1
|
Horvat Mercnik M, Schliefsteiner C, Sanchez-Duffhues G, Wadsack C. TGFβ signalling: a nexus between inflammation, placental health and preeclampsia throughout pregnancy. Hum Reprod Update 2024; 30:442-471. [PMID: 38519450 PMCID: PMC11215164 DOI: 10.1093/humupd/dmae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFβ) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFβ signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFβ signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFβ signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFβ is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE This comprehensive review aims to explore and elucidate the roles of the major members of the TGFβ superfamily, including TGFβs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfβ', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfβ signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfβ signalling', 'placental macrophages tgfβ', 'endothelial cells tgfβ', 'endothelium tgfβ signalling', 'trophoblast invasion tgfβ signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfβ', 'tgfβ preeclampsia', 'tgfβ placental development', 'TGFβ placental function', 'endothelial dysfunction preeclampsia tgfβ signalling', 'vascular remodelling placenta TGFβ', 'inflammation pregnancy tgfβ', 'immune response pregnancy tgfβ', 'immune tolerance pregnancy tgfβ', 'TGFβ pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfβ pregnancy tregs', 'TGFβ placenta NK cells', 'TGFβ placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES A comprehensive understanding of TGFβ signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFβ ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFβ signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFβ signalling. WIDER IMPLICATIONS The dysregulation of TGFβ signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFβ signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Tissue-Specific BMP Signalling ISPA-HUCA, Oviedo, Spain
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
2
|
Manoharan A, Ballambattu VB, Palani R. Genetic architecture of preeclampsia. Clin Chim Acta 2024; 558:119656. [PMID: 38583550 DOI: 10.1016/j.cca.2024.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Aarthi Manoharan
- Department of Medical Biotechnology, Kirumampakkam, Puducherry 607403, India.
| | | | - Ramya Palani
- Department of Obstetrics and Gynecology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607403, India
| |
Collapse
|
3
|
Roh JD, Castro C, Yu AZ, Rana S, Shahul S, Gray KJ, Honigberg MC, Ricke-Hoch M, Iwamoto Y, Yeri AS, Kitchen R, Guerra JB, Hobson R, Chaudhari V, Chang B, Sarma A, Lerchenmüller C, Al Sayed ZR, Verdugo CD, Xia P, Skarbianskis N, Zeisel A, Bauersachs J, Kirkland JL, Karumanchi SA, Gorcsan J, Sugahara M, Damp J, Hanley-Yanez K, Ellinor PT, Arany Z, McNamara DM, Hilfiker-Kleiner D, Rosenzweig A. Placental senescence pathophysiology is shared between peripartum cardiomyopathy and preeclampsia in mouse and human. Sci Transl Med 2024; 16:eadi0077. [PMID: 38630848 PMCID: PMC11331492 DOI: 10.1126/scitranslmed.adi0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Peripartum cardiomyopathy (PPCM) is an idiopathic form of pregnancy-induced heart failure associated with preeclampsia. Circulating factors in late pregnancy are thought to contribute to both diseases, suggesting a common underlying pathophysiological process. However, what drives this process remains unclear. Using serum proteomics, we identified the senescence-associated secretory phenotype (SASP), a marker of cellular senescence associated with biological aging, as the most highly up-regulated pathway in young women with PPCM or preeclampsia. Placentas from women with preeclampsia displayed multiple markers of amplified senescence and tissue aging, as well as overall increased gene expression of 28 circulating proteins that contributed to SASP pathway enrichment in serum samples from patients with preeclampsia or PPCM. The most highly expressed placental SASP factor, activin A, was associated with cardiac dysfunction or heart failure severity in women with preeclampsia or PPCM. In a murine model of PPCM induced by cardiomyocyte-specific deletion of the gene encoding peroxisome proliferator-activated receptor γ coactivator-1α, inhibiting activin A signaling in the early postpartum period with a monoclonal antibody to the activin type II receptor improved heart function. In addition, attenuating placental senescence with the senolytic compound fisetin in late pregnancy improved cardiac function in these animals. These findings link senescence biology to cardiac dysfunction in pregnancy and help to elucidate the pathogenesis underlying cardiovascular diseases of pregnancy.
Collapse
Affiliation(s)
- Jason D. Roh
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Claire Castro
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andy Z. Yu
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sarosh Rana
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | - Sajid Shahul
- Department of Anesthesia and Critical Care, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | - Kathryn J. Gray
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Michael C. Honigberg
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover 30625, Germany
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ashish S. Yeri
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert Kitchen
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Justin Baldovino Guerra
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Stanley and Judith Frankel Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ryan Hobson
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vinita Chaudhari
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bliss Chang
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Amy Sarma
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carolin Lerchenmüller
- Department of Cardiology, Angiology, and Pneumology, University of Heidelberg, Heidelberg 69120, Germany
- German Center for Heart and Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Heidelberg 69120, Germany
| | - Zeina R. Al Sayed
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carmen Diaz Verdugo
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peng Xia
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niv Skarbianskis
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover 30625, Germany
| | - James L. Kirkland
- Departments of Medicine and Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - John Gorcsan
- Penn State College of Medicine, Hershey, PA 17033, USA
| | - Masataka Sugahara
- Department of Cardiovascular and Renal Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Julie Damp
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Karen Hanley-Yanez
- Heart and Vascular Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick T. Ellinor
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis M. McNamara
- Heart and Vascular Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Hannover 30625, Germany
- Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Philipps University Marburg, Marburg 35037, Germany
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Stanley and Judith Frankel Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Leońska-Duniec A, Borczyk M, Korostyński M, Massidda M, Maculewicz E, Cięszczyk P. Genetic variants in myostatin and its receptors promote elite athlete status. BMC Genomics 2023; 24:761. [PMID: 38082252 PMCID: PMC10712039 DOI: 10.1186/s12864-023-09869-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND While product of the myostatin gene (MSTN) is an important factor influencing muscle growth, which is well confirmed in nonhuman species, it has not been clearly confirmed whether MSTN expression influences interindividual differences in skeletal muscle mass, affects posttraining changes, or plays a role in the age-related loss of muscle mass and function in humans. Although the inconclusive results are usually explained by ethnic differences and the low frequency of some alleles, it is possible that the role of receptors (ACVR2A and ACVR2B) that affect the biological activity of myostatin is crucial. Therefore, we investigated the sequences of the MSTN, ACVR2A, and ACVR2B genes and determined the interaction between allelic variants and athletic performance and competition level in the Caucasian population. One hundred-two athletes were recruited for the sequencing study, and whole-genome sequencing (WGS) was performed. Second, 330 athletes and 365 controls were included, and real-time PCR was performed. RESULTS The sequence analysis revealed two polymorphisms relatively common in the athlete cohort, and the alternate allele showed overrepresentation in athletes: MSTN rs11333758 and ACVR2A rs3764955. Regarding the polymorphic site MSTN rs11333758, there was a significant overrepresentation of the -/- genotype in all high-elite and mixed-sport high-elite athletes. Carriers of the ACVR2A rs3764955 CC and GG genotypes were more likely to be elite and high-elite athletes. In addition, carriers of the CC genotype were more likely to be in the mixed-sport subelite group. The gene‒gene interaction analysis revealed that mixed-sport high elite athletes showed significant underrepresentation of the ACVR2A rs3764955 GC - MSTN rs11333758 AA genotype combination. In the same group, we observed a significant overrepresentation of the ACVR2A rs3764955 GC - MSTN rs11333758 -/- and the ACVR2A rs3764955 CC - MSTN rs11333758 -/- genotype combinations. CONCLUSIONS We showed that the specific genotypes of the MSTN rs11333758 and ACVR2A rs3764955, either individually or in gene‒gene combination, are significantly associated with athletes' competition level in the Polish population, especially in the mixed-sports athlete group. Thus, although further research is required, these polymorphisms, alone or in combination with other polymorphisms, are among the numerous candidates that could explain individual variations in muscle phenotypes.
Collapse
Affiliation(s)
- Agata Leońska-Duniec
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, 09124, Italy
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343, Poland
| | - Myosotis Massidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, 09124, Italy
| | - Ewelina Maculewicz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, 00-809, Poland.
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
| |
Collapse
|
5
|
Chen Y, Huang X, Wu S, Guo P, Huang J, Zhou L, Tan X. Machine-learning predictive model of pregnancy-induced hypertension in the first trimester. Hypertens Res 2023; 46:2135-2144. [PMID: 37160966 DOI: 10.1038/s41440-023-01298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 05/11/2023]
Abstract
In the first trimester of pregnancy, accurately predicting the occurrence of pregnancy-induced hypertension (PIH) is important for both identifying high-risk women and adopting early intervention. In this study, we used four machine-learning models (LASSO logistic regression, random forest, backpropagation neural network, and support vector machines) to predict the occurrence of PIH in a prospective cohort. Candidate features for predicting the occurrence of middle and late PIH were acquired using a LASSO algorithm. The performance of predictive models was assessed using receiver operating characteristic analysis. Finally, a nomogram was established with the model scores, age, and nulliparity. Calibration, clinical usefulness, and internal validation were used to assess the performance of the nomogram. In the training set (2258 pregnant women), eleven candidate factors in the first trimester were significantly associated with the occurrence of PIH (P < 0.001 in the training set). Four models showed AUCs from 0.780 to 0.816 in the training set. For the validation set (939 pregnant women), AUCs varied from 0.516 to 0.795. The nomogram showed good discrimination, with an AUC of 0.847 (95% CI: 0.805-0.889) in the training set and 0.753 (95% CI: 0.653-0.853) in the validation set. Decision curve analysis suggested that the model was clinically useful. The model developed using LASSO logistic regression achieved the best performance in predicting the occurrence of PIH. The derived nomogram, which incorporates the model score and maternal risk factors, can be used to predict PIH in clinical practice. We develop a model with good performance for clinical prediction of PIH in the first trimester.
