogenous locus by monitoring the NgAgo protein expression level and the editing efficiency by T7E1 assay and Sanger sequencing. We reported that the NgAgo protein was expressed from 8 hours to a maximum expression at 48 hours post-transfection, confirming the efficient delivery of the plasmid and the gDNA but no evidence of successful editing of EMX1 target in all transfected samples. Together our findings indicate that we failed to edit using NgAgo.
Collapse
Affiliation(s)
- Nay Chi Khin
- Department of Immunology and Infectious Diseases, the John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jenna L. Lowe
- Department of Immunology and Infectious Diseases, the John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Lora M. Jensen
- Department of Immunology and Infectious Diseases, the John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, the John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
42
|
Javidi-Parsijani P, Niu G, Davis M, Lu P, Atala A, Lu B. No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cells. PLoS One 2017; 12:e0177444. [PMID: 28494027 PMCID: PMC5426773 DOI: 10.1371/journal.pone.0177444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/17/2017] [Indexed: 11/24/2022] Open
Abstract
The argonaute protein from the thermophilic bacterium Thermus thermophilus shows DNA-guided DNA interfering activity at high temperatures, complicating its application in mammalian cells. A recent work reported that the argonaute protein from Natronobacterium gregoryi (NgAgo) had DNA-guided genome editing activity in mammalian cells. We compared the genome editing activities of NgAgo and Staphylococcus aureus Cas9 (SaCas9) in human HEK293T cells side by side. EGFP reporter assays and DNA sequencing consistently revealed high genome editing activity from SaCas9. However, these assays did not demonstrate genome editing activity by NgAgo. We confirmed that the conditions allowed simultaneous transfection of the NgAgo expressing plasmid DNA and DNA guides, as well as heterologous expression of NgAgo in the HEK293T cells. Our data show that NgAgo is not a robust genome editing tool, although it may have such activity under other conditions.
Collapse
Affiliation(s)
- Parisa Javidi-Parsijani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Guoguang Niu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Meghan Davis
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Pin Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
43
|
Abstract
The CRISPR/Cas (clustered regularly interspaced short
palindromic repeats/CRISPR-associated proteins) system was first identified in
bacteria and archaea and can degrade exogenous substrates. It was developed as a gene
editing technology in 2013. Over the subsequent years, it has received extensive
attention owing to its easy manipulation, high efficiency, and wide application in
gene mutation and transcriptional regulation in mammals and plants. The process of
CRISPR/Cas is optimized constantly and its application has also expanded
dramatically. Therefore, CRISPR/Cas is considered a revolutionary technology in plant
biology. Here, we introduce the mechanism of the type II CRISPR/Cas called
CRISPR/Cas9, update its recent advances in various applications in plants, and
discuss its future prospects to provide an argument for its use in the study of
medicinal plants.
Collapse
Affiliation(s)
| | | | | | - Chun Sui
- Corresponding author. Tel.: +86 10 57863016.
| | | |
Collapse
|
44
|
Zhang J, Qi J, Wu S, Peng L, Shi Y, Yang J, Yin Z, Gao Y, Wang C, Gong J, Zhang H, Zhang J, Liu D. Fatty Acid Binding Protein 11a Is Required for Brain Vessel Integrity in Zebrafish. Front Physiol 2017; 8:214. [PMID: 28443032 PMCID: PMC5387095 DOI: 10.3389/fphys.2017.00214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
The monolayer of endothelial cells (ECs) lining the intima of all blood vessel wall forms a semipermeable barrier that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. A number of signaling pathways and molecules mediate endothelial permeability, which plays important roles in a variety of the physiological and pathological conditions. Fatty acid binding proteins (FABPs) are able to bind various hydrophobic molecules, such as long-chain fatty acids, prostaglandins and eicosanoids. FABP4, a member of the family of FABPs, plays an important role in maintenance of glucose and lipid homeostasis as well as angiogenesis. In the present study, we found that fabp11a, the ortholog of mammalian FABP4, was highly expressed in developing brain vessels of zebrafish. Knockout of fabp11a gene caused hemorrhage in zebrafish brain. Morpholino mediated fabp11a gene knockdown phenocopied the hemorrhage in mutants. Furthermore, we demonstrated permeability of brain vessels in fabp11a mutant is significantly higher than that of control. In addition, COX and LOX inhibition partially rescued the brain vessel integrity defects caused by fabp11a loss-of-function, suggesting the integrity defect was relevant to the Fatty Acid function.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School of Nantong UniversityNantong, China
| | - Jialing Qi
- Medical School of Nantong UniversityNantong, China
| | - Shuilong Wu
- Affiliated Hospital of Guangdong Medical UniversityZhanjiang, China
| | - Lijiao Peng
- Affiliated Hospital of Guangdong Medical UniversityZhanjiang, China
| | - Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Jinxian Yang
- Xinglin College of Nantong UniversityNantong, China
| | - Zhenhua Yin
- Medical School of Nantong UniversityNantong, China
| | - Yu Gao
- Affiliated Hospital of Guangdong Medical UniversityZhanjiang, China
| | | | - Jie Gong
- School of Life Science, Nantong UniversityNantong, China
| | - Haijun Zhang
- Laboratory Animal Center, Nantong UniversityNantong, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical UniversityZhanjiang, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| |
Collapse
|
45
|
Abstract
A novel gene editing procedure based on a nuclease from the Argonaute protein family was described in mid-2016 and appeared to provide significant advantages over the now widely used CRISPR-Cas9 system. Attempts by numerous groups to use this technique have however been unsuccessful; several negative reports have been published in addition to many accounts of failure found in the "grey literature". It is unclear at this point whether this reflects an (unknown) critical experimental factor or hints at data misinterpretation, possibly even at outright fabrication of results.
Collapse
Affiliation(s)
- Bertrand Jordan
- UMR 7268 ADÉS, Aix-Marseille, Université/EFS/CNRS, Espace éthique méditerranéen, hôpital d'adultes la Timone, 264, rue Saint-Pierre, 13385 Marseille Cedex 05, France ; CoReBio PACA, case 901, parc scientifique de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
46
|
May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells. Cells 2017; 6:cells6010005. [PMID: 28178187 PMCID: PMC5371870 DOI: 10.3390/cells6010005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022] Open
Abstract
In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.
Collapse
|
47
|
|