1
|
Jiao J, Yu S, Gu G, Chen G, Zhang H, Zheng Y. Variations in the Cadherin 23 Gene Associated With Noise-Induced Hearing Loss. J Multidiscip Healthc 2024; 17:1473-1482. [PMID: 38605856 PMCID: PMC11007390 DOI: 10.2147/jmdh.s453417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background The relationship between CDH23 gene variants and NIHL is unclear. This study investigates the association between cadherin 23 (CDH23) gene variants and noise-induced hearing loss (NIHL). Methods This is a case-control study. Workers who were exposed to noise from a steel factory in North China were recruited and divided into two groups: the case group (both ears' high-frequency threshold average [BHFTA] ≥40dB) and the control group (BHFTA ≤25 dB). This study used the generalised multifactor dimensionality reduction method to analyse the association among 18 single-nucleotide polymorphisms (SNPs) in CDH23 and NIHL. Logistic regression was performed to investigate the main effects of SNPs and the interactions between cumulative noise exposure (CNE) and SNPs. Furthermore, CNE was adjusted for age, gender, smoking, drinking, physical exercise and hypertension. Results This study recruited 1,117 participants. The results showed that for rs11592462, participants who carried the GG genotype showed an association with NIHL greater than that of those who carried the CC genotype. Accordingly, genetic variation in the CDH23 gene could play an essential role in determining individual susceptibility to NIHL. Conclusion Genetic variations in the CDH23 gene may play an important role in determining individual susceptibility to NIHL. These results provide new insight into the pathogenesis and early prevention of NIHL.
Collapse
Affiliation(s)
- Jie Jiao
- The Third People’s Hospital of Henan Province (Henan Hospital for Occupational Diseases), Zhengzhou, Henan, People’s Republic of China
| | - Shanfa Yu
- Henan Medical College, Zhengzhou, Henan, People’s Republic of China
| | - Guizhen Gu
- The Third People’s Hospital of Henan Province (Henan Hospital for Occupational Diseases), Zhengzhou, Henan, People’s Republic of China
| | - Guoshun Chen
- Wugang Institute for Occupational Health, Wugang, Henan, People’s Republic of China
| | - Huanling Zhang
- Wugang Institute for Occupational Health, Wugang, Henan, People’s Republic of China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
3
|
Yin X, Li Z, Zhao T, Yang L. Effects of Genes, Lifestyles, and Noise Kurtosis on Noise-Induced Hearing Loss. Noise Health 2023; 25:143-157. [PMID: 37815076 PMCID: PMC10747805 DOI: 10.4103/nah.nah_65_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 10/11/2023] Open
Abstract
Objective To explore the association of lifestyles, caspase gene (CASP), and noise kurtosis with noise-induced hearing loss (NIHL). Design Three hundred seven NIHL individuals and 307 matched controls from factories in Chinese factories participated in this case-control study. Age, sex, noise exposure, exfoliated oral mucosa cells, and lifestyles of participants were gathered by the authors. The single nucleotide polymorphisms (SNPs) were genotyped using the Kompetitive Allele Specific polymerase chain reaction (KASP) method. Results The risk of NIHL was higher for people who worked in the complex noise environment than for people exposed to steady noise environment (adjusted: OR = 1.806, P = 0.002). Smoking and regular earphone use increased the risk of NIHL (adjusted: OR = 1.486, P = 0.038). The GG genotype of the recessive model and G allele in rs1049216, together with the TT genotype of the recessive model in rs6948 decreased the NIHL risk (adjusted: OR = 0.659, P = 0.017). Oppositely, the AA genotype of additive model in rs12415607 had a higher NIHL risk (adjusted: OR = 1.804, P = 0.024). In the additive models, there was a positive interaction between noise kurtosis and CASP3 polymorphisms (RERI = 1.294, P = 0.013; RERI = 1.198, P = 0.031). Conclusions Noise kurtosis, three SNPs (rs1049216, rs6948, and rs12415607), smoking and earphone use were found to be related to NIHL, and there was a positive interaction between noise kurtosis and CASP3. Results from this study can be used to prevent and detect NIHL and for genetic testing.
Collapse
Affiliation(s)
- Xiaoyu Yin
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Zheng Li
- Wu Yun Shan Hospital of Hangzhou, Hangzhou, China
| | - Tianyu Zhao
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023; 12:2347. [PMID: 36983347 PMCID: PMC10059082 DOI: 10.3390/jcm12062347] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world's population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients' workplace and personal lives contribute to quality-of-life decrements which may often go undetected. The pathophysiology of NIHL is multifactorial and complex, encompassing genetic and environmental factors with substantial occupational contributions. The diagnosis and screening of NIHL are conducted by reviewing a patient's history of noise exposure, audiograms, speech-in-noise test results, and measurements of distortion product otoacoustic emissions and auditory brainstem response. Essential aspects of decreasing the burden of NIHL are prevention and early detection, such as implementation of educational and screening programs in routine primary care and specialty clinics. Additionally, current research on the pharmacological treatment of NIHL includes anti-inflammatory, antioxidant, anti-excitatory, and anti-apoptotic agents. Although there have been substantial advances in understanding the pathophysiology of NIHL, there remain low levels of evidence for effective pharmacotherapeutic interventions. Future directions should include personalized prevention and targeted treatment strategies based on a holistic view of an individual's occupation, genetics, and pathology.
Collapse
Affiliation(s)
- Nirvikalpa Natarajan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Chen XM, Xue XM, Yu N, Guo WW, Yuan SL, Jiang QQ, Yang SM. The Role of Genetic Variants in the Susceptibility of Noise-Induced Hearing Loss. Front Cell Neurosci 2022; 16:946206. [PMID: 35903368 PMCID: PMC9315435 DOI: 10.3389/fncel.2022.946206] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Noised-induced hearing loss (NIHL) is an acquired, progressive neurological damage caused by exposure to intense noise in various environments including industrial, military and entertaining settings. The prevalence of NIHL is much higher than other occupational injuries in industrialized countries. Recent studies have revealed that genetic factors, together with environmental conditions, also contribute to NIHL. A group of genes which are linked to the susceptibility of NIHL had been uncovered, involving the progression of oxidative stress, potassium ion cycling, cilia structure, heat shock protein 70 (HSP70), DNA damage repair, apoptosis, and some other genes. In this review, we briefly summarized the studies primary in population and some animal researches concerning the susceptible genes of NIHL, intending to give insights into the further exploration of NIHL prevention and individual treatment.
Collapse
Affiliation(s)
- Xue-min Chen
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin-miao Xue
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Ning Yu
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Wei-wei Guo
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shuo-long Yuan
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Qing-qing Jiang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shi-ming Yang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
6
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
7
|
Chang NC, Yang HL, Dai CY, Lin WY, Hsieh MH, Chien CY, Ho KY. The association of heat shock protein genetic polymorphisms with age-related hearing impairment in Taiwan. J Otolaryngol Head Neck Surg 2021; 50:31. [PMID: 33926545 PMCID: PMC8086325 DOI: 10.1186/s40463-021-00512-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Age-related hearing impairment (ARHI) is a major disability among the elderly population. Heat shock proteins (HSPs) were found to be associated with ARHI in animal studies. The aim of this study was to analyze the associations of single nucleotide polymorphisms (SNPs) of HSP genes with ARHI in an elderly population in Taiwan. METHODS Participants ≥65 years of age were recruited for audiometric tests and genetic analyses. The pure tone average (PTA) of the better hearing ear was calculated for ARHI evaluation. The associations of HSPA1L (rs2075800 and rs2227956), HSPA1A (rs1043618) and HSPA1B (rs2763979) with ARHI were analyzed in 146 ARHI-susceptible (cases) and 146 ARHI-resistant (controls) participants. RESULTS The "T" allele of HSPA1B rs2763979 showed a decreased risk of ARHI. The "TT" genotype of rs2763979 also showed a decreased risk of ARHI in the dominant hereditary model. For HSPA1L (rs2075800 and rs2227956) and HSPA1A (rs1043618), the haplotype "CAG" was related to a decreased risk of ARHI. CONCLUSION These findings suggest that HSP70 polymorphisms are associated with susceptibility to ARHI in the elderly population.
Collapse
Affiliation(s)
- Ning-Chia Chang
- Department of Otorhinolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otorhinolaryngology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Health Management Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hua-Ling Yang
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yi Lin
- Health Management Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Meng-Hsuen Hsieh
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chen-Yu Chien
- Department of Otorhinolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan.
| | - Kuen-Yao Ho
- Department of Otorhinolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan.
| |
Collapse
|
8
|
The Neurochaperonopathies: Anomalies of the Chaperone System with Pathogenic Effects in Neurodegenerative and Neuromuscular Disorders. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chaperone (or chaperoning) system (CS) constitutes molecular chaperones, co-chaperones, and chaperone co-factors, interactors and receptors, and its canonical role is protein quality control. A malfunction of the CS may cause diseases, known as the chaperonopathies. These are caused by qualitatively and/or quantitatively abnormal molecular chaperones. Since the CS is ubiquitous, chaperonopathies are systemic, affecting various tissues and organs, playing an etiologic-pathogenic role in diverse conditions. In this review, we focus on chaperonopathies involved in the pathogenic mechanisms of diseases of the central and peripheral nervous systems: the neurochaperonopathies (NCPs). Genetic NCPs are linked to pathogenic variants of chaperone genes encoding, for example, the small Hsp, Hsp10, Hsp40, Hsp60, and CCT-BBS (chaperonin-containing TCP-1- Bardet–Biedl syndrome) chaperones. Instead, the acquired NCPs are associated with malfunctional chaperones, such as Hsp70, Hsp90, and VCP/p97 with aberrant post-translational modifications. Awareness of the chaperonopathies as the underlying primary or secondary causes of disease will improve diagnosis and patient management and open the possibility of investigating and developing chaperonotherapy, namely treatment with the abnormal chaperone as the main target. Positive chaperonotherapy would apply in chaperonopathies by defect, i.e., chaperone insufficiency, and consist of chaperone replacement or boosting, whereas negative chaperonotherapy would be pertinent when a chaperone actively participates in the initiation and progression of the disease and must be blocked and eliminated.
