1
|
El-Fakharany EM, El-Gendi H, Abdel-Wahhab K, Abu-Serie MM, El-Sahra DG, Ashry M. Therapeutic efficacy of α-lactalbumin coated oleic acid based liposomes against colorectal carcinoma in Caco-2 cells and DMH-treated albino rats. J Biomol Struct Dyn 2024; 42:9220-9234. [PMID: 37624964 DOI: 10.1080/07391102.2023.2250452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Colorectal cancer (CRC) is a malignant tumor recognized as a major cause of morbidity and mortality throughout the world. Therefore, novel liposomes of oleic acid coated with camel α-lactalbumin (α-LA coated liposomes) were developed for their potential antitumor activity against CRC, both in vitro and in DMH-induced CRC-modeled animal. In vitro results indicated the high safety of α-LA coated liposomes towards normal human cells with potent antitumor activity against Caco-2 cells at an IC50 value of 57.01 ± 3.55 µM with selectivity index of 6.92 ± 0.48. This antitumor activity has been attributed to induction of the apoptotic mechanism, as demonstrated by nuclear condensation and arrest of Caco-2 cells in sub-G1 populations. α-LA coated liposomes also revealed a significant up-regulation of the p53 gene combined with a down-regulation of the Bcl2 gene. Moreover, in vivo results revealed that treatment of induced-CRC modeled animals with α-LA coated liposomes for six weeks markedly improved the CRC-disorders; this was achieved from the significant reduction in the values of AFP, CEA, CA19.9, TNF-α, IL-1β, MDA, and NO coupled with remarkable rise in SOD, GPx, GSH, CAT, and CD4+ levels. The histopathological findings asserted the therapeutic potential of α-LA coated liposomes in the treatment of CRC. Therefore, the present results proved the antitumor activity of α-LA coated liposomes against CRC through the restoration of impaired oxidative stress, improved immune response, and reduced inflammation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA- City), Alexandria, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, GEBRI, SRTA-City, Alexandria, Egypt
| | | | - Marwa M Abu-Serie
- Medical Biotechnology Department, GEBRI, SRTA-City, Alexandria, Egypt
| | - Doaa Galal El-Sahra
- Medical Surgical Nursing Department, Faculty of Nursing, Modern University for Technology and Information, Cairo, Egypt
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
2
|
García G, Pérez-Ríos M, Ruano-Ravina A, Candal-Pedreira C. Assessing conflict of interest reporting and quality of clinical trials on infant formula: a systematic review. J Clin Epidemiol 2024; 169:111313. [PMID: 38432526 DOI: 10.1016/j.jclinepi.2024.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES This study aims to assess the quality, risk of bias, and conflicts of interest (COIs) of clinical trials conducted on the effects of fortified infant formula. STUDY DESIGN AND SETTTING Systematic review including all randomized clinical trials targeting healthy children and using three arms: fortified infant formula; standard formula; and breastfeeding. We performed a descriptive analysis of the studies reviewed, assessed their quality using the "Risk of Bias 2- RoB 2" tool, and identified COIs. RESULTS A total of 40 studies were included. All showed a high overall risk of bias, with this being especially noteworthy in the "deviations from intention to treat" and "missing outcome data" domains. Of the total included studies, 29 reported conclusions in favor of the fortified formula; 15 studies reported multiple conclusions that were either contradictory or not in line with the results. COIs with industry were identified in 33 studies, and in 17 studies, these conflicts were not declared in the appropriate section. CONCLUSION From a methodological perspective, studies on fortified infant formula display low quality, made evident by the high risk of bias. Additionally, there are frequent COIs. These aspects must be considered by health professionals and the population when drawing up recommendations for the use of this product.
Collapse
Affiliation(s)
- Guadalupe García
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Mónica Pérez-Ríos
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain; Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela-IDIS), Santiago de Compostela, Galicia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain.
| | - Alberto Ruano-Ravina
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain; Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela-IDIS), Santiago de Compostela, Galicia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
| | - Cristina Candal-Pedreira
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain; Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela-IDIS), Santiago de Compostela, Galicia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
Tinghäll Nilsson U, Lönnerdal B, Hernell O, Kvistgaard AS, Jacobsen LN, Karlsland Åkeson P. Low-Protein Infant Formula Enriched with Alpha-Lactalbumin during Early Infancy May Reduce Insulin Resistance at 12 Months: A Follow-Up of a Randomized Controlled Trial. Nutrients 2024; 16:1026. [PMID: 38613059 PMCID: PMC11013926 DOI: 10.3390/nu16071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
High protein intake during infancy results in accelerated early weight gain and potentially later obesity. The aim of this follow-up study at 12 months was to evaluate if modified low-protein formulas fed during early infancy have long-term effects on growth and metabolism. In a double-blinded RCT, the ALFoNS study, 245 healthy-term infants received low-protein formulas with either alpha-lactalbumin-enriched whey (α-lac-EW; 1.75 g protein/100 kcal), casein glycomacropeptide-reduced whey (CGMP-RW; 1.76 g protein/100 kcal), or standard infant formula (SF; 2.2 g protein/100 kcal) between 2 and 6 months of age. Breastfed (BF) infants served as a reference. At 12 months, anthropometrics and dietary intake were assessed, and serum was analyzed for insulin, C-peptide, and insulin-like growth factor 1 (IGF-1). Weight gain between 6 and 12 months and BMI at 12 months were higher in the SF than in the BF infants (p = 0.019; p < 0.001, respectively), but were not significantly different between the low-protein formula groups and the BF group. S-insulin and C-peptide were higher in the SF than in the BF group (p < 0.001; p = 0.003, respectively), but more alike in the low-protein formula groups and the BF group. Serum IGF-1 at 12 months was similar in all study groups. Conclusion: Feeding modified low-protein formula during early infancy seems to reduce insulin resistance, resulting in more similar growth, serum insulin, and C-peptide concentrations to BF infants at 6-months post intervention. Feeding modified low-protein formula during early infancy results in more similar growth, serum insulin, and C-peptide concentrations to BF infants 6-months post intervention, probably due to reduced insulin resistance in the low-protein groups.
