1
|
Urakawa T, Soejima H, Yamoto K, Hara-Isono K, Nakamura A, Kawashima S, Narusawa H, Kosaki R, Nishimura Y, Yamazawa K, Hattori T, Muramatsu Y, Inoue T, Matsubara K, Fukami M, Saitoh S, Ogata T, Kagami M. Comprehensive molecular and clinical findings in 29 patients with multi-locus imprinting disturbance. Clin Epigenetics 2024; 16:138. [PMID: 39369220 PMCID: PMC11452994 DOI: 10.1186/s13148-024-01744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Multi-locus imprinting disturbance (MLID) with methylation defects in various differentially methylated regions (DMRs) has recently been identified in approximately 150 cases with imprinting disorders (IDs), and deleterious variants have been found in genes related to methylation maintenance of DMRs, such as those encoding proteins constructing the subcortical maternal complex (SCMC), in a small fraction of patients and/or their mothers. However, integrated methylation analysis for DMRs and sequence analysis for MLID-causative genes in MLID cases and their mothers have been performed only in a single study focusing on Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) phenotypes. RESULTS Of 783 patients with various IDs we have identified to date, we examined a total of 386 patients with confirmed epimutation and 71 patients with epimutation or uniparental disomy. Consequently, we identified MLID in 29 patients with epimutation confirmed by methylation analysis for multiple ID-associated DMRs using pyrosequencing and/or methylation-specific multiple ligation-dependent probe amplification. MLID was detected in approximately 12% of patients with BWS phenotype and approximately 5% of patients with SRS phenotype, but not in patients with Kagami-Ogata syndrome, Prader-Willi syndrome, or Angelman syndrome phenotypes. We next conducted array-based methylation analysis for 78 DMRs and whole-exome sequencing in the 29 patients, revealing hypomethylation-dominant aberrant methylation patterns in various DMRs of all the patients, eight probably deleterious variants in genes for SCMC in the mothers of patients, and one homozygous deleterious variant in ZNF445 in one patient. These variants did not show gene-specific methylation disturbance patterns. Clinically, neurodevelopmental delay and/or intellectual developmental disorder (ND/IDD) was observed in about half of the MLID patients, with no association with the identified methylation disturbance patterns and genetic variants. Notably, seven patients with BWS phenotype were conceived by assisted reproductive technology (ART). CONCLUSIONS The frequency of MLID was 7.5% (29/386) in IDs caused by confirmed epimutation. Furthermore, we revealed diverse patterns of hypomethylation-dominant methylation defects, nine deleterious variants, ND/IDD complications in about half of the MLID patients, and a high frequency of MLID in ART-conceived patients.
Collapse
Affiliation(s)
- Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-0937, Japan
| | - Kaori Yamoto
- Department of Biochemistry, Hamamatsu University School of Medicine, 1‑20‑1 Handayama, Higashi‑ku, Hamamatsu, 431‑3192, Japan
| | - Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Rika Kosaki
- Department of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Yutaka Nishimura
- Department of Neonatology, Hiroshima City Hiroshima Citizens Hospital, 7-33 Motomachi, Naka-Ku, Hiroshima, 730-8518, Japan
| | - Kazuki Yamazawa
- Medical Genetics Center, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
| | - Tetsuo Hattori
- Department of Pediatrics, Anjo Kosei Hospital, 28 Higashihirokute, Anjo, 446-8602, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Shouwa‑ku, Nagoya, 466‑8560, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Center for Medical Genetics, Chiba Children's Hospital, 579-1 Heta, Midori-Ku, Chiba, 266-0007, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, 1‑20‑1 Handayama, Higashi‑ku, Hamamatsu, 431‑3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, 328 Tomizuka-Cho, Chuo-Ku, Hamamatsu, 432-8580, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
2
|
Mackay DJG, Gazdagh G, Monk D, Brioude F, Giabicani E, Krzyzewska IM, Kalish JM, Maas SM, Kagami M, Beygo J, Kahre T, Tenorio-Castano J, Ambrozaitytė L, Burnytė B, Cerrato F, Davies JH, Ferrero GB, Fjodorova O, Manero-Azua A, Pereda A, Russo S, Tannorella P, Temple KI, Õunap K, Riccio A, de Nanclares GP, Maher ER, Lapunzina P, Netchine I, Eggermann T, Bliek J, Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics 2024; 16:99. [PMID: 39090763 PMCID: PMC11295890 DOI: 10.1186/s13148-024-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.