Collapse
|
9
|
Niu Y, Xie C, Du Z, Zeng J, Chen H, Jin L, Zhang Q, Yu H, Wang Y, Ping J, Yang C, Liu X, Li Y, Zhou G. Genome-wide association study identifies 7q11.22 and 7q36.3 associated with noise-induced hearing loss among Chinese population. J Cell Mol Med 2020; 25:411-420. [PMID: 33242228 PMCID: PMC7810922 DOI: 10.1111/jcmm.16094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Noise-induced hearing loss (NIHL) seriously affects the life quality of humans and causes huge economic losses to society. To identify novel genetic loci involved in NIHL, we conducted a genome-wide association study (GWAS) for this symptom in Chinese populations. GWAS scan was performed in 89 NIHL subjects (cases) and 209 subjects with normal hearing who have been exposed to a similar noise environment (controls), followed by a replication study consisting of 53 cases and 360 controls. We identified that four candidate pathways were nominally significantly associated with NIHL, including the Erbb, Wnt, hedgehog and intraflagellar transport pathways. In addition, two novel index single-nucleotide polymorphisms, rs35075890 in the intron of AUTS2 gene at 7q11.22 (combined P = 1.3 × 10-6 ) and rs10081191 in the intron of PTPRN2 gene at 7q36.3 (combined P = 2.1 × 10-6 ), were significantly associated with NIHL. Furthermore, the expression quantitative trait loci analyses revealed that in brain tissues, the genotypes of rs35075890 are significantly associated with the expression levels of AUTS2, and the genotypes of rs10081191 are significantly associated with the expressions of PTPRN2 and WDR60. In conclusion, our findings highlight two novel loci at 7q11.22 and 7q36.3 conferring susceptibility to NIHL.
Collapse
Affiliation(s)
- Yuguang Niu
- Department of Otolaryngology, the First Medical Center of PLA General Hospital, Beijing, China
| | - Chengyong Xie
- Medical College of Guizhou University, Guiyang city, China
| | - Zhenhua Du
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jifeng Zeng
- Department of Otolaryngology, the No. 954 Hospital of PLA, Shannan City, China
| | - Hongxia Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Liang Jin
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing Zhang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
| | - Huiying Yu
- Outpatient Department, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yahui Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jie Ping
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chenning Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinyi Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangqiao Zhou
- Medical College of Guizhou University, Guiyang city, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
| |
Collapse
|
10
|
Wang Q, Shen Y, Hu H, Fan C, Zhang A, Ding R, Ye B, Xiang M. Systematic Transcriptome Analysis of Noise-Induced Hearing Loss Pathogenesis Suggests Inflammatory Activities and Multiple Susceptible Molecules and Pathways. Front Genet 2020; 11:968. [PMID: 33005175 PMCID: PMC7483666 DOI: 10.3389/fgene.2020.00968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is characterized by damage to cochlear neurons and associated hair cells; however, a systematic evaluation of NIHL pathogenesis is still lacking. Here, we systematically evaluated differentially expressed genes of 22 cochlear samples in an NIHL mouse model. We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and weighted gene co-expression network analysis (WGCNA). Core modules were detected using protein–protein interactions and WGCNA with functional annotation, diagnostic value evaluation, and experimental validation. Pooled functional annotation suggested the involvement of multiple inflammatory pathways, including the TNF signaling pathway, IL-17 signaling pathway, NF-kappa B signaling pathway, rheumatoid arthritis, and p53 signaling pathway. The core modules suggested that responses to cytokines, heat, cAMP, ATP, mechanical stimuli, and immune responses were important in NIHL pathogenesis. These activities primarily occurred on the external side of the plasma membrane, the extracellular region, and the nucleus. Binding activities, including CCR2 receptor binding, protein binding, and transcription factor binding, may be important. Additionally, the hub molecules with diagnostic value included Relb, Hspa1b, Ccl2, Ptgs2, Ldlr, Plat, and Ccl17. An evaluation of Relb and Hspa1b protein levels showed that Relb was upregulated in spiral ganglion neurons, which might have diagnostic value. In conclusion, this study indicates that the inflammatory response is involved in auditory organ changes in NIHL pathogenesis; moreover, several molecules and activities have essential and subtle influences that have translational potential for pharmacological intervention.
Collapse
Affiliation(s)
- Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wan L, Wang B, Zhang J, Zhu B, Pu Y. Associations of Genetic Variation in Glyceraldehyde 3-Phosphate Dehydrogenase Gene with Noise-Induced Hearing Loss in a Chinese Population: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082899. [PMID: 32331439 PMCID: PMC7216219 DOI: 10.3390/ijerph17082899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 11/30/2022]
Abstract
Objective: The purpose of this paper was to clarify the association between genetic variation in the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene and the risk of noise-induced hearing loss (NIHL). Methods: A case-control study (633 cases and 625 controls) was conducted in this study. Logistic regression was used to analyze the relationships between environmental and individual factors and NIHL. Gene expression levels were compared among each GAPDH rs6489721 genotype and between the case and control groups based on real-time fluorescence quantitative Polymerase Chain Reaction (PCR). Results: The T allele of GADPH rs6489721 was significantly associated with NIHL (odds ratio (OR) = 1.262, 95% confidence interval (CI) (1.066, 1.493), p = 0.006) and showed strong associations in the codominant and dominant models (TT vs. CC: OR = 1.586, 95% CI (1.131, 2.225), p = 0.008; TT vs. TC/CC: OR = 1.391, 95% CI (1.073, 1.804), p = 0.013). The expression level of the TT genotype was significantly higher than that of the CC genotype (p = 0.012), and the expression of the case group was also higher than that of the control group (p = 0.013). Conclusions: The homozygous risk allele (TT) of rs6489721 was associated with an enhanced GAPDH expression, resulting in the development of NIHL in a Chinese population.
Collapse
Affiliation(s)
- Liu Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
| | - Baoli Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
- Correspondence: ; Tel.: +86-13951966696
| |
Collapse
|
12
|
Analysis of Polymorphisms Associated with Base Excision Repair in Patients Susceptible and Resistant to Noise-Induced Hearing Loss. DISEASE MARKERS 2019; 2019:9327106. [PMID: 31827649 PMCID: PMC6885169 DOI: 10.1155/2019/9327106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 11/21/2022]
Abstract
Objective Noise-induced hearing loss (NIHL) is one of the most common occupational health risks in both developed and industrialized countries. It occurs as a result of interactions between genetic and environmental factors. Nevertheless, inherited genetic factors contributing to NIHL are not well understood. Therefore, we aim to investigate whether genetic mutations in three important base excision repair genes (OGG1, APEX1, and XRCC1) may influence susceptibility to NIHL. Methods Three SNPs in OGG1, APEX1, and XRCC1 were genotyped from 1170 noise-exposed workers and were classified into 117 most susceptible and 117 most resistant individuals. Results Results showed that the rs1799782 TT genotype located in the XRCC1 coding region and rs1130409 GG/GT in the APEX1 coding region were associated with increased risk for NIHL in a Chinese population. Compared to the rs1799782 C allele frequency, the T allele frequency was increased in the sensitive group (adjusted OR = 1.51, 95%CI = 1.01 to 2.26, P = 0.043). The rs1130409 G allele frequency was also increased in the sensitive group compared to the resistant group (adjusted OR = 1.59, 95%CI = 1.10 to 2.31, P = 0.015). Moreover, rs1130409 and drinking had a statistically significant interaction (P = 0.0002), while rs1799782, rs1130409, and smoking also had a statistically significant interaction (P < 0.0001). Conclusions XRCC1 rs1799782 and APEX1 rs1130409 may have potential as biomarkers for the screening of susceptibility to NIHL in workers exposed severe noise.
Collapse
|
13
|
Sindura KP, Banerjee M. An Immunological Perspective to Non-syndromic Sensorineural Hearing Loss. Front Immunol 2019; 10:2848. [PMID: 31921123 PMCID: PMC6919260 DOI: 10.3389/fimmu.2019.02848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Conventionally the etiology of congenital Non-Syndromic Hearing Loss has been attributed to mutations in the genes involved in ion homeostasis or the structural compartments of the inner ear. However, this contributes to only a part of the problem, as still the determinants for a large majority of the Non-Syndromic Hearing loss seems to be an enigma. Evidences indicate that pathogens like Rubella, Cytomegalovirus, and many other infections can also result in congenital hearing loss. Additionally, there are variety of factors other than the viral mediators, that can act as stressors to trigger an altered immune response, during the gestational period of the mother. It is also known that non-specific stimulation of the immune system can mimic an infection status. This indicates a strong role for environmental factors toward their contribution to the pathology, possibly by influencing the host immune response. These varieties of known or unknown environmental factors interact with the susceptible variants in immune response genes in defining the threshold for protection or infection in an individual. Considering this background we propose to present this perspective that threshold of the host immune response during the prenatal conditions, in response to environmental stimulus, might be determined by the susceptible variants in immune response genes. This in turn can directly or indirectly influence the genes involved in maintaining the structural components or ion homeostasis, resulting in hearing loss. The threshold of immune response alterations may be heavily dependent on the immunogenetic profile of the mother or the fetus.