Collapse
Affiliation(s)
- Yequn Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiru Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shiwan Wu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Pi Guo
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Ju Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Li Zhou
- Cancer Hospital Of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xuerui Tan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
- Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
6
|
Miller EC, Wilczek A, Bello NA, Tom S, Wapner R, Suh Y. Pregnancy, preeclampsia and maternal aging: From epidemiology to functional genomics. Ageing Res Rev 2022; 73:101535. [PMID: 34871806 PMCID: PMC8827396 DOI: 10.1016/j.arr.2021.101535] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Women live longer than men but experience greater disability and a longer period of illness as they age. Despite clear sex differences in aging, the impact of pregnancy and its complications, such as preeclampsia, on aging is an underexplored area of geroscience. This review summarizes our current knowledge about the complex links between pregnancy and age-related diseases, including evidence from epidemiology, clinical research, and genetics. We discuss the relationship between normal and pathological pregnancy and maternal aging, using preeclampsia as a primary example. We review the results of human genetics studies of preeclampsia, including genome wide association studies (GWAS), and attempted to catalog genes involved in preeclampsia as a gateway to mechanisms underlying an increased risk of later life cardio- and neuro- vascular events. Lastly, we discuss challenges in interpreting the GWAS of preeclampsia and provide a functional genomics framework for future research needed to fully realize the promise of GWAS in identifying targets for geroprotective prevention and therapeutics against preeclampsia.
Collapse
Affiliation(s)
- Eliza C. Miller
- Department of Neurology, Division of Stroke and Cerebrovascular Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashley Wilczek
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Natalie A. Bello
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah Tom
- Department of Neurology, Division of Neurology Clinical Outcomes Research and Population Science and the Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Nichols HB, Graff M, Bensen JT, Lunetta KL, O'Brien KM, Troester MA, Williams LA, Young K, Hong CC, Yao S, Haiman CA, Ruiz-Narváez EA, Ambrosone CB, Palmer JR, Olshan AF. Genetic variants in anti-Müllerian hormone-related genes and breast cancer risk: results from the AMBER consortium. Breast Cancer Res Treat 2020; 185:469-478. [PMID: 32960377 PMCID: PMC7867570 DOI: 10.1007/s10549-020-05944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/14/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Circulating anti-Müllerian hormone (AMH) levels are positively associated with time to menopause and breast cancer risk. We examined breast cancer associations with single nucleotide polymorphisms (SNPs) in the AMH gene or its receptor genes, ACVR1 and AMHR2, among African American women. METHODS In the AMBER consortium, we tested 65 candidate SNPs, and 1130 total variants, in or near AMH, ACVR1, and AMHR2 and breast cancer risk. Overall, 3649 cases and 4230 controls contributed to analyses. Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer were calculated using multivariable logistic regression. RESULTS After correction for multiple comparisons (false-discovery rate of 5%), there were no statistically significant associations with breast cancer risk. Without correction for multiple testing, four candidate SNPs in ACVR1 and one near AMH were associated with breast cancer risk. In ACVR1, rs13395576[C] was associated with lower breast cancer risk overall (OR 0.84; 95% CI 0.72, 0.97) and for ER+ disease (OR 0.75; CI 0.62, 0.89) (p < 0.05). Rs1220110[A] and rs1220134[T] each had ORs of 0.89-0.90 for postmenopausal and ER+ breast cancer (p ≤ 0.03). Conversely, rs1682130[T] was associated with higher risk of ER+ breast cancer (OR 1.17; 95% CI 1.04, 1.32). Near AMH, rs6510652[T] had ORs of 0.85-0.90 for breast cancer overall and after menopause (p ≤ 0.02). CONCLUSIONS The present results, from a large study of African American women, provide limited support for an association between AMH-related polymorphisms and breast cancer risk and require replication in other studies.
Collapse
Affiliation(s)
- Hazel B Nichols
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 2104F McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA.
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 2104F McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| | - Jeannette T Bensen
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 2104F McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| | - Kathryn L Lunetta
- Slone Epidemiology Center, Boston University, 72 E Concord Street, Boston, MA, 02118, USA
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 2104F McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| | - Lindsay A Williams
- Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Kristin Young
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 2104F McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, 72 E Concord Street, Boston, MA, 02118, USA
| | - Andrew F Olshan
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 2104F McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| |
Collapse
|
8
|
Whole-exome sequencing in multiplex preeclampsia families identifies novel candidate susceptibility genes. J Hypertens 2020; 37:997-1011. [PMID: 30633125 DOI: 10.1097/hjh.0000000000002023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Preeclampsia is a common and serious heritable disorder of human pregnancy. Although there have been notable successes in identification of maternal susceptibility genes a large proportion of the heritability of preeclampsia remains unaccounted for. It is has been postulated that rare variation may account for some of this missing heritability. In this study, we performed whole-exome sequencing (WES) in multiplex families to identify rare exonic risk variants. METHODS We conducted WES in 244 individuals from 34 Australian/New Zealand multiplex preeclampsia families. Variants were tested for association with preeclampsia using a threshold model and logistic regression. RESULTS We found significant association for two moderately rare missense variants, rs145743393 (Padj = 0.0032, minor allele frequency = 0.016) in the chromosome 1 open reading frame 35 (C1orf35) gene, and rs34270076 (Padj = 0.0128, minor allele frequency = 0.024) in the pyroglutamylated RFamide peptide receptor (QRFPR) gene. To replicate these associations we performed imputation in our Australian genome wide association scan for preeclampsia and found no significant exonic variants in either C1orf35 or QRFPR. However, 11 variants demonstrating nominal significance (P < 0.05) in the genomic region between QRFPR and annexin A5 (ANXA5) were identified. We further leveraged publicly available genome-wide available summary data from the UK Biobank to investigate association of these two variants with the underlying clinical phenotypes of preeclampsia and detected nominal association of the QRFPR variant (rs34270076, P = 0.03) with protein levels in females. CONCLUSION The study represents the first to use WES in multiplex families for preeclampsia and identifies two novel genes (QRFPR and C1orf35) not previously associated with preeclampsia and find nominal association of rs34270076 with protein levels, a key clinical feature of preeclampsia. We find further support for ANXA5 previously associated with pregnancy complications, including preeclampsia.
Collapse
|
9
|
Pinarbasi E, Cekin N, Bildirici AE, Akin S, Yanik A. STOX1 gene Y153H polymorphism is associated with early-onset preeclampsia in Turkish population. Gene 2020; 754:144894. [PMID: 32534058 DOI: 10.1016/j.gene.2020.144894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a disease of pregnancy that causes of maternal and prenatal morbidity worldwide. Studies indicate that variations in STOX1 gene may be a direct risk factor to PE but controversial results regarding the relationship of Y153H variation in the second exon of STOX1 gene with PE have been ongoing since 2005. The aim of this study was to identify if there is any correlation between Y153H polymorphisms and PE in Turkish preeclampsia patients. We performed polymerase chain reaction- restriction fragment lengthpolymorphism(PCR-RFLP) analysis in 500 pregnant women, of whom 373 pregnant women with early onset PE (EOPE) and 500 normal pregnant women. The relationship between STOX1 Y153H polymorphism and EOPE/LOPE was evaluated by statistical analysis. We found that STOX1 Y153H polymorphism is a risk factor for EOPE (p = 0.03). The odds ratio was 1,45 (CI 95% = 1,03-2,05). No relationship between STOX1 Y153H polymorphisms and LOPE (p = 0.13) was found. STOX1 gene Y153H polymorphism is associated with the risk ofearly onset of pre-eclampsiain a Turkish population. The results provide further evidence of the role of STOX1 in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Ergun Pinarbasi
- Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, Sivas, Turkey.
| | - Nilgun Cekin
- Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, Sivas, Turkey
| | - Aslihan Esra Bildirici
- Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, Sivas, Turkey
| | - Seyda Akin
- Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, Sivas, Turkey
| | - Ali Yanik
- Cumhuriyet University, Faculty of Medicine, Department of Obstetrics and Gynecology, Sivas, Turkey
| |
Collapse
|
10
|
Trifonova EA, Swarovskaja MG, Serebrova VN, Kutsenko IG, Agarkova LA, Stepanov IA, Zhilyakova OV, Gabidulina TV, Ijoykina EV, Stepanov VA. Genomic and Postgenomic Technologies in Preeclampsia Genetics. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Association between ACVR2A gene polymorphisms and risk of hypertensive disorders of pregnancy in the northern Chinese population. Placenta 2020; 90:1-8. [DOI: 10.1016/j.placenta.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
|
12
|
Adu-Gyamfi EA, Lamptey J, Duan F, Wang YX, Ding YB. The transforming growth factor β superfamily as possible biomarkers of preeclampsia: a comprehensive review. Biomark Med 2019; 13:1321-1330. [PMID: 31559841 DOI: 10.2217/bmm-2019-0208] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The etiology of preeclampsia - an abnormal placentation-mediated disease - is not fully understood; and there are very few biomarkers with which to predict and diagnose it. Early prediction and diagnosis of this pathology can lead to a significant improvement in maternal and perinatal outcomes. Since members of the transforming growth factor β superfamily influence placentation, and are released from the placenta into the maternal circulatory system, several studies have investigated the involvement of these cytokines in preeclampsia and the possibility of using their serum levels as biomarkers of the disease. In this review, we have summarized the reported relationships between the levels of this superfamily of cytokines and preeclampsia. The available information indicates that altered levels of some of these cytokines are involved in the pathogenesis and pathophysiology of preeclampsia, suggesting their likelihood of serving as predictive and diagnostic biomarkers of the disease.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Jones Lamptey
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fumei Duan
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
13
|
Soltani S, Nasiri M. Association of ERAP2 gene variants with risk of pre-eclampsia among Iranian women. Int J Gynaecol Obstet 2019; 145:337-342. [PMID: 30933316 DOI: 10.1002/ijgo.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/21/2018] [Accepted: 03/29/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To determine the association between ERAP2 rs2549782 and rs17408150 polymorphisms and pre-eclampsia among Iranian women. METHODS A retrospective case-control study comparing 319 women with pre-eclampsia and 291 normotensive pregnant Iranian women between January and August 2016. Pre-eclampsia was diagnosed by the International Society for the Study of Hypertension in Pregnancy's criteria. Demographic data were collected by oral interview. Genotyping was done by allele-specific PCR. Data were analyzed using SPSS v. 16. RESULTS The frequency of the rs2549782TT genotype was 31.0% and 27.5% among cases and controls, respectively (P=0.006). There was no difference in the frequency of the T allele between groups (P>0.05). Regarding the rs17408150 polymorphism, a high portion of women with pre-eclampsia was homozygous for the AA genotype (P<0.001). The frequency of the A allele was 32.5% and 25.05% among cases and controls, respectively (P=0.004). The combined haplotype of the rs2549782A and rs17408150G alleles was associated with increased risk of pre-eclampsia (P=0.031). CONCLUSION ERAP2 gene polymorphisms were associated with the risk of pre-eclampsia in an Iranian population. The results provide further evidence of the role of ERAP2 in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Sareh Soltani
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Mahboobeh Nasiri
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| |
Collapse
|
14
|
Ariff A, Melton PE, Brennecke SP, Moses EK. Analysis of the Epigenome in Multiplex Pre-eclampsia Families Identifies SORD, DGKI, and ICA1 as Novel Candidate Risk Genes. Front Genet 2019; 10:227. [PMID: 30941163 PMCID: PMC6434177 DOI: 10.3389/fgene.2019.00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/28/2019] [Indexed: 01/04/2023] Open
Abstract
Pre-eclampsia is a serious heritable disorder that affects 5-8% of pregnancies worldwide. While classical genetic studies have identified several susceptibility genes they do not fully explain the heritability of pre-eclampsia. An additional contribution to risk can be quantified by examining the epigenome, in particular the methylome, which is a representation of interactions between environmental and genetic influences on the phenotype. Current array-based epigenetic studies only examine 2-5% of the methylome. Here, we used whole-genome bisulfite sequencing (WGBS) to determine the entire methylome of 13 individuals from two multiplex pre-eclampsia families, comprising one woman with eclampsia, six women with pre-eclampsia, four women with uncomplicated normotensive pregnancies and two male relatives. The analysis of WGBS profiles using two bioinformatics platforms, BSmooth and Bismark, revealed 18,909 differentially methylated CpGs and 4157 differentially methylated regions (DMRs) concordant in females. The methylation patterns support the involvement of previously reported candidate genes, including COL4A1, SLC2A4, PER3, FLT1, GPI, LCT, DDAH1, TGFB3, DLX5, and LRP1B. Statistical analysis of DMRs revealed three novel genes significantly correlated with pre-eclampsia: sorbitol dehydrogenase (SORD, p = 9.98 × 10-6), diacylglycerol kinase iota (DGKI, p = 2.52 × 10-5), and islet cell autoantigen 1 (ICA1, 7.54 × 10-3), demonstrating the potential of WGBS in families for elucidating the role of epigenome in pre-eclampsia and other complex diseases.
