1
|
Chen H, Liu L, Wang Y, Hong L, Pan J, Yu X, Dai H. Managing Cardiovascular Risk in Patients with Autoimmune Diseases: Insights from a Nutritional Perspective. Curr Nutr Rep 2024; 13:718-728. [PMID: 39078574 DOI: 10.1007/s13668-024-00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW Autoimmune diseases manifest as an immune system response directed against endogenous antigens, exerting a significant influence on a substantial portion of the population. Notably, a leading contributor to morbidity and mortality in this context is cardiovascular disease (CVD). Intriguingly, individuals with autoimmune disorders exhibit a heightened prevalence of CVD compared to the general population. The meticulous management of CV risk factors assumes paramount importance, given the current absence of a standardized solution to this perplexity. This review endeavors to address this challenge from a nutritional perspective. RECENT FINDINGS Emerging evidence suggests that inflammation, a common thread in autoimmune diseases, also plays a pivotal role in the pathogenesis of CVD. Nutritional interventions aimed at reducing inflammation have shown promise in mitigating cardiovascular risk. The integration of nutritional strategies into the management plans for patients with autoimmune diseases offers a holistic approach to reducing cardiovascular risk. While conventional pharmacological treatments remain foundational, the addition of targeted dietary interventions can provide a complementary pathway to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Lu Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Yi Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Liqiong Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Jiahui Pan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Xiongkai Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Zhang Y, Mu C, Yu K, Su Y, Zoetendal EG, Zhu W. Fructo-oligosaccharides promote butyrate production over citrus pectin during in vitro fermentation by colonic inoculum from pig. Anaerobe 2024; 90:102919. [PMID: 39393609 DOI: 10.1016/j.anaerobe.2024.102919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES Fructo-oligosaccharide (FOS) and citrus pectin (CP) are soluble fibers with different chemical composition. However, their fermentation pattern in large intestine remains unclear. METHODS An in vitro batch fermentation using colonic digesta from pigs as inoculum was employed to investigate the fermentation dynamics of FOS and CP. The monosaccharides and SCFAs contents were assayed by high-performance liquid chromatography and gas chromatography, respectively. And the microbiota community was assessed by 16S rRNA gene high-throughput sequencing. RESULTS Both FOS and CP were degarded after 6 h, especially to a neglected level in FOS. FOS group showed higher abundances of butyrate-producing bacteria such as Eubacterium rectale, Roseburia faecis and Coprococcus comes and butyrate compared to CP. CP stimulated the growth of pectinolytic microbes Lachnospira pectinoschiza, succinate-producing bacteria Succinivibrio dextrinosolvens, succinate-utilizing bacteria Phascolarctobacterium succinatutens and the production of acetate and propionate compared to FOS. Moreover, the relative abundances of key enzymes (e.g. butyrate kinase) involving in butyrate formation via the butyrate kinase route were upregulated in the FOS group. And the key enzymes (e.g. acetyl-CoA synthetase) associated with propionate production through the succinate pathway were upregulated in the CP group. CONCLUSIONS FOS was preferred to ferment by butyrate-producing bacteria to yield a higher level of butyrate via the butyrate kinase pathway, while CP enhanced the cross-feeding of succinate-producing and succinate-utilizing bacteria to form propionate through the succinate pathway. These findings deepen our understanding on the fermentation characteristics of the soluble fibers, and also provide guidelines for fiber choice in precisely modulating the microbial composition and metabolism in large intestine.
Collapse
Affiliation(s)
- Yanan Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erwin G Zoetendal
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Garicano Vilar E, López Oliva S, Penadés BF, Sánchez Niño GM, Terrén Lora A, Sanz Rojo S, Mauro Martín IS. Mediterranean Diet Effect on the Intestinal Microbiota, Symptoms, and Markers in Patients with Functional Gastrointestinal Disorders. Microorganisms 2024; 12:1969. [PMID: 39458278 PMCID: PMC11509143 DOI: 10.3390/microorganisms12101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
The Mediterranean diet (MD) has beneficial effects on the intestinal microbiota by the promotion of bacteria associated with a healthy gut. However, its impact on intestinal fungi, among others, is still unknown, and how it affects digestive symptoms and different biomarkers in patients with gastrointestinal (GI) disorders has hardly been explored. The present study evaluated the effect of the MD on gut microbial diversity and structure and intestinal symptoms and biomarkers after 6 weeks of dietary intervention in 46 patients with GI disorders. Dysbiosis in fungal composition and diversity was observed, with a significantly lower abundance of Sordariomycetes, Leotiomycetes, and Orbiliomycetes; a significantly higher abundance of Saccharomycetes; the Chytridiomycota and Mucoromycota phyla were significantly reduced; and the bacterial microbiota remained unchanged. In addition, various GI disorders decreased and associations between stool consistency and intestinal permeability were found with the bacterial genera Alistipes and Roseburia. Thus, the data suggest that MD can alter the fungal intestinal microbiota and improve GI disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ismael San Mauro Martín
- Research Centers in Nutrition and Health (CINUSA Group), Paseo de la Habana 43, 28036 Madrid, Spain; (E.G.V.); (S.L.O.); (B.F.P.); (G.M.S.N.); (A.T.L.); (S.S.R.)
| |
Collapse
|
4
|
Du Y, Wang M, Wang Y, Dou Y, Yan Y, Fan H, Fan N, Yang X, Ma X. The association between dietary quality, sleep duration, and depression symptoms in the general population: findings from cross-sectional NHANES study. BMC Public Health 2024; 24:2588. [PMID: 39334125 PMCID: PMC11430085 DOI: 10.1186/s12889-024-20093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Unhealthy lifestyles, which include unhealthy diet and unhealthy sleep duration, have been widely recognized as modifiable risk factors for depressive symptoms. This study aims to explore the associations between dietary quality, sleep duration, and depression symptoms, as well as their combined effects. METHODS The NHANES 2007 to 2014 cycles provided the data for this study, in which 19,134 adults aged 20 years and older were included. Unhealthy diet, measured using an average Healthy Eating Index (HEI)-2015 score below the 60th percentile, and unhealthy sleep duration, measured as sleep duration at night less than 7 h or greater than/equal to 9 h, were the primary exposures. Then participants were divided into four different lifestyles. A weighted-multivariable logistic regression was employed, controlling for relevant variables. Furthermore, stratified analyses were conducted to assess the robustness of the findings and identify potential high-risk groups. RESULTS The overall prevalence of depressive symptoms among all participants was 8.44%. Among the participants, 56.58% met the criteria for healthy sleep duration, and 24.83% scored at or above the 60th percentile on the HEI-2015. Unhealthy diet (OR: 1.40, 95% CI: 1.18-1.67, p < 0.001) and unhealthy sleep duration (OR: 1.94, 95% CI: 1.63-2.31, p < 0.001) exhibited positive associations with depression symptoms. Individuals who maintained an unhealthy diet but healthy sleep duration (OR: 1.60, 95% CI: 1.20-2.13, p = 0.002), healthy diet but unhealthy sleep duration (OR: 2.50, 95% CI: 1.64-3.80, p < 0.001), or an unhealthy diet and unhealthy sleep duration (OR: 2.91, 95% CI: 2.16-3.92, p < 0.001) were significantly associated with depressive symptoms compared to those with a healthy diet and healthy sleep duration, respectively. In stratified analyses, females, middle-aged individuals, those with a college degree or higher education, and individuals who do not meet the recommended level of physical activity exhibit heightened susceptibility to depressive symptoms when exposed to unhealthy diet and unhealthy sleep duration. CONCLUSION In summary, our study suggests that individuals affected by the individual and synergistic effect of an unhealthy diet and unhealthy sleep duration are more susceptible to experiencing depressive symptoms.
Collapse
Affiliation(s)
- Yue Du
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Min Wang
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yu Wang
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yikai Dou
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yushun Yan
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huanhuan Fan
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ningdan Fan
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiao Yang
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Xiaohong Ma
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Ravikrishnan A, Wijaya I, Png E, Chng KR, Ho EXP, Ng AHQ, Mohamed Naim AN, Gounot JS, Guan SP, Hanqing JL, Guan L, Li C, Koh JY, de Sessions PF, Koh WP, Feng L, Ng TP, Larbi A, Maier AB, Kennedy BK, Nagarajan N. Gut metagenomes of Asian octogenarians reveal metabolic potential expansion and distinct microbial species associated with aging phenotypes. Nat Commun 2024; 15:7751. [PMID: 39237540 PMCID: PMC11377447 DOI: 10.1038/s41467-024-52097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
While rapid demographic changes in Asia are driving the incidence of chronic aging-related diseases, the limited availability of high-quality in vivo data hampers our ability to understand complex multi-factorial contributions, including gut microbial, to healthy aging. Leveraging a well-phenotyped cohort of community-living octogenarians in Singapore, we used deep shotgun-metagenomic sequencing for high-resolution taxonomic and functional characterization of their gut microbiomes (n = 234). Joint species-level analysis with other Asian cohorts identified distinct age-associated shifts characterized by reduction in microbial richness, and specific Alistipes and Bacteroides species enrichment (e.g., Alistipes shahii and Bacteroides xylanisolvens). Functional analysis confirmed these changes correspond to metabolic potential expansion in aging towards alternate pathways synthesizing and utilizing amino-acid precursors, vis-à-vis dominant microbial guilds producing butyrate in gut from pyruvate (e.g., Faecalibacterium prausnitzii, Roseburia inulinivorans). Extending these observations to key clinical markers helped identify >10 robust microbial associations to inflammation, cardiometabolic and liver health, including potential probiotic species (e.g., Parabacteroides goldsteinii) and pathobionts (e.g., Klebsiella pneumoniae), highlighting the microbiome's role as biomarkers and potential targets for promoting healthy aging.