Collapse
Affiliation(s)
- K P Sindura
- Neurobiology and Genetics Division, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Moinak Banerjee
- Neurobiology and Genetics Division, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
14
|
Miao L, Ji J, Wan L, Zhang J, Yin L, Pu Y. An overview of research trends and genetic polymorphisms for noise-induced hearing loss from 2009 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34754-34774. [PMID: 31696427 DOI: 10.1007/s11356-019-06470-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/09/2019] [Indexed: 05/27/2023]
Abstract
Recently, there has been increased studies in noise-induced hearing loss (NIHL). We aimed to make an overview of research trends and genetic polymorphisms for NIHL from 2009 to 2018 with VOSviewer software. A total of 2391 papers were identified for research trends analysis in NIHL and 33 studies identified for a brief review of genetic polymorphisms in human NIHL. The number of publications has been increasing over the past decade. The journal Hearing Research published the most articles (218). The USA contributed the largest number of papers (1042; 43.58%), with the most citations (18,987) and the highest H-index (60). The University of Washington was the most contributive institution. Liberman MC published the most articles (32), and Kujawa SG possessed the highest co-citations (584). Except for high-frequency keywords identified by the software, "prevalence," "oxidative stress," "hair cells," and "cochlear implant" were also the latest research frontiers. HSPA1A rs1043618, HSPA1L rs2227956, PON2 rs12026 and rs7785846, SOD2 rs2855116, KCNE1 rs2070358, KCNQ4 rs34287852, GJB2 rs3751385, PCDH15 rs7095441 and rs11004085, GRHL2 rs1981361, ITGA8 rs10508489, MYH14 rs667907, and POU4F3 rs891969 were the research hotspots and were replicated in independent samples. Inflammation response underlying NIHL has emerged and should be considered as a pioneering field in the future for the prevention of NIHL and conservation of hearing.
Collapse
Affiliation(s)
- Long Miao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jiahui Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Liu Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
15
|
Clifford RE, Hertzano R, Ohlemiller KK. Untangling the genomics of noise-induced hearing loss and tinnitus: Contributions of Mus musculus and Homo sapiens. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4007. [PMID: 31795683 PMCID: PMC7273513 DOI: 10.1121/1.5132552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 05/23/2023]
Abstract
Acoustic trauma is a feature of the industrial age, in general, and mechanized warfare, in particular. Noise-induced hearing loss (NIHL) and tinnitus have been the number 1 and number 2 disabilities at U.S. Veterans hospitals since 2006. In a reversal of original protocols to identify candidate genes associated with monogenic deafness disorders, unbiased genome-wide association studies now direct animal experiments in order to explore genetic variants common in Homo sapiens. However, even these approaches must utilize animal studies for validation of function and understanding of mechanisms. Animal research currently focuses on genetic expression profiles since the majority of variants occur in non-coding regions, implying regulatory divergences. Moving forward, it will be important in both human and animal research to define the phenotypes of hearing loss and tinnitus, as well as exposure parameters, in order to extricate genes related to acoustic trauma versus those related to aging. It has become clear that common disorders like acoustic trauma are influenced by large numbers of genes, each with small effects, which cumulatively lead to susceptibility to a disorder. A polygenic risk score, which aggregates these small effect sizes of multiple genes, may offer a more accurate description of risk for NIHL and/or tinnitus.
Collapse
Affiliation(s)
- Royce E Clifford
- Division of Otolaryngology-Head and Neck Surgery, University of California School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, James T. Frenkil Building, 16 South Eutaw Street, Suite 500, Baltimore, Maryland 21201, USA
| | - Kevin K Ohlemiller
- Washington University School of Medicine, Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| |
Collapse
|
16
|
Open chromatin dynamics in prosensory cells of the embryonic mouse cochlea. Sci Rep 2019; 9:9060. [PMID: 31227770 PMCID: PMC6588700 DOI: 10.1038/s41598-019-45515-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is often due to the absence or the degeneration of hair cells in the cochlea. Understanding the mechanisms regulating the generation of hair cells may therefore lead to better treatments for hearing disorders. To elucidate the transcriptional control mechanisms specifying the progenitor cells (i.e. prosensory cells) that generate the hair cells and support cells critical for hearing function, we compared chromatin accessibility using ATAC-seq in sorted prosensory cells (Sox2-EGFP+) and surrounding cells (Sox2-EGFP−) from E12, E14.5 and E16 cochlear ducts. In Sox2-EGFP+, we find greater accessibility in and near genes restricted in expression to the prosensory region of the cochlear duct including Sox2, Isl1, Eya1 and Pou4f3. Furthermore, we find significant enrichment for the consensus binding sites of Sox2, Six1 and Gata3—transcription factors required for prosensory development—in the open chromatin regions. Over 2,200 regions displayed differential accessibility with developmental time in Sox2-EGFP+ cells, with most changes in the E12-14.5 window. Open chromatin regions detected in Sox2-EGFP+ cells map to over 48,000 orthologous regions in the human genome that include regions in genes linked to deafness. Our results reveal a dynamic landscape of open chromatin in prosensory cells with potential implications for cochlear development and disease.
Collapse
|
17
|
Li X, Zhu Z, Li W, Wei L, Zhao B, Hao Z. Polymorphism in GRHL2 gene may contribute to noise-induced hearing loss susceptibility: a meta-analysis. Braz J Otorhinolaryngol 2019; 86:370-375. [PMID: 30853467 PMCID: PMC9422585 DOI: 10.1016/j.bjorl.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/07/2018] [Accepted: 01/02/2019] [Indexed: 11/05/2022] Open
Abstract
Instruction Noise-induced hearing loss is a leading occupational disease caused by gene-environment interaction. The Grainy Like 2, GRHL2, is a candidate gene. In this regard, many studies have evaluated the association between GRHL2 and noise-induced hearing loss, although the results are ambiguous and conflicting. Objective The purpose of this study was to identify a precise estimation of the association between rs3735715 polymorphism in GRHL2 gene and susceptibility of noise-induced hearing loss. Methods A comprehensive search was performed to collect data up to July 8, 2018. Finally, 4 eligible articles were included in this meta-analysis comprising 2410 subjects. The pooled odds ratios with 95% confidence intervals were used to evaluate the strength of the association. Results Significant association was found in the overall population in the dominant model (GA/AA vs. GG, odds ratio = 0.707, 95% confidence interval = 0.594–0.841) and allele model (G allele vs. A allele, odds ratio = 1.189, 95% confidence interval = 1.062–1.333). When stratified by source of the subjects, we also found association between rs3735715 and noise-induced hearing loss risk in the dominant model (GA/AA vs. GG, odds ratio = 0.634, 95% confidence interval = 0.514–0.783) and allele model (G allele vs. A allele, odds ratio = 1.206, 95% confidence interval = 1.054–1.379). Conclusion Rs3735715 polymorphism in GRHL2 gene may influence the susceptibility of noise-induced hearing loss. Additional large, well-designed and functional studies are needed to confirm this association in different populations.
Collapse
Affiliation(s)
- Xin Li
- Nanjing Municipal Center for Disease Control and Prevention, Department of HIV/AIDS/STI Prevention and Control, Jiangsu, China
| | - Zhengping Zhu
- Nanjing Municipal Center for Disease Control and Prevention, Department of HIV/AIDS/STI Prevention and Control, Jiangsu, China
| | - Wei Li
- Southeast University, School of Public Health, Department of Epidemiology and Health Statistics, Key Laboratory of Environmental Medicine Engineering, Jiangsu, China
| | - Li Wei
- Nanjing Municipal Center for Disease Control and Prevention, Environmental Health Division, Jiangsu, China
| | - Baocheng Zhao
- Nanjing Zhongyangmen Community Health Service Center, Kang'ai Hospital, Center of Diagnosis and Treatment for Developmental Dysplasia of the Hip, Jiangsu, China
| | - Zheng Hao
- Nanjing Zhongyangmen Community Health Service Center, Kang'ai Hospital, Center of Diagnosis and Treatment for Developmental Dysplasia of the Hip, Jiangsu, China.
| |
Collapse
|
18
|
Ye B, Fan C, Shen Y, Wang Q, Hu H, Xiang M. The Antioxidative Role of Autophagy in Hearing Loss. Front Neurosci 2019; 12:1010. [PMID: 30686976 PMCID: PMC6333736 DOI: 10.3389/fnins.2018.01010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
Autophagy, a highly conserved cellular mechanism, plays an essential role in the development and pathology of many central and peripheral nervous system diseases. The auditory system, especially hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear, are postmitotic cells, which are extremely reliant on cellular homeostasis and energy supply. Therefore, autophagy may be involved in contributing to and facilitating the normal function of inner ear cells. Recently, studies on hearing loss induced by ototoxic drugs, noise exposure and other factors have revealed that autophagy could serve in an antioxidative capacity and could possess the potential to treat sensorineural hearing loss (SNHL). Therefore, here we review previous studies concerning autophagy and SNHL to gain insight into the role of autophagic mechanisms in inner ear disorders.
Collapse
Affiliation(s)
- Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
19
|
Zheng JP, Lyu Y, Li RF, Tian FJ, Mu JB. Interaction of heat shock protein 70 (HSP70) polymorphisms and occupational hazards increases the risk of hypertension in coke oven workers. Occup Environ Med 2018; 75:807-813. [PMID: 30217924 DOI: 10.1136/oemed-2018-105160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The interaction between genetic, epigenetic inheritance and environmental factors determines susceptibility to hypertension. Previous epidemiology studies have shown that coke oven workers who are frequently exposed to various occupational hazards have remarkable increase in the risk for hypertension. Among many genetic variants identified in hypertension, heat shock protein 70 (HSP70) was found to play important roles in the pathogenesis of hypertension and associated diseases. We therefore explore the possible role of HSP70 polymorphisms and their interaction with occupational environment in hypertension risk. METHODS We carried out a case-control study among 367 coke oven workers in northwest China, focused on three common HSP70 polymorphisms (HSP70-1 G190C, HSP70-2 A1267G and HSP70-hom T2437C), and evaluated the association of HSP70 gene polymorphisms with work sites for high risk of hypertension. RESULTS The results indicated that HSP70-1 GC and CC genotype had 2.73-fold and 4.26-fold increased relative risk (95% CI 1.33 to 5.55 and 1.17 to 15.53), respectively, comparing with HSP70-1 GG genotype. HSP70-2 AG and GG conferred a 47% and 36% reduced risk (95% CI 0.23 to 0.99 and 0.14 to 0.92) comparing with HSP70-2 AA genotype. Further analysis of the interaction of HSP70 polymorphisms with occupational environment indicated a strong positive interaction between HSP70 genotype (HSP70-1 GC+CC, HSP70-2 AA and HSP70-hom TC+CC) and oven top workplace. CONCLUSIONS Collectively, these data indicate that HSP70 polymorphisms interact with occupational hazards might increase the risk of hypertension in coke oven workers.