Collapse
Affiliation(s)
- Amir Ariff
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, Curtin University, The University of Western Australia, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Phillip E Melton
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, Curtin University, The University of Western Australia, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Shaun P Brennecke
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric K Moses
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, Curtin University, The University of Western Australia, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Amosco MD, Tavera GR, Villar VAM, Naniong JMA, David-Bustamante LMG, Williams SM, Jose PA, Palmes-Saloma CP. Non-additive effects of ACVR2A in preeclampsia in a Philippine population. BMC Pregnancy Childbirth 2019; 19:11. [PMID: 30621627 PMCID: PMC6323705 DOI: 10.1186/s12884-018-2152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multiple interrelated pathways contribute to the pathogenesis of preeclampsia, and variants in susceptibility genes may play a role among Filipinos, an ethnically distinct group with high prevalence of the disease. The objective of this study was to examine the association between variants in maternal candidate genes and the development of preeclampsia in a Philippine population. METHODS A case-control study involving 29 single nucleotide polymorphisms (SNPs) in 21 candidate genes was conducted in 150 patients with preeclampsia (cases) and 175 women with uncomplicated normal pregnancies (controls). Genotyping for the GRK4 and DRD1 gene variants was carried out using the TaqMan Assay, and all other variants were assayed using the Sequenom MassARRAY Iplex Platform. PLINK was used for SNP association testing. Multilocus association analysis was performed using multifactor dimensionality reduction (MDR) analysis. RESULTS Among the clinical factors, older age (P < 1 × 10-4), higher BMI (P < 1 × 10-4), having a new partner (P = 0.006), and increased time interval from previous pregnancy (P = 0.018) associated with preeclampsia. The MDR algorithm identified the genetic variant ACVR2A rs1014064 as interacting with age and BMI in association with preeclampsia among Filipino women. CONCLUSIONS The MDR algorithm identified an interaction between age, BMI and ACVR2A rs1014064, indicating that context among genetic variants and demographic/clinical factors may be crucial to understanding the pathogenesis of preeclampsia among Filipino women.
Collapse
Affiliation(s)
- Melissa D. Amosco
- National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, 1101 Quezon City, Philippines
- Department of Obstetrics and Gynecology, Philippine General Hospital - University of the Philippines, Taft Avenue, 1000 Manila, Philippines
| | - Gloria R. Tavera
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA
| | - Van Anthony M. Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University of School of Medicine & Health Sciences, Washington, DC, 20037 USA
| | - Justin Michael A. Naniong
- National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, 1101 Quezon City, Philippines
| | - Lara Marie G. David-Bustamante
- Department of Obstetrics and Gynecology, Philippine General Hospital - University of the Philippines, Taft Avenue, 1000 Manila, Philippines
| | - Scott M. Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University of School of Medicine & Health Sciences, Washington, DC, 20037 USA
- Department of Pharmacology and Physiology, The George Washington University of School of Medicine & Health Sciences, Washington, DC, 20037 USA
| | - Cynthia P. Palmes-Saloma
- National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, 1101 Quezon City, Philippines
- Philippine Genome Center, National Science Complex, University of the Philippines, Diliman, 1101 Quezon City, Philippines
| |
Collapse
|
16
|
Glotov AS, Kazakov SV, Vashukova ES, Pakin VS, Danilova MM, Nasykhova YA, Masharsky AE, Mozgovaya EV, Eremeeva DR, Zainullina MS, Baranov VS. Targeted sequencing analysis of ACVR2A gene identifies novel risk variants associated with preeclampsia. J Matern Fetal Neonatal Med 2018; 32:2790-2796. [DOI: 10.1080/14767058.2018.1449204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Andrey S. Glotov
- Laboratory of Prenatal Diagnostics of Hereditary Diseases, FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”, St. Petersburg, Russia
- Biobank of the Research Park, Saint Petersburg State University, St. Petersburg, Russia
| | - Sergey V. Kazakov
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
- JetBrains Research, St. Petersburg, Russia
| | - Elena S. Vashukova
- Laboratory of Prenatal Diagnostics of Hereditary Diseases, FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”, St. Petersburg, Russia
- Biobank of the Research Park, Saint Petersburg State University, St. Petersburg, Russia
| | - Vladimir S. Pakin
- Laboratory of Prenatal Diagnostics of Hereditary Diseases, FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”, St. Petersburg, Russia
- Biobank of the Research Park, Saint Petersburg State University, St. Petersburg, Russia
| | - Maria M. Danilova
- Laboratory of Prenatal Diagnostics of Hereditary Diseases, FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”, St. Petersburg, Russia
- Biobank of the Research Park, Saint Petersburg State University, St. Petersburg, Russia
| | - Yulia A. Nasykhova
- Laboratory of Prenatal Diagnostics of Hereditary Diseases, FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”, St. Petersburg, Russia
- Biobank of the Research Park, Saint Petersburg State University, St. Petersburg, Russia
| | - Aleksey E. Masharsky
- Research Resource Centre for Molecular and Cell Technologies, Saint Petersburg State University, St. Petersburg, Russia
| | - Elena V. Mozgovaya
- Laboratory of Prenatal Diagnostics of Hereditary Diseases, FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”, St. Petersburg, Russia
| | | | | | - Vladislav S. Baranov
- Laboratory of Prenatal Diagnostics of Hereditary Diseases, FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”, St. Petersburg, Russia
- Biobank of the Research Park, Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
17
|
Gray KJ, Saxena R, Karumanchi SA. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Am J Obstet Gynecol 2018; 218:211-218. [PMID: 29138037 DOI: 10.1016/j.ajog.2017.11.562] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Preeclampsia risk is influenced by both the mother's genetic background and the genetics of her fetus; however, the specific genes responsible for conferring preeclampsia risk have largely remained elusive. Evidence that preeclampsia has a genetic predisposition was first detailed in the early 1960s, and overall preeclampsia heritability is estimated at ∼55%. Many traditional gene discovery approaches have been used to investigate the specific genes that contribute to preeclampsia risk, but these have largely not been successful or reproducible. Over the past decade, genome-wide association studies have allowed for significant advances in the understanding of the genetic basis of many common diseases. Genome-wide association studies are predicated on the idea that the genetic basis of many common diseases are complex and polygenic with many variants, each with modest effects that contribute to disease risk. Using this approach in preeclampsia, a large genome-wide association study recently identified and replicated the first robust fetal genomic region associated with excess risk. A screen of >7 million genetic variants in 2658 offspring from preeclamptic women and 308,292 population controls identified a single association signal close to the Fms-like tyrosine kinase 1 gene, on chromosome 13. Fms-like tyrosine kinase 1 encodes soluble Fms-like tyrosine kinase 1, a splice variant of the vascular endothelial growth factor receptor that exerts antiangiogenic activity by inhibiting signaling of proangiogenic factors. The Fms-like tyrosine kinase 1 pathway is central in preeclampsia pathogenesis because excess circulating soluble Fms-like tyrosine kinase 1 in the maternal plasma leads to the hallmark clinical features of preeclampsia, including hypertension and proteinuria. The success of this landmark fetal preeclampsia genome-wide association study suggests that well-powered, larger maternal and fetal genome-wide association study will be fruitful in identifying additional common variants that implicate causal preeclampsia genes and pathways. Such efforts will rely on the continued development of large preeclampsia consortia focused on preeclampsia genetics to obtain adequate sample sizes, detailed clinical phenotyping, and matched maternal-fetal samples. In summary, the fetal preeclampsia genome-wide association study represents an exciting advance in preeclampsia biology, suggesting that dysregulation at the Fms-like tyrosine kinase 1 locus in the fetal genome (likely in the placenta) is a fundamental molecular defect in preeclampsia.