Collapse
Affiliation(s)
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, 901 87 Umeå, Sweden;
| | | | | | - Pia Karlsland Åkeson
- Department of Clinical Sciences Malmö, Pediatrics, Lund University, 221 00 Lund, Sweden;
| |
Collapse
|
4
|
Gonzalez-Garay AG, Serralde-Zúñiga AE, Medina Vera I, Velasco Hidalgo L, Alonso Ocaña MV. Higher versus lower protein intake in formula-fed term infants. Cochrane Database Syst Rev 2023; 11:CD013758. [PMID: 37929831 PMCID: PMC10626736 DOI: 10.1002/14651858.cd013758.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
BACKGROUND Many infants are fed infant formulas to promote growth. Some formulas have a high protein content (≥ 2.5 g per 100 kcal) to accelerate weight gain during the first year of life. The risk-benefit balance of these formulas is unclear. OBJECTIVES To evaluate the benefits and harms of higher protein intake versus lower protein intake in healthy, formula-fed term infants. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, CINAHL, LILACS, OpenGrey, clinical trial registries, and conference proceedings in October 2022. SELECTION CRITERIA We included randomized controlled trials (RCTs) of healthy formula-fed infants (those fed only formula and those given formula as a complementary food). We included infants of any sex or ethnicity who were fed infant formula for at least three consecutive months at any time from birth. We excluded quasi-randomized trials, observational studies, and infants with congenital malformations or serious underlying diseases. We defined high protein content as 2.5 g or more per 100 kcal, and low protein content as less than 1.8 g per 100 kcal (for exclusive formula feeding) or less than 1.7 g per 100 kcal (for complementary formula feeding). DATA COLLECTION AND ANALYSIS Four review authors independently assessed the risk of bias and extracted data from trials, and a fifth review author resolved discrepancies. We performed random-effects meta-analyses, calculating risk ratios (RRs) or Peto odds ratios (Peto ORs) with 95% confidence intervals (CIs) for dichotomous outcomes, and mean differences (MDs) with 95% CIs for continuous outcomes. We used the GRADE approach to evaluate the certainty of the evidence. MAIN RESULTS We included 11 RCTs (1185 infants) conducted in high-income countries. Seven trials (1629 infants) compared high-protein formula against standard-protein formula, and four trials (256 infants) compared standard-protein formula against low-protein formula. The longest follow-up was 11 years. High-protein formula versus standard-protein formula We found very low-certainty evidence that feeding healthy term infants high-protein formula compared to standard-protein formula has little or no effect on underweight (MD in weight-for-age z-score 0.05 SDs, 95% CI -0.09 to 0.19; P = 0.51, I2 = 61%; 7 studies, 1629 participants), stunting (MD in height-for-age z-score 0.15 SDs, 95% CI -0.05 to 0.35; P = 0.14, I2 = 73%; 7 studies, 1629 participants), and wasting (MD in weight-for-height z-score -0.12 SDs, 95% CI -0.31 to 0.07; P = 0.20, I2 = 94%; 7 studies, 1629 participants) in the first year of life. We found very low-certainty evidence that feeding healthy infants high-protein formula compared to standard-protein formula has little or no effect on the occurrence of overweight (RR 1.26, 95% CI 0.63 to 2.51; P = 0.51; 1 study, 1090 participants) or obesity (RR 1.96, 95% CI 0.59 to 6.48; P = 0.27; 1 study, 1090 participants) at five years of follow-up. No studies reported all-cause mortality. Feeding healthy infants high-protein formula compared to standard-protein formula may have little or no effect on the occurrence of adverse events such as diarrhea, vomiting, or milk hypersensitivity (RR 0.93, 95% CI 0.76 to 1.13; P = 0.44, I2 = 0%; 4 studies, 445 participants; low-certainty evidence) in the first year of life. Standard-protein formula versus low-protein formula We found very low-certainty evidence that feeding healthy infants standard-protein formula compared to low-protein formula has little or no effect on underweight (MD in weight-for-age z-score 0.0, 95% CI -0.43 to 0.43; P = 0.99, I2 = 81%; 4 studies, 256 participants), stunting (MD in height-for-age z-score -0.01, 95% CI -0.36 to 0.35; P = 0.96, I2 = 73%; 4 studies, 256 participants), and wasting (MD in weight-for-height z-score 0.13, 95% CI -0.29 to 0.56; P = 0.54, I2 = 95%; 4 studies, 256 participants) in the first year of life. No studies reported overweight, obesity, or all-cause mortality. Feeding healthy infants standard-protein formula compared to low-protein formula may have little or no effect on the occurrence of adverse events such as diarrhea, vomiting, or milk hypersensitivity (Peto OR 1.55, 95% CI 0.70 to 3.40; P = 0.28, I2 = 0%; 2 studies, 206 participants; low-certainty evidence) in the first four months of life. AUTHORS' CONCLUSIONS We are unsure if feeding healthy infants high-protein formula compared to standard-protein formula has an effect on undernutrition, overweight, or obesity. There may be little or no difference in the risk of adverse effects between infants fed with high-protein formula versus those fed with standard-protein formula. We are unsure if feeding healthy infants standard-protein formula compared to low-protein formula has any effect on undernutrition. There may be little or no difference in the risk of adverse effects between infants fed with standard-protein formula versus those fed with low-protein formula. The findings of six ongoing studies and two studies awaiting classification studies may change the conclusions of this review.
Collapse
Affiliation(s)
| | - Aurora E Serralde-Zúñiga
- Clinical Nutrition Unit, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isabel Medina Vera
- Methodology Research Unit, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Mathy Victoria Alonso Ocaña
- Clinical Nutrition Unit, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
5
|
Purkiewicz A, Stasiewicz M, Nowakowski JJ, Pietrzak-Fiećko R. The Influence of the Lactation Period and the Type of Milk on the Content of Amino Acids and Minerals in Human Milk and Infant Formulas. Foods 2023; 12:3674. [PMID: 37835327 PMCID: PMC10572789 DOI: 10.3390/foods12193674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: This study investigated the effect of the lactation period and the type of infant formula on the content of amino acids and selected minerals in an infant's food; (2) Methods: The study material consisted of breast milk (colostrum, n = 38; transitional milk, mature milk, n = 38) and three types of infant formulas (for first and follow-on feeding). Amino acid content was determined using an automatic amino acid analyzer, while minerals were determined by the atomic absorption spectrometry (AAS) technique; (3) Results: Breast milk and infant formulas contained a full range of essential amino acids. In most cases, the content of individual amino acids and minerals decreased with increasing lactation. In infant formulas, there were higher contents of phenylalanine, glutamic acid, proline, serine, and tyrosine in follow-on milk (p < 0.05). The EAA/TAA ratio in breast milk and infant formulas was similar, but the milk differed in their qualitative composition. Infant formulas contained levels of individual minerals that were several times higher-especially Mg, Ca, Mn, and Fe.; (4) Conclusions: Colostrum is more concentrated, and the level of amino acids and minerals is higher in it; as the milk matures, it decreases. In most cases, the content of individual amino acids and minerals is higher in infant formulas than in human milk, which is established through strict Codex Alimentarius procedures to ensure the proper development of infants.
Collapse
Affiliation(s)
- Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland;
| | - Małgorzata Stasiewicz
- Department of Animal Nutrition and Feed Management, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Jacek J. Nowakowski
- Department of Ecology and Environmental Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland;
| | - Renata Pietrzak-Fiećko
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland;
| |
Collapse
|
6
|
Yu MG, Zheng CD, Li T, Song HL, Wang LJ, Zhang W, Sun H, Xie QG, Jiang SL. Comparison of aroma properties of infant formulas: Differences in key aroma compounds and their possible origins in processing. J Dairy Sci 2023; 106:5970-5987. [PMID: 37500443 DOI: 10.3168/jds.2022-22873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/14/2023] [Indexed: 07/29/2023]
Abstract
Aroma is an important attribute of infant formula (IF). In this study, 218 volatiles and 62 odor-active compounds were detected from IF by dynamic headspace sampling combined with comprehensive 2-dimensional gas chromatography-olfactometry-mass spectrometry. Aldehydes and ketones were determined as the most abundant odor-active compounds. Among them, the contents of pentanal and hexanal were the most abundant, while 1-octen-3-one had the highest flavor dilution factor and odor activity value in most of the IF. Sensory evaluation and electronic nose analysis showed that the skimming process, the fatty acid composition, and powdered or liquid milk base used for the production of IF may be important factors resulting in their differences in aroma profiles and compounds. These differences were assumed to be mainly ascribed to the Maillard reaction and lipid oxidation, which were largely influenced by the temperature and water activity.