Collapse
Affiliation(s)
- Jin-Ping Zheng
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Yi Lyu
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui-Fang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Feng-Jie Tian
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian-Bing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, USA
| |
Collapse
|
20
|
Chavoshi Tarzjani SP, Shahzadeh Fazeli SAH, Sanati MH, Nabavi SM. Heat Shock Protein 70 and The Risk of Multiple Sclerosis in The Iranian Population. CELL JOURNAL 2018; 20:599-603. [PMID: 30124009 PMCID: PMC6099141 DOI: 10.22074/cellj.2019.5620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/04/2018] [Indexed: 11/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system and one of the most common causes of neurological
disability among those aged 20-40 years, particularly in women. Major histocompatibility complex (MHC) Class II genes
are known to be involved in the development of MS. One of the important groups of this complex is the HSP gene family,
especially HSP70, which is induced under stress conditions. The aim of the present case-control study was to determine
the association between the heat shock protein 70 (HSP70) and risk of MS in Iranian patients by genotyping the rs1061581
gene polymorphism. A total of 50 relapsing-remitting MS (RRMS) patients and 50 healthy control subjects were considered
for this study. Genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism (PCR-
RFLP) method. PCR-RFLP results of twenty-five randomly selected samples were confirmed by DNA sequencing. Genotypic
and allelic distributions were compared between the case and control groups. We observed no significant difference in the
distribution of rs1061581 genotype and allele frequencies between RRMS patients and controls. In addition, there was no
association between the HSP70 gene polymorphism and the clinical variables in the case group. Our data indicate that
HSP70, in particular rs1061581, is unlikely to be involved in the susceptibility to or the severity of RRMS in Iranian patients.
Further large prospective studies are required to confirm these findings.
Collapse
Affiliation(s)
| | - Seyed Abol Hassan Shahzadeh Fazeli
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran.Electronic Address:
| | | | - Seyed Massood Nabavi
- Department of Neurology, School of Medicine, Mostafa Khomeini Hospital, Shahed University, Tehran, Iran
| |
Collapse
|
21
|
Blioskas S, Tsalighopoulos M, Psillas G, Markou K. Utility of otoacoustic emissions and olivocochlear reflex in predicting vulnerability to noise-induced inner ear damage. Noise Health 2018; 20:101-111. [PMID: 29785975 PMCID: PMC5965001 DOI: 10.4103/nah.nah_61_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: The aim of the present study was to explore the possible utility of otoacoustic emissions (OAEs) and efferent system strength to determine vulnerability to noise exposure in a clinical setting. Materials and Methods: The study group comprised 344 volunteers who had just begun mandatory basic training as Hellenic Corps Officers Military Academy cadets. Pure-tone audiograms were obtained on both ears. Participants were also subjected to diagnostic transient-evoked otoacoustic emissions (TEOAEs). Finally, they were all tested for efferent function through the suppression of TEOAEs with contralateral noise. Following baseline evaluation, all cadets fired 10 rounds using a 7.62 mm Heckler & Koch G3A3 assault rifle while lying down in prone position. Immediately after exposure to gunfire noise and no later than 10 h, all participants completed an identical protocol for a second time, which was then repeated a third time, 30 days later. Results: The data showed that after the firing drill, 280 participants suffered a temporary threshold shift (TTS) (468 ears), while in the third evaluation conducted 30 days after exposure, 142 of these ears still presented a threshold shift compared to the baseline evaluation [permanent threshold shift (PTS) ears]. A receiver operating characteristics curve analysis showed that OAEs amplitude is predictive of future TTS and PTS. The results were slightly different for the suppression of OAEs showing only a slight trend toward significance. The curves were used to determine cut points to evaluate the likelihood of TTS/PTS for OAEs amplitude in the baseline evaluation. Decision limits yielding 71.6% sensitivity were 12.45 dB SPL with 63.8% specificity for PTS, and 50% sensitivity were 12.35 dB SPL with 68.2% specificity for TTS. Conclusions: Interestingly, the above data yielded tentative evidence to suggest that OAEs amplitude is both sensitive and specific enough to efficiently identify participants who are particularly susceptible to hearing loss caused by impulse noise generated by firearms. Hearing conservation programs may therefore want to consider including such tests in their routine. As far as efferent strength is concerned, we feel that further research is due, before implementing the suppression of OAEs in hearing conservations programs in a similar manner.
Collapse
Affiliation(s)
- Sarantis Blioskas
- Department of Otorhinolaryngology - Head and Neck Surgery, 424 Military Hospital of Thessaloniki, Perifereiaki Odos Efkarpias, Greece
| | - Miltiadis Tsalighopoulos
- 1st Department of Otorhinolaryngology - Head and Neck Surgery, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - George Psillas
- 1st Department of Otorhinolaryngology - Head and Neck Surgery, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Konstantinos Markou
- 1st Department of Otorhinolaryngology - Head and Neck Surgery, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| |
Collapse
|
22
|
Association between polymorphisms of heat-shock protein 70 genes and noise-induced hearing loss: A meta-analysis. PLoS One 2017; 12:e0188539. [PMID: 29176785 PMCID: PMC5703472 DOI: 10.1371/journal.pone.0188539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022] Open
Abstract
Background Recent studies have evaluated the associations between polymorphisms of the heat-shock protein 70 (HSP70) encoding genes and noise-induced hearing loss (NIHL). However, the conclusions of these studies are conflicting. The objective of this meta-analysis was to clarify the association between all known polymorphisms of HSP70 genetic loci and susceptibility to NIHL, based on existing reports. Methods We conducted a meta-analysis of the association between Hsp70 polymorphisms (rs1043618, rs1061581, rs2075800, rs2227956, and rs2763979) and NIHL risk in both Chinese and Caucasian males. All statistical analysis was done with was conducted using the “meta” package (version 4.6–0) of R version 3.3.2 and RStudio version 1.0.44. Online databases were searched for eligible case-control studies on February 13, 2017. The odds ratio (OR), 95% confidence interval (CI), and P value were calculated using Mantel-Haenszel statistics under a random- or fixed-effect model. Results A total of five studies, reported via four articles from online databases, were included in our meta-analysis. For rs1061581 (from three studies), a significant association was detected in the allele model, homozygote model, and dominant model (G versus A: OR (95% CI) = 1.32(1.05–1.67), GG versus AA: OR (95% CI) = 1.93(1.1–3.36), GG + AG versus AA: OR (95% CI) = 1.45(1.05–2.02)), but not in the heterozygote model or the recessive model. For rs1043618 (from five studies), rs2075800 (from two studies), rs2227956 (from four studies), rs2763979 (from two studies), no significant association was found for any genetic model. After subgroup analyses by ethnicity, significant associations were observed for the allele model, heterozygote model, and dominant model for rs1061581 and any genetic model for rs2227956 in Caucasians. Conclusions The rs1043618, rs2075800, and rs2763979 polymorphisms were not found to be associated with susceptibility to NIHL; however, the rs1061581 and rs2227956 polymorphisms were significantly associated with NIHL in Caucasian males.
Collapse
|
23
|
Zong S, Zeng X, Liu T, Wan F, Luo P, Xiao H. Association of polymorphisms in heat shock protein 70 genes with the susceptibility to noise-induced hearing loss: A meta-analysis. PLoS One 2017; 12:e0188195. [PMID: 29145455 PMCID: PMC5689837 DOI: 10.1371/journal.pone.0188195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Background Several case-control studies reported the relationship between single nucleotide polymorphisms (SNPs) in HSP70 genes and noise-induced hearing loss (NIHL). However, their conclusions are conflicting. This meta-analysis aims to identify the association of HSP70 variants and NIHL susceptibility. Method A systematical literature search was performed in PubMed, Web of Science, EMBASE, and Wanfang Chinese database. The pooled odds radio (OR), 95% confidence interval (CI) and p value were calculated in fixed- or random-effects model according to the I2 value in the heterogeneity test. Results Four articles containing five studies, including 633 cases and 926 controls, were included. Under the allele, homozygote and dominant model, the pooled ORs (95%CI, p-value) of rs1061581 were 1.32 (1.06–1.67, p = 0.019), 1.93 (1.10–3.36, p = 0.021) and 1.455 (1.408–2.019, p = 0.025), respectively. In addition, a significant association was found between rs2227956 in Caucasians and the NIHL susceptibility under all five genetic models. We did not discover evidence sufficient to prove the associations between the other three SNPs (rs1043618, rs2763979 and rs2075800) and the NIHL susceptibility. Conclusion This meta-analysis indicated that the two HSP70 variants, rs1061581 and rs2227956, may serve as genetic susceptibility factors for NIHL. Larger scale studies are required to further update the results.
Collapse
Affiliation(s)
- Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyi Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangmin Wan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Luo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
24
|
Krasitskaya VV, Bashmakova EE, Dobretsov KG, Orlova NV, Frank LA. [The genetic aspects of occupational hearing impairment]. Vestn Otorinolaringol 2017; 82:71-76. [PMID: 29072670 DOI: 10.17116/otorino201782571-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article was designed to be the overview of the current literature publications concerning the identification of the genetic markers of susceptibility to the noise-induced loss of hearing. The analysis of these data has demonstrated that the major gene polymorphisms associated with the development of this pathological condition are localized in the genes encoding for the antioxidant systems, potassium homeostasis, and adhesion molecules as well as in the genes involved in intercellular coupling, the mechanisms underlying the cellular response to stress, activation and regulation of heat shock proteins, and signaling function of the immune system. It is concluded that the further investigations into the genetic aspects of the full-genome sequencing techniques and the search for genomic associations could greatly contribute to the development of personalized medicine and the reduction of risks of occupational noise-induced sensorineural impairment of hearing.