Collapse
Affiliation(s)
- Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Indrik Wijaya
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eileen Png
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Kern Rei Chng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eliza Xin Pei Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Amanda Hui Qi Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Ahmad Nazri Mohamed Naim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jean-Sebastien Gounot
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Shou Ping Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jasinda Lee Hanqing
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Lihuan Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Chenhao Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jia Yu Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Paola Florez de Sessions
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Woon-Puay Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Brenner Centre for Molecular Medicine, Singapore, 117609, Republic of Singapore
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Tze Pin Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Anis Larbi
- Singapore Immunology Network (SigN), Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Andrea B Maier
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
6
|
Olejnik P, Buczma K, Cudnoch-Jędrzejewska A, Kasarełło K. Involvement of gut microbiota in multiple sclerosis-review of a new pathophysiological hypothesis and potential treatment target. Immunol Res 2024; 72:554-565. [PMID: 38446328 DOI: 10.1007/s12026-024-09471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that leads to demyelination and damage to the central nervous system. It is well known, the significance of the involvement and influence of the immune system in the development and course of MS. Nowadays, more and more studies are demonstrating that an important factor that affects the action of the immune system is the gut microbiota. Changes in the composition and interrelationships in the gut microbiota have a significant impact on the course of MS. Dysbiosis affects the disease course mainly by influencing the immune system directly but also by modifying the secreted metabolites and increasing mucosal permeability. The essential metabolites affecting the course of MS are short-chain fatty acids, which alter pro- and anti-inflammatory responses in the immune system but also increase the permeability of the intestinal wall and the blood-brain barrier. Dietary modification alone can have a significant impact on MS. Based on these interactions, new treatments for MS are being developed, including probiotics administration, supplementation of bacterial metabolites, fecal microbiota transplantation, and dietary changes. Further studies may serve to develop new drugs and therapeutic approaches for MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
7
|
Zhang P, Wang Y, Xie X, Gao Y, Zhang Y. Dietary inflammatory index is associated with severe depression in older adults with stroke: a cross-sectional study. Br J Nutr 2024; 132:162-168. [PMID: 38679919 DOI: 10.1017/s0007114524000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Inflammation is involved in the pathogenesis of stroke and depression. We aimed to investigate the association between the dietary inflammatory index (DII) and depression in American adults with stroke. Adults with stroke were enrolled in the National Health and Nutrition Examination Survey between 2005 and 2018 in the USA. The DII was obtained from a 24-h dietary recall interview for each individual. Multivariate regression and restricted cubic spline analyses were conducted to evaluate the association between DII and depression in adults with stroke. The mean age of the 1239 participants was 63·85 years (50·20 % women), and the prevalence of depression was 18·26 %. DII showed a linear and positive association with severe depression in adults with stroke (OR 1·359; 95 % CI 1·021, 1·810; P for non-linearity = 0·493). Compared with those in the lowest tertile of the DII, adults with stroke in the third tertile of the DII had a 3·222-fold higher risk of severe depression (OR 3·222; 95 % CI 1·150, 9·026). In the stratified analyses, the association between DII score and severe depression was more significant in older adults (P for interaction = 0·010) but NS with respect to sex (P for interaction = 0·184) or smoking status (P for interaction = 0·396). No significant association was found between DII and moderate-to-moderately severe depression in adults with stroke. In conclusion, an increase in DII score was associated with a higher likelihood of severe depression in older adults with stroke.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yubin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xia Xie
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuan Gao
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yurong Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
8
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Boven L, Akkerman R, de Vos P. Sustainable diets with plant-based proteins require considerations for prevention of proteolytic fermentation. Crit Rev Food Sci Nutr 2024:1-11. [PMID: 38950600 DOI: 10.1080/10408398.2024.2352523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The human diet requires a more plant-based approach due to the exhaustive effects animal-based foods have on the environment. However, plant-based proteins generally miss a few or have a lower variety in essential amino acids and are more difficult to digest. Subsequently they might be prone to fermentation by the microbiome in the proximal colon. Proteolytic fermentation can induce microbial-metabolites with beneficial and negative health effects. We review current insight into how balances in saccharolytic and proteolytic fermentation can be maintained when the diet consists predominantly of plant-based proteins. Some proteolytic fermentation metabolites may negatively impact balances in gut microbiota composition in the large intestine and influence immunity. However, proteolytic fermentation can potentially be prevented in the proximal colon toward more saccharolytic fermentation through the addition of non-digestible carbohydrates in the diet. Knowledge on this combination of plant-based proteins and non-digestible carbohydrates on colonic- and general health is limited. Current data suggest that transitioning toward a more plant-based protein diet should be accompanied with a consumption of increased quantities and more complex structures of carbohydrates or by application of technological strategies to enhances digestibility. This can reduce or prevent proteolytic fermentation which might consequently improve human health.
Collapse
Affiliation(s)
- Lidwien Boven
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Renate Akkerman
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Hansen ZA, Schilmiller AL, Guzior DV, Rudrik JT, Quinn RA, Vasco KA, Manning SD. Shifts in the functional capacity and metabolite composition of the gut microbiome during recovery from enteric infection. Front Cell Infect Microbiol 2024; 14:1359576. [PMID: 38779558 PMCID: PMC11109446 DOI: 10.3389/fcimb.2024.1359576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
While enteric pathogens have been widely studied for their roles in causing foodborne infection, their impacts on the gut microbial community have yet to be fully characterized. Previous work has identified notable changes in the gut microbiome related to pathogen invasion, both taxonomically and genetically. Characterization of the metabolic landscape during and after enteric infection, however, has not been explored. Consequently, we investigated the metabolome of paired stools recovered from 60 patients (cases) during and after recovery from enteric bacterial infections (follow-ups). Shotgun metagenomics was applied to predict functional microbial pathways combined with untargeted metametabolomics classified by Liquid Chromatography Mass Spectrometry. Notably, cases had a greater overall metabolic capacity with significantly higher pathway richness and evenness relative to the follow-ups (p<0.05). Metabolic pathways related to central carbon metabolism, amino acid metabolism, and lipid and fatty acid biosynthesis were more highly represented in cases and distinct signatures for menaquinone production were detected. By contrast, the follow-up samples had a more diverse metabolic landscape with enhanced richness of polar metabolites (p<0.0001) and significantly greater richness, evenness, and overall diversity of nonpolar metabolites (p<0.0001). Although many metabolites could not be annotated with existing databases, a marked increase in certain clusters of metabolites was observed in the follow-up samples when compared to the case samples and vice versa. These findings suggest the importance of key metabolites in gut health and recovery and enhance understanding of metabolic fluctuations during enteric infections.
Collapse
Affiliation(s)
- Zoe A. Hansen
- Department of Microbiology, Genetics, and Immunology, Michigan State University E., Lansing, MI, United States
| | - Anthony L. Schilmiller
- Research Technology Support Facility, Mass Spectrometry and Metabolomics Core, Michigan State University E., Lansing, MI, United States
| | - Douglas V. Guzior
- Department of Microbiology, Genetics, and Immunology, Michigan State University E., Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University E., Lansing, MI, United States
| | - James T. Rudrik
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, United States
| | - Robert A. Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University E., Lansing, MI, United States
| | - Karla A. Vasco
- Department of Microbiology, Genetics, and Immunology, Michigan State University E., Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology, Genetics, and Immunology, Michigan State University E., Lansing, MI, United States
| |
Collapse
|
11
|
Ravella S. Association between oral nutrition and inflammation after intestinal transplantation. Hum Immunol 2024; 85:110809. [PMID: 38724327 DOI: 10.1016/j.humimm.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Intestinal transplantation (Itx) can be a life-saving treatment for certain patient populations, including those patients with intestinal failure (IF) who develop life-threatening complications due to the use of parenteral nutrition (PN). Most patients who have undergone Itx are eventually able to tolerate a full oral diet. However, little guidance or consensus exists regarding optimizing the specific components of an oral diet for Itx patients, including macronutrients, micronutrients and dietary patterns. While oral dietary prescriptions have moved to the forefront of primary and preventive care, this movement has yet to occur across the field of organ transplantation. Evidence to date points to the role of systemic chronic inflammation (SCI) in a wide variety of chronic diseases as well as post-transplant graft dysfunction. This review will discuss current trends in oral nutrition for Itx patients and also offer novel insights into nutritional management techniques that may help to decrease SCI and chronic disease risk as well as optimize graft function.
Collapse
|
12
|
Ai Z, Liu S, Zhang J, Hu Y, Tang P, Cui L, Wang X, Zou H, Li X, Liu J, Nan B, Wang Y. Ginseng Glucosyl Oleanolate from Ginsenoside Ro, Exhibited Anti-Liver Cancer Activities via MAPKs and Gut Microbiota In Vitro/Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7845-7860. [PMID: 38501913 DOI: 10.1021/acs.jafc.3c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Ginseng is widely recognized for its diverse health benefits and serves as a functional food ingredient with global popularity. Ginsenosides with a broad range of pharmacological effects are the most crucial active ingredients in ginseng. This study aimed to derive ginseng glucosyl oleanolate (GGO) from ginsenoside Ro through enzymatic conversion and evaluate its impact on liver cancer in vitro and in vivo. GGO exhibited concentration-dependent HepG2 cell death and markedly inhibited cell proliferation via the MAPK signaling pathway. It also attenuated tumor growth in immunocompromised mice undergoing heterograft transplantation. Furthermore, GGO intervention caused a modulation of gut microbiota composition by specific bacterial populations, including Lactobacillus, Bacteroides, Clostridium, Enterococcus, etc., and ameliorated SCFA metabolism and colonic inflammation. These findings offer promising evidence for the potential use of GGO as a natural functional food ingredient in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Sitong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Junshun Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yue Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Ping Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Linlin Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xinzhu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Hongyang Zou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
Zhang X, Wang J, Zhang T, Li S, Liu J, Li M, Lu J, Zhang M, Chen H. Updated Progress on Polysaccharides with Anti-Diabetic Effects through the Regulation of Gut Microbiota: Sources, Mechanisms, and Structure-Activity Relationships. Pharmaceuticals (Basel) 2024; 17:456. [PMID: 38675416 PMCID: PMC11053653 DOI: 10.3390/ph17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China;
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
14
|
Salvesi C, Coman MM, Tomás-Barberán FA, Fiorini D, Silvi S. In vitro study of potential prebiotic properties of monovarietal extra virgin olive oils. Int J Food Sci Nutr 2024; 75:45-57. [PMID: 37845639 DOI: 10.1080/09637486.2023.2270639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Olive oil, essential ingredient of the Mediterranean diet, is attracting a growing interest due to increasing evidence on its beneficial effects on human health. This study investigated whether extra virgin olive oil (EVOO) possess prebiotic properties. Twenty different monovarietal EVOO samples from 5 Marche region cultivars (Italy) were studied. The prebiotic activity of EVOOs was assessed monitoring the selective stimulation of gut bacterial species and the short chain fatty acids (SCFAs) production, using an in vitro fermentation system. All EVOOs selectively stimulated Lactobacillus spp., with a stronger activity than that observed in the inulin fermentation (positive control). Also, the bifidobacteria population increased; this bifidogenic stimulation was of EVOOs from Raggia cultivar. SCFAs appeared significantly higher after 24 h in all EVOO fermentations than in the control. Acetic and propionic acids production was particularly stimulated. Overall, most of the investigated EVOOs had a potential prebiotic activity, similar or stronger than inulin.