Collapse
Affiliation(s)
- M G Yu
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - C D Zheng
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China
| | - T Li
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - H L Song
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - L J Wang
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - W Zhang
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China
| | - H Sun
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China
| | - Q G Xie
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China
| | - S L Jiang
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China.
| |
Collapse
|
7
|
Low-Protein Formulas with Alpha-Lactalbumin-Enriched or Glycomacropeptide-Reduced Whey: Effects on Growth, Nutrient Intake and Protein Metabolism during Early Infancy: A Randomized, Double-Blinded Controlled Trial. Nutrients 2023; 15:nu15041010. [PMID: 36839368 PMCID: PMC9958764 DOI: 10.3390/nu15041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Protein intake is higher in formula-fed than in breast-fed infants during infancy, which may lead to an increased risk of being overweight. Applying alpha-lactalbumin (α-lac)-enriched whey or casein glycomacropeptide (CGMP)-reduced whey to infant formula may enable further reduction of formula protein by improving the amino acid profile. Growth, nutrient intake, and protein metabolites were evaluated in a randomized, prospective, double-blinded intervention trial where term infants received standard formula (SF:2.2 g protein/100 kcal; n = 83) or low-protein formulas with α-lac-enriched whey (α-lac-EW;1.75 g protein/100 kcal; n = 82) or CGMP-reduced whey (CGMP-RW;1.76 g protein/100 kcal; n = 80) from 2 to 6 months. Breast-fed infants (BF; n = 83) served as reference. Except between 4 and 6 months, when weight gain did not differ between α-lac-EW and BF (p = 0.16), weight gain was higher in all formula groups compared to BF. Blood urea nitrogen did not differ between low-protein formula groups and BF during intervention, but was lower than in SF. Essential amino acids were similar or higher in α-lac-EW and CGMP-RW compared to BF. Conclusion: Low-protein formulas enriched with α-lac-enriched or CGMP-reduced whey supports adequate growth, with more similar weight gain in α-lac-enriched formula group and BF, and with metabolic profiles closer to that of BF infants.
Collapse
|
8
|
Kuehn D, Zeisel SH, Orenstein DF, German JB, Field CJ, Teerdhala S, Knezevic A, Patil S, Donovan SM, Lönnerdal B. Effects of a Novel High-Quality Protein Infant Formula on Energetic Efficiency and Tolerance: A Randomized Trial. J Pediatr Gastroenterol Nutr 2022; 75:521-528. [PMID: 35666855 PMCID: PMC9470040 DOI: 10.1097/mpg.0000000000003490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Protein overfeeding in infants can have negative effects, such as diabetes and childhood obesity; key to reducing protein intake from formula is improving protein quality. The impact of a new infant formula [study formula (SF)] containing alpha-lactalbumin, lactoferrin, partially hydrolyzed whey, and whole milk on growth and tolerance compared to a commercial formula (CF) and a human milk reference arm was evaluated. METHODS This randomized, double-blind trial included healthy, singleton, term infants, enrollment age ≤14 days. Primary outcome was mean daily weight gain. Secondary outcomes were anthropometrics, formula intake, serum amino acids, adverse events, gastrointestinal characteristics, and general disposition. RESULTS Non-inferiority was demonstrated. There were no differences between the formula groups for z scores over time. Formula intake [-0.33 oz/kg/day, 95% confidence interval (CI): -0.66 to -0.01, P = 0.05] and mean protein intake (-0.13 g/kg/day, 95% CI: -0.26 to 0.00, P = 0.05) were lower in the SF infants, with higher serum essential amino acid concentrations (including tryptophan) compared to the CF infants. Energetic efficiency was 14.0% (95% CI: 8.3%, 19.7%), 13.0% (95% CI: 6.0%, 20.0%), and 18.1% (95% CI: 9.4%, 26.8%) higher for weight, length, and head circumference, respectively, in SF infants compared to the CF infants. SF infants had significantly fewer spit-ups and softer stool consistency than CF infants. CONCLUSIONS The SF resulted in improved parent-reported gastrointestinal tolerance and more efficient growth with less daily formula and protein intake supporting that this novel formula may potentially reduce the metabolic burden of protein overfeeding associated with infant formula.
Collapse
Affiliation(s)
| | - Steven H. Zeisel
- the University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ren Q, Li K, Sun H, Zheng C, Zhou Y, Lyu Y, Ye W, Shi H, Zhang W, Xu Y, Jiang S. The Association of Formula Protein Content and Growth in Early Infancy: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:2255. [PMID: 35684055 PMCID: PMC9183142 DOI: 10.3390/nu14112255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
This systematic review aimed to examine differences in growth outcomes between breastfed infants and infants fed with formula with different protein/energy ratios during the first six months of life. We conducted a systematic review in the PubMed, Web of Science, and Springer databases. Twenty clinical trials qualified for inclusion. We extracted data about the growth outcomes of infants who were exclusive breastfed or exclusively infant formula fed in the first six months and used a meta-analysis to pool the finding data. We categorized study formulas into four groups according to their protein content: <1.8, 1.8−2.0, 2.1−2.2, and >2.2 g/100 kcal. In the first month of life, growth was not different between formula- and breastfed infants. During 2−3 months of life, growth was faster in infants who consumed formulas with protein contents higher than 2.0 g/100 kcal. After 3 months, formula-fed infants grew faster than breastfed infants. Our meta-analysis indicated that the growth outcomes of infants fed with infant formula with a relatively low protein/energy ratios, compared with that a relatively high protein/energy ratio, were close to those of breastfed infants.
Collapse
Affiliation(s)
- Qiqi Ren
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Kaifeng Li
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Han Sun
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Chengdong Zheng
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Yalin Zhou
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Ying Lyu
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Wanyun Ye
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Hanxu Shi
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Wei Zhang
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Yajun Xu
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Shilong Jiang
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| |
Collapse
|
10
|
Halabi A, Croguennec T, Ménard O, Briard-Bion V, Jardin J, Le Gouar Y, Hennetier M, Bouhallab S, Dupont D, Deglaire A. Protein structure in model infant milk formulas impacts their kinetics of hydrolysis under in vitro dynamic digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Jiang H, Gallier S, Feng L, Han J, Liu W. Development of the digestive system in early infancy and nutritional management of digestive problems in breastfed and formula-fed infants. Food Funct 2022; 13:1062-1077. [DOI: 10.1039/d1fo03223b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food digestion and absorption in infants are closely related to early growth and long-term health. Human milk and infant formula are the main food sources for 0-6 month-old infants. Due...
Collapse
|
12
|
Hedrick J, Yeiser M, Harris CL, Wampler JL, London HE, Patterson AC, Wu SS. Infant Formula with Added Bovine Milk Fat Globule Membrane and Modified Iron Supports Growth and Normal Iron Status at One Year of Age: A Randomized Controlled Trial. Nutrients 2021; 13:4541. [PMID: 34960093 PMCID: PMC8708584 DOI: 10.3390/nu13124541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Inclusion of bovine-derived milk fat globule membrane (bMFGM) or bMFGM components in infant formulas (IFs) may support healthy brain development. This double-blind, prospective trial evaluated growth, tolerance, and iron status in infants receiving added bMFGM and modified protein, iron, and arachidonic acid (ARA) concentrations in IF. Healthy term infants were randomized to: control (marketed, routine cow's milk-based IF/100 kcal: 2.1 g protein, 1.8 mg iron, 34 mg ARA) or INV-MFGM (investigational cow's milk-based IF/100 kcal: 1.9 g protein, 1.2 mg iron, 25 mg ARA and whey protein-lipid concentrate, 5 g/L (source of bMFGM)). Anthropometrics, stool characteristics, fussiness, and gassiness through day 365 and blood markers of iron status at day 365 were evaluated. The primary outcome was rate of weight gain from 14-120 days of age. Of 373 infants enrolled (control: 191, INV-MFGM: 182), 275 completed the study (control: 141; INV-MFGM: 134). No group differences in growth rate (g/day) from day 14-120 or study discontinuation were detected. Few group differences in growth or parent-reported fussiness, gassiness, or stool characteristics were detected. No group differences were detected in hemoglobin, hematocrit, or incidence of anemia. In healthy term infants, bMFGM and modified protein, iron, and ARA concentrations in a cow's milk-based IF were well-tolerated, associated with adequate growth throughout the first year of life, and supported normal iron status at one year of age.