Collapse
|
18
|
Abstract
Preeclampsia (PE) is a serious hypertensive disorder that affects up to 8% of all pregnancies annually. An established risk factor for PE is family history, clearly demonstrating an underlying genetic component to the disorder. To date, numerous genetic studies, using both the candidate gene and genome-wide approach, have been undertaken to tease out the genetic basis of PE and understand its origins. Such studies have identified some promising candidate genes such as STOX1 and ACVR2A. Nevertheless, researchers face ongoing challenges of replicating these genetic associations in different populations and performing the functional validation of identified genetic variants to determine their causality in the disorder. This chapter will review the genetic approaches used in the study of PE, discuss their limitations and possible confounders, and describe current strategies.
Collapse
Affiliation(s)
- Hannah E J Yong
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, Melbourne, VIC, Australia.
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, The University of Cambridge, Cambridge, UK.
| | - Padma Murthi
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Shaun P Brennecke
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric K Moses
- Centre for Genetic Origins of Health and Disease, The University of Western Australia, Perth, Australia
| |
Collapse
|
19
|
Yong HEJ, Murthi P, Kalionis B, Keogh RJ, Brennecke SP. Decidual ACVR2A regulates extravillous trophoblast functions of adhesion, proliferation, migration and invasion in vitro. Pregnancy Hypertens 2017; 12:189-193. [PMID: 29203340 DOI: 10.1016/j.preghy.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/11/2017] [Accepted: 11/13/2017] [Indexed: 01/10/2023]
Abstract
Decidual stromal cells form the largest proportion of maternal cells at the maternal-fetal interface. Our aim was to investigate the role of the pre-eclampsia associated decidual activin receptor, ACVR2A, in regulating trophoblast functions at this interface. St-T1b and HTR-8/SVneo cell lines were used to model decidual stromal and trophoblast cells respectively. St-T1b conditioned medium inhibited HTR-8/SVneo adhesion, proliferation, migration and invasion; all effects that were attenuated by decidual ACVR2A siRNA transfection. These findings suggest that altered decidual ACVR2A expression perturbs the maternal-fetal crosstalk involved in regulating trophoblast function at the interface, which may affect placentation and lead to pre-eclampsia.
Collapse
Affiliation(s)
- Hannah E J Yong
- The University of Melbourne, Department of Obstetrics and Gynaecology and Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Locked Bag 300, Corner Grattan Street and Flemington Road, Parkville 3052, Victoria, Australia.
| | - Padma Murthi
- The University of Melbourne, Department of Obstetrics and Gynaecology and Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Locked Bag 300, Corner Grattan Street and Flemington Road, Parkville 3052, Victoria, Australia
| | - Bill Kalionis
- The University of Melbourne, Department of Obstetrics and Gynaecology and Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Locked Bag 300, Corner Grattan Street and Flemington Road, Parkville 3052, Victoria, Australia
| | - Rosemary J Keogh
- The University of Melbourne, Department of Obstetrics and Gynaecology and Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Locked Bag 300, Corner Grattan Street and Flemington Road, Parkville 3052, Victoria, Australia
| | - Shaun P Brennecke
- The University of Melbourne, Department of Obstetrics and Gynaecology and Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Locked Bag 300, Corner Grattan Street and Flemington Road, Parkville 3052, Victoria, Australia
| |
Collapse
|
20
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
21
|
Lokki AI, Daly E, Triebwasser M, Kurki MI, Roberson EDO, Häppölä P, Auro K, Perola M, Heinonen S, Kajantie E, Kere J, Kivinen K, Pouta A, Salmon JE, Meri S, Daly M, Atkinson JP, Laivuori H. Protective Low-Frequency Variants for Preeclampsia in the Fms Related Tyrosine Kinase 1 Gene in the Finnish Population. Hypertension 2017; 70:365-371. [PMID: 28652462 DOI: 10.1161/hypertensionaha.117.09406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/04/2017] [Accepted: 05/28/2017] [Indexed: 12/11/2022]
Abstract
Preeclampsia is a common pregnancy-specific vascular disorder characterized by new-onset hypertension and proteinuria during the second half of pregnancy. Predisposition to preeclampsia is in part heritable. It is associated with an increased risk of cardiovascular disease later in life. We have sequenced 124 candidate genes implicated in preeclampsia to pinpoint genetic variants contributing to predisposition to or protection from preeclampsia. First, targeted exomic sequencing was performed in 500 preeclamptic women and 190 controls from the FINNPEC cohort (Finnish Genetics of Preeclampsia Consortium). Then 122 women with a history of preeclampsia and 1905 parous women with no such history from the National FINRISK Study (a large Finnish population survey on risk factors of chronic, noncommunicable diseases) were included in the analyses. We tested 146 rare and low-frequency variants and found an excess (observed 13 versus expected 7.3) nominally associated with preeclampsia (P<0.05). The most significantly associated sequence variants were protective variants rs35832528 (E982A; P=2.49E-4; odds ratio=0.387) and rs141440705 (R54S; P=0.003; odds ratio=0.442) in Fms related tyrosine kinase 1. These variants are enriched in the Finnish population with minor allele frequencies 0.026 and 0.017, respectively. They may also be associated with a lower risk of heart failure in 11 257 FINRISK women. This study provides the first evidence of maternal protective genetic variants in preeclampsia.
Collapse
Affiliation(s)
- A Inkeri Lokki
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.).
| | - Emma Daly
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Michael Triebwasser
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Mitja I Kurki
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Elisha D O Roberson
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Paavo Häppölä
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Kirsi Auro
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Markus Perola
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Seppo Heinonen
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Eero Kajantie
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Juha Kere
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Katja Kivinen
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Anneli Pouta
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Jane E Salmon
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Seppo Meri
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Mark Daly
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - John P Atkinson
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.)
| | - Hannele Laivuori
- From the Immunobiology, Research Programs Unit (A.I.L., S.M.), Molecular Neurology, Research Programs Unit (J.K.), and Institute for Molecular Medicine Finland/HiLIFE Unit (P.H., K.A., M.P., H.L.), University of Helsinki, Finland; Medical and Clinical Genetics (A.I.L., H.L.), Bacteriology and Immunology (A.I.L., S.M.), Obstetrics and Gynaecology (K.A., S.H., H.L.), and Children's Hospital (E.K), University of Helsinki and Helsinki University Hospital, Finland; Folkhälsan Institute of Genetics (J.K.), University of Helsinki, Finland; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA (E.D., M.I.K., M.D.); Department of Medicine, Division of Rheumatology (M.T., E.D.O.R., J.P.A.) and Department of Genetics (E.D.O.R.), Washington University School of Medicine, St. Louis, MO; Neurosurgery of Neuro Center, Kuopio University Hospital, Finland (M.I.K.); Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston (M.I.K.); Unit of Genetics and Biomarkers (K.A.), Department of Health (M.P., E.K.), Chronic Disease Prevention Unit, Department of Health (E.K.), and Department of Government Services (A.P.), National Institute for Health and Welfare, Helsinki, Finland; The Estonian Genome Center, University of Tartu, Estonia (M.P.); PEDEGO Research Unit, MRC Oulu, University of Oulu and Oulu University Hospital, Finland (E.K., A.P.); Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden (J.K.); Department of Medical and Molecular Genetics, King's College, London, United Kingdom (J.K.); Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (K.K.); Department of Medicine, Hospital for Special Surgery-Weill Cornell Medicine, New York, NY (J.E.S.); and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (M.D.).
| |
Collapse
|
22
|
Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond. Hum Reprod Update 2016; 22:342-57. [PMID: 26884470 DOI: 10.1093/humupd/dmv058] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. METHODS A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. RESULTS Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female reproductive aging. In the male, activin A is an autocrine and paracrine modulator of germ cell development and Sertoli cell proliferation. Disruption of normal activin signalling is characteristic of many tumours affecting reproductive organs, including endometrial carcinoma, cervical cancer, testicular and ovarian cancer as well as prostate cancer. While activin A and B aid the progression of many tumours of the reproductive organs, activin C acts as a tumour suppressor. Activins are important in embryonic induction, morphogenesis of branched glandular organs, development of limbs and nervous system, craniofacial and dental development and morphogenesis of the Wolffian duct. CONCLUSIONS The field of activin biology has advanced considerably since its initial discovery as an FSH stimulating agent. Now, activin is well known as a growth factor and cytokine that regulates many aspects of reproductive biology, developmental biology and also inflammation and immunological mechanisms. Current research provides evidence for novel roles of activins in maintaining the structure and function of reproductive and other organ systems. The fact that activin A is elevated both locally as well as systemically in major disorders of the reproductive system makes it an important biomarker. Given the established role of activin A as a pro-inflammatory and pro-fibrotic agent, studies of its involvement in disorders of reproduction resulting from these processes should be examined. Follistatin, as a key regulator of the biological actions of activin, should be evaluated as a therapeutic agent in conditions where activin A overexpression is established as a contributing factor.
Collapse
Affiliation(s)
- R Wijayarathna
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| | - D M de Kretser
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| |
Collapse
|
23
|
Yong HE, Murthi P, Wong MH, Kalionis B, Cartwright JE, Brennecke SP, Keogh RJ. Effects of normal and high circulating concentrations of activin A on vascular endothelial cell functions and vasoactive factor production. Pregnancy Hypertens 2015; 5:346-53. [DOI: 10.1016/j.preghy.2015.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/12/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022]
|
24
|
ACVR2A promoter polymorphism rs1424954 in the Activin-A signaling pathway in trophoblasts. Placenta 2015; 36:345-9. [DOI: 10.1016/j.placenta.2015.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/30/2022]
|
25
|
Activin signalling and pre-eclampsia: From genetic risk to pre-symptomatic biomarker. Cytokine 2015; 71:360-5. [DOI: 10.1016/j.cyto.2014.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 12/23/2022]
|
26
|
Yu X, Yin Z, Lin H, Lin N, Lin Y, Chen J, Lin S, Lin Y, Chen Y, Lu KP, Liu H. ADIPOQ +45T>G, +712A>G and +4545C>G variants are associated with dyslipidemia in Chinese pre-eclampsia women. Int J Diabetes Dev Ctries 2014. [DOI: 10.1007/s13410-014-0251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Morgan L, McGinnis R, Steinthorsdottir V, Svyatova G, Zakhidova N, Lee WK, Iversen AC, Magnus P, Walker J, Casas JP, Sultanov S, Laivuori H. InterPregGen: genetic studies of pre-eclampsia in three continents. NORSK EPIDEMIOLOGI 2014; 24:141-146. [PMID: 26568652 PMCID: PMC4641320 DOI: 10.5324/nje.v24i1-2.1815] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pre-eclampsia is a major cause of maternal and fetal mortality in pregnancy. The identification of genetic variants which predispose to pre-eclampsia demands large DNA collections from affected mothers and babies and controls, with reliable supporting phenotypic data. The InterPregGen study has assembled a consortium of researchers from Europe, Central Asia and South America with the aim of elucidating the genetic architecture of pre-eclampsia. The MoBa collection is playing a vital role in this collaborative venture, which has the potential to provide new insights into the causes of pre-eclampsia, and provide a rational basis for novel approaches to prevention and treatment.