Collapse
Affiliation(s)
- V V Krasitskaya
- Krasnoyarsk Research Centre of the Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russia, 660036
| | - E E Bashmakova
- Krasnoyarsk Research Centre of the Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russia, 660036
| | - K G Dobretsov
- The Centre for Otorhinolaryngology, Federal Siberian Research and Clinical Centre, Federal Medico-Biological Agency, Krasnoyarsk, Russia, 660037
| | - N V Orlova
- The Centre for Otorhinolaryngology, Federal Siberian Research and Clinical Centre, Federal Medico-Biological Agency, Krasnoyarsk, Russia, 660037
| | - L A Frank
- Krasnoyarsk Research Centre of the Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russia, 660036
| |
Collapse
|
25
|
The Genomic Basis of Noise-induced Hearing Loss: A Literature Review Organized by Cellular Pathways. Otol Neurotol 2017; 37:e309-16. [PMID: 27518140 DOI: 10.1097/mao.0000000000001073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Using Reactome, a curated Internet database, noise-induced hearing loss studies were aggregated into cellular pathways for organization of the emerging genomic and epigenetic data in the literature. DATA SOURCES PubMed and Reactome.org, a relational data base program systematizing biological processes into interactive pathways and subpathways based on ontology, cellular constituents, gene expression, and molecular components. STUDY SELECTION Peer-reviewed population and laboratory studies for the previous 15 years relating genomics and noise and hearing loss were identified in PubMed. Criteria included p values <0.05 with correction for multiple genes, a fold change of >1.5, or duplicated studies. DATA EXTRACTION AND SYNTHESIS One-hundred fifty-eight unique HGNC identifiers from 77 articles met the selection criteria, and were uploaded into the analysis program at http://reactome.org. These genes participated in a total of 621 cellular interactions in 21 of 23 pathways. Cellular response to stress with its attenuation phase, particularly in response to heat stress, detoxification of ROS, and specific areas of the immune system are predominant pathways identified as significantly 'overrepresented' (p values <0.1e-5 and false discovery rates <0.01). CONCLUSION Twenty-one of 23 of the designated pathways in Reactome have significant influence on noise-induced hearing loss, signifying a confluence of molecular pathways in reaction to acoustic trauma; however, cellular response to stress, including heat shock response, and other small areas of immune response were highly overrepresented. Yet-to-be-explored genomics areas include miRNA, lncRNA, copy number variations, RNA sequencing, and human genome-wide association study.
Collapse
|
26
|
Le TN, Straatman LV, Lea J, Westerberg B. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg 2017; 46:41. [PMID: 28535812 PMCID: PMC5442866 DOI: 10.1186/s40463-017-0219-x] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Noise-induced hearing loss is one of the most common forms of sensorineural hearing loss, is a major health problem, is largely preventable and is probably more widespread than revealed by conventional pure tone threshold testing. Noise-induced damage to the cochlea is traditionally considered to be associated with symmetrical mild to moderate hearing loss with associated tinnitus; however, there is a significant number of patients with asymmetrical thresholds and, depending on the exposure, severe to profound hearing loss as well. MAIN BODY Recent epidemiology and animal studies have provided further insight into the pathophysiology, clinical findings, social and economic impacts of noise-induced hearing loss. Furthermore, it is recently shown that acoustic trauma is associated with vestibular dysfunction, with associated dizziness that is not always measurable with current techniques. Deliberation of the prevalence, treatment and prevention of noise-induced hearing loss is important and timely. Currently, prevention and protection are the first lines of defence, although promising protective effects are emerging from multiple different pharmaceutical agents, such as steroids, antioxidants and neurotrophins. CONCLUSION This review provides a comprehensive update on the pathophysiology, investigations, prevalence of asymmetry, associated symptoms, and current strategies on the prevention and treatment of noise-induced hearing loss.
Collapse
Affiliation(s)
- Trung N. Le
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - Louise V. Straatman
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - Jane Lea
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - Brian Westerberg
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
27
|
Vazzana M, Celi M, Arizza V, Calandra G, Buscaino G, Ferrantelli V, Bracciali C, Sarà G. Noise elicits hematological stress parameters in Mediterranean damselfish (Chromis chromis, perciformes): A mesocosm study. FISH & SHELLFISH IMMUNOLOGY 2017; 62:147-152. [PMID: 28108343 DOI: 10.1016/j.fsi.2017.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/09/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
In the last few decades, technological developments and the widespread rise of anthropic activities have increased the exposure of organisms to noise pollution, thus evoking great interest in its biological effects, particularly on the immune system. The aim of the present work was to investigate some of the biochemical parameters in the blood of Chromis chromis (Linnaeus, 1758) following in vivo exposure to noise levels of 200 and 300 Hz. Our results revealed that, compared to the control specimens, the fish exposed to noise had significantly increased levels of stress biomarkers such as glucose, lactate and total proteins in plasma, as well as a rise in the expression of heat shock protein 70 (HSP70).
Collapse
Affiliation(s)
- Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Animale e Antropologia Biologica, Università degli Studi di Palermo, Via Archirafi, 18-90123 Palermo, Italy
| | - Monica Celi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Animale e Antropologia Biologica, Università degli Studi di Palermo, Via Archirafi, 18-90123 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Animale e Antropologia Biologica, Università degli Studi di Palermo, Via Archirafi, 18-90123 Palermo, Italy; Dipartimento di Scienze del Mare e della Terra, Università di Palermo, Via delle Scienze Ed. 16, 90128 Palermo, Italy; U.O. Granitola Cape Institute for Coastal Marine Environment, National Research Council, Via del Faro, 4-91021 Capo Granitola (TP), Italy; Istituto Zooprofilattico della Sicilia "A. Mirri", Palermo, Italy; Istituto Euro Mediterraneo di Scienza e Tecnologia, Palermo, Italy.
| | - Giampiero Calandra
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Animale e Antropologia Biologica, Università degli Studi di Palermo, Via Archirafi, 18-90123 Palermo, Italy
| | - Giuseppa Buscaino
- U.O. Granitola Cape Institute for Coastal Marine Environment, National Research Council, Via del Faro, 4-91021 Capo Granitola (TP), Italy
| | | | - Claudia Bracciali
- Dipartimento di Scienze del Mare e della Terra, Università di Palermo, Via delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Gianluca Sarà
- Dipartimento di Scienze del Mare e della Terra, Università di Palermo, Via delle Scienze Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
28
|
Li Y, Yu S, Gu G, Chen G, Zheng Y, Jiao J, Zhou W, Wu H, Zhang Z, Zhang H, He L, Yang Q, Xu X. Polymorphisms of heat shock protein 70 genes (HSPA1A, HSPA1B and HSPA1L) and susceptibility of noise-induced hearing loss in a Chinese population: A case-control study. PLoS One 2017; 12:e0171722. [PMID: 28182740 PMCID: PMC5300111 DOI: 10.1371/journal.pone.0171722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is the second-most frequent form of sensorineural hearing loss. When exposed to the same noise, some workers develop NIHL while others do not, suggesting that NIHL may be associated with genetic factors. To explore the relationship between single nucleotide polymorphisms (SNPs) in heat shock protein 70 (HSP70) genes (HSPA1A, HSPA1B and HSPA1L) and susceptibility to NIHL in Han Chinese workers exposed to noise, a case-control association study was carried out with 286 hearing loss cases and 286 matched with gender, age, type of work, and exposure time, drawn from a population of 3790 noise-exposed workers. Four SNPs were selected and genotyped. Subsequently, the effects of the alleles and genotypes of the three HSP70 genes (HSPA1A, HSPA1B and HSPA1L) on NIHL were analyzed by using a conditional logistic regression. A generalized multiple dimensionality reduction (GMDR) was applied to further detect an interaction between the four SNPs. Compared with the combined genotypes CC/TC, carriers of the TT genotype of rs2763979 appeared to show greater susceptibility to NIHL (P = 0.042, adjusted OR = 1.731, 95% CI 1.021-2.935). A significant interaction between rs2763979 and CNE was found (P = 0.029), and a significant association was found between TT of s2763979 and NIHL (P = 0.024, adjusted OR = 5.694, 95%CI 1.256-25.817) in the 96 dB (A)≤CNE<101 dB (A) group. The results suggest that the rs2763979 locus of the HSP70 genes may be associated with susceptibility to NIHL in Chinese individuals, and other HSP70 genes may also be susceptibility genes for NIHL, but the results must be further replicated in additional independent sample sets.
Collapse
Affiliation(s)
- Yanhong Li
- Henan Provincial Institute for Occupational Health, Zhengzhou, People’s Republic of China
| | - Shanfa Yu
- Henan Provincial Institute for Occupational Health, Zhengzhou, People’s Republic of China
- * E-mail:
| | - Guizhen Gu
- Henan Provincial Institute for Occupational Health, Zhengzhou, People’s Republic of China
| | - Guoshun Chen
- Wugang Institute for Occupational Health, Wugang, People’s Republic of China
| | - Yuxin Zheng
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jie Jiao
- Henan Provincial Institute for Occupational Health, Zhengzhou, People’s Republic of China
| | - Wenhui Zhou
- Henan Provincial Institute for Occupational Health, Zhengzhou, People’s Republic of China
| | - Hui Wu
- Henan Provincial Institute for Occupational Health, Zhengzhou, People’s Republic of China
| | - Zengrui Zhang
- Henan Provincial Institute for Occupational Health, Zhengzhou, People’s Republic of China
| | - Huanling Zhang
- Wugang Institute for Occupational Health, Wugang, People’s Republic of China
| | - Lihua He
- Department of Occupational Health and Environmental Health, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Qiuyue Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Xiangrong Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
29
|
Genetic Variation in POU4F3 and GRHL2 Associated with Noise-Induced Hearing Loss in Chinese Population: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060561. [PMID: 27271650 PMCID: PMC4924018 DOI: 10.3390/ijerph13060561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
Abstract
Noise-induced hearing loss (NIHL) is an important occupational disease worldwide resulting from interactions between genetic and environmental factors. The purpose of this study was to examine whether genetic variations in POU4F3 and GRHL2 may influence susceptibility to NIHL in the Chinese population. A matched case-control study was carried out among 293 hearing loss individuals and 293 normal hearing workers drawn from a population of 3790 noise-exposed workers. Ten single-nucleotide polymorphisms (SNPs) in POU4F3 and GRHL2 were selected and genotyped. Logistic regression was performed to analyze the main effects of SNPs and the interactions between noise exposure and SNPs. Moreover, the interactions between predictor haplotypes and noise exposure were also analyzed. Analysis revealed that the CC genotype of rs1981361 in the GRHL2 gene was associated with a higher risk of NIHL (adjusted OR = 1.59; 95% CI: 1.08–2.32, p = 0.018). Additionally, the GG genotype of rs3735715 in the GRHL2 gene was also a risk genotype (adjusted OR = 1.48; 95% CI: 1.01–2.19, p = 0.046). Significant interactions were found between rs3735715, rs1981361 (GRHL2), rs1368402 as well as rs891969 (POU4F3) and noise exposure in the high-level exposure groups. Furthermore, the protective haplotype CA in the POU4F3 gene and the risk haplotype GCCG in the GRHL2 gene were identified combined with noise exposure. These results indicated that GRHL2 might be an NIHL susceptibility gene, but the effect of POU4F3 on NIHL could only be detected when taking noise exposure into account, and their effects were enhanced by higher levels of noise exposure. However, the differences were not significant after the Bonferroni correction was applied. These results should be seen as suggestive.