Collapse
Affiliation(s)
- James Hedrick
- Kentucky Pediatrics, 201 South 5th Street, Bardstown, KY 40004, USA;
| | - Michael Yeiser
- Owensboro Pediatrics, 2200 E. Parrish Ave Bldg B, Suite 101, Owensboro, KY 42303, USA;
| | - Cheryl L. Harris
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| | - Jennifer L. Wampler
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| | - Hila Elisha London
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| | - Ashley C. Patterson
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| | - Steven S. Wu
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Evansville, IN 47721, USA; (C.L.H.); (J.L.W.); (H.E.L.); (A.C.P.)
| |
Collapse
|
13
|
de Almeida CC, Baião DDS, Leandro KC, Paschoalin VMF, da Costa MP, Conte-Junior CA. Protein Quality in Infant Formulas Marketed in Brazil: Assessments on Biodigestibility, Essential Amino Acid Content and Proteins of Biological Importance. Nutrients 2021; 13:nu13113933. [PMID: 34836188 PMCID: PMC8622549 DOI: 10.3390/nu13113933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
Infant formulas, designed to provide similar nutritional composition and performance to human milk, are recommended when breastfeeding is not enough to provide for the nutritional needs of children under 12 months of age. In this context, the present study aimed to assess the protein quality and essential amino acid content of both starting (phase 1) and follow-up (phase 2) formulas from different manufacturers. The chemical amino acid score and protein digestibility corrected by the amino acid score were calculated. The determined protein contents in most formulas were above the maximum limit recommended by FAO and WHO guidelines and at odds with the protein contents declared in the label. All infant formulas contained lactoferrin (0.06 to 0.44 g·100 g−1) and α-lactalbumin (0.02 to 1.34 g·100 g−1) below recommended concentrations, whereas ĸ-casein (8.28 to 12.91 g·100 g−1), α-casein (0.70 to 2.28 g·100 g−1) and β-lactoglobulin (1.32 to 4.19 g·100 g−1) were detected above recommended concentrations. Essential amino acid quantification indicated that threonine, leucine and phenylalanine were the most abundant amino acids found in the investigated infant formulas. In conclusion, infant formulas are still unconforming to nutritional breast milk quality and must be improved in order to follow current global health authority guidelines.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (C.C.d.A.); (K.C.L.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil;
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
| | - Katia Christina Leandro
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (C.C.d.A.); (K.C.L.)
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Marion Pereira da Costa
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil;
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador 40170-110, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (C.C.d.A.); (K.C.L.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Correspondence: ; Tel.: +21-98728-6704 or +21-3938-7825
| |
Collapse
|
14
|
Meng F, Uniacke-Lowe T, Ryan AC, Kelly AL. The composition and physico-chemical properties of human milk: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8850080. [PMID: 34095293 PMCID: PMC8140835 DOI: 10.1155/2021/8850080] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Infant formulas are an alternative to replace or supplement human milk when breastfeeding is not possible. The knowledge of human milk's bioactive compounds and their beneficial effects has attracted the interest of researchers in the field of infant nutrition, as well as researchers of technology and food sciences that seek to improve the nutritional characteristics of infant formulas. Several scientific studies evaluate the optimization of infant formula composition. The bioactive compound inclusion has been used to upgrade the quality and nutrition of infant formulas. In this context, the purpose of this systematic literature review is to assess the scientific evidence of bioactive compounds present in infant formulas (α-lactalbumin, lactoferrin, taurine, milk fat globule membrane, folates, polyamines, long-chain polyunsaturated fatty acids, prebiotics, and probiotics) and their effects on infant nutrition and health. Through previously determined criteria, studies published in the last fifteen years from five different databases were included to identify the advances in the optimization of infant formula composition. Over the last few years, there has been optimization of the infant formula composition, not only to increase the similarities in their content of macro and micronutrients but also to include novel bioactive ingredients with potential health benefits for infants. Although the infant food industry has advanced in the last years, there is no consensus on whether novel bioactive ingredients added to infant formulas have the same functional effects as the compounds found in human milk. Thus, further studies about the impact of bioactive compounds in infant nutrition are fundamental to infant health.
Collapse
|
16
|
Sánchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 2021; 13:1026. [PMID: 33810073 PMCID: PMC8005182 DOI: 10.3390/nu13031026] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Collapse
Affiliation(s)
- Cristina Sánchez
- Pharmacy Faculty, San Pablo-CEU University, 28003 Madrid, Spain;
| | - Luis Franco
- Medicine Faculty, Santiago de Compostela University, 15782 Santiago de Compostela, Spain;
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| |
Collapse
|
17
|
Trabulsi JC, Smethers AD, Eosso JR, Papas MA, Stallings VA, Mennella JA. Impact of early rapid weight gain on odds for overweight at one year differs between breastfed and formula-fed infants. Pediatr Obes 2020; 15:e12688. [PMID: 32705816 PMCID: PMC7773222 DOI: 10.1111/ijpo.12688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Early rapid weight gain (RWG) increases, whereas longer durations of breastfeeding decreases, odds for later obesity. OBJECTIVES To determine the independent and interactive effects of early weight gain and diet on infant weight status trajectories and odds for overweight at 1 year. METHODS We conducted secondary analysis on data from two longitudinal trials with repeated anthropometric measures. One trial consisted of predominantly or exclusively breastfed (BF, n = 97) infants, whereas the other consisted of exclusively formula-fed (FF, n = 113) infants. Weight-for-length z-score (WLZ) change from 0.5 to 4.5 months was used to categorize early weight gain as slow (<-0.67; SWG), normal (-0.67 to 0.67; NWG) or rapid (>0.67; RWG). Linear-mixed effects models were fit to examine the independent effects and interaction of early diet (BF, FF) and weight gain (SWG, NWG, RWG) groups on WLZ trajectories; logistic regression was used to assess odds for overweight at 1 year. RESULTS While similar percentages (41%) of BF and FF infants experienced RWG, we found a significant diet × early weight gain group interaction (P < .001) on weight status. At 1 year, the WLZ of FF infants with RWG (1.57 ± 0.99) was twice that of BF infants with RWG (0.83 ± 0.92). Using BF infants with NWG as the reference group, FF infants with RWG had increased odds [OR: 25.3 (95% CI: 3.21, 199.7)] for overweight at 1 year, whereas BF infants with RWG did not. CONCLUSIONS Early diet interacts with early weight gain and influences weight status trajectories and overweight risk at 1 year.