Collapse
Affiliation(s)
- Linda Morgan
- School of Life Sciences, University of Nottingham, UK
| | | | | | - Gulnara Svyatova
- Scientific Centre of Obstetrics, Gynaecology and Perinatology of Ministry of Health, Kazakhstan
| | | | - Wai Kwong Lee
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, UK
| | - Ann-Charlotte Iversen
- Department of Cancer Research and Molecular Medicine and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Norway
| | - James Walker
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, UK
| | - Juan Pablo Casas
- London School of Hygiene and Tropical Medicine and University College London, UK
| | - Saidazim Sultanov
- Republic Specialized Scientific-Practical Medical Centre of Obstetrics and Gynaecology, Uzbekistan
| | - Hannele Laivuori
- Haartman Institute, Medical Genetics, University of Helsinki, Finland
| |
Collapse
|
28
|
Ferreira LC, Gomes CEM, Araújo ACP, Bezerra PF, Duggal P, Jeronimo SMB. Association between ACVR2A and early-onset preeclampsia: replication study in a Northeastern Brazilian population. Placenta 2014; 36:186-90. [PMID: 25499008 DOI: 10.1016/j.placenta.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Preeclampsia is a complex and heterogeneous disease with increased risk of maternal mortality, especially for earlier gestational onset. There is a great inconsistency regarding the genetics of preeclampsia across the literature. The gene Activin A receptor, type IIA (ACVR2A), was reported as associated to preeclampsia in Australian/New Zealand and Norwegian populations. The goal of this study was to validate this genetic association in a Brazilian population. METHODS We performed a case-control study using 693 controls and 613 cases (443 preeclampsia, 64 eclampsia and 106 HELLP syndrome), from a Northeastern Brazilian population. Five single nucleotide polymorphisms (SNPs) in ACVR2A were tested for association through multiple logistic regression models. RESULTS There was no statistical association with preeclampsia (per se), eclampsia or HELLP. However, by grouping preeclampsia in accordance to the gestational age at delivery, SNPs rs1424954 (OR = 1.86; 95% CI, 1.25-2.78; p = 0.002) and rs1014064 (OR = 1.77; 95% CI, 1.21-2.60; p = 0.004) were significantly associated with early onset preeclampsia (gestational age ≤ 34 weeks). The risk haplotype had a frequency of 0.468 in early preeclampsia compared to 0.316 in controls (p = 0.0008 and permuted p = 0.002). DISCUSSION Activin A receptors are important in decidualization, trophoblast invasion and placentation processes during pregnancy. The gene ACVR2A was associated with the more severe early onset preeclampsia. This finding supports the hypothesis of different pathogenic mechanisms contributing to the early- and late-onset preeclampsia.
Collapse
Affiliation(s)
- L C Ferreira
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil; Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil
| | - C E M Gomes
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil; Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - A C P Araújo
- Department of Obstetrics and Gynecology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - P F Bezerra
- Maternidade Escola Januário Cicco, Federal University of Rio Grande do Norte, Natal, Brazil
| | - P Duggal
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - S M B Jeronimo
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil; Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil; Institute of Science and Technology of Tropical Diseases (INCT-DT), Brazil.
| |
Collapse
|
29
|
Genetic aspects of preeclampsia and the HELLP syndrome. J Pregnancy 2014; 2014:910751. [PMID: 24991435 PMCID: PMC4060423 DOI: 10.1155/2014/910751] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 12/20/2022] Open
Abstract
Both preeclampsia and the HELLP syndrome have their origin in the placenta. The aim of this study is to review genetic factors involved in development of preeclampsia and the HELLP syndrome using literature search in PubMed. A familial cohort links chromosomes 2q, 5q, and 13q to preeclampsia. The chromosome 12q is coupled with the HELLP syndrome. The STOX1 gene, the ERAP1 and 2 genes, the syncytin envelope gene, and the −670 Fas receptor polymorphisms are involved in the development of preeclampsia. The ACVR2A gene on chromosome 2q22 is also implicated. The toll-like receptor-4 (TLR-4) and factor V Leiden mutation participate both in development of preeclampsia and the HELLP syndrome. Carriers of the TT and the CC genotype of the MTHFR C677T polymorphism seem to have an increased risk of the HELLP syndrome. The placental levels of VEGF mRNA are reduced both in women with preeclampsia and in women with the HELLP syndrome. The BclI polymorphism is engaged in development of the HELLP syndrome but not in development of severe preeclampsia. The ACE I/D polymorphism affects uteroplacental and umbilical artery blood flows in women with preeclampsia. In women with preeclampsia and the HELLP syndrome several genes in the placenta are deregulated. Preeclampsia and the HELLP syndrome are multiplex genetic diseases.
Collapse
|
30
|
Naderi E, Mostafaei M, Pourshams A, Mohamadkhani A. Network of microRNAs-mRNAs interactions in pancreatic cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:534821. [PMID: 24895587 PMCID: PMC4033392 DOI: 10.1155/2014/534821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/13/2014] [Accepted: 04/13/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND MicroRNAs are small RNA molecules that regulate the expression of certain genes through interaction with mRNA targets and are mainly involved in human cancer. This study was conducted to make the network of miRNAs-mRNAs interactions in pancreatic cancer as the fourth leading cause of cancer death. METHODS 56 miRNAs that were exclusively expressed and 1176 genes that were downregulated or silenced in pancreas cancer were extracted from beforehand investigations. MiRNA-mRNA interactions data analysis and related networks were explored using MAGIA tool and Cytoscape 3 software. Functional annotations of candidate genes in pancreatic cancer were identified by DAVID annotation tool. RESULTS This network is made of 217 nodes for mRNA, 15 nodes for miRNA, and 241 edges that show 241 regulations between 15 miRNAs and 217 target genes. The miR-24 was the most significantly powerful miRNA that regulated series of important genes. ACVR2B, GFRA1, and MTHFR were significant target genes were that downregulated. CONCLUSION Although the collected previous data seems to be a treasure trove, there was no study simultaneous to analysis of miRNAs and mRNAs interaction. Network of miRNA-mRNA interactions will help to corroborate experimental remarks and could be used to refine miRNA target predictions for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Elnaz Naderi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mostafaei
- Biotechnology Engineering, Islamic Azad University,Tehran North Branch, Tehran, Iran
| | - Akram Pourshams
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Integrative transcriptome analysis reveals dysregulation of canonical cancer molecular pathways in placenta leading to preeclampsia. Sci Rep 2014; 3:2407. [PMID: 23989136 PMCID: PMC3757356 DOI: 10.1038/srep02407] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022] Open
Abstract
We previously suggested links between specific XPD mutations in the fetal genome and the risk of placental maldevelopment and preeclampsia, possibly due to impairment of Transcription Factor (TF)IIH-mediated functions in placenta. To identify the underlying mechanisms, we conducted the current integrative analysis of several relevant transcriptome data sources. Our meta-analysis revealed downregulation of TFIIH subunits in preeclamptic placentas. Our overall integrative analysis suggested that, in the presence of hypoxia and oxidative stress, EGFR signaling deficiency, which can be caused by TFIIH impairment as well as by other mechanisms, results in ATF3 upregulation, inducing mediators of clinical symptoms of preeclampsia such as FLT1 and ENG. EGFR- and ATF3-dependent pathways play prominent roles in cancer development. We propose that dysregulation of these canonical cancer molecular pathways occurs in preeclampsia and delineate the relevance of TFIIH, providing etiologic clues which could eventually translate into a therapeutic approach.
Collapse
|
32
|
van Dijk M, Oudejans C. (Epi)genetics of pregnancy-associated diseases. Front Genet 2013; 4:180. [PMID: 24058367 PMCID: PMC3767913 DOI: 10.3389/fgene.2013.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/27/2013] [Indexed: 01/04/2023] Open
Abstract
This review describes the current knowledge regarding genetics and epigenetics of pregnancy-associated diseases with placental origin. We discuss the effect on genetic linkage analyses when the fetal genotype determines the maternal phenotype. Secondly, the genes identified by genome-wide linkage studies to be associated with pre-eclampsia (ACVR2A, STOX1) and the HELLP-syndrome (LINC-HELLP) are discussed regarding their potential functions in the etiology of disease. Furthermore, susceptibility genes identified by candidate gene approaches (e.g., CORIN) are described. Next, we focus on the additional challenges that come when epigenetics also play a role in disease inheritance. We discuss the maternal transmission of the chromosome 10q22 pre-eclampsia linkage region containing the STOX1 gene and provide further evidence for the role of epigenetics in pre-eclampsia based on the cdkn1c mouse model of pre-eclampsia. Finally, we provide recommendations to unravel the genetics of pregnancy-associated diseases, specifically regarding clear definitions of patient groups and sufficient patient numbers, and the potential usefulness of (epi)genetic data in early non-invasive biomarker development.