Collapse
Affiliation(s)
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Frederic Brioude
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Eloise Giabicani
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Izabela M Krzyzewska
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jasmin Beygo
- Institut Für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Justin H Davies
- Faculty of Medicine, University of Southampton, Southampton, UK
- Regional Centre for Paediatric Endocrinology, Faculty of Medicine, Southampton Children's Hospital, University of Southampton, Southampton, UK
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Science, School of Medicine, Centre for Hemoglobinopathies, AOU San Luigi Gonzaga, University of Turin, Turin, Italy
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Africa Manero-Azua
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Silvia Russo
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Pierpaola Tannorella
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Karen I Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB),"Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Eamonn R Maher
- Aston Medical School, Aston University, Birmingham, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Irène Netchine
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine. Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jet Bliek
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Jeddi F, Faghfuri E, Mehranfar S, Soozangar N. The common bisulfite-conversion-based techniques to analyze DNA methylation in human cancers. Cancer Cell Int 2024; 24:240. [PMID: 38982390 PMCID: PMC11234524 DOI: 10.1186/s12935-024-03405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
DNA methylation is an important molecular modification that plays a key role in the expression of cancer genes. Evaluation of epigenetic changes, hypomethylation and hypermethylation, in specific genes are applied for cancer diagnosis. Numerous studies have concentrated on describing DNA methylation patterns as biomarkers for cancer diagnosis monitoring and predicting response to cancer therapy. Various techniques for detecting DNA methylation status in cancers are based on sodium bisulfite treatment. According to the application of these methods in research and clinical studies, they have a number of advantages and disadvantages. The current review highlights sodium bisulfite treatment-based techniques, as well as, the advantages, drawbacks, and applications of these methods in the evaluation of human cancers.
Collapse
Affiliation(s)
- Farhad Jeddi
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elnaz Faghfuri
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
4
|
Ehsan L, Anz R, Asebes H, Nickson N, Ergun-Longmire B. Type 1 Diabetes in a Pediatric Patient With Beckwith-Wiedemann Syndrome. JCEM CASE REPORTS 2024; 2:luae122. [PMID: 39027637 PMCID: PMC11255477 DOI: 10.1210/jcemcr/luae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 07/20/2024]
Abstract
Beckwith-Wiedemann syndrome (BWS) is a genetic overgrowth syndrome with multiple clinical manifestations, including hypoglycemia. Various genetic alterations leading to BWS have been described. Literature has also described the association between BWS and congenital diabetes, but little is known about the association with type 1 diabetes (T1D). We report a 4-year-old female patient with co-occurring BWS and T1D. The patient presented with 2.4-kilogram weight loss in 3 months accompanied by headache, polyuria, and polydipsia. Initial workup showed blood glucose of 681 mg/dL (37.8 mmol/L). Additional workup revealed marked elevation of the glutamic acid decarboxylase 65 and insulin antibodies, confirming the diagnosis of T1D. The patient's initial genetic test results revealed BWS caused by hypomethylation of the imprinting center 2 (IC2) found on maternal chromosome 11. Concurrence of BWS and T1D is rare and there are cases previously described where BWS has co-occurred with congenital diabetes but not T1D. Although the etiology of acquired autoimmunity is unclear, the answer may lie in genetic analysis or autoimmunity secondary to preceding viral illness. Regardless of the etiology, this case emphasizes further exploration of the association between BWS and T1D.