Collapse
Affiliation(s)
- Jillian C. Trabulsi
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware
| | | | - Jessica R. Eosso
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware
| | - Mia A. Papas
- The Value Institute, Christiana Care Health System, Newark, Delaware
| | | | | |
Collapse
|
18
|
Halabi A, Deglaire A, Hennetier M, Violleau F, Burel A, Bouhallab S, Dupont D, Croguennec T. Structural characterization of heat-induced protein aggregates in model infant milk formulas. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Chemical composition, protein profile and physicochemical properties of whey protein concentrate ingredients enriched in α-lactalbumin. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Adequacy and safety of α-lactalbumin–enriched low-protein infant formula: A randomized controlled trial. Nutrition 2020; 74:110728. [DOI: 10.1016/j.nut.2020.110728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 11/18/2022]
|
21
|
Haller N, Kulozik U. Continuous centrifugal separation of selectively precipitated α-lactalbumin. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Skolnick J, Chou C, Miklavcic J. Insights into Novel Infant Milk Formula Bioactives . NUTRITION AND DIETARY SUPPLEMENTS 2020. [DOI: 10.2147/nds.s192099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
23
|
Nielsen CH, Hui Y, Nguyen DN, Ahnfeldt AM, Burrin DG, Hartmann B, Heckmann AB, Sangild PT, Thymann T, Bering SB. Alpha-Lactalbumin Enriched Whey Protein Concentrate to Improve Gut, Immunity and Brain Development in Preterm Pigs. Nutrients 2020; 12:E245. [PMID: 31963562 PMCID: PMC7020014 DOI: 10.3390/nu12010245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Human milk is rich in nutritional factors, such as alpha-lactalbumin (α-Lac), and important for neonatal development, but nutrient supplementation may be required for optimal growth. Using a pig model, we hypothesized that α-Lac-enriched whey protein concentrate (WPC) supplementation improves neonatal development. Cesarean-delivered preterm pigs were fed either dilute bovine milk (REF) or REF milk supplemented with WPC with normal (STANDARD-ALPHA) or high (HIGH-ALPHA) α-Lac. Clinical, gut, immune and cognitive endpoints (open field, T-maze) were assessed and tissues collected at Day 19. The growth of STANDARD-ALPHA and HIGH-ALPHA were higher than REF (31 vs. 19 g/kg/d). Most organ weights, gut, immunity and brain variables were similar between WPC groups. HIGH-ALPHA had a higher bone mineral content, colon microbial diversity and an abundance of specific bacteria and microbial metabolites, and tended to show a faster food transit time (p = 0.07). Relative to REF, WPC pigs showed higher relative organ weights, blood amino acids, blood neutrophil function, and microbial metabolites, but lower brush-border enzyme activities and plasma cortisol. Cognition outcomes did not differ among the groups. In conclusion, WPC supplementation of milk improved some growth, gut and immunity parameters in preterm pigs. However, increasing the α-Lac content beyond human milk levels had limited effects on the immature gut and developing brain.
Collapse
Affiliation(s)
- Charlotte Holme Nielsen
- Department of Veterinary and Animal Sciences, Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (C.H.N.); (D.N.N.); (A.M.A.); (P.T.S.); (T.T.)
| | - Yan Hui
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark;
| | - Duc Ninh Nguyen
- Department of Veterinary and Animal Sciences, Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (C.H.N.); (D.N.N.); (A.M.A.); (P.T.S.); (T.T.)
| | - Agnethe May Ahnfeldt
- Department of Veterinary and Animal Sciences, Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (C.H.N.); (D.N.N.); (A.M.A.); (P.T.S.); (T.T.)
| | - Douglas G. Burrin
- Department of Pediatrics, USDA-ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Bolette Hartmann
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | | | - Per Torp Sangild
- Department of Veterinary and Animal Sciences, Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (C.H.N.); (D.N.N.); (A.M.A.); (P.T.S.); (T.T.)
- Department of Neonatology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Sciences, Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (C.H.N.); (D.N.N.); (A.M.A.); (P.T.S.); (T.T.)
| | - Stine Brandt Bering
- Department of Veterinary and Animal Sciences, Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (C.H.N.); (D.N.N.); (A.M.A.); (P.T.S.); (T.T.)
| |
Collapse
|
24
|
Gan J, Zheng J, Krishnakumar N, Goonatilleke E, Lebrilla CB, Barile D, German JB. Selective Proteolysis of α-Lactalbumin by Endogenous Enzymes of Human Milk at Acidic pH. Mol Nutr Food Res 2019; 63:e1900259. [PMID: 31271254 PMCID: PMC7231428 DOI: 10.1002/mnfr.201900259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Indexed: 01/01/2023]
Abstract
SCOPE The use of human milk products is increasing for high-risk infants. Human milk contains endogenous enzymes that comprise a dynamic proteolytic system, yet biological properties of these enzymes and their activities in response to variations including pH within infants are unclear. Human milk has a neutral pH around 7, while infant gastric pH varies from 2 to 6 depending on individual conditions. This study is designed to determine the specificity of enzyme-substrate interactions in human milk as a function of pH. METHODS AND RESULTS Endogenous proteolysis is characterized by incubating freshly expressed human milk at physiologically relevant pH ranging from 2 to 7 without the addition of exogenous enzymes. Results show that the effects of pH on endogenous proteolysis in human milk are protein-specific. Further, specific interactions between cathepsin D and α-lactalbumin are confirmed. The endogenous enzyme cathepsin D in human milk cleaves α-lactalbumin as the milk pH shifts from 7 to 3. CONCLUSIONS This study documents that selective proteolysis activated by pH shift is a mechanism for dynamic interactions between human milk and the infant. Controlled proteolysis can guide the use of human milk products based on individual circumstance.
Collapse
Affiliation(s)
- Junai Gan
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Jingyuan Zheng
- Department of Nutrition, University of California, Davis, CA, USA
| | - Nithya Krishnakumar
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Barone G, O'Regan J, O'Mahony JA. Influence of composition and microstructure on bulk handling and rehydration properties of whey protein concentrate powder ingredients enriched in α-lactalbumin. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Gan J, Siegel JB, German JB. Molecular annotation of food - towards personalized diet and precision health. Trends Food Sci Technol 2019; 91:675-680. [PMID: 33299266 DOI: 10.1016/j.tifs.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Personalized diet requires matching human genotypic and phenotypic features to foods that increase the chance of achieving a desired physiological health outcome. New insights and technologies will help to decipher the intricacies of diet-health relationships and create opportunities for breakthroughs in dietary interventions for personal health management. Scope and Approach This article describes the scientific progress towards personalized diet and points out the need for integrating high-quality data on food. A framework for molecular annotation of food is presented, focusing on what aspects should be measured and how these measures relate to health. Strategies of applying trending technologies to improve personalized diet and health are discussed, highlighting challenges and opportunities for transforming data into insights and actions. Key Findings and Conclusions The goal of personalized diet is to enable individuals and caregivers to make informed dietary decisions for targeted health management. Achieving this goal requires a better understanding of how molecular properties of food influence individual eating behavior and health outcomes. Annotating food at a molecular level encompasses characterizing its chemical composition and modifications, physicochemical structure, and biological properties. Features of molecular properties in the food annotation framework are applicable to varied conditions and processes from raw materials to meals. Applications of trending technologies, such as omics techniques, wearable biosensors, and artificial intelligence, will support data collection, data analytics, and personalized dietary actions for targeted health management.
Collapse
Affiliation(s)
- Junai Gan
- Department of Food Science and Technology, University of California, Davis, CA, United States
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, United States
- Genome Center, University of California, Davis, CA, United States
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, CA, United States
- Foods for Health Institute, University of California, Davis, CA, United States
| |
Collapse
|
27
|
|
28
|
Abstract
Nutritionally, the first 1,000 days of an infant's life - from conception to two years - has been identified as a highly influential period, during which lasting health can be achieved. Significant evidence links patterns of infant feeding to both short and long-term health outcomes, many of which can be prevented through nutritional modifications. Recommended globally, breastfeeding is recognised as the gold standard of infant nutrition; providing key nutrients to achieve optimal health, growth and development, and conferring immunologic protective effects against disease. Nevertheless, infant formulas are often the sole source of nutrition for many infants during the first stage of life. Producers of infant formula strive to supply high quality, healthy, safe alternatives to breast milk with a comparable balance of nutrients to human milk imitating its composition and functional performance measures. The concept of 'nutritional programming', and the theory that exposure to specific conditions, can predispose an individual's health status in later life has become an accepted dictum, and has sparked important nutritional research prospects. This review explores the impact of early life nutrition, specifically, how different feeding methods affect health outcomes.