Collapse
Affiliation(s)
- Marie van Dijk
- Molecular Biology Laboratory, Department of Clinical Chemistry, VU University Medical Center Amsterdam, Netherlands ; Institute for Cardiovascular Research VU, VU University Medical Center Amsterdam, Netherlands
| | | |
Collapse
|
33
|
Best LG, Saxena R, Anderson CM, Barnes MR, Hakonarson H, Falcon G, Martin C, Castillo BA, Karumanchi A, Keplin K, Pearson N, Lamb F, Bercier S, Keating BJ. Two variants of the C-reactive protein gene are associated with risk of pre-eclampsia in an American Indian population. PLoS One 2013; 8:e71231. [PMID: 23940726 PMCID: PMC3733916 DOI: 10.1371/journal.pone.0071231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/27/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The etiology of pre-eclampsia (PE) is unknown; but it is accepted that normal pregnancy represents a distinctive challenge to the maternal immune system. C-reactive protein is a prominent component of the innate immune system; and we previously reported an association between PE and the CRP polymorphism, rs1205. Our aim was to explore the effects of additional CRP variants. The IBC (Cardiochip) genotyping microarray focuses on candidate genes and pathways related to the pathophysiology of cardiovascular disease. METHODS This study recruited 140 cases of PE and 270 matched controls, of which 95 cases met criteria as severe PE, from an American Indian community. IBC array genotypes from 10 suitable CRP SNPs were analyzed. A replication sample of 178 cases and 427 controls of European ancestry was also genotyped. RESULTS A nominally significant difference (p value <0.05) was seen in the distribution of discordant matched pairs for rs3093068; and Bonferroni corrected differences (P<0.005) were seen for rs876538, rs2794521, and rs3091244. Univariate conditional logistic regression odds ratios (OR) were nominally significant for rs3093068 and rs876538 models only. Multivariate logistic models with adjustment for mother's age, nulliparity and BMI attenuated the effect (OR 1.58, P = 0.066, 95% CI 0.97-2.58) for rs876538 and (OR 2.59, P = 0.050, 95% CI 1.00-6.68) for rs3093068. An additive risk score of the above two risk genotypes shows a multivariate adjusted OR of 2.04 (P = 0.013, 95% CI 1.16-3.56). The replication sample also demonstrated significant association between PE and the rs876538 allele (OR = 1.55, P = 0.01, 95% CI 2.16-1.10). We also show putative functionality for the rs876538 and rs3093068 CRP variants. CONCLUSION The CRP variants, rs876538 and rs3093068, previously associated with other cardiovascular disease phenotypes, show suggestive association with PE in this American Indian population, further supporting a possible role for CRP in PE.
Collapse
Affiliation(s)
- Lyle G Best
- Science Department, Turtle Mountain Community College, Belcourt, North Dakota, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zeybek B, Celik HA, Aydin HH, Askar N. Polymorphisms in the activin A receptor type 2A gene affect the onset time and severity of preeclampsia in the Turkish population. J Perinat Med 2013; 41:389-99. [PMID: 23633461 DOI: 10.1515/jpm-2012-0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/14/2012] [Indexed: 12/30/2022]
Abstract
AIM To investigate the possible roles of selected single nucleotide gene polymorphisms (SNPs) of the activin A receptor type 2A (ACVR2A) gene in the pathogenesis of preeclampsia. METHODS Ninety-four patients with preeclampsia and 166 healthy pregnant women were included in this study. Genomic DNA was extracted from venous blood and were stored at -80°C before the analysis. Selected ACVR2A SNPs (rs10497025, rs1128919, rs13430086) were determined in an ABI 7900 HT Real-Time PCR instrument. RESULTS For all three SNPs, no statistically significant difference was found between preeclampsia and control groups in terms of genotype and allele frequencies. In the late preeclampsia group, with regard to the rs1128919 SNP, the frequency of GG genotype was found to be significantly lower (P=0.02). Although the frequency of "A" allele was found to be higher (P=0.05; OR=1.54), and the "G" allele was found to be lower (P=0.05; OR=0.65), the results did not reach statistical significance in late preeclamptic patients. For the rs1128919 SNP, the frequency of the AA genotype was found to be significantly higher in both mild (P=0.004) and severe (P=0.0001) preeclampsia groups, whereas the frequency of GG genotype was found to be significantly lower (P=0.008, and P=0.0001, respectively). For the rs13430086 SNP, while the frequency of the AA genotype was found to be significantly lower in both mild (P=0.02) and severe (P=0.0001) preeclamptic patients, the frequency of TT genotype was found to be significantly higher in only severe preeclampsia group (P=0.0001). CONCLUSION ACVR2A gene polymorphisms may play a role in the development of preeclampsia.
Collapse
Affiliation(s)
- Burak Zeybek
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Bornova, Izmir 35100, Turkey.
| | | | | | | |
Collapse
|
35
|
Johnson MP, Brennecke SP, East CE, Dyer TD, Roten LT, Proffitt JM, Melton PE, Fenstad MH, Aalto-Viljakainen T, Mäkikallio K, Heinonen S, Kajantie E, Kere J, Laivuori H, Austgulen R, Blangero J, Moses EK. Genetic dissection of the pre-eclampsia susceptibility locus on chromosome 2q22 reveals shared novel risk factors for cardiovascular disease. Mol Hum Reprod 2013; 19:423-37. [PMID: 23420841 DOI: 10.1093/molehr/gat011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pre-eclampsia is an idiopathic pregnancy disorder promoting morbidity and mortality to both mother and child. Delivery of the fetus is the only means to resolve severe symptoms. Women with pre-eclamptic pregnancies demonstrate increased risk for later life cardiovascular disease (CVD) and good evidence suggests these two syndromes share several risk factors and pathophysiological mechanisms. To elucidate the genetic architecture of pre-eclampsia we have dissected our chromosome 2q22 susceptibility locus in an extended Australian and New Zealand familial cohort. Positional candidate genes were prioritized for exon-centric sequencing using bioinformatics, SNPing, transcriptional profiling and QTL-walking. In total, we interrogated 1598 variants from 52 genes. Four independent SNP associations satisfied our gene-centric multiple testing correction criteria: a missense LCT SNP (rs2322659, P = 0.0027), a synonymous LRP1B SNP (rs35821928, P = 0.0001), an UTR-3 RND3 SNP (rs115015150, P = 0.0024) and a missense GCA SNP (rs17783344, P = 0.0020). We replicated the LCT SNP association (P = 0.02) and observed a borderline association for the GCA SNP (P = 0.07) in an independent Australian case-control population. The LRP1B and RND3 SNP associations were not replicated in this same Australian singleton cohort. Moreover, these four SNP associations could not be replicated in two additional case-control populations from Norway and Finland. These four SNPs, however, exhibit pleiotropic effects with several quantitative CVD-related traits. Our results underscore the genetic complexity of pre-eclampsia and present novel empirical evidence of possible shared genetic mechanisms underlying both pre-eclampsia and other CVD-related risk factors.
Collapse
Affiliation(s)
- Matthew P Johnson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Degrelle SA, Jaffrezic F, Campion E, Lê Cao KA, Le Bourhis D, Richard C, Rodde N, Fleurot R, Everts RE, Lecardonnel J, Heyman Y, Vignon X, Yang X, Tian XC, Lewin HA, Renard JP, Hue I. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer. PLoS One 2012; 7:e38309. [PMID: 22701625 PMCID: PMC3368877 DOI: 10.1371/journal.pone.0038309] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/04/2012] [Indexed: 02/04/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular “uncoupling”. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way.
Collapse
Affiliation(s)
- Séverine A. Degrelle
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Florence Jaffrezic
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Evelyne Campion
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Kim-Anh Lê Cao
- INRA, UR631, Station d’Amélioration Génétique des Animaux, Castanet, France
| | - Daniel Le Bourhis
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- UNCEIA, R&D Department, Maisons Alfort, France
| | | | - Nathalie Rodde
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Renaud Fleurot
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | | | - Yvan Heyman
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Xavier Vignon
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Xiangzhong Yang
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiuchun C. Tian
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jean-Paul Renard
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Isabelle Hue
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- * E-mail:
| |
Collapse
|
37
|
Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene. PLoS One 2012; 7:e33666. [PMID: 22432041 PMCID: PMC3303857 DOI: 10.1371/journal.pone.0033666] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
Elucidating the genetic architecture of preeclampsia is a major goal in obstetric medicine. We have performed a genome-wide association study (GWAS) for preeclampsia in unrelated Australian individuals of Caucasian ancestry using the Illumina OmniExpress-12 BeadChip to successfully genotype 648,175 SNPs in 538 preeclampsia cases and 540 normal pregnancy controls. Two SNP associations (rs7579169, p = 3.58×10−7, OR = 1.57; rs12711941, p = 4.26×10−7, OR = 1.56) satisfied our genome-wide significance threshold (modified Bonferroni p<5.11×10−7). These SNPs reside in an intergenic region less than 15 kb downstream from the 3′ terminus of the Inhibin, beta B (INHBB) gene on 2q14.2. They are in linkage disequilibrium (LD) with each other (r2 = 0.92), but not (r2<0.80) with any other genotyped SNP ±250 kb. DNA re-sequencing in and around the INHBB structural gene identified an additional 25 variants. Of the 21 variants that we successfully genotyped back in the case-control cohort the most significant association observed was for a third intergenic SNP (rs7576192, p = 1.48×10−7, OR = 1.59) in strong LD with the two significant GWAS SNPs (r2>0.92). We attempted to provide evidence of a putative regulatory role for these SNPs using bioinformatic analyses and found that they all reside within regions of low sequence conservation and/or low complexity, suggesting functional importance is low. We also explored the mRNA expression in decidua of genes ±500 kb of INHBB and found a nominally significant correlation between a transcript encoded by the EPB41L5 gene, ∼250 kb centromeric to INHBB, and preeclampsia (p = 0.03). We were unable to replicate the associations shown by the significant GWAS SNPs in case-control cohorts from Norway and Finland, leading us to conclude that it is more likely that these SNPs are in LD with as yet unidentified causal variant(s).