Collapse
Affiliation(s)
- Chiara Salvesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | | | | | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, ChIP - Chemistry Interdisciplinary Project, University of Camerino, Camerino, Italy
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| |
Collapse
|
15
|
Movaghar R, Abbasalizadeh S, Vazifekhah S, Farshbaf-Khalili A, Shahnazi M. The effects of synbiotic supplementation on blood pressure and other maternal outcomes in pregnant mothers with mild preeclampsia: a triple-blinded randomized controlled trial. BMC Womens Health 2024; 24:80. [PMID: 38297273 PMCID: PMC10829212 DOI: 10.1186/s12905-024-02922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
INTRODUCTION Preeclampsia affects a significant percentage of pregnancies which is a leading cause of premature birth. Probiotics have the potential to affect inflammatory factors, and oxidative stress, which are linked to the development of preeclampsia. The study aimed to compare the effect of synbiotic and placebo on blood pressure and pregnancy duration as primary outcomes, and other pregnancy outcomes. METHODS This study comprised 128 pregnant women with mild preeclampsia and gestational ages exceeding 24 weeks who were referred to the high-risk pregnancy clinic. It was a randomized, controlled, phase III, triple-blinded clinical experiment. The intervention and control groups were distributed to the participants at random. Intervention group received one oral synbiotic capsule, and control group received placebo daily until delivery. Based on gestational age at the time of diagnosis, preeclampsia was stratificated as early (< 34 weeks) or late (≥ 34 weeks). Data obtained from questionnaires, and biochemical serum factors were analyzed using SPSS software version 23 software. RESULTS With the exception of the history of taking vitamin D3, there were no statistically significant variations in socio-demographic variables between the research groups. After the intervention, the means of systolic blood pressure (adjusted mean difference: -13.54, 95% CI: -5.01 to -22.07), and diastolic blood pressure (adjusted mean difference: -10.30, 95% CI: -4.70 to -15.90) were significantly lower in the synbiotic-supplemented group than in the placebo group. Compared to the placebo group, the incidence of severe PE (p < 0.001), proteinuria (p = 0.044), and mean serum creatinine level (p = 0.005) significantly declined in the synbiotic-supplemented group after the intervention. However, our analysis found no significant association for other outcomes. CONCLUSION Based on our results, synbiotic had beneficial effects on some pregnancy outcomes. Further studies with larger samples are needed to verify the advantages of synbiotic supplementation for high-risk pregnancies, particularly with regards to higher doses, and longer intervention periods. TRIAL REGISTRATION IRCT20110606006709N20.
Collapse
Affiliation(s)
- Rouhina Movaghar
- Department of Midwifery, Faculty of Midwifery, Mahabad Branch Azad University, Mahabad, Iran
| | - Shamci Abbasalizadeh
- Tabriz University of Medical Sciences, Women's Health Research Center, Tabriz, Iran
| | | | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| | - Mahnaz Shahnazi
- Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Vandenbempt V, Eski SE, Brahma MK, Li A, Negueruela J, Bruggeman Y, Demine S, Xiao P, Cardozo AK, Baeyens N, Martelotto LG, Singh SP, Mariño E, Gysemans C, Gurzov EN. HAMSAB diet ameliorates dysfunctional signaling in pancreatic islets in autoimmune diabetes. iScience 2024; 27:108694. [PMID: 38213620 PMCID: PMC10783594 DOI: 10.1016/j.isci.2023.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
An altered gut microbiota is associated with type 1 diabetes (T1D), affecting the production of short-chain fatty acids (SCFA) and glucose homeostasis. We previously demonstrated that enhancing serum acetate and butyrate using a dietary supplement (HAMSAB) improved glycemia in non-obese diabetic (NOD) mice and patients with established T1D. The effects of SCFA on immune-infiltrated islet cells remain to be clarified. Here, we performed single-cell RNA sequencing on islet cells from NOD mice fed an HAMSAB or control diet. HAMSAB induced a regulatory gene expression profile in pancreas-infiltrated immune cells. Moreover, HAMSAB maintained the expression of β-cell functional genes and decreased cellular stress. HAMSAB-fed mice showed preserved pancreatic endocrine cell identity, evaluated by decreased numbers of poly-hormonal cells. Finally, SCFA increased insulin levels in human β-like cells and improved transplantation outcome in NOD/SCID mice. Our findings support the use of metabolite-based diet as attractive approach to improve glucose control in T1D.
Collapse
Affiliation(s)
- Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Sema Elif Eski
- IRIBHM, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Manoja K. Brahma
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Ao Li
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Ylke Bruggeman
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Campus Gasthuisberg O&N 1, KU Leuven, 3000 Leuven, Belgium
| | - Stéphane Demine
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Peng Xiao
- Inflammatory and Cell Death Signaling in Diabetes group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Alessandra K. Cardozo
- Inflammatory and Cell Death Signaling in Diabetes group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Nicolas Baeyens
- Laboratoire de Physiologie et de Pharmacologie, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Luciano G. Martelotto
- Single Cell and Spatial-Omics Laboratory, Adelaide Centre of Epigenetics, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Eliana Mariño
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, VIC 3800, Australia
- ImmunoBiota Therapeutics Pty Ltd, Melbourne, VIC 3187, Australia
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Campus Gasthuisberg O&N 1, KU Leuven, 3000 Leuven, Belgium
| | - Esteban N. Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
17
|
Belà B, Coman MM, Verdenelli MC, Gramenzi A, Pignataro G, Fiorini D, Silvi S. In Vitro Assessment of Postbiotic and Probiotic Commercial Dietary Supplements Recommended for Counteracting Intestinal Dysbiosis in Dogs. Vet Sci 2024; 11:19. [PMID: 38250925 PMCID: PMC10819328 DOI: 10.3390/vetsci11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Many environmental aspects influence the preservation of a beneficial microbiome in dogs, and gut dysbiosis occurs when imbalances in the intestinal ecosystem cause functional changes in the microbial populations. The authors evaluated the effects of two specific commercial dietary supplements: a combination of a postbiotic and prebiotics (Microbiotal cane®) and a probiotic product (NBF 1®) recommended for counteracting intestinal dysbiosis in dogs, on the gut canine microbiota composition and its metabolic activities (production of short-chain fatty acids). The investigation was performed using an in vitro fermentation system inoculated with dog fecal samples. Microbiotal cane® promoted a more immediate increase in Lactobacillus spp. after the first 6 h of fermentation, whereas NBF 1® promoted the increase at the end of the process only. The two supplements supported an increase in the Bifidobacterium spp. counts only after 24 h. The in vitro abilities of Microbiotal cane® and NBF 1® to increase selectively beneficial bacterial groups producing acetic, propionic, and butyric acids suggest a possible positive effect on the canine gut microbiota, even if further in vivo studies are needed to confirm the beneficial effects on the intestinal health.
Collapse
Affiliation(s)
- Benedetta Belà
- Department of Science of Veterinary Medicine Science, Public Health and Animal Wellness, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (B.B.); (A.G.); (G.P.)
| | - Maria Magdalena Coman
- Synbiotec Srl spin-off di UNICAM, Via Gentile III da Varano, 62032 Camerino, Italy; (M.M.C.); (M.C.V.)
| | - Maria Cristina Verdenelli
- Synbiotec Srl spin-off di UNICAM, Via Gentile III da Varano, 62032 Camerino, Italy; (M.M.C.); (M.C.V.)
| | - Alessandro Gramenzi
- Department of Science of Veterinary Medicine Science, Public Health and Animal Wellness, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (B.B.); (A.G.); (G.P.)
| | - Giulia Pignataro
- Department of Science of Veterinary Medicine Science, Public Health and Animal Wellness, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (B.B.); (A.G.); (G.P.)
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy;
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
18
|
Wang Y, Chen C, Yan W, Fu Y. Epigenetic modification of m 6A methylation: Regulatory factors, functions and mechanism in inflammatory bowel disease. Int J Biochem Cell Biol 2024; 166:106502. [PMID: 38030117 DOI: 10.1016/j.biocel.2023.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Although the exact cause of inflammatory bowel disease (IBD) is still unknown, there is a lot of evidence to support the notion that it results from a combination of environmental factors, immune system issues, gut microbial changes, and genetic susceptibility. In recent years, the role of epigenetics in the pathogenesis of IBD has drawn increasing attention. The regulation of IBD-related immunity, the preservation of the intestinal epithelial barrier, and autophagy are all significantly influenced by epigenetic factors. The most extensive epigenetic methylation modification of mammalian mRNA among them is N6-methyladenosine (m6A). It summarizes the general structure and function of the m6A regulating factors, as well as their complex effects on IBD by regulating the intestinal mucous barrier, intestine mucosal immunity, epidermal cell death, and intestinal microorganisms.This paper provides key insights for the future identification of potential new targets for the diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Wiefels MD, Furar E, Eshraghi RS, Mittal J, Memis I, Moosa M, Mittal R, Eshraghi AA. Targeting Gut Dysbiosis and Microbiome Metabolites for the Development of Therapeutic Modalities for Neurological Disorders. Curr Neuropharmacol 2024; 22:123-139. [PMID: 36200211 PMCID: PMC10716879 DOI: 10.2174/1570159x20666221003085508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The gut microbiota, composed of numerous species of microbes, works in synergy with the various organ systems in the body to bolster our overall health and well-being. The most well-known function of the gut microbiome is to facilitate the metabolism and absorption of crucial nutrients, such as complex carbohydrates, while also generating vitamins. In addition, the gut microbiome plays a crucial role in regulating the functioning of the central nervous system (CNS). Host genetics, including specific genes and single nucleotide polymorphisms (SNPs), have been implicated in the pathophysiology of neurological disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and autism spectrum disorder (ASD). The gut microbiome dysbiosis also plays a role in the pathogenesis of these neurodegenerative disorders, thus perturbing the gut-brain axis. Overproduction of certain metabolites synthesized by the gut microbiome, such as short-chain fatty acids (SCFAs) and p-cresyl sulfate, are known to interfere with microglial function and trigger misfolding of alpha-synuclein protein, which can build up inside neurons and cause damage. By determining the association of the gut microbiome and its metabolites with various diseases, such as neurological disorders, future research will pave the way for the development of effective preventive and treatment modalities.