Collapse
|
30
|
Genetic Effects on Sensorineural Hearing Loss and Evidence-based Treatment for Sensorineural Hearing Loss. ACTA ACUST UNITED AC 2016; 30:179-88. [PMID: 26564418 DOI: 10.1016/s1001-9294(15)30044-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this article, the mechanism of inheritance behind inherited hearing loss and genetic susceptibility in noise-induced hearing loss are reviewed. Conventional treatments for sensorineural hearing loss (SNHL), i.e. hearing aid and cochlear implant, are effective for some cases, but not without limitations. For example, they provide little benefit for patients of profound SNHL or neural hearing loss, especially when the hearing loss is in poor dynamic range and with low frequency resolution. We emphasize the most recent evidence-based treatment in this field, which includes gene therapy and allotransplantation of stem cells. Their promising results have shown that they might be options of treatment for profound SNHL and neural hearing loss. Although some treatments are still at the experimental stage, it is helpful to be aware of the novel therapies and endeavour to explore the feasibility of their clinical application.
Collapse
|
31
|
Genetic variation in APE1 gene promoter is associated with noise-induced hearing loss in a Chinese population. Int Arch Occup Environ Health 2015; 89:621-8. [DOI: 10.1007/s00420-015-1100-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
|
32
|
Zhang X, Liu Y, Zhang L, Yang Z, Yang L, Wang X, Jiang C, Wang Q, Xia Y, Chen Y, Wu O, Zhu Y. Associations of genetic variations in EYA4, GRHL2 and DFNA5 with noise-induced hearing loss in Chinese population: a case- control study. Environ Health 2015; 14:77. [PMID: 26400775 PMCID: PMC4581404 DOI: 10.1186/s12940-015-0063-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/09/2015] [Indexed: 06/01/2023]
Abstract
BACKGROUND Both environmental and genetic factors are attributable to the incidence of noise-induced hearing loss (NIHL). The purpose of this study was to examine the associations between genetic variations in the EYA4, GRHL2 and DFNA5 genes and the risk to noise-induced hearing loss (NIHL) in a Chinese population. METHODS A case-control study was conducted with 476 NIHL workers and 475 normal hearing workers matched with gender, years of noise exposure, and intensity of noise exposure. Twelve tag single-nucleotide polymorphisms (SNP) in the EYA4, GRHL2 and DFNA5 genes were genotyped using nanofluidic dynamic arrays on the Fluidigm platform. Multiple logistic regression was used to analyze the associations of genetic variations with NIHL adjusted by age, smoking/drinking status, and cumulative noise exposure and their interactions with noise exposure. RESULTS The SNPs of rs3777781and rs212769 in the EYA4 gene were significantly associated with NIHL risk. In rs3777781, comparing with the subjects carrying with TT types, the carriers with AT and AA genotypes had the decreased risk of NIHL (OR = 0.721, 95% CI = 0.522 - 0.996). In rs212769, the AG and AA carriers had increased NIHL risk (OR = 1.430, 95% CI = 1.014 - 2.016) compared with the subjects with GG genotype. Rs666026 in the associated GRHL2 gene and rs2521758 in the DFNA5 gene were marginally t associated with NIHL (P = 0.065 and 0.052, respectively). Rs2521758 and rs212769 had significantly interacted with noise exposure (P < 0.05). CONCLUSIONS Genetic variations in the EYA4, GRHL2 and DFNA5 genes and their interactions with occupational noise exposure may play an important role in the incidence of NIHL.
Collapse
Affiliation(s)
- Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, P.R. China
| | - Yi Liu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, 310058, Zhejiang, P.R. China
| | - Lei Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, P.R. China
| | - Zhangping Yang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, P.R. China
| | - Luoxian Yang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, P.R. China
| | - Xuchu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, P.R. China
| | - CaiXia Jiang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, P.R. China
| | - Qiang Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, P.R. China
| | - Yuyong Xia
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, P.R. China
| | - Yanjuan Chen
- Hangzhou Hospital for Prevention and Treatment of Occupational Diseases, Hangzhou, 310014, Zhejiang, P.R. China
| | - Ou Wu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, P.R. China
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, 310058, Zhejiang, P.R. China.
| |
Collapse
|
33
|
Grondin Y, Bortoni ME, Sepulveda R, Ghelfi E, Bartos A, Cotanche D, Clifford RE, Rogers RA. Genetic Polymorphisms Associated with Hearing Threshold Shift in Subjects during First Encounter with Occupational Impulse Noise. PLoS One 2015; 10:e0130827. [PMID: 26121033 PMCID: PMC4488244 DOI: 10.1371/journal.pone.0130827] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is the most significant occupational health issue worldwide. We conducted a genome-wide association study to identify single-nucleotide polymorphisms (SNPs) associated with hearing threshold shift in young males undergoing their first encounter with occupational impulse noise. We report a significant association of SNP rs7598759 (p < 5 x 10(-7); p = 0.01 after permutation and correction; Odds Ratio = 12.75) in the gene coding for nucleolin, a multifunctional phosphoprotein involved in the control of senescence and protection against apoptosis. Interestingly, nucleolin has been shown to mediate the anti-apoptotic effect of HSP70, a protein found to prevent ototoxicity and whose polymorphisms have been associated with susceptibility to NIHL. Increase in nucleolin expression has also been associated with the prevention of apoptosis in cells undergoing oxidative stress, a well-known metabolic sequela of noise exposure. To assess the potential role of nucleolin in hearing loss, we tested down-regulation of nucleolin in cochlear sensory cells HEI-OC1 under oxidative stress conditions and report increased sensitivity to cisplatin, a chemotherapeutic drug with ototoxic side effects. Additional SNPs were found with suggestive association (p < 5 x 10(-4)), of which 7 SNPs were located in genes previously reported to be related to NIHL and 43 of them were observed in 36 other genes previously not reported to be associated with NIHL. Taken together, our GWAS data and in vitro studies reported herein suggest that nucleolin is a potential candidate associated with NIHL in this population.
Collapse
Affiliation(s)
- Yohann Grondin
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, United States of America
| | - Magda E. Bortoni
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, United States of America
| | - Rosalinda Sepulveda
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, United States of America
| | - Elisa Ghelfi
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, United States of America
| | - Adam Bartos
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, United States of America
| | - Douglas Cotanche
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, United States of America
| | - Royce E. Clifford
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, United States of America
- Department of Otolaryngology-Head and Neck Surgery, 34800 Bob Wilson Dr., Suite 200, Naval Medical Center, San Diego, CA, 92134, United States of America
| | - Rick A. Rogers
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, United States of America
| |
Collapse
|
34
|
Abstract
Hearing loss is the most common form of sensory impairment in humans and affects more than 40 million people in the United States alone. No drug-based therapy has been approved by the Food and Drug Administration, and treatment mostly relies on devices such as hearing aids and cochlear implants. Over recent years, more than 100 genetic loci have been linked to hearing loss and many of the affected genes have been identified. This understanding of the genetic pathways that regulate auditory function has revealed new targets for pharmacological treatment of the disease. Moreover, approaches that are based on stem cells and gene therapy, which may have the potential to restore or maintain auditory function, are beginning to emerge.
Collapse
Affiliation(s)
- Ulrich Müller
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, San Diego, California 92037, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center, Vollum Institute, Oregon Health &Science University, 3181 South West Sam Jackson Park Road, Portland, Oregon 97239, USA
| |
Collapse
|
35
|
|
36
|
Zhang X, Liu Y, Zhang L, Yang Z, Shao Y, Jiang C, Wang Q, Fang X, Xu Y, Wang H, Zhang S, Zhu Y. Genetic variations in protocadherin 15 and their interactions with noise exposure associated with noise-induced hearing loss in Chinese population. ENVIRONMENTAL RESEARCH 2014; 135:247-252. [PMID: 25462672 DOI: 10.1016/j.envres.2014.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The purpose of this study was to examine the associations between genetic variations in the Protocadherin 15 gene (PCDH15) and the risk to noise induced hearing loss (NIHL) in a Chinese population. METHODS A case-control study was conducted with 476 noise-sensitive workers (NIHL) and 475 noise-resistant workers (normal) matched for gender, years of noise exposure, and intensity of noise exposure. 13 tag single-nucleotide polymorphisms in PCDH15 were genotyped using nanofluidic dynamic arrays on the Fluidigm platform. Multiple logistic regression was used to analyze the associations of genetic variations of PCDH15 with NIHL adjusted by age, smoking/drinking status, and cumulative noise exposure and their interactions with noise exposure. RESULTS The allele frequency and genotypes of rs1104085 were significantly associated with the risk of NIHL(P=0.009 and 0.005 respectively ). The subjects carrying variant alleles (CT or CC) of rs11004085 had a decreased the risk for NIHL (adjusted odds ratio=0.587, 95% confidence interval 0.409-0.842) compared with subjects who had the wild-type (TT) homozygotes. The interactions were found between the SNPs of rs1100085, rs10825122, rs1930146, rs2384437, rs4540756, and rs2384375 and noise exposure. CONCLUSIONS Genetic variations of PCDH15 and their interactions with occupational noise exposure are associated with genetic susceptibility to NIHL and modify the risk of noise induced hearing loss.