Collapse
|
38
|
Williams PJ, Morgan L. The role of genetics in pre-eclampsia and potential pharmacogenomic interventions. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2012; 5:37-51. [PMID: 23226061 PMCID: PMC3513227 DOI: 10.2147/pgpm.s23141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Indexed: 01/23/2023]
Abstract
The pregnancy-specific condition pre-eclampsia not only affects the health of mother and baby during pregnancy but also has long-term consequences, increasing the chances of cardiovascular disease in later life. It is accepted that pre-eclampsia has a placental origin, but the pathogenic mechanisms leading to the systemic endothelial dysfunction characteristic of the disorder remain to be determined. In this review we discuss some key factors regarded as important in the development of pre-eclampsia, including immune maladaptation, inadequate placentation, oxidative stress, and thrombosis. Genetic factors influence all of these proposed pathophysiological mechanisms. The inherited nature of pre-eclampsia has been known for many years, and extensive genetic studies have been undertaken in this area. Genetic research offers an attractive strategy for studying the pathogenesis of pre-eclampsia as it avoids the ethical and practical difficulties of conducting basic science research during the preclinical phase of pre-eclampsia when the underlying pathological changes occur. Although pharmacogenomic studies have not yet been conducted in pre-eclampsia, a number of studies investigating treatment for essential hypertension are of relevance to therapies used in pre-eclampsia. The pharmacogenomics of antiplatelet agents, alpha and beta blockers, calcium channel blockers, and magnesium sulfate are discussed in relation to the treatment and prevention of pre-eclampsia. Pharmacogenomics offers the prospect of individualized patient treatment, ensuring swift introduction of optimal treatment whilst minimizing the use of inappropriate or ineffective drugs, thereby reducing the risk of harmful effects to both mother and baby.
Collapse
|
39
|
Lokki AI, Klemetti MM, Heino S, Hiltunen L, Heinonen S, Laivuori H. Association of the rs1424954 polymorphism of the ACVR2A gene with the risk of pre-eclampsia is not replicated in a Finnish study population. BMC Res Notes 2011; 4:545. [PMID: 22177086 PMCID: PMC3267796 DOI: 10.1186/1756-0500-4-545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pre-eclampsia/eclampsia is a common vascular pregnancy disorder associated with high maternal and infant mortality and morbidity worldwide. The role of Activin A and more recently type 2 Activin A receptor (ACVR2A) in the pathogenesis of pre-eclampsia has been the subject of genetic and biochemical research with controversial results. FINDINGS We genotyped a candidate pre-eclampsia-associated single nucleotide polymorphism rs1424954 in ACVR2A in three independent study populations of Finnish pre-eclamptic (total N = 485) and non-pre-eclamptic (total N = 449) women using pre-designed TaqMan allele discrimination assay and polymerase chain reaction. The possible association of the alleles and genotypes of interest with pre-eclampsia was evaluated using the chi-square test and logistic regression analysis. We found no association of rs1424954 to pre-eclampsia in Finnish patients. CONCLUSIONS rs1424954 was not associated to pre-eclampsia in the Finnish study population. We hypothesise that while the gene associates to pre-eclampsia worldwide, the causative polymorphism in ACVR2A may be unique in genetically differing populations. Further research is needed to characterise the haplotype structure of ACVR2A in order for the causative genetic variant to be identified.
Collapse
Affiliation(s)
- A Inkeri Lokki
- Department of Medical Genetics, Haartman Institute, University of Helsinki, P,O, Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
40
|
Zdoukopoulos N, Doxani C, Messinis IE, Stefanidis I, Zintzaras E. Polymorphisms of the endothelial nitric oxide synthase (NOS3) gene in preeclampsia: a candidate-gene association study. BMC Pregnancy Childbirth 2011; 11:89. [PMID: 22051068 PMCID: PMC3217889 DOI: 10.1186/1471-2393-11-89] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/03/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The endothelial nitric oxide synthase gene (NOS3) has been proposed as a candidate gene for preeclampsia. However, studies so far have produced conflicting results. This study examines the specific role of variants and haplotypes of the NOS3 gene in a population of Caucasian origin. METHODS We examined the association of three common variants of the NOS3 gene (4b/a, T-786C and G894T) and their haplotypes in a case-control sample of 102 patients with preeclampsia and 176 women with a history of uncomplicated pregnancies. Genotyping for the NOS3 variants was performed and odds ratios and 95% confidence intervals were obtained to evaluate the association between NOS3 polymorphisms and preeclampsia. RESULTS The single locus analysis for the three variants using various genetic models and a model-free approach revealed no significant association in relation to clinical status. The analysis of haplotypes also showed lack of significant association. CONCLUSIONS Given the limitations of the candidate-gene approach in investigating complex traits, the evidence of our study does not support the major contributory role of these common NOS3 variants in preeclampsia. Future larger studies may help in elucidating the genetics of preeclampsia further.
Collapse
Affiliation(s)
- Nikos Zdoukopoulos
- Department of Obstetrics and Gynaecology, University of Thessaly School of Medicine, Larissa, Greece
- Department of Biomathematics, University of Thessaly School of Medicine, Larissa, Greece
| | - Chrysa Doxani
- Department of Biomathematics, University of Thessaly School of Medicine, Larissa, Greece
| | - Ioannis E Messinis
- Department of Obstetrics and Gynaecology, University of Thessaly School of Medicine, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, University of Thessaly School of Medicine, Larissa, Greece
| | - Elias Zintzaras
- Department of Biomathematics, University of Thessaly School of Medicine, Larissa, Greece
- Center for Clinical Evidence Synthesis, The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
41
|
Junus K, Centlow M, Wikström AK, Larsson I, Hansson SR, Olovsson M. Gene expression profiling of placentae from women with early- and late-onset pre-eclampsia: down-regulation of the angiogenesis-related genes ACVRL1 and EGFL7 in early-onset disease. Mol Hum Reprod 2011; 18:146-55. [PMID: 22013081 DOI: 10.1093/molehr/gar067] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The underlying mechanisms behind the obstetric condition pre-eclampsia (PE) are still unclear. Manifestation of PE is heterogeneous and it has therefore been proposed to be a syndrome with different causes rather than one disease with a specific aetiology. Recently, we showed differences in circulating angiogenic factors between two subgroups-early- and late-onset PE. To further elucidate the differences between the two, we investigated placental gene expression profiles. Whole genome microarray technology and bioinformatic analysis were used to evaluate gene expression profiles in placentae from early- (24-32 gestational weeks, n = 8) and late-onset (36-41 gestational weeks, n = 7) PE. The results were verified by using quantitative real-time (qRT)-PCR. We found significant differences in the expression of 196 genes in early- compared with late-onset PE, 45 of these genes showing a fold change above 2. Bioinformatic analysis revealed alterations in angiogenesis and regulation of cell motility. Two angiogenesis-associated transcripts (Egfl7 and Acvrl1) showed lower expression in early-onset PE versus late-onset PE (P = 0.037 and P = 0.003) and versus gestational age-matched controls (P = 0.007 and P = 0.011). We conclude that angiogenesis-associated genes are regulated in a different manner in the two subgroups, and that the gene expression profiles of early- and late-onset PE diverge, supporting the hypothesis of early- and late-onset PE being at least partly two separate entities.
Collapse
Affiliation(s)
- K Junus
- Department of Women's and Children's Health, Uppsala University, 751 85 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
42
|
Nadeem L, Munir S, Fu G, Dunk C, Baczyk D, Caniggia I, Lye S, Peng C. Nodal signals through activin receptor-like kinase 7 to inhibit trophoblast migration and invasion: implication in the pathogenesis of preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1177-89. [PMID: 21356369 DOI: 10.1016/j.ajpath.2010.11.066] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/02/2010] [Accepted: 11/18/2010] [Indexed: 12/22/2022]
Abstract
Trophoblast cell invasion into the uterus is an essential process for successful pregnancy, and shallow invasion of trophoblasts into the maternal decidua is linked to preeclampsia. We have reported that Nodal, a member of the transforming growth factor-β superfamily, acts through activin receptor-like kinase 7 (ALK7) to inhibit trophoblast proliferation and to induce apoptosis. In this study, we examined the spatial and temporal expression patterns of Nodal and ALK7 in human placenta from normal and preeclamptic pregnancies and investigated whether Nodal regulated trophoblast migration and invasion. Nodal and ALK7 were detected in villous and extravillous trophoblast cell populations in early gestation, and their levels were strongly up-regulated in preeclamptic placenta. Overexpression of Nodal or constitutively active ALK7 decreased cell migration and invasion, whereas knockdown of Nodal and ALK7 had the opposite effects. In placental explant culture, treatment with Nodal inhibited trophoblast outgrowth, whereas Nodal small-interfering RNA strongly induced the expansion of explants and the migration of extravillous trophoblast cells. Nodal stimulated the secretion of tissue inhibitor of metalloproteinase-1 and inhibited matrix metalloproteinase (MMP)-2 and MMP-9 activity. These findings suggest that the Nodal/ALK7 pathway plays important roles in human placentation and that its abnormal signaling may contribute to the development of preeclampsia.
Collapse
Affiliation(s)
- Lubna Nadeem
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Williams PJ, Broughton Pipkin F. The genetics of pre-eclampsia and other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol 2011; 25:405-17. [PMID: 21429808 PMCID: PMC3145161 DOI: 10.1016/j.bpobgyn.2011.02.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/25/2011] [Indexed: 12/17/2022]
Abstract
Hypertension is the most frequent medical complication occurring during pregnancy. In this chapter, we aim to address the genetic contribution to these disorders, with specific focus on pre-eclampsia. The pathogenic mechanisms underlying pre-eclampsia remain to be elucidated; however, immune maladaptation, inadequate placental development and trophoblast invasion, placental ischaemia, oxidative stress and thrombosis are all thought to represent key factors in the development of disease. Furthermore, all of these components have genetic factors that may be involved in the pathogenic changes occurring. The familial nature of pre-eclampsia has been known for many years and, as such, extensive genetic research has been carried out in this area using strategies that include candidate gene studies and linkage analysis. Interactions between fetal and maternal genotypes, the effect of environmental factors, and epistasis will also be considered.
Collapse
Affiliation(s)
- Paula J Williams
- Human Genetics Research Group, School of Molecular and Medical Sciences, University of Nottingham, Queen's Medical Centre, UK.
| | | |
Collapse
|
44
|
STOX1: Key player in trophoblast dysfunction underlying early onset preeclampsia with growth retardation. J Pregnancy 2010; 2011:521826. [PMID: 21490791 PMCID: PMC3066643 DOI: 10.1155/2011/521826] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/02/2010] [Indexed: 12/15/2022] Open
Abstract
Currently, only two preeclampsia susceptibility genes (ACVR2A, STOX1) have been identified within confirmed regions with significant genome-wide linkage, although many genetic screens in multiple populations have been performed. In this paper, we focus on the STOX1 gene. The epigenetic status of this gene is discussed explaining the maternal transmission of the STOX1 susceptibility allele observed in preeclamptic families. The known upstream regulation and downstream effector genes of the transcription factor STOX1 are described. Finally, we propose a model in which we combine the cell type-specific and allele-specific effects of STOX1. This includes intrinsic effects (differential CpG island methylation) and extrinsic effects (regulation of effector genes).