Collapse
Affiliation(s)
- Matthew D Wiefels
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Emily Furar
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rebecca S Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Idil Memis
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Moeed Moosa
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Adrien A Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
20
|
Li H, Wang K, Hao M, Liu Y, Liang X, Yuan D, Ding L. The role of intestinal microecology in inflammatory bowel disease and colorectal cancer: A review. Medicine (Baltimore) 2023; 102:e36590. [PMID: 38134100 PMCID: PMC10735145 DOI: 10.1097/md.0000000000036590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Intestinal microecology is a dominant and complex microecological system in human body. Generally, intestinal microecosystem consists of normal symbiotic flora and its living environment (including intestinal epithelial tissue and intestinal mucosal immune system). Commensal flora is the core component of microecology. Both structures of intestinal mucosa and functions of immune system are essential to maintain homeostasis of intestinal microecosystem. Under normal conditions, intestinal microorganisms and intestinal mucosa coordinate with each other to promote host immunity. When certain factors in the intestine are altered, such as disruption of the intestinal barrier causing dysbiosis of the intestinal flora, the immune system of the host intestinal mucosa makes a series of responses, which leads to the development of intestinal inflammation and promotes colorectal cancer. In this review, to further understand the relationship between intestinal microecology and intestinal diseases, we systematically elaborate the composition of the intestinal mucosal immune system, analyze the relationship between intestinal flora and mucosal immune system, and the role of intestinal flora on intestinal inflammatory diseases and colorectal cancer.
Collapse
Affiliation(s)
- Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Dajin Yuan
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
21
|
Janetos TM, Zakaria N, Goldstein DA. The Microbiome and Uveitis: A Narrative Review. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1638-1647. [PMID: 37024044 DOI: 10.1016/j.ajpath.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
The human intestinal microbiome is composed of hundreds of species and has recently been recognized as an important source of immune homeostasis. While dysbiosis, an altered microbiome from the normal core microbiome, has been associated with both intestinal and extraintestinal autoimmune disorders, including uveitis, causality has been difficult to establish. There are four proposed mechanisms of how the gut microbiome may influence the development of uveitis: molecular mimicry, imbalance of regulatory and effector T cells, increased intestinal permeability, and loss of intestinal metabolites. This review summarizes current literature on both animal and human studies that establish the link between dysbiosis and the development of uveitis, as well as provides evidence for the above mechanisms. Current studies provide valuable mechanistic insights as well as identify potential therapeutic targets. However, study limitations and the wide variability in the intestinal microbiome among populations and diseases make a specific targeted therapy difficult to establish. Further longitudinal clinical studies are required to identify any potential therapeutic that targets the intestinal microbiome.
Collapse
Affiliation(s)
- Timothy M Janetos
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Nancy Zakaria
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Ophthalmology, Faculty of Medicine, Alexandria University, Alexandria, Arab Republic of Egypt
| | - Debra A Goldstein
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
22
|
Xie Y, Xu D, Yan S, Hu X, Chen S, Guo K, Wang J, Chen Q, Guan W. The impact of MIF deficiency on alterations of fecal microbiota in C57BL/6 mice induced by Trichinella spiralis infection. FASEB J 2023; 37:e23202. [PMID: 37732633 DOI: 10.1096/fj.202300179rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Trichinellosis caused by Trichinella spiralis (T. spiralis) is a major food-borne parasitic zoonosis worldwide. Prevention of trichinellosis is an effective strategy to improve patient quality of life. Macrophage migration inhibitory factor (MIF) is closely related to the occurrence and development of several parasitic diseases. Studying the impact of MIF deficiency (Mif-/- ) on the alterations in host fecal microbiota due to T. spiralis infection may contribute to proposing a novel dual therapeutic approach for trichinellosis. To reveal the diversity and differences in fecal microbial composition, feces were collected from T. spiralis-uninfected and T. spiralis-infected wild-type (WT) and MIF knockout (KO) C57BL/6 mice at 0, 7, 14, and 35 days post-infection (dpi), and the samples were sent for 16S rRNA amplicon sequencing on the Illumina NovaSeq platform. Flow cytometry was used to determine the expression levels of IFN-γ and IL-4 in the CD4+ /CD8+ T-cell sets of mouse spleens. The results showed that operational taxonomic unit (OTU) clustering, relative abundance of microbial composition, alpha diversity, and beta diversity exhibited significant changes among the eight groups. The LEfSe analysis selected several potential biomarkers at the genus or species level, including Akkermansia muciniphila, Lactobacillus murinus, Coprococcus catus, Firmicutes bacterium M10_2, Parabacteroides sp. CT06, and Bacteroides between the KTs and WTs groups. The predicted bacterial functions of the fecal microbiota were mainly involved in metabolism, such as the metabolism of carbohydrates, amino acids, energy, cofactors, vitamins, nucleotides, glycans, and lipids. Flow cytometry revealed an increased CD3+ CD8- /CD3+ CD8+ T-cell ratio and increased IFN-γ and IL-4 levels in CD3+ CD8- T-cell sets from WT and MIF KO mice at 7 dpi. The results indicated that both MIF KO and infection time have a significant influence on the CD3+ CD8- IFN-γ+ and CD3+ CD8- IL-4+ response in mice after T. spiralis. In conclusion, this research showed alterations of the fecal microbiota and immune response in both WT and MIF KO mice before and after T. spiralis infection. These results revealed a potential role of MIF in regulating the pathogenesis of trichinellosis related to the intestinal microbiota. Importantly, the selected potential biomarkers combined with MIF will also offer a novel therapeutic approach to treat trichinellosis in the future.
Collapse
Affiliation(s)
- Yiting Xie
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Siyi Yan
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Xinyi Hu
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Sirui Chen
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Kun Guo
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Jue Wang
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Qinghai Chen
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei Guan
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
23
|
Duan Y, Huang J, Sun M, Jiang Y, Wang S, Wang L, Yu N, Peng D, Wang Y, Chen W, Zhang Y. Poria cocos polysaccharide improves intestinal barrier function and maintains intestinal homeostasis in mice. Int J Biol Macromol 2023; 249:125953. [PMID: 37517750 DOI: 10.1016/j.ijbiomac.2023.125953] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
The function of the intestinal tract is critical to human health. Poria cocos is a widely used functional edible fungus in Asia and has been reported to modulate gastrointestinal function. However, the effects of polysaccharides, the main active constituents of Poria cocos, on the intestinal tract remains unclear and is the focus of the study. Poria cocos polysaccharides (PCP) were extracted, characterized, and administered to mice by gavage. The results show that PCP used in this study has a typical polysaccharide peak with a molecular weight of 11.583 kDa and is composed primarily of mannose, D-glucosamine hydrochloride, glucose, galactose, and fucose with a molar ratio of 15.308: 0.967: 28.723: 31.631: 23.371. The methylation results suggest that the PCP backbone may be t-Gal(p), 6-Gal(p) and 2,6-Gal(p). The effects of PCP on the mucosal barrier function of the mouse intestine (duodenum, jejunum, and ileum) were examined in terms of intestinal physiological status, physical barrier, biochemical barrier, immune barrier, and microbial barrier. The results showed that PCP significantly improved the physiological state of mouse intestine. Moreover, PCP strengthened the intestinal physical barrier by upregulating the expression of intestinal Occludin and ZO-1 and downregulating the levels of serum endotoxin, DAO, D-lactate, and intestinal MPO. Regarding biochemical barrier, PCP could upregulate the expression of MUC2, β-defensin, and SIgA in intestinal tissues. In addition, PCP modulated the immune barrier by increasing IL-2, IL-4, IL-6, IL-10, TGF-β, and IFN-γ expression. Besides, PCP increased the level of SCFAs in small intestinal contents. PCP modulates intestinal barrier function by altering the microbial composition of the gut. We also found that PCP could maintain intestinal barrier function by increasing the expression of Wnt/β-Catenin and Lrp5 proteins. Generally, our findings suggested that PCP may be used as a functional food to regulate intestinal mucosal function, thereby enhancing the health of the intestinal and host.
Collapse
Affiliation(s)
- Yuting Duan
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Jiajing Huang
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Mingjie Sun
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Yuehang Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Shihan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Institute of Traditional Chinese Medicine Resources Protection and Development, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, China.
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Institute of Traditional Chinese Medicine Resources Protection and Development, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, China.
| | - Yue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, China.
| |
Collapse
|
24
|
Rojas CA, Entrolezo Z, Jarett JK, Jospin G, Kingsbury DD, Martin A, Eisen JA, Ganz HH. Microbiome Responses to Fecal Microbiota Transplantation in Cats with Chronic Digestive Issues. Vet Sci 2023; 10:561. [PMID: 37756083 PMCID: PMC10537086 DOI: 10.3390/vetsci10090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
There is growing interest in the application of fecal microbiota transplants (FMTs) in small animal medicine, but there are few published studies that have tested their effects in the domestic cat (Felis catus). Here we use 16S rRNA gene sequencing to examine fecal microbiome changes in 46 domestic cats with chronic digestive issues that received FMTs using lyophilized stool that was delivered in oral capsules. Fecal samples were collected from FMT recipients before and two weeks after the end of the full course of 50 capsules, as well as from their stool donors (N = 10), and other healthy cats (N = 113). The fecal microbiomes of FMT recipients varied with host clinical signs and dry kibble consumption, and shifts in the relative abundances of Clostridium, Collinsella, Megamonas, Desulfovibrio and Escherichia were observed after FMT. Overall, donors shared 13% of their bacterial amplicon sequence variants (ASVs) with FMT recipients and the most commonly shared ASVs were classified as Prevotella 9, Peptoclostridium, Bacteroides, and Collinsella. Lastly, the fecal microbiomes of cats with diarrhea became more similar to the microbiomes of age-matched and diet-matched healthy cats compared to cats with constipation. Overall, our results suggest that microbiome responses to FMT may be modulated by the FMT recipient's initial presenting clinical signs, diet, and their donor's microbiome.
Collapse
Affiliation(s)
- Connie A. Rojas
- Genome Center, University of California, Davis, CA 95616, USA; (C.A.R.); (J.A.E.)
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Zhandra Entrolezo
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Jessica K. Jarett
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Guillaume Jospin
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Dawn D. Kingsbury
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Alex Martin
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA 95616, USA; (C.A.R.); (J.A.E.)