Collapse
Affiliation(s)
- Susan Finn
- Nutrition and Health Science from Cork Institute of Technology
| | | | | | - Roy D. Sleator
- University College Cork and National University of Ireland
| |
Collapse
|
29
|
Human Milk Casein and Whey Protein and Infant Body Composition over the First 12 Months of Lactation. Nutrients 2018; 10:nu10091332. [PMID: 30235880 PMCID: PMC6164442 DOI: 10.3390/nu10091332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022] Open
Abstract
Human milk (HM) influences infant feeding patterns and body composition (BC). This small proof-of concept longitudinal study investigated relationships between infant/maternal BC and HM casein, whey and total protein during the first 12 months of lactation. BC of breastfeeding dyads (n = 20) was measured at 2 (n = 15), 5 (n = 20), 9 (n = 19), and/or 12 (n = 18) months postpartum with ultrasound skinfolds (infants) and bioimpedance spectroscopy (infants/mothers). Proteins concentrations and 24-h milk intake were measured and calculated daily intakes (CDI) determined. Higher maternal weight, body mass index, fat-free mass, fat-free mass index, and fat mass index were associated with higher concentration of whey protein (p ≤ 0.034, n = 20). There were no associations between infant BC and concentrations of all proteins, and CDI of whey and total protein. Higher CDI of casein were associated with lower infant fat-free mass (p = 0.003, n = 18) and higher fat mass (p < 0.001), fat mass index (p = 0.001, n = 18), and % fat mass (p < 0.001, n = 18) measured with ultrasound skinfolds. These results show a differential effect of HM casein on development of infant BC during the first year of life, suggesting that there is a potential to improve outcome for the infant through interventions, such as continuation of breastfeeding during the first 12 months of life and beyond, which may facilitate favourable developmental programming that could reduce risk of non-communicable diseases later in life.
Collapse
|
30
|
Lower Protein Intake Supports Normal Growth of Full-Term Infants Fed Formula: A Randomized Controlled Trial. Nutrients 2018; 10:nu10070886. [PMID: 29996492 PMCID: PMC6073440 DOI: 10.3390/nu10070886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022] Open
Abstract
Infant formulas have been conventionally prepared with an excess of total protein in order to provide sufficient amounts of essential amino acids to the rapidly growing infant. However, this practice leads to higher than necessary protein intake during early infant development, inducing accelerated growth patterns correlated with the development of chronic diseases later in life. This study was aimed at assessing the safety of an infant formula enriched with bovine alpha-lactalbumin containing a total protein concentration very close to that of human milk, and determining its efficacy in the support of healthy infant growth from the first month to the fourth month of age. Healthy full-term infants ≤40 days of age were randomized in this controlled single blind trial to one of the following infant formulas: IF 1 (containing 1.0 g protein/dL; n = 30), IF 2 (containing 1.3 g protein/dL; n = 24), and IF 3 (containing 1.5 g protein/dL; n = 42). A control group consisting of exclusively breastfed infants (HM; n = 212) was included in the study. Anthropometric measurements and Z-scores were evaluated at baseline, at 1 month of age, and at 4 months of age. Weight gain (g/day) was similar in the IF 1 and the HM groups (p = 0.644), and it was significantly greater in the IF 2 and IF 3 groups than in the HM group. Growth patterns in both breastfed or IF-fed infants were in accordance with the World Health Organization (WHO) growth standards. At four months of age, the mean weight-for-age Z-score (WAZ) adjusted for initial value in the IF 1 group was similar to that of the HM group and significantly lower than that of the IF 2 and IF 3 groups (p = 0.031 and p = 0.014 for IF 2 and IF 3, respectively). Length-for-age (LAZ) adjusted for initial value was similar among all groups at four months of age. From 1 to 4 months of life, IF 1 containing 1.0 g protein/dL promotes growth and weight gain similar to those observed in exclusively breastfed infants. As this is a first approach to studying an IF containing total protein in a level below that recommended by international committees on nutrition, further investigations are needed to support these findings evaluating infant’s metabolic profile and growth in the long term.
Collapse
|
31
|
Volger S, Estorninos EM, Capeding MR, Lebumfacil J, Radler DR, Scott Parrott J, Rothpletz-Puglia P. Health-related quality of life, temperament, and eating behavior among formula-fed infants in the Philippines: a pilot study. Health Qual Life Outcomes 2018; 16:121. [PMID: 29884187 PMCID: PMC5994097 DOI: 10.1186/s12955-018-0944-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/23/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The rising prevalence of childhood obesity in Asia has led to interest in potential risk factors such as infant health-related quality of life (HRQoL), temperament and eating behaviors. This pilot study evaluated the utility of administering parent-reported outcome measures (PROMs) to explore these factors in Filipino infants and examined the relationships between these factors and infant sex, formula intake and weight, over time. METHODS Forty healthy, 4-week-old, formula-fed infants (n = 20 males) were enrolled in this 6-week, prospective, uncontrolled study during which infants were exclusively fed a standard term infant formula enriched with alpha-lactalbumin. On Day-1 and 42, anthropometrics were measured and mothers completed a 97-item measure of HRQoL [Infant Toddler Quality of Life Questionnaire (ITQOL)] covering 6 infant-focused and 3 parent-focused concepts and a 24-item measure of infant temperament [Infant Characteristics Questionnaire (ICQ)]. At Day-42, mothers also completed an 18-item measure of infant appetite [Baby Eating Behaviour Questionnaire (BEBQ)]. A 3-day formula intake diary was completed before Day-42. Nonparametric statistics were used to evaluate correlations among outcomes and compare outcomes by visit and sex. RESULTS Thirty-nine infants completed the study; similar results were observed in males and females. Completion of PROMs was 100% with no missing responses, but Cronbach's α was low for many concept scales scores. ITQOL scores [range 0 (worst)-100 (best)] were generally high (median ≥ 80) except for Day-1 and Day-42 Temperament and Mood and Day-1 General Health Perceptions scores. ITQOL but not ICQ temperament scores improved significantly between Day-1 and Day-42 (P < 0.01). Mean ± standard deviation BEBQ scores (range 1-5) were high for Enjoyment of Food (4.59 ± 0.60) and Food Responsiveness (3.53 ± 0.81), and low for Satiety Responsiveness (2.50 ± 0.73) and Slowness in Eating (1.71 ± 0.60). Better HRQoL scores were significantly (P < 0.05) associated with high General Appetite scores (3 ITQOL concepts, r = 0.32 to 0.54), greater Enjoyment of Food (4 ITQOL concepts, r = 0.35 to 0.42) and low levels of Slowness in Eating (7 ITQOL concepts, r = - 0.32 to - 0.47). CONCLUSION Findings demonstrated the utility of the ITQOL, ICQ and BEBQ for measuring HRQoL, temperament and eating behavior, and the need for further adaptations for use in Filipino infants. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02431377; Registered May 1, 2015.