Collapse
Affiliation(s)
- Lubaina Ehsan
- Department of Pediatrics and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| | - Reem Anz
- Department of Pediatrics and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| | - Hannah Asebes
- Department of Pediatrics and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| | - Nikoli Nickson
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| | - Berrin Ergun-Longmire
- Department of Pediatrics and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| |
Collapse
|
5
|
Elefante P, Spedicati B, Faletra F, Pignata L, Cerrato F, Riccio A, Barbi E, Memo L, Travan L. Beckwith-Wiedemann syndrome and twinning: case report and brief review of literature. Ital J Pediatr 2023; 49:127. [PMID: 37749604 PMCID: PMC10521437 DOI: 10.1186/s13052-023-01530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS, OMIM #130,650) is a pediatric overgrowth disorder involving a predisposition to tumor development. Although the clinical management of affected patients is well established, it is less clear how to handle with the cases of siblings of affected patients, since the prevalence of the condition in twins (1:1000) is ten times higher than in singletones (1:10000). CASE PRESENTATION We report the case of a premature twin patient who during her follow-up develops a clinical phenotype compatible with BWS, genetically confirmed in blood. However, the methylation alteration characteristic of the condition was also found in the almost phenotypically normal sibling, making it challening her management. CONCLUSION Through our case report we highlight how the diagnosis of BWS can be made without any prenatal suspicion and we propose a review of the literature on how to manage siblings of affected patients in twinning situation.
Collapse
Affiliation(s)
- Pierandrea Elefante
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Via dell’Istria 65/1, Trieste, 34137 Italy
| | - Beatrice Spedicati
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Via dell’Istria 65/1, Trieste, 34137 Italy
| | - Flavio Faletra
- Medical Genetics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Egidio Barbi
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Via dell’Istria 65/1, Trieste, 34137 Italy
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Luigi Memo
- Clinical Genetics, Department of Pediatrics, Ospedale San Bortolo, Vicenza, Italy
| | - Laura Travan
- Neonatal Intensive Care Unit, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
6
|
Kim HY, Shin CH, Shin CH, Ko JM. Uncovering the phenotypic consequences of multi-locus imprinting disturbances using genome-wide methylation analysis in genomic imprinting disorders. PLoS One 2023; 18:e0290450. [PMID: 37594968 PMCID: PMC10437897 DOI: 10.1371/journal.pone.0290450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Imprinted genes are regulated by DNA methylation of imprinted differentially methylated regions (iDMRs). An increasing number of patients with congenital imprinting disorders (IDs) exhibit aberrant methylation at multiple imprinted loci, multi-locus imprinting disturbance (MLID). We examined MLID and its possible impact on clinical features in patients with IDs. Genome-wide DNA methylation analysis (GWMA) using blood leukocyte DNA was performed on 13 patients with Beckwith-Wiedemann syndrome (BWS), two patients with Silver-Russell syndrome (SRS), and four controls. HumanMethylation850 BeadChip analysis for 77 iDMRs (809 CpG sites) identified three patients with BWS and one patient with SRS showing additional hypomethylation, other than the disease-related iDMRs, suggestive of MLID. Two regions were aberrantly methylated in at least two patients with BWS showing MLID: PPIEL locus (chromosome 1: 39559298 to 39559744), and FAM50B locus (chromosome 6: 3849096 to 3849469). All patients with BWS- and SRS-MLID did not show any other clinical characteristics associated with additional involved iDMRs. Exome analysis in three patients with BWS who exhibited multiple hypomethylation did not identify any causative variant related to MLID. This study indicates that a genome-wide approach can unravel MLID in patients with an apparently isolated ID. Patients with MLID showed only clinical features related to the original IDs. Long-term follow-up studies in larger cohorts are warranted to evaluate any possible phenotypic consequences of other disturbed imprinted loci.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Department of Orthopaedics, Division of Pediatric