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Holly H. Ganz
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| |
Collapse
|
25
|
Zhang Y, Li Y, Wang X, Huang J, Feng X, Shi C, Yang W, Jiang Y, Cao X, Wang J, Huang H, Zeng Y, Wang N, Yang G, Wang C. Lactobacillus Plantarum NC8 and its metabolite acetate alleviate type 1 diabetes via inhibiting NLRP3. Microb Pathog 2023; 182:106237. [PMID: 37422174 DOI: 10.1016/j.micpath.2023.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
A healthy organism is the result of host-microbiome co-evolution. Microbial metabolites can also stimulate immune cells to reduce intestinal inflammation and permeability. Gut dysbiosis will lead to a variety of autoimmune diseases, such as Type 1 diabetes (T1D). Most of probiotics, such as Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium bifidium, and Streptococcus thermophiles, can improve the intestinal flora structure of the host, reduce intestinal permeability, and relieve symptoms of T1D patients if ingested above probiotics in sufficient amounts. Lactobacillus Plantarum NC8, a kind of Lactobacillus, whether it has an effect on T1D, and the mechanism of it regulating T1D is still unclear. As a member of the inflammatory family, NLRP3 inflammasome can enhance inflammatory responses by promoting the production and secretion of proinflammatory cytokines. Many previous studies had shown that NLRP3 also plays an important role in the development of T1D. When the NLRP3 gene is deleted, the disease progression of T1D will be delayed. Therefore, this study investigated whether Lactobacillus Plantarum NC8 can alleviate T1D by regulating NLRP3. The results demonstrated that Lactobacillus Plantarum NC8 and its metabolites acetate play a role in T1D by co-modulating NLRP3. Lactobacillus Plantarum NC8 and acetate can reduce the damage of T1D in the model mice, even if orally administered them in the early stage of T1D. The number of Th1/Th17 cells in the spleen and pancreatic lymph nodes (PLNs) of T1D mice were significantly reduced by oral Lactobacillus Plantarum NC8 or acetate. The expression of NLRP3 in the pancreas of T1D mice or murine macrophages of inflammatory model were significantly inhibited by treatment with Lactobacillus Plantarum NC8 or acetate. In addition, the number of macrophages in the pancreas were significantly reduced by the treatment with Lactobacillus Plantarum NC8 or acetate. In summary, this study indicated that the regulatory mechanism of Lactobacillus Plantarum NC8 and its metabolite acetate to T1D maybe via inhibiting NLRP3 and provides a novel insights into the mechanism of the alleviated role of probiotics to T1D.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanning Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiuquan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jingshu Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xize Feng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
26
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
27
|
Zirilli A, Ruggeri RM, Barbalace MC, Hrelia S, Giovanella L, Campennì A, Cannavò S, Alibrandi A. The Influence of Food Regimes on Oxidative Stress: A Permutation-Based Approach Using the NPC Test. Healthcare (Basel) 2023; 11:2263. [PMID: 37628461 PMCID: PMC10454221 DOI: 10.3390/healthcare11162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: This paper aims to assess the existence of significant differences between two dietary regimes (omnivorous vs. semi-vegetarian) with reference to some oxidative stress markers (SOD, GPx, TRxR, GR, AGEs, and AOPPs) using non-parametric combination methodology based on a permutation test. (2) Methods: At the endocrinology unit of Messina University Hospital, two hundred subjects were asked to fill out a questionnaire about their dietary habits. None were under any pharmacological treatment. Using the NPC test, all comparisons were performed stratifying patients according to gender, age (≤40 or >40 years), BMI (normal weight vs. overweight), physical activity (sedentary vs. active lifestyle), TSH, FT4 levels in quartiles, and diagnosis of Hashimoto's thyroiditis. We evaluated differences in oxidative stress parameters in relation to two examined dietary regimes (omnivorous vs. semi-vegetarian). (3) Results: The antioxidant parameters GPx and TRxR were significantly lower in subjects with an omnivorous diet than in semi-vegetarians, particularly in females, both age groups, subjects with normal weight, those not affected by Hashimoto's thyroiditis, and both the sedentary and active lifestyle groups. Finally, the AGE and AOPP markers were significantly lower in semi-vegetarians. (4) Conclusion: Thanks to the NPC methodology, we can state that dietary patterns exert a significant influence on some oxidative stress parameters.
Collapse
Affiliation(s)
- Agata Zirilli
- Department of Economics, University of Messina, 98122 Messina, Italy;
| | - Rosaria Maddalena Ruggeri
- Department of Human Pathology of Adults and Developmental Age “G. Barresi”, University of Messina, 98125 Messina, Italy; (R.M.R.); (S.C.)
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (M.C.B.); (S.H.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (M.C.B.); (S.H.)
| | - Luca Giovanella
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Clinic for Nuclear Medicine, University Hospital of Zürich, 8091 Zürich, Switzerland
| | - Alfredo Campennì
- Unit of Nuclear Medicine, Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy;
| | - Salvatore Cannavò
- Department of Human Pathology of Adults and Developmental Age “G. Barresi”, University of Messina, 98125 Messina, Italy; (R.M.R.); (S.C.)
| | - Angela Alibrandi
- Department of Economics, University of Messina, 98122 Messina, Italy;
| |
Collapse
|
28
|
Faas MM, Liu Y, Wekema L, Weis GA, van Loo-Bouwman CA, Silva Lagos L. The Effect of Antibiotics Treatment on the Maternal Immune Response and Gut Microbiome in Pregnant and Non-Pregnant Mice. Nutrients 2023; 15:2723. [PMID: 37375627 DOI: 10.3390/nu15122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The gut microbiota are involved in adaptations of the maternal immune response to pregnancy. We therefore hypothesized that inducing gut dysbiosis during pregnancy alters the maternal immune response. Thus, pregnant mice received antibiotics from day 9 to day 16 to disturb the maternal gut microbiome. Feces were collected before, during and after antibiotic treatment, and microbiota were measured using 16S RNA sequencing. Mice were sacrificed at day 18 of pregnancy and intestinal (Peyer's patches (PP) and mesenteric lymph nodes (MLN)) and peripheral immune responses (blood and spleen) were measured using flow cytometry. Antibiotic treatment decreased fetal and placental weight. The bacterial count and the Shannon index were significantly decreased (Friedman, followed by Dunn's test, p < 0.05) and the bacterial genera abundance was significantly changed (Permanova, p < 0.05) following antibiotics treatment as compared with before treatment. Splenic Th1 cells and activated blood monocytes were increased, while Th2, Th17 and FoxP3/RoRgT double-positive cells in the PP and MLNs were decreased in pregnant antibiotics-treated mice as compared with untreated pregnant mice. In addition, intestinal dendritic cell subsets were affected by antibiotics. Correlation of immune cells with bacterial genera showed various correlations between immune cells in the PP, MLN and peripheral circulation (blood and spleen). We conclude the disturbed gut microbiota after antibiotics treatment disturbed the maternal immune response. This disturbed maternal immune response may affect fetal and placental weight.
Collapse
Affiliation(s)
- Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Yuanrui Liu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Lieske Wekema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Gisela A Weis
- Yili Innovation Center Europe, Bronland 12 E-1, 6708 WH Wageningen, The Netherlands
| | | | - Luis Silva Lagos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
29
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
30
|
Zhang B, Xu K, Mi B, Liu H, Wang Y, Huo Y, Ma L, Liu D, Jing H, Liu J, Cao S, Dang S, Yan H. Maternal Dietary Inflammatory Potential and Offspring Birth Outcomes in a Chinese Population. J Nutr 2023; 153:1512-1523. [PMID: 37029046 DOI: 10.1016/j.tjnut.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Chronic inflammation perturbations during pregnancy may impact fetal growth; however, research on the association between dietary inflammation and birth outcomes is limited and inconsistent. OBJECTIVES This study seeks to assess whether the dietary inflammatory potential is related to birth outcomes among pregnant women in China. METHODS A total of 7194 mothers aged 17-46 y and their infants in China were included in this cross-sectional study. Dietary intake was assessed by a FFQ, which yielded scores on the energy-adjusted dietary inflammatory index (E-DII). Birth outcomes included birth weight, gestational age, birth weight z score, low birth weight (LBW), macrosomia, preterm birth, small-for-gestational-age (SGA), large-for-gestational-age (LGA), and birth defects. Generalized estimating equation and restricted cubic spline fit each outcome on continuous or quartiles of E-DII after adjusting for covariates. RESULTS The maternal E-DII ranged from -5.35 to 6.77. Overall, birth weight and gestation age (mean ± SD) were 3267.9 ± 446.7 g and 39.6 ± 1.3 wk, respectively, and the birth weight z score was 0.02 ± 1.14. A total of 3.2% of infants were born with LBW, 6.1% with macrosomia, 3.0% were preterm birth, 10.7% were born SGA, 10.0% were born LGA, and 2.0% were born with birth defects. E-DII was associated with a 9.8 g decrease in birth weight (95% CI: -16.9, -2.6) and a 1.09-fold (95% CI: 1.01, 1.18), 1.11-fold (95% CI: 1.02, 1.21), and 1.12-fold (95% CI: 1.02, 1.24) greater risk of LBW, preterm birth, and birth defects, respectively. The maternal E-DII score was nonlinearly associated with gestational age (P for linearity = 0.009, P for curvature = 0.044). CONCLUSIONS Among pregnant Chinese women, proinflammatory diets during pregnancy were related to reduced offspring birth weight and an increased risk of LBW, preterm birth, and birth defects. These findings might inform potential prevention strategies for pregnant women in China.
Collapse
|
31
|
Kalkan H, Pagano E, Paris D, Panza E, Cuozzo M, Moriello C, Piscitelli F, Abolghasemi A, Gazzerro E, Silvestri C, Capasso R, Motta A, Russo R, Di Marzo V, Iannotti FA. Targeting gut dysbiosis against inflammation and impaired autophagy in Duchenne muscular dystrophy. EMBO Mol Med 2023; 15:e16225. [PMID: 36594243 PMCID: PMC9994484 DOI: 10.15252/emmm.202216225] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Nothing is known about the potential implication of gut microbiota in skeletal muscle disorders. Here, we provide evidence that fecal microbiota composition along with circulating levels of short-chain fatty acids (SCFAs) and related metabolites are altered in the mdx mouse model of Duchenne muscular dystrophy (DMD) compared with healthy controls. Supplementation with sodium butyrate (NaB) in mdx mice rescued muscle strength and autophagy, and prevented inflammation associated with excessive endocannabinoid signaling at CB1 receptors to the same extent as deflazacort (DFZ), the standard palliative care for DMD. In LPS-stimulated C2C12 myoblasts, NaB reduces inflammation, promotes autophagy, and prevents dysregulation of microRNAs targeting the endocannabinoid CB1 receptor gene, in a manner depending on the activation of GPR109A and PPARγ receptors. In sum, we propose a novel disease-modifying approach in DMD that may have benefits also in other muscular dystrophies.