Collapse
Affiliation(s)
- Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Yi Liu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou 310058, Zhejiang, PR China
| | - Lei Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Zhangping Yang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Yuxian Shao
- Hangzhou Prevention and Treatment for Occupational Diseases, Hangzhou 310014, Zhejiang, PR China
| | - Caixia Jiang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Qiang Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Xinyan Fang
- Yongkang Center for Disease Control and Prevention, Yongkang 321304, PR China
| | - Yuyang Xu
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Hao Wang
- Yongkang Center for Disease Control and Prevention, Yongkang 321304, PR China
| | - Shuai Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
37
|
Qi J, Liu X, Liu J, Yu H, Wang W, Wang Z, Zhang Q. Molecular characterization of heat shock protein 70 (HSP 70) promoter in Japanese flounder (Paralichthys olivaceus), and the association of Pohsp70 SNPs with heat-resistant trait. FISH & SHELLFISH IMMUNOLOGY 2014; 39:503-511. [PMID: 24925759 DOI: 10.1016/j.fsi.2014.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
Ambient temperature is one of the major abiotic environmental factors determining the main parameters of fish vital activity. HSP70 plays an essential role in heat response. In this investigation, the promoter and structure of Paralichthys olivaceus hsp70 (Pohsp70) gene was cloned and predicted. 2558 bp upstream regulatory region of Pohsp70 was annotated with four potential promoter elements and four putative binding sites of transcription factors heat shock elements (HSE, nGAAn) in the upstream of the transcription start site. In addition, one intron with 454 bp in the 5'-noncoding region was found. Quantitative Real Time PCR analysis indicated that the transcript level of Pohsp70 was raised markedly after 1 h by heat shocked. Furthermore, 25 SNPs were identified in Pohsp70 by resequencing, seven of which was associated with heat resistance. In addition, two of the seven SNPs, namely SNP14 and SNP16, were observed in strong linkage disequilibrium. The haplotype with association analysis showed TAGGAG haplotype was more represented in heat susceptible group while (DEL/T) GAATA haplotype was more frequent in heat resistant group. The heat resistant SNPs and haplotype could be candidate markers potentially serving for selective breeding programs of Japanese flounder aimed at improving anti-stress and production.
Collapse
Affiliation(s)
- Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xudong Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Wenji Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China.
| |
Collapse
|
38
|
Shen H, Cao J, Hong Z, Liu K, Shi J, Ding L, Zhang H, Du C, Li Q, Zhang Z, Zhu B. A functional Ser326Cys polymorphism in hOGG1 is associated with noise-induced hearing loss in a Chinese population. PLoS One 2014; 9:e89662. [PMID: 24599382 PMCID: PMC3943766 DOI: 10.1371/journal.pone.0089662] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/22/2014] [Indexed: 01/23/2023] Open
Abstract
DNA damage to cochlear hair cells caused by 8-oxoguanine (8-oxoG) is essential for the development of noise-induced hearing loss (NIHL). Human 8-oxoG DNA glycosylase1 (hOGG1) is a key enzyme in the base excision repair (BER) pathway that eliminates 8-oxoG. Many epidemiological and functional studies have suggested that the hOGG1 Ser326Cys polymorphism (rs1052133) is associated with many diseases. The purpose of this investigation was to investigate whether the hOGG1 Ser326Cys polymorphism in the human BER pathway is associated with genetic susceptibility to NIHL in a Chinese population. This polymorphism was genotyped among 612 workers with NIHL and 615 workers with normal hearing. We found that individuals with the hOGG1 Cys/Cys genotype had a statistically significantly increased risk of NIHL compared with those who carried the hOGG1 Ser/Ser genotype (adjusted OR=1.59, 95% CI=1.13-2.25) and this increased risk was more pronounced among the workers in the 15- to 25- and >25-year noise exposure time, 85-92 dB(A) noise exposure level, ever smoking, and ever drinking groups, similar effects were also observed in a recessive model. In summary, our data suggested that the hOGG1 Cys/Cys genotype may be a genetic susceptibility marker for NIHL in the Chinese Han population.
Collapse
Affiliation(s)
- Huanxi Shen
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Jinglian Cao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Zhiqiang Hong
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan, China
| | - Kai Liu
- Department of Disease Prevention and Control of Yizheng Hospital, Drum Tower Hospital Group of Nanjing, Yizheng, China
| | - Jian Shi
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan, China
| | - Lu Ding
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Cheng Du
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan, China
| | - Qian Li
- The First People's Hospital of Kunshan, Kunshan, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (BZ); (ZZ)
| | - Baoli Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
- * E-mail: (BZ); (ZZ)
| |
Collapse
|
39
|
|
40
|
Ho MK, Li X, Wang J, Ohmen JD, Friedman RA. FVB/NJ mice demonstrate a youthful sensitivity to noise-induced hearing loss and provide a useful genetic model for the study of neural hearing loss. AUDIOLOGY AND NEUROTOLOGY EXTRA 2014; 4:1-11. [PMID: 24707282 DOI: 10.1159/000357770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The hybrid mouse diversity panel (HMDP), a panel of 100 strains, has been employed in genome wide association studies (GWAS) to study complex traits in mice. Hearing is a complex trait and the CBA/CaJ mouse strain is a widely used model for age-related hearing loss (ARHI) and noise induced hearing loss (NIHL). The CBA/CaJ strain's youthful sensitivity to noise and limited age-related loss led us to attempt to identify additional strains segregating a similar phenotype for our panel. FVB/NJ is part of the HMDP and has been previously described as having a similar ARHI phenotype to CBA/CaJ. For these reasons, we have studied the FVB/NJ mouse for ARHI and NIHL phenotypes in hopes of incorporating its phenotype into HMDP studies. We demonstrate that FVB/NJ exhibits ARHI at an earlier age than CBA/CaJ and young FVB/NJ mice are vulnerable to NIHL up until 10 to 12 weeks. This suggests that FVB/NJ may be used as an additional genetic model for neural forms of progressive hearing loss and for the study of youthful sensitivity to noise.
Collapse
Affiliation(s)
- Maria K Ho
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, 90089 ; Department of Cell Biology and Genetics, House Research Institute, Los Angeles, CA 90057
| | - Xin Li
- Department of Cell Biology and Genetics, House Research Institute, Los Angeles, CA 90057
| | - Juemei Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, 90089 ; Department of Cell Biology and Genetics, House Research Institute, Los Angeles, CA 90057
| | - Jeffrey D Ohmen
- Department of Cell Biology and Genetics, House Research Institute, Los Angeles, CA 90057
| | - Rick A Friedman
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, 90089 ; Department of Cell Biology and Genetics, House Research Institute, Los Angeles, CA 90057
| |
Collapse
|
41
|
Li XT, Li X, Hu FF, Shen HX, Cao JL, Li Z, Zhang ZD, Zhu BL. Association between paraoxonase 2 gene polymorphisms and noise-induced hearing loss in the Chinese population. J Occup Health 2013; 55:56-65. [PMID: 23327886 DOI: 10.1539/joh.12-0242-oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The aim of the present study was to investigate whether PON2 gene polymorphisms (rs7493, rs12026, rs12704796, rs7785846 and rs7786401) are associated with susceptibility to noise-induced hearing loss (NIHL) in the Chinese population. METHODS A case-control study was conducted using 615 cases selected without any restriction in age or sex and 644 controls who were matched with the cases in terms of age, gender and the intensity and duration of exposure to noise. Information on these subjects was gathered by questionnaires that were administered through face-to-face interviews by trained interviewers. RESULTS We found that the rs7493 CG + GG genotype (OR=1.36, 95% CI, 1.08-1.72), rs12026 CG + GG genotype (OR=1.34, 95% CI, 1.06-1.70), rs7785846 CT + TT genotype (OR=1.36, 95% CI, 1.07-1.71) and rs7786401 GT + TT genotype (OR=1.33, 95% CI, 1.05-1.68) were risk factors for NIHL. CONCLUSIONS PON2 gene polymorphisms may be associated with susceptibility to NIHL in the Chinese population
Collapse
Affiliation(s)
- Xiu-Ting Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sliwinska-Kowalska M, Pawelczyk M. Contribution of genetic factors to noise-induced hearing loss: A human studies review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2013. [DOI: 10.1016/j.mrrev.2012.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Cabanillas Farpón R, Cadiñanos Bañales J. Hereditary Hearing Loss: Genetic Counselling. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2012. [DOI: 10.1016/j.otoeng.2011.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Gong TW, Lomax MI. Genes That Influence Susceptibility to Noise-Induced Hearing Loss. NOISE-INDUCED HEARING LOSS 2012. [DOI: 10.1007/978-1-4419-9523-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
[Hereditary hearing loss: genetic counselling]. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2011; 63:218-29. [PMID: 21514544 DOI: 10.1016/j.otorri.2011.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 02/20/2011] [Indexed: 11/22/2022]
Abstract
The aim of this review is to provide an updated overview of hereditary hearing loss, with special attention to the etiological diagnosis of sensorineural hearing loss, the genes most frequently mutated in our environment, the techniques available for their analysis and the clinical implications of genetic diagnosis. More than 60% of childhood sensorineural hearing loss is genetic. In adults, the percentage of hereditary hearing loss is unknown. Genetic testing is the highest yielding test for evaluating patients with sensorineural hearing loss. The process of genetic counselling is intended to inform patients and their families of the medical, psychological and familial implications of genetic diseases, as well as the risks, benefits and limitations of genetic testing. The implementation of any genetic analysis must be always preceded by an appropriate genetic counselling process.