Collapse
|
45
|
Fenstad MH, Johnson MP, Løset M, Mundal SB, Roten LT, Eide IP, Bjørge L, Sande RK, Johansson AK, Dyer TD, Forsmo S, Blangero J, Moses EK, Austgulen R. STOX2 but not STOX1 is differentially expressed in decidua from pre-eclamptic women: data from the Second Nord-Trondelag Health Study. Mol Hum Reprod 2010; 16:960-8. [PMID: 20643876 PMCID: PMC2989830 DOI: 10.1093/molehr/gaq064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/09/2010] [Accepted: 07/14/2010] [Indexed: 02/07/2023] Open
Abstract
Variation in the Storkhead box-1 (STOX1) gene has previously been associated with pre-eclampsia. In this study, we assess candidate single nucleotide polymorphisms (SNPs) in STOX1 in an independent population cohort of pre-eclamptic (n = 1.139) and non-pre-eclamptic (n = 2.269) women (the HUNT2 study). We also compare gene expression levels of STOX1 and its paralogue, Storkhead box-2 (STOX2) in decidual tissue from pregnancies complicated by pre-eclampsia and/or fetal growth restriction (FGR) (n = 40) to expression levels in decidual tissue from uncomplicated pregnancies (n = 59). We cannot confirm association of the candidate SNPs to pre-eclampsia (P > 0.05). For STOX1, no differential gene expression was observed in any of the case groups, whereas STOX2 showed significantly lower expression in deciduas from pregnancies complicated by both pre-eclampsia and FGR as compared with controls (P = 0.01). We further report a strong correlation between transcriptional alterations reported previously in choriocarcinoma cells over expressing STOX1A and alterations observed in decidual tissue of pre-eclamptic women with FGR.
Collapse
Affiliation(s)
- M H Fenstad
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7006, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fenstad MH, Johnson MP, Roten LT, Aas PA, Forsmo S, Klepper K, East CE, Abraham LJ, Blangero J, Brennecke SP, Austgulen R, Moses EK. Genetic and molecular functional characterization of variants within TNFSF13B, a positional candidate preeclampsia susceptibility gene on 13q. PLoS One 2010; 5:e12993. [PMID: 20927378 PMCID: PMC2947510 DOI: 10.1371/journal.pone.0012993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Preeclampsia is a serious pregnancy complication, demonstrating a complex pattern of inheritance. The elucidation of genetic liability to preeclampsia remains a major challenge in obstetric medicine. We have adopted a positional cloning approach to identify maternal genetic components, with linkages previously demonstrated to chromosomes 2q, 5q and 13q in an Australian/New Zealand familial cohort. The current study aimed to identify potential functional and structural variants in the positional candidate gene TNFSF13B under the 13q linkage peak and assess their association status with maternal preeclampsia genetic susceptibility. METHODOLOGY/PRINCIPAL FINDINGS The proximal promoter and coding regions of the positional candidate gene TNFSF13B residing within the 13q linkage region was sequenced using 48 proband or founder individuals from Australian/New Zealand families. Ten sequence variants (nine SNPs and one single base insertion) were identified and seven SNPs were successfully genotyped in the total Australian/New Zealand family cohort (74 families/480 individuals). Borderline association to preeclampsia (p = 0.0153) was observed for three rare SNPs (rs16972194, rs16972197 and rs56124946) in strong linkage disequilibrium with each other. Functional evaluation by electrophoretic mobility shift assays showed differential nuclear factor binding to the minor allele of the rs16972194 SNP, residing upstream of the translation start site, making this a putative functional variant. The observed genetic associations were not replicated in a Norwegian case/control cohort (The Nord-Trøndelag Health Study (HUNT2), 851 preeclamptic and 1,440 non-preeclamptic women). CONCLUSION/SIGNIFICANCE TNFSF13B has previously been suggested to contribute to the normal immunological adaption crucial for a successful pregnancy. Our observations support TNFSF13B as a potential novel preeclampsia susceptibility gene. We discuss a possible role for TNFSF13B in preeclampsia pathogenesis, and propose the rs16972194 variant as a candidate for further functional evaluation.
Collapse
Affiliation(s)
- Mona H. Fenstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthew P. Johnson
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Linda T. Roten
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per A. Aas
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Forsmo
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjetil Klepper
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christine E. East
- Department of Perinatal Medicine/Department of Obstetrics and Gynaecology, Royal Women's Hospital and University of Melbourne, Parkville, Australia
| | - Lawrence J. Abraham
- The School of Biomedical Biomolecular and Chemical Sciences, The University of Western Australia Crawley, Perth, Australia
| | - John Blangero
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Shaun P. Brennecke
- Department of Perinatal Medicine/Department of Obstetrics and Gynaecology, Royal Women's Hospital and University of Melbourne, Parkville, Australia
| | - Rigmor Austgulen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eric K. Moses
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| |
Collapse
|
47
|
van Dijk M, van Bezu J, van Abel D, Dunk C, Blankenstein MA, Oudejans CBM, Lye SJ. The STOX1 genotype associated with pre-eclampsia leads to a reduction of trophoblast invasion by alpha-T-catenin upregulation. Hum Mol Genet 2010; 19:2658-67. [PMID: 20400461 DOI: 10.1093/hmg/ddq152] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By using complementary in vitro and ex vivo approaches, we show that the risk allele (Y153H) of the pre-eclampsia susceptibility gene STOX1 negatively regulates trophoblast invasion by upregulation of the cell-cell adhesion protein alpha-T-catenin (CTNNA3). This is effectuated at the crucial epithelial-mesenchymal transition of proliferative into invasive extravillous trophoblast. This STOX1-CTNNA3 interaction is direct and includes Akt-mediated phosphorylated control of nucleo-cytoplasmic shuttling and ubiquitin-mediated degradation as shared with the FOX multigene family. This, to our knowledge, is the first time a genotype associated with pre-eclampsia has been shown to directly limit first trimester extravillous trophoblast invasion, the earliest hallmark of pre-eclampsia.
Collapse
Affiliation(s)
- Marie van Dijk
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
The ERAP2 gene is associated with preeclampsia in Australian and Norwegian populations. Hum Genet 2009; 126:655-66. [PMID: 19578876 DOI: 10.1007/s00439-009-0714-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/22/2009] [Indexed: 01/07/2023]
Abstract
Preeclampsia is a heritable pregnancy disorder that presents new onset hypertension and proteinuria. We have previously reported genetic linkage to preeclampsia on chromosomes 2q, 5q and 13q in an Australian/New Zealand (Aust/NZ) familial cohort. This current study centered on identifying the susceptibility gene(s) at the 5q locus. We first prioritized candidate genes using a bioinformatic tool designed for this purpose. We then selected a panel of known SNPs within ten prioritized genes and genotyped them in an extended set of the Aust/NZ families and in a very large, independent Norwegian case/control cohort (1,139 cases, 2,269 controls). In the Aust/NZ cohort we identified evidence of a genetic association for the endoplasmic reticulum aminopeptidase 1 (ERAP1) gene (rs3734016, P (uncorr) = 0.009) and for the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene (rs2549782, P (uncorr) = 0.004). In the Norwegian cohort we identified evidence of a genetic association for ERAP1 (rs34750, P (uncorr) = 0.011) and for ERAP2 (rs17408150, P (uncorr) = 0.009). The ERAP2 SNPs in both cohorts remained statistically significant (rs2549782, P (corr) = 0.018; rs17408150, P (corr) = 0.039) after corrections at an experiment-wide level. The ERAP1 and ERAP2 genes encode enzymes that are reported to play a role in blood pressure regulation and essential hypertension in addition to innate immune and inflammatory responses. Perturbations within vascular, immunological and inflammatory pathways constitute important physiological mechanisms in preeclampsia pathogenesis. We herein report a novel preeclampsia risk locus, ERAP2, in a region of known genetic linkage to this pregnancy-specific disorder.
Collapse
|
49
|
Fitzpatrick E, Johnson MP, Dyer TD, Forrest S, Elliott K, Blangero J, Brennecke SP, Moses EK. Genetic association of the activin A receptor gene (ACVR2A) and pre-eclampsia. Mol Hum Reprod 2009; 15:195-204. [PMID: 19126782 DOI: 10.1093/molehr/gap001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pre-eclampsia is a common serious disorder of human pregnancy, which is associated with significant maternal and perinatal morbidity and mortality. The suspected aetiology of pre-eclampsia is complex, with susceptibility being attributable to multiple environmental factors and a large genetic component. Recently, we reported significant linkage to chromosome 2q22 in 34 Australian/New Zealand (Aust/NZ) pre-eclampsia/eclampsia families, and activin A receptor type IIA (ACVR2A) was identified as a strong positional candidate gene at this locus. In an attempt to identify the putative risk variants, we have now comprehensively re-sequenced the entire coding region of the ACVR2A gene and the conserved non-coding sequences in a subset of 16 individuals from these families. We identified 45 single nucleotide polymorphisms (SNPs), with 9 being novel. These SNPs were genotyped in our total family sample of 480 individuals from 74 Aust/NZ pre-eclampsia families (including the original 34 genome-scanned families). Our best associations between ACVR2A polymorphisms and pre-eclampsia were for rs10497025 (P = 0.025), rs13430086 (P = 0.010) and three novel SNPs: LF004, LF013 and LF020 (all with P = 0.018). After correction for multiple hypothesis testing, none of these associations reached significance (P > 0.05). Based on these data, it remains unclear what role, if any, ACVR2A polymorphisms play in pre-eclampsia risk, at least in these Australian families. However, it would be premature to rule out this gene as significant associations between ACVR2A SNPs and pre-eclampsia have recently been reported in a large Norwegian (HUNT) population sample.
Collapse
Affiliation(s)
- E Fitzpatrick
- Department of Perinatal Medicine and University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville, Australia
| | | | | | | | | | | | | | | |
Collapse
|