Collapse
Affiliation(s)
- Hilal Kalkan
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Ester Pagano
- Department of Pharmacy, University Federico II of Naples, Italy
| | - Debora Paris
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | | | | | - Claudia Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Armita Abolghasemi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut Sur la Nutrition et Les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Elisabetta Gazzerro
- Unit of Muscle Research, Experimental and Clinical Research Center Charité Universitätsmedizin and Max Delbrück Research Center, Berlin, Germany
| | - Cristoforo Silvestri
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut Sur la Nutrition et Les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Andrea Motta
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Roberto Russo
- Department of Pharmacy, University Federico II of Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut Sur la Nutrition et Les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| |
Collapse
|
32
|
Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol 2023; 256:e220111. [PMID: 36458804 PMCID: PMC9874984 DOI: 10.1530/joe-22-0111] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
The human body is inhabited by numerous bacteria, fungi, and viruses, and each part has a unique microbial community structure. The gastrointestinal tract harbors approximately 100 trillion strains comprising more than 1000 bacterial species that maintain symbiotic relationships with the host. The gut microbiota consists mainly of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Of these, Firmicutes and Bacteroidetes constitute 70-90% of the total abundance. Gut microbiota utilize nutrients ingested by the host, interact with other bacterial species, and help maintain healthy homeostasis in the host. In recent years, it has become increasingly clear that a breakdown of the microbial structure and its functions, known as dysbiosis, is associated with the development of allergies, autoimmune diseases, cancers, and arteriosclerosis, among others. Metabolic diseases, such as obesity and diabetes, also have a causal relationship with dysbiosis. The present review provides a brief overview of the general roles of the gut microbiota and their relationship with metabolic disorders.
Collapse
Affiliation(s)
- Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
33
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
34
|
The Effect of a Vegan Diet on the Cardiovascular System. J Cardiovasc Dev Dis 2023; 10:jcdd10030094. [PMID: 36975858 PMCID: PMC10052889 DOI: 10.3390/jcdd10030094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The vegan diet, often known as a plant-rich diet, consists primarily of plant-based meals. This dietary approach may be beneficial to one’s health and the environment and is valuable to the immune system. Plants provide vitamins, minerals, phytochemicals, and antioxidants, components that promote cell survival and immune function, allowing its defensive mechanisms to work effectively. The term “vegan diet” comprises a range of eating patterns that prioritize nutrient-rich foods such as fruits and vegetables, legumes, whole grains, nuts, and seeds. In comparison to omnivorous diets, which are often lower in such products, the vegan diet has been favorably connected with changes in cardiovascular disease (CVD) risk markers such as reduced body mass index (BMI) values, total serum cholesterol, serum glucose, inflammation, and blood pressure. Reduced intake of low-density lipoprotein (LDL), saturated fat, processed meat, and greater consumption of fiber and phytonutrients may improve cardiovascular health. However, vegans have much smaller amounts of nutrients such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), selenium, zinc, iodine, and vitamin B12, compared to non-vegans, which may lead to detrimental cardiovascular effects. This review aims to present the effect of plant-based diets (PBDs), specifically vegan diets, on the cardiovascular system.
Collapse
|
35
|
Zhao L, Sun Y, Liu Y, Yan Z, Peng W. A J-shaped association between Dietary Inflammatory Index (DII) and depression: A cross-sectional study from NHANES 2007-2018. J Affect Disord 2023; 323:257-263. [PMID: 36462606 DOI: 10.1016/j.jad.2022.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/31/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Growing evidence indicates that depression is more common in people who partake in a pro-inflammatory diet. The objective of our study was to assess the association between the Dietary Inflammatory Index (DII) and depression through a cross-sectional study of the National Health and Nutrition Examination Survey from 2007 to 2018. METHODS We used weighted multivariable logistic regression models with subgroup analysis to explore the relationship between DII and depression. Generalized additive models were used to test whether there was a nonlinear association. Then, we constructed a two-piece linear regression model and performed a recursive algorithm to calculate the inflection point. RESULTS The study enrolled a total of 30,627 individuals from the United States. In the regression model with full confounding variables adjusted, the OR (95 % CI) for the association between DII and depression was 1.05 (1.04, 1.06). A J-shaped association was found between DII and depression, with a turning point of 2.74. After the turning point, the OR (95 % CI) was 1.60 (1.51, 1.69). Only the interaction in the cardiovascular disease (CVD) analysis was statistically significant. CONCLUSION Our study highlighted a J-shaped association between DII and depression in a nationally representative sample of adults from the United States.
Collapse
Affiliation(s)
- Leiyong Zhao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyan Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaojun Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
36
|
Opetz DL, Oba PM, Kostiuk D, Kelly J, Swanson KS. Effects of weight loss and feeding specially formulated diets on the body composition, blood metabolite profiles, voluntary physical activity, and fecal metabolites and microbiota of overweight cats. J Anim Sci 2023; 101:skad332. [PMID: 37773637 PMCID: PMC10601921 DOI: 10.1093/jas/skad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Feline obesity is a common and preventable disease, posing a myriad of health risks and detriments. Specially formulated diets and restricted feeding may serve as an intervention strategy to promote weight loss and improve feline health. In this study, our objective was to determine the effects of restricted feeding and weight loss on body composition, voluntary physical activity, blood hormones and metabolites, and fecal microbiota of overweight cats. Twenty-two overweight adult spayed female and neutered male cats [body weight (BW) = 5.70 ± 1.0 kg; body condition score (BCS) = 7.68 ± 0.6; age = 4 ± 0.4 yr] were used in a weight loss study. A control diet (OR) was fed during a 4-wk baseline to identify intake needed to maintain BW. After baseline (week 0), cats were allotted to OR or a test diet (FT) and fed to lose ~1.0% BW/wk for 24 wk. At baseline and 6, 12, 18, and 24 wk after weight loss, dual-energy x-ray absorptiometry scans were performed and blood samples were collected. Voluntary physical activity was measured at weeks 0, 8, 16, and 24. Fecal samples were collected at weeks 0, 4, 8, 12, 16, 20, and 24. Change from baseline data were analyzed statistically using the Mixed Models procedure of SAS, with P < 0.05 considered significant. Restricted feeding of both diets led to weight and fat mass loss, lower BCS, and lower blood triglyceride and leptin concentrations. Cats fed the FT diet had a greater reduction in blood triglycerides and cholesterol than cats fed the OR diet. Restricted feeding and weight loss reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations. Fecal valerate concentrations were affected by diet, with cats fed the OR diet having a greater reduction than those fed the FT diet. Fecal bacterial alpha diversity was not affected, but fecal bacterial beta diversity analysis showed clustering by diet. Restricted feeding and weight loss affected relative abundances of 7 fecal bacterial genera, while dietary intervention affected change from baseline relative abundances of 2 fecal bacterial phyla and 20 fecal bacterial genera. Our data demonstrate that restricted feeding promoted controlled and safe weight and fat loss, reduced blood lipids and leptin concentrations, and shifted fecal metabolites and microbiota. Some changes were also impacted by diet, highlighting the importance of ingredient and nutrient composition in weight loss diets.
Collapse
Affiliation(s)
- Danielle L Opetz
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Darcia Kostiuk
- Champion Petfoods Holding, Inc., Edmonton, CanadaAB T5S 2W6
| | - Janelle Kelly
- Champion Petfoods Holding, Inc., Edmonton, CanadaAB T5S 2W6
| | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
37
|
Grootveld M, Page G, Bhogadia M, Hunwin K, Edgar M. Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part III: Implementations for the Diagnosis of Non-Cancerous Disorders, Both Oral and Systemic. Metabolites 2023; 13:metabo13010066. [PMID: 36676991 PMCID: PMC9864626 DOI: 10.3390/metabo13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
This communication represents Part III of our series of reports based on the applications of human saliva as a useful and conveniently collectable medium for the discovery, identification and monitoring of biomarkers, which are of some merit for the diagnosis of human diseases. Such biomarkers, or others reflecting the dysfunction of specific disease-associated metabolic pathways, may also be employed for the prognostic pathological tracking of these diseases. Part I of this series set the experimental and logistical groundwork for this report, and the preceding paper, Part II, featured the applications of newly developed metabolomics technologies to the diagnosis and severity grading of human cancer conditions, both oral and systemic. Clearly, there are many benefits, both scientific and economic, associated with the donation of human saliva samples (usually as whole mouth saliva) from humans consenting to and participating in investigations focused on the discovery of biomolecular markers of diseases. These include usually non-invasive collection protocols, relatively low cost when compared against blood sample collection, and no requirement for clinical supervision during collection episodes. This paper is centred on the employment and value of 'state-of-the-art' metabolomics technologies to the diagnosis and prognosis of a wide range of non-cancerous human diseases. Firstly, these include common oral diseases such as periodontal diseases (from type 1 (gingivitis) to type 4 (advanced periodontitis)), and dental caries. Secondly, a wide range of extra-oral (systemic) conditions are covered, most notably diabetes types 1 and 2, cardiovascular and neurological diseases, and Sjögren's syndrome, along with a series of viral infections, e.g., pharyngitis, influenza, HIV and COVID-19. Since the authors' major research interests lie in the area of the principles and applications of NMR-linked metabolomics techniques, many, but not all, of the studies reviewed were conducted using these technologies, with special attention being given to recommended protocols for their operation and management, for example, satisfactory experimental model designs; sample collection and laboratory processing techniques; the selection of sample-specific NMR pulse sequences for saliva analysis; and strategies available for the confirmation of resonance assignments for both endogenous and exogenous molecules in this biofluid. This article also features an original case study, which is focussed on the use of NMR-based salivary metabolomics techniques to provide some key biomarkers for the diagnosis of pharyngitis, and an example of how to 'police' such studies and to recognise participants who perceive that they actually have this disorder but do not from their metabolic profiles and multivariate analysis pattern-based clusterings. The biochemical and clinical significance of these multidimensional metabolomics investigations are discussed in detail.
Collapse
|
38
|
Yamaguchi T, Nomura A, Matsubara A, Hisada T, Tamada Y, Mikami T, Ishida M. Effect of gut microbial composition and diversity on major inhaled allergen sensitization and onset of allergic rhinitis. Allergol Int 2023; 72:135-142. [PMID: 35850746 DOI: 10.1016/j.alit.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Decreased gut microbiota diversity is associated with gut dysbiosis and causes various diseases, including allergic diseases. We investigated the relationship between gut microbial diversity and sensitization to major inhaled allergens. Furthermore, the relationship of allergic symptom onset with bacterial composition in sensitized individuals was investigated. METHODS This study included 1092 local residents who had participated in the Iwaki Health Promotion Project in 2016. Blood samples were analyzed to ascertain specific IgE levels against major inhaled allergens (JCP, HD1, Grass-mix, Weed-mix). Nasal symptoms were estimated by questionnaires. Fecal samples were analyzed for bacterial 16S rRNA using next generation sequencing. The diversity index (α-diversity, β-diversity) and the composition of gut microbes in phylum/order levels were compared between patients sensitized or unsensitized to allergen, and symptomatic and asymptomatic groups. RESULTS Some α-diversity metrics were significantly decreased in patients who were sensitized to any/all four allergens compared with the unsensitized group. β-diversity differed significantly between those unsensitized and sensitized to all allergens (aged 20-49 years), and between those unsensitized and sensitized to any/all four allergens (aged ≥50 years). The relative abundance of Bacteroidales was significantly lower in the unsensitized than in the sensitized group. The composition and diversity of gut microbiota were similar between the symptomatic and asymptomatic groups. CONCLUSIONS Our results suggest that lack of diversity in gut microbiota has an effect on sensitization to allergens. Bacteroidales in order level may affect sensitization; however, the onset of allergy symptoms was not significantly associated with bacterial composition and diversity.
Collapse
Affiliation(s)
- Taimu Yamaguchi
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayami Nomura
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | | - Yoshinori Tamada
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuya Mikami
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mizuri Ishida
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
39
|
Su YN, Wang MJ, Yang JP, Wu XL, Xia M, Bao MH, Ding YB, Feng Q, Fu LJ. Effects of Yulin Tong Bu formula on modulating gut microbiota and fecal metabolite interactions in mice with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1122709. [PMID: 36814581 PMCID: PMC9939769 DOI: 10.3389/fendo.2023.1122709] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenism, ovarian dysfunction and polycystic ovarian morphology. Gut microbiota dysbiosis and metabolite are associated with PCOS clinical parameters. Yulin Tong Bu formula (YLTB), a traditional Chinese medicine formula, has been recently indicated to be capable of ameliorating polycystic ovary symptoms and correcting abnormal glucose metabolism. However, the therapeutic mechanism of YLTB on PCOS has not been fully elucidated. METHODS A pseudo sterile mouse model was established during this four-day acclimatization phase by giving the animals an antibiotic cocktail to remove the gut microbiota. Here, the therapeutic effects of YLTB on PCOS were investigated using dehydroepiandrosterone plus high-fat diet-induced PCOS mice model. Female prepuberal mice were randomly divided into three groups; namely, the control group, PCOS group and YLTB (38.68 g·kg-1·day-1) group. To test whether this effect is associated with the gut microbiota, we performed 16S rRNA sequencing studies to analyze the fecal microbiota of mice. The relationships among metabolites, gut microbiota, and PCOS phenotypes were further explored by using Spearman correlation analysis. Then, the effect of metabolite ferulic acid was then validated in PCOS mice. RESULTS Our results showed that YLTB treatment ameliorated PCOS features (ovarian dysfunction, delayed glucose clearance, decreased insulin sensitivity, deregulation of glucolipid metabolism and hormones, etc.) and significantly attenuated PCOS gut microbiota dysbiosis. Spearman correlation analysis showed that metabolites such as ferulic acid and folic acid are negatively correlated with PCOS clinical parameters. The effect of ferulic acid was similar to that of YLTB. In addition, the bacterial species such as Bacteroides dorei and Bacteroides fragilis were found to be positively related to PCOS clinical parameters, using the association study analysis. CONCLUSION These results suggest that YLTB treatment systematically regulates the interaction between the gut microbiota and the associated metabolites to ameliorate PCOS, providing a solid theoretical basis for further validation of YLTB effect on human PCOS trials.
Collapse
Affiliation(s)
- Ya-Nan Su
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mei-Jiao Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jun-Pu Yang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiang-Lu Wu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Min Xia
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Mei-Hua Bao
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Qian Feng
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| | - Li-Juan Fu
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| |
Collapse
|
40
|
Diet-induced gut dysbiosis and inflammation: Key drivers of obesity-driven NASH. iScience 2022; 26:105905. [PMID: 36691622 PMCID: PMC9860397 DOI: 10.1016/j.isci.2022.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sucrose, the primary circulating sugar in plants, contains equal amounts of fructose and glucose. The latter is the predominant circulating sugar in animals and thus the primary fuel source for various tissue and cell types in the body. Chronic excessive energy intake has, however, emerged as a major driver of obesity and associated pathologies including nonalcoholic fatty liver diseases (NAFLD) and the more severe nonalcoholic steatohepatitis (NASH). Consumption of a high-caloric, western-style diet induces gut dysbiosis and inflammation resulting in leaky gut. Translocation of gut-derived bacterial content promotes hepatic inflammation and ER stress, and when either or both of these are combined with steatosis, it can cause NASH. Here, we review the metabolic links between diet-induced changes in the gut and NASH. Furthermore, therapeutic interventions for the treatment of obesity and liver metabolic diseases are also discussed with a focus on restoring the gut-liver axis.
Collapse
|
41
|
Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients 2022; 15:nu15010151. [PMID: 36615808 PMCID: PMC9824871 DOI: 10.3390/nu15010151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that metabolites produced by the gut microbiota play a crucial role in host-microbe interactions. Dietary tryptophan ingested by the host enters the gut, where indole-like metabolites such as indole propionic acid (IPA) are produced under deamination by commensal bacteria. Here, we summarize the IPA-producing bacteria, dietary patterns on IPA content, and functional roles of IPA in various diseases. IPA can not only stimulate the expression of tight junction (TJ) proteins to enhance gut barrier function and inhibit the penetration of toxic factors, but also modulate the immune system to exert anti-inflammatory and antioxidant effects to synergistically regulate body physiology. Moreover, IPA can act on target organs through blood circulation to form the gut-organ axis, which helps maintain systemic homeostasis. IPA shows great potential for the diagnosis and treatment of various clinical diseases, such as NAFLD, Alzheimer's disease, and breast cancer. However, the therapeutic effect of IPA depends on dose, target organ, or time. In future studies, further work should be performed to explore the effects and mechanisms of IPA on host health and disease to further improve the existing treatment program.
Collapse
|
42
|
Tatian A, Bordbar S, Sarkissian SD, Woods JA, Cains GD, Chong CW, Mariño E, Frew JW. Adalimumab therapy is associated with increased faecal short chain fatty acids in hidradenitis suppurativa. Exp Dermatol 2022; 31:1872-1880. [PMID: 36054650 PMCID: PMC10087920 DOI: 10.1111/exd.14665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/21/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022]
Abstract
Altered gut microbiota composition has been observed in individuals with hidradenitis suppurutiva (HS) and many other inflammatory diseases, including obesity, type 1 and type 2 diabetes. Here, we addressed whether adalimumab, a systemic anti-inflammatory therapy, may impact the microbiota biochemical profile, particularly on beneficial metabolites such as short-chain fatty acids (SCFAs). We conducted an observational single-arm pilot trial to assess gut microbiota composition by 16S rRNA gene sequence analysis and to detect metabolite signatures by gas chromatography in stool samples from participants with HS prior to and 12 weeks after commencing adalimumab therapy. HS individuals that better responded to adalimumab treatment showed a shift in the composition and function of the gut microbiota with significantly increased SCFA acetate and propionate compared to age, gender and BMI-matched healthy controls. A positive correlation was observed between propionate with Prevotella sp and Faecalibacterium prausnitsii. Increased SCFAs, changes in gut microbiota composition, function and metabolic profile following 12 weeks of adalimumab suggest that targeting SCFAs may be considered a potential biomarker to be evaluated as a complementary protective factor or as a diagnostically relevant signal in HS.
Collapse
Affiliation(s)
- Artiene Tatian
- Department of Dermatology, Liverpool Hospital, Liverpool, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Sara Bordbar
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Samuel Der Sarkissian
- Department of Dermatology, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Jane A Woods
- Department of Dermatology, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Geoffrey D Cains
- Department of Dermatology, Liverpool Hospital, Liverpool, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Eliana Mariño
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - John W Frew
- Department of Dermatology, Liverpool Hospital, Liverpool, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia.,Laboratory of Translational Cutaneous Medicine, Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| |
Collapse
|
43
|
Bhowmik A, Chunhavacharatorn P, Bhargav S, Malhotra A, Sendrayakannan A, Kharkar PS, Nirmal NP, Chauhan A. Human Milk Oligosaccharides as Potential Antibiofilm Agents: A Review. Nutrients 2022; 14:nu14235112. [PMID: 36501142 PMCID: PMC9737902 DOI: 10.3390/nu14235112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022] Open
Abstract
Surface-associated bacterial communities called biofilms are ubiquitous in nature. Biofilms are detrimental in medical settings due to their high tolerance to antibiotics and may alter the final pathophysiological outcome of many healthcare-related infections. Several innovative prophylactic and therapeutic strategies targeting specific mechanisms and/or pathways have been discovered and exploited in the clinic. One such emerging and original approach to dealing with biofilms is the use of human milk oligosaccharides (HMOs), which are the third most abundant solid component in human milk after lactose and lipids. HMOs are safe to consume (GRAS status) and act as prebiotics by inducing the growth and colonization of gut microbiota, in addition to strengthening the intestinal epithelial barrier, thereby protecting from pathogens. Moreover, HMOs can disrupt biofilm formation and inhibit the growth of specific microbes. In the present review, we summarize the potential of HMOs as antibacterial and antibiofilm agents and, hence, propose further investigations on using HMOs for new-age therapeutic interventions.
Collapse
Affiliation(s)
- Ankurita Bhowmik
- Department of Microbiology, Tripura University, Agartala 799022, India
| | | | - Sharanya Bhargav
- Department of Molecular Biology, Yuvaraja’s College, Mysuru 570005, India
| | - Akshit Malhotra
- Department of Microbiology, Tripura University, Agartala 799022, India
- Invisiobiome, New Delhi 110066, India
| | - Akalya Sendrayakannan
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Prashant S. Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology (ICT), Nathalal Parekh Marg, Matunga, Mumbai 400019, India
- Correspondence: (P.S.K.); (N.P.N.); (A.C.)
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: (P.S.K.); (N.P.N.); (A.C.)
| | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Agartala 799022, India
- Correspondence: (P.S.K.); (N.P.N.); (A.C.)
| |
Collapse
|
44
|
The Kitty Microbiome Project: Defining the Healthy Fecal "Core Microbiome" in Pet Domestic Cats. Vet Sci 2022; 9:vetsci9110635. [PMID: 36423084 PMCID: PMC9698023 DOI: 10.3390/vetsci9110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Here, we present a taxonomically defined fecal microbiome dataset for healthy domestic cats (Felis catus) fed a range of commercial diets. We used this healthy reference dataset to explore how age, diet, and living environment correlate with fecal microbiome composition. Thirty core bacterial genera were identified. Prevotella, Bacteroides, Collinsella, Blautia, and Megasphaera were the most abundant, and Bacteroides, Blautia, Lachnoclostridium, Sutterella, and Ruminococcus gnavus were the most prevalent. While community composition remained relatively stable across different age classes, the number of core taxa present decreased significantly with age. Fecal microbiome composition varied with host diet type. Cats fed kibble had a slightly, but significantly greater number of core taxa compared to cats not fed any kibble. The core microbiomes of cats fed some raw food contained taxa not as highly prevalent or abundant as cats fed diets that included kibble. Living environment also had a large effect on fecal microbiome composition. Cats living in homes differed significantly from those in shelters and had a greater portion of their microbiomes represented by core taxa. Collectively our work reinforces the findings that age, diet, and living environment are important factors to consider when defining a core microbiome in a population.
Collapse
|
45
|
Zhang D, Xu Y, Chen H, Wang D, Geng Z, Chen Y, Chen Y, Xiong D, Yang R, Liu X, Zhang Y, Xiang P, Ma L, Liu J. Fagopyrum dibotrys extract alleviates hepatic steatosis and insulin resistance, and alters autophagy and gut microbiota diversity in mouse models of high-fat diet-induced non-alcoholic fatty liver disease. Front Nutr 2022; 9:993501. [PMID: 36451739 PMCID: PMC9704541 DOI: 10.3389/fnut.2022.993501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/07/2022] [Indexed: 09/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major global health concern with increasing prevalence, with a lack of currently available effective treatment options; thus, the investigation of novel therapeutic approaches is necessary. The study aimed to investigate the outcomes and mechanisms of action of Fagopyrum dibotrys extract (FDE) in a high-fat diet (HFD)-induced mouse model of obesity. The findings showed that FDE supplementation attenuated glucose tolerance, insulin resistance (IR), hepatic steatosis, and abnormal lipid metabolism. In addition, FDE also promoted autophagic activity and inhibited the phosphorylation of transcription factor EB in HFD-fed mice. Furthermore, gut microbiota characterization via 16S rRNA sequencing revealed that the supplementation of FDE increased Bacteroidetes and Verrucomicrobia populations while decreased Firmicutes, thus modifying the gut microbiome. FDE also increased the relative abundance of Akkermansia. Our findings suggest that FDE may protect against HFD-induced NAFLD by activating autophagy and alleviating dysbiosis in the gut microbiome. FDE may be beneficial as a nutraceutical treatment for NAFLD.
Collapse
Affiliation(s)
- Dan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yongfang Xu
- The First People’s Hospital of Yunnan Province, Kunming, China
| | - Hang Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Da Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Zuotao Geng
- Lijiang Women and Children’s Hospital, Lijiang Maternity and Child Health Hospital, Lijiang, China
| | - Yuanli Chen
- Faculty of Basic Medicine, Kunming Medical University, Kunming, China
| | - Yan Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Di Xiong
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Rongna Yang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Xiaoting Liu
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yuke Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Ping Xiang
- School of Ecology and Environment, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, China
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
| |
Collapse
|
46
|
Li H, Wang S, Wang S, Yu H, Yu W, Ma X, He X. Atorvastatin Inhibits High-Fat Diet-Induced Lipid Metabolism Disorders in Rats by Inhibiting Bacteroides Reduction and Improving Metabolism. Drug Des Devel Ther 2022; 16:3805-3816. [PMID: 36349306 PMCID: PMC9637332 DOI: 10.2147/dddt.s379335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The prevalence of hyperlipidemia and related illnesses is on its rise, and atorvastatin is the frequently used hypolipidemic agent. However, there is still uncertainty about the mechanisms, especially the relationship between the lipid-lowering effect, intestinal microbiome, and metabolic profiles. We aim to intensively explain the mechanism of the hypolipidemic effect of atorvastatin through multi-omics perspective of intestinal microbiome and metabolomics. METHODS Multi-omics methods play an increasingly important role in the analysis of intestinal triggers and evaluation of metabolic disorders such as obesity, hyperlipidemia, and diabetes. Therefore, we were prompted to explore intestinal triggers, underlying biomarkers, and potential intervention targets of atorvastatin in the treatment of dyslipidemia through multi-omics. To achieve this, SPF Wistar rats were fed a high-fat diet or normal diet for 8 weeks. Atorvastatin was then administered to high-fat diet-fed rats. RESULTS By altering intestinal microbiome, a high-fat diet can affect feces and plasma metabolic profiles. Treatment with atorvastatin possibly increases the abundance of Bacteroides, thereby improving "propanoate metabolism" and "glycine, serine and threonine metabolism" in feces and plasma, and contributing to blood lipid reduction. CONCLUSION Our study elucidated the intestinal triggers and metabolites of high-fat diet-induced dyslipidemia from the perspective of intestinal microbiome and metabolomics. It equally identified potential intervention targets of atorvastatin. This further explains the mechanism of the hypolipidemic effect of atorvastatin from a multi-omics perspective.
Collapse
Affiliation(s)
- Huimin Li
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,National Human Genetic Resources Center; National Research Institute for Health and Family Planning; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Shue Wang
- Preventive Medicine Experimental Teaching Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Hai Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Wenhao Yu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaomin Ma
- Preventive Medicine Experimental Teaching Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, Shandong, 250012, People's Republic of China,Correspondence: Xiaodong He, Tel/Fax +86 531 88382554, Email
| |
Collapse
|
47
|
Kazemifard N, Dehkohneh A, Baradaran Ghavami S. Probiotics and probiotic-based vaccines: A novel approach for improving vaccine efficacy. Front Med (Lausanne) 2022; 9:940454. [PMID: 36313997 PMCID: PMC9606607 DOI: 10.3389/fmed.2022.940454] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination is defined as the stimulation and development of the adaptive immune system by administering specific antigens. Vaccines' efficacy, in inducing immunity, varies in different societies due to economic, social, and biological conditions. One of the influential biological factors is gut microbiota. Cross-talks between gut bacteria and the host immune system are initiated at birth during microbial colonization and directly control the immune responses and protection against pathogen colonization. Imbalances in the gut microbiota composition, termed dysbiosis, can trigger several immune disorders through the activity of the adaptive immune system and impair the adequate response to the vaccination. The bacteria used in probiotics are often members of the gut microbiota, which have health benefits for the host. Probiotics are generally consumed as a component of fermented foods, affect both innate and acquired immune systems, and decrease infections. This review aimed to discuss the gut microbiota's role in regulating immune responses to vaccination and how probiotics can help induce immune responses against pathogens. Finally, probiotic-based oral vaccines and their efficacy have been discussed.
Collapse
Affiliation(s)
- Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Dehkohneh
- Department for Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany,Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Shaghayegh Baradaran Ghavami
| |
Collapse
|
48
|
Li Q, Li N, Cai W, Xiao M, Liu B, Zeng F. Fermented natural product targeting gut microbiota regulate immunity and anti-inflammatory activity: A possible way to prevent COVID-19 in daily diet. J Funct Foods 2022; 97:105229. [PMID: 36034155 PMCID: PMC9393180 DOI: 10.1016/j.jff.2022.105229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Low immune function makes the body vulnerable to being invaded by external bacteria or viruses, causing influenza and inflammation of various organs, and this trend is shifting to the young and middle-aged group. It has been pointed out that natural products fermented by probiotic have benign changes about their active ingredients in some studies, and it have shown strong nutritional value in anti-oxidation, anti-aging, regulating lipid metabolism, anti-inflammatory and improving immunity. In recent years, the gut microbiota plays a key role and has been extensively studied in improving immunity and anti-inflammation activity. By linking the relationship between natural products fermented by probiotic, gut microbiota, immunity, and inflammation, this review presents the modulating effects of probiotics and their fermented natural products on the body, including immunity-enhancing and anti-inflammatory activities by modulating gut microbiota, and it is discussed that the current understanding of its molecular mechanisms. It may become a possible way to prevent COVID-19 through consuming natural products fermented by probiotic in our daily diet.
Collapse
Affiliation(s)
- Quancen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenwen Cai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meifang Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
49
|
Gut Microbiota Dynamics in Relation to Long-COVID-19 Syndrome: Role of Probiotics to Combat Psychiatric Complications. Metabolites 2022; 12:metabo12100912. [PMID: 36295814 PMCID: PMC9611210 DOI: 10.3390/metabo12100912] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing numbers of patients who recover from COVID-19 report lasting symptoms, such as fatigue, muscle weakness, dementia, and insomnia, known collectively as post-acute COVID syndrome or long COVID. These lasting symptoms have been examined in different studies and found to influence multiple organs, sometimes resulting in life-threating conditions. In this review, these symptoms are discussed in connection to the COVID-19 and long-COVID-19 immune changes, highlighting oral and psychiatric health, as this work focuses on the gut microbiota’s link to long-COVID-19 manifestations in the liver, heart, kidney, brain, and spleen. A model of this is presented to show the biological and clinical implications of gut microbiota in SARS-CoV-2 infection and how they could possibly affect the therapeutic aspects of the disease. Probiotics can support the body’s systems in fighting viral infections. This review focuses on current knowledge about the use of probiotics as adjuvant therapies for COVID-19 patients that might help to prevent long-COVID-19 complications.
Collapse
|
50
|
Li B, Yang B, Liu X, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights. Cell Mol Life Sci 2022; 79:470. [PMID: 35932328 PMCID: PMC11072763 DOI: 10.1007/s00018-022-04498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/22/2022]
Abstract
Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.
| |
Collapse
|