Collapse
|
46
|
Abstract
Meniere's disease remains a disorder of unknown origin despite the collective efforts to determine the pathogenesis, although experts have long recognized that disease development likely has some heritable component. Although genetic studies of Meniere's disease have been inconclusive, increasing knowledge of human genetic structure and mutation and investigative techniques have potential to further understanding of this disorder.
Collapse
Affiliation(s)
- Jeffrey T Vrabec
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery Baylor College of Medicine, 6550 Fannin Street, SM1727, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Fürnrohr BG, Wach S, Kelly JA, Haslbeck M, Weber CK, Stach CM, Hueber AJ, Graef D, Spriewald BM, Manger K, Herrmann M, Kaufman KM, Frank SG, Goodmon E, James JA, Schett G, Winkler TH, Harley JB, Voll RE. Polymorphisms in the Hsp70 gene locus are genetically associated with systemic lupus erythematosus. Ann Rheum Dis 2010; 69:1983-9. [PMID: 20498198 PMCID: PMC3002760 DOI: 10.1136/ard.2009.122630] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND Heat shock proteins (Hsps) play a role in the delivery and presentation of antigenic peptides and are thought to be involved in the pathogenesis of multifactorial diseases. OBJECTIVE To investigate genes encoding cytosolic Hsp70 proteins for associations of allelic variants with systemic lupus erythematosus (SLE). METHODS Case-control studies of two independent Caucasian SLE cohorts were performed. In a haplotype-tagging single-nucleotide polymorphism approach, common variants of HspA1L, HspA1A and HspA1B were genotyped and principal component analyses were performed for the cohort from the Oklahoma Medical Research Foundation (OMRF). Relative quantification of mRNA was carried out for each Hsp70 gene in healthy controls. Conditional regression analysis was performed to determine if allelic variants in Hsp70 act independently of HLA-DR3. RESULTS On analysis of common genetic variants of HspA1L, HspA1A and HspA1B, a haplotype significantly associated with SLE in the Erlangen-SLE cohort was identified, which was confirmed in the OMRF cohort. Depending on the cohorts, OR ranging from 1.43 to 1.88 and 2.64 to 3.16 was observed for individuals heterozygous and homozygous for the associated haplotype, respectively. Patients carrying the risk haplotype or the risk allele more often displayed autoantibodies to Ro and La in both cohorts. In healthy controls bearing this haplotype, the amount of HspA1A mRNA was significantly increased, whereas total Hsp70 protein concentration was not altered. CONCLUSIONS Allelic variants of the Hsp70 genes are significantly associated with SLE in Caucasians, independently of HLA-DR3, and correlate with the presence of autoantibodies to Ro and La. Hence, the Hsp70 gene locus appears to be involved in SLE pathogenesis.
Collapse
Affiliation(s)
- Barbara G Fürnrohr
- IZKF Research Group 2, Nikolaus-Fiebiger Centre of Molecular Medicine, University of Erlangen–Nuremberg, Erlangen, Germany
- Department of Internal Medicine 3, University of Erlangen–Nuremberg, Erlangen, Germany
| | - Sven Wach
- Department of Genetics, Nikolaus-Fiebiger Centre of Molecular Medicine, University of Erlangen–Nuremberg, Erlangen, Germany
| | - Jennifer A Kelly
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Christian K Weber
- IZKF Research Group 2, Nikolaus-Fiebiger Centre of Molecular Medicine, University of Erlangen–Nuremberg, Erlangen, Germany
| | - Christian M Stach
- Department of Internal Medicine 3, University of Erlangen–Nuremberg, Erlangen, Germany
| | - Axel J Hueber
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, UK
| | - Daniela Graef
- IZKF Research Group 2, Nikolaus-Fiebiger Centre of Molecular Medicine, University of Erlangen–Nuremberg, Erlangen, Germany
- Department of Internal Medicine 3, University of Erlangen–Nuremberg, Erlangen, Germany
| | - Bernd M Spriewald
- Department of Internal Medicine 5, University of Erlangen–Nuremberg, Erlangen, Germany
| | | | - Martin Herrmann
- Department of Internal Medicine 3, University of Erlangen–Nuremberg, Erlangen, Germany
| | | | - Summer G Frank
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Ellen Goodmon
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Judith A James
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Georg Schett
- Department of Internal Medicine 3, University of Erlangen–Nuremberg, Erlangen, Germany
| | - Thomas H Winkler
- Department of Genetics, Nikolaus-Fiebiger Centre of Molecular Medicine, University of Erlangen–Nuremberg, Erlangen, Germany
| | - John B Harley
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Reinhard E Voll
- IZKF Research Group 2, Nikolaus-Fiebiger Centre of Molecular Medicine, University of Erlangen–Nuremberg, Erlangen, Germany
- Department of Internal Medicine 3, University of Erlangen–Nuremberg, Erlangen, Germany
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW To describe ion and water homeostatic mechanisms in the inner ear, how they are compromised in hearing disorders, and what treatments are employed to restore auditory function. RECENT FINDINGS The ion and water transport functions in the inner ear help maintain the proper endolymph K concentration required for hair cell function. Gene defects and idiopathic alterations in these transport functions cause hearing loss, but often the underlying cause is unknown. Current therapies largely involve glucocorticoid treatment, although the mechanisms of restoration are often undeterminable. Recent studies of these ion homeostatic functions in the ear are characterizing their cellular and molecular control. It is anticipated that future management of these hearing disorders will be more targeted to the cellular processes involved and improve the likelihood of hearing recovery. SUMMARY A better understanding of the ion homeostatic processes in the ear will permit more effective management of their associated hearing disorders. Sufficient insight into many homeostatic hearing disorders has now been attained to usher in a new era of better therapies and improved clinical outcomes.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology Head Neck Surgery, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| |
Collapse
|
49
|
Current Opinion in Otolaryngology & Head and Neck Surgery. Current world literature. Curr Opin Otolaryngol Head Neck Surg 2010; 18:466-74. [PMID: 20827086 DOI: 10.1097/moo.0b013e32833f3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Ucisik-Akkaya E, Davis CF, Gorodezky C, Alaez C, Dorak MT. HLA complex-linked heat shock protein genes and childhood acute lymphoblastic leukemia susceptibility. Cell Stress Chaperones 2010; 15:475-85. [PMID: 20012387 PMCID: PMC3006629 DOI: 10.1007/s12192-009-0161-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/14/2009] [Accepted: 11/16/2009] [Indexed: 01/31/2023] Open
Abstract
Three heat shock protein 70 (HSP70) genes, HSPA1L, HSPA1A, and HSPA1B, are located within the human leukocyte antigen (HLA) class III region. HSPs act as stress signals and regulate natural killer cell response to cancer. HSP70 gene polymorphisms show disease associations partly due to their linkage disequilibrium with HLA alleles. To systematically evaluate their associations with childhood acute lymphoblastic leukemia (ALL), we examined the three functional single nucleotide polymorphisms (SNPs) rs2227956 (T493M) in HSPA1L, rs1043618 in HSPA1A 5'UTR, and rs1061581 (Q351Q) in HSPA1B by TaqMan assays or polymerase chain reaction-restriction fragment length polymorphism in 114 ALL cases and 414 controls from Wales (UK), in 100 Mexican Mestizo ALL cases and 253 controls belonging to the same ethnic group, and in a panel of 82 HLA-typed reference cell line samples. Homozygosity for HSPA1B rs1061581 minor allele G was associated with protection (odds ratio (OR) = 0.37, 95% confidence interval (CI) = 0.16-0.78; P = 0.007) with gene-dosage effect (additive model) reaching significance (P = 0.0001) in the Welsh case-control group. This association was replicated in the second case-control group from Mexico (OR (recessive model) = 0.49, 95% CI = 0.24-0.96; P = 0.03), and the pooled analysis yielded a strong association (Mantel-Haenszel OR = 0.43, 95% CI = 0.27-0.69, P = 0.0004). The association was stronger in males in each group and in the pooled analysis. A three-SNP haplotype including the major allele A of rs1061581 showed a highly significant increase in Welsh cases compared with respective controls (6.7% vs 1.8%; P = 0.0003) due to the difference between male cases and controls. The protective allele of rs1061581 occurred more frequently on the HLA-DRB3 haplotypes (especially DRB1*03) in the cell line panel, but the HSPA1B association was independent from the HLA-DRB4 association previously detected in the same case-control group from Wales (adjusted P = 0.001). Given the cancer promoting roles played by HSPs intracellularly as well as roles in immune surveillance when expressed on the cell surface and the known correlations between expression levels and the HSP polymorphisms, these results are likely to indicate a primary association and warrant detailed assessment in childhood ALL development.
Collapse
Affiliation(s)
- Esma Ucisik-Akkaya
- Genomic Immunoepidemiology Laboratory, HUMIGEN LLC, The Institute for Genetic Immunology, 2439 Kuser Road, Hamilton, NJ 08690-3303 USA
| | - Charronne F. Davis
- Genomic Immunoepidemiology Laboratory, HUMIGEN LLC, The Institute for Genetic Immunology, 2439 Kuser Road, Hamilton, NJ 08690-3303 USA
| | - Clara Gorodezky
- The Department of Immunology and Immunogenetics, Instituto de Diagnostico y Referencia Epidemiologicos (InDRE), Secretary of Health, Mexico, D.F. 11340 Mexico
| | - Carmen Alaez
- The Department of Immunology and Immunogenetics, Instituto de Diagnostico y Referencia Epidemiologicos (InDRE), Secretary of Health, Mexico, D.F. 11340 Mexico
| | - M. Tevfik Dorak
- Genomic Immunoepidemiology Laboratory, HUMIGEN LLC, The Institute for Genetic Immunology, 2439 Kuser Road, Hamilton, NJ 08690-3303 USA
| |
Collapse
|