Collapse
Affiliation(s)
- Sheri Volger
- Rutgers University School of Health Professions, Department of Clinical and Preventive Nutrition Sciences, 65 Bergen Street, Newark, NJ 07107 USA
- Nestlé Nutrition Research, King of Prussia, PA USA
| | - Elvira M. Estorninos
- Asian Hospital & Medical Center, Medical Office Building, 2205 Civic Drive, Filinvest Corporate City Alabang, 1708 Muntinlupa City, Philippines
| | - Maria R. Capeding
- Asian Hospital & Medical Center, Medical Office Building, 2205 Civic Drive, Filinvest Corporate City Alabang, 1708 Muntinlupa City, Philippines
| | - Jowena Lebumfacil
- Wyeth Philippines Inc, 8 Rockwell, Hidalgo Drive, Rockwell Center, Makati City, Philippines
| | - Diane Rigassio Radler
- Rutgers University School of Health Professions, Department of Clinical and Preventive Nutrition Sciences, 65 Bergen Street, Newark, NJ 07107 USA
| | - J. Scott Parrott
- Rutgers University School of Health Professions, Department of Clinical and Preventive Nutrition Sciences, 65 Bergen Street, Newark, NJ 07107 USA
| | - Pamela Rothpletz-Puglia
- Rutgers University School of Health Professions, Department of Clinical and Preventive Nutrition Sciences, 65 Bergen Street, Newark, NJ 07107 USA
| |
Collapse
|
32
|
Abstract
α-Lactalbumin is a whey protein that constitutes approximately 22% of the proteins in human milk and approximately 3.5% of those in bovine milk. Within the mammary gland, α-lactalbumin plays a central role in milk production as part of the lactose synthase complex required for lactose formation, which drives milk volume. It is an important source of bioactive peptides and essential amino acids, including tryptophan, lysine, branched-chain amino acids, and sulfur-containing amino acids, all of which are crucial for infant nutrition. α-Lactalbumin contributes to infant development, and the commercial availability of α-lactalbumin allows infant formulas to be reformulated to have a reduced protein content. Likewise, because of its physical characteristics, which include water solubility and heat stability, α-lactalbumin has the potential to be added to food products as a supplemental protein. It also has potential as a nutritional supplement to support neurological function and sleep in adults, owing to its unique tryptophan content. Other components of α-lactalbumin that may have usefulness in nutritional supplements include the branched-chain amino acid leucine, which promotes protein accretion in skeletal muscle, and bioactive peptides, which possess prebiotic and antibacterial properties. This review describes the characteristics of α-lactalbumin and examines the potential applications of α-lactalbumin for human health.
Collapse
Affiliation(s)
- Donald K Layman
- Department of Food Science and Human Nutrition, University of Illinois at Urban-Champaign, Urbana, Illinois, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - John D Fernstrom
- Department of Psychiatry and the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Dietaryα-lactalbumin induced fatty liver by enhancing nuclear liver X receptorαβ/sterol regulatory element-binding protein-1c/PPARγexpression and minimising PPARα/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinaseαphosphorylation associated with atherogenic dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice. Br J Nutr 2017; 118:914-929. [DOI: 10.1017/s000711451700232x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe effect and the role played by dietaryα-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously thatα-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possibleα-LAC-induced hepatic steatosis. We examine the ability of dietaryα-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n6) were fed with diets containing either chow or 14 %α-LAC for 4 weeks. Theα-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptorαβ(LXRαβ), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγtranscription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepaticde novolipogenesis. The opposite was found for the nuclear receptor PPARαand the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acidβ-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinaseα(AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in theα-LAC-fed mice. In conclusion, 4 weeks of 14 %α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαβ/SREBP-1c/PPARγexpression and diminishing PPARα/CPT-1 expression and AMPKαphosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice.
Collapse
|
34
|
Effects of cow milk versus extensive protein hydrolysate formulas on infant cognitive development. Amino Acids 2015; 48:697-705. [PMID: 26497857 DOI: 10.1007/s00726-015-2118-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/10/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Little research has focused on infant developmental effects, other than growth, of formulas that differ substantially in the form of protein. To examine development of infants fed formulas differing in free amino acid content, we randomized 0.5-month-old infants (n = 79) to either a control group who fed only cow milk formula (CMF) during the first 8 months (CMF8), or to one of two experimental groups: one experimental group fed extensively protein hydrolyzed formula (EHF) for 1-3 months during first 4.5 months (EHF1-3) of life, and the other fed EHF for 8 months (EHF8). The Mullen Scales of Early Learning were administered monthly from 1.5 to 8.5 months to assess fine (FM) and gross (GM) motor control, receptive (RL) and expressive (EL) language, visual reception (VR), and an early learning composite (ELC). Across the 5.5-8.5-month time period, when compared to CMF8 infants, GM scores in EHF1-3 infants averaged 1.5 points higher (95 % CI 0.1, 3.0) and in EHF8 infants 2.2 points higher (95 % CI 0.3, 4.0). Similarly, VR scores averaged 1.9 points higher (95 % CI 0.1, 3.8) in EHF1-3 infants and 2.2 points higher (95 % CI -0.2, 4.5) in EHF8 infants. EHF8 infants' RL scores averaged 1.8 points lower (95 % CI 0.1, 3.6) than CMF8 infants. These data suggest that the form of protein in infant formula may impact cognitive development and that the higher free amino acid content in breast milk may be a contributing factor to the differential cognitive development between breastfed and CMF-fed infants. CLINICAL TRIAL REGISTRATION clinicaltrials.gov NCT00994747.
Collapse
|
35
|
Riley AW, Trabulsi J, Yao M, Bevans KB, DeRusso PA. Validation of a Parent Report Questionnaire: The Infant Gastrointestinal Symptom Questionnaire. Clin Pediatr (Phila) 2015; 54:1167-74. [PMID: 25758425 PMCID: PMC4564761 DOI: 10.1177/0009922815574075] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the reliability and validity of the Infant Gastrointestinal Symptom Questionnaire (IGSQ), a tool to assess feeding tolerance in infants. METHODS Qualitative methods were used to develop IGSQ content across 5 symptom clusters, yielding a 13-item index of parent-reported infant digestion and elimination behaviors over the prior 7 days. Classical psychometric methods evaluated factor structure, interrater and retest reliability, and validity in 4 prospective studies of 836 infants. RESULTS Interrater and retest reliability were acceptable to good. IGSQ Index score was highly correlated (r = 0.89) with daily parent reports. IGSQ scores were significantly different between infants whose parents planned to switch formulas because of perceived feeding problems and those without parental concerns. CONCLUSIONS The IGSQ is a practical, reliable, and valid method for assessment of infant gastrointestinal-related behaviors. Its use in clinical studies can provide empirical evidence to advance parent education regarding both normal and clinically meaningful feeding-related behaviors.
Collapse
|
36
|
Mofid LS, Casapía M, Montresor A, Rahme E, Fraser WD, Marquis GS, Vercruysse J, Allen LH, Gyorkos TW. Maternal Deworming Research Study (MADRES) protocol: a double-blind, placebo-controlled randomised trial to determine the effectiveness of deworming in the immediate postpartum period. BMJ Open 2015; 5:e008560. [PMID: 26084556 PMCID: PMC4480032 DOI: 10.1136/bmjopen-2015-008560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Soil-transmitted helminth infections are endemic in 114 countries worldwide, and cause the highest burden of disease among all neglected tropical diseases. The WHO includes women of reproductive age as a high-risk group for infection. The primary consequence of infection in this population is anaemia. During lactation, anaemia may contribute to reduced quality and quantity of milk, decreasing the duration of exclusive breastfeeding and lowering the age at weaning. To date, no study has investigated the effects of maternal postpartum deworming on infant or maternal health outcomes. METHODS AND ANALYSIS A single-centre, parallel, double-blind, randomised, placebo-controlled trial will be carried out in Iquitos, Peru, to assess the effectiveness of integrating single-dose 400 mg albendazole into routine maternal postpartum care. A total of 1010 mother-infant pairs will be randomised to either the intervention or control arm, following inhospital delivery and prior to discharge. Participants will be visited in their homes at 1, 6, 12 and 24 months following delivery for outcome ascertainment. The primary outcome is infant mean weight gain between birth and 6 months of age. Secondary outcomes include other infant growth indicators and morbidity, maternal soil-transmitted helminth infection and intensity, anaemia, fatigue, and breastfeeding practices. All statistical analyses will be performed on an intention-to-treat basis. ETHICS AND DISSEMINATION Research ethics board approval has been obtained from the McGill University Health Centre (Canada), the Asociación Civil Impacta Salud y Educación (Peru) and the Instituto Nacional de Salud (Peru). A data safety and monitoring committee is in place to oversee study progression and evaluate adverse events. The results of the analyses will be published in peer-reviewed journals, and presented at national and international conferences. TRIAL REGISTRATION NUMBER Clinicaltrials.gov: NCT01748929.
Collapse
Affiliation(s)
- Layla S Mofid
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
| | | | - Antonio Montresor
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Elham Rahme
- Research Institute of the McGill University Health Centre, Division of Clinical Epidemiology, Montréal, Québec, Canada
| | - William D Fraser
- Département d'obstétrique et de gynécologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Grace S Marquis
- School of Dietetics and Human Nutrition, McGill University, Ste. Anne-de-Bellevue, Québec, Canada
| | - Jozef Vercruysse
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lindsay H Allen
- USDA, ARS Western Human Nutrition Research Center, University of California, Davis, California, USA
| | - Theresa W Gyorkos
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Research Institute of the McGill University Health Centre, Division of Clinical Epidemiology, Montréal, Québec, Canada
| |
Collapse
|
37
|
Abrams SA, Hawthorne KM, Pammi M. A systematic review of controlled trials of lower-protein or energy-containing infant formulas for use by healthy full-term infants. Adv Nutr 2015; 6:178-88. [PMID: 25770256 PMCID: PMC4352176 DOI: 10.3945/an.114.006379] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infant formulas have historically been developed based on providing macronutrients at intake concentrations approximately matching the composition of human milk. In most countries, targets of 1.4-1.5 g of protein/dL and 20 kcal/oz (67-68 kcal/dL) have been set as the protein and energy concentrations for formulas during the first year of life, although this may be an overestimation of these contents. Recent introduction of lower-protein and -energy formulas in full-term infants led us to systematically review the literature for its effects on growth. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, our inclusion criteria were studies that enrolled healthy full-term infants and evaluated lower-protein or lower-energy formula, reported anthropometric outcomes including weight and length, and followed infants for at least 6 mo. Six studies were eligible for inclusion. These studies varied in the content of nutrients provided in the intervention and control groups, by additional dietary components in the study groups, and the timing and length of the intervention, which limit their usefulness for interpreting newly introduced lower-protein and -energy formulas in the United States. These studies suggest adequate growth during infancy and early childhood with infant formulas with concentrations of protein and energy slightly below historical standards in the United States. Further long-term research is needed to assess the impact of the use of lower-protein and/or lower-energy products, especially for nutritionally at-risk populations such as preterm infants and infants who are born small for gestational age.
Collapse
Affiliation(s)
- Steven A Abrams
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, and
| | - Keli M Hawthorne
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, and
| | - Mohan Pammi
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
38
|
|
39
|
Papadopoulou E, Stanner S. Early growth and obesity risk - What should health professionals be advising? NUTR BULL 2014. [DOI: 10.1111/nbu.12090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Tijhuis MJ, Doets EL, Vonk Noordegraaf‐Schouten M. Extensive literature search and review as preparatory work for the evaluation of the essential composition of infant and follow‐on formulae and growing‐up milk. ACTA ACUST UNITED AC 2014. [DOI: 10.2903/sp.efsa.2014.en-551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- MJ Tijhuis
- Pallas health research and consultancy the Netherlands
| | - EL Doets
- Pallas health research and consultancy the Netherlands
| | | |
Collapse
|
41
|
Fleddermann M, Demmelmair H, Grote V, Nikolic T, Trisic B, Koletzko B. Infant formula composition affects energetic efficiency for growth: the BeMIM study, a randomized controlled trial. Clin Nutr 2013; 33:588-95. [PMID: 24411489 DOI: 10.1016/j.clnu.2013.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/13/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND & AIMS Protein source, macronutrient composition and content of long chain-polyunsaturated fatty acids (LC-PUFA) of infant formulae may influence infant growth. We aimed to assess the effect of a modified infant formula on growth. METHODS In a randomized, double-blind trial, 213 healthy term infants consumed isoenergetic study formulae (intervention formula - IF, control formula - CF) from the first month of life until the age of 120 days. IF (1.89 g protein/100 kcal) contained α-lactalbumin (ALAB) and LC-PUFA, while CF (2.30 g protein/100 kcal) provided standard whey and no LC-PUFA. Anthropometry and dietary intake were regularly assessed. A venous blood sample was obtained on day 120. RESULTS Both formulae were well-accepted without significant differences in health related observations. Weight gain was not statistically different between formula groups (IF: 30.2 ± 6.3 vs. CF: 28.3 ± 6.5 g/day, mean ± SD, P = 0.06). Length gain was higher in IF (0.11 ± 0.02 vs. 0.10 ± 0.02 cm/day, P = 0.02). Energy intake from formula was higher in CF at 90 and 120 days (IF: 509 ± 117 and 528 ± 123 vs. CF: 569 ± 152 and 617 ± 169 kcal/day, P < 0.01). Protein intake in CF was significantly higher at each assessment. Growth per energy intake was higher in IF compared to CF for weight (6.45 ± 2.01 vs. 5.67 ± 2.21 g/100 kcal, P = 0.02) and length (0.23 ± 0.08 vs. 0.20 ± 0.08 mm/100 kcal, P = 0.04). CONCLUSIONS The modified infant formula with reduced protein content with added ALAB and LC-PUFA, meets infant requirements of protein for adequate growth. The increased energetic efficiency of the new infant formula might result from improved protein composition by added ALAB. Apparently minor differences in composition can markedly affect energetic efficiency for growth. The study was registered at ClinicalTrials.gov (NCT01094080).
Collapse
Affiliation(s)
- Manja Fleddermann
- Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Hans Demmelmair
- Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Veit Grote
- Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Tatjana Nikolic
- Institute for Gynecology and Obstetrics, Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Berthold Koletzko
- Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany.
| |
Collapse
|
42
|
Rajasekaran A, Kalaivani M. Designer foods and their benefits: A review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2013; 50:1-16. [PMID: 24425882 PMCID: PMC3550947 DOI: 10.1007/s13197-012-0726-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 02/07/2023]
Abstract
Designer foods are normal foods fortified with health promoting ingredients. These foods are similar in appearance to normal foods and are consumed regularly as a part of diet. In this article we have reviewed the global regulatory status and benefits of available designer foods such as designer egg, designer milk, designer grains, probiotics, designer foods enriched with micro and macronutrients and designer proteins. Designer foods are produced by the process of fortification or nutrification. With the advances in the biotechnology, biofortification of foods using technologies such as recombinant DNA technology and fermentation procedures are gaining advantage in the industry. The ultimate acceptability and extensive use of designer foods depend on proper regulation in the market by the regulatory authorities of the country and by creating consumer awareness about their health benefits through various nationwide programs.
Collapse
Affiliation(s)
- A. Rajasekaran
- />KMCH College of Pharmacy, Kalapatti Road, Coimbatore, 641 048 Tamil Nadu India
| | - M. Kalaivani
- />Indian Pharmacopoeia Commission, Sector-23, Raj Nagar, Ghaziabad-201002, Uttar Pradesh India
| |
Collapse
|
43
|
Milk Feeding, Solid Feeding, and Obesity Risk: A Review of the Relationships Between Early Life Feeding Practices and Later Adiposity. Curr Obes Rep 2012. [DOI: 10.1007/s13679-012-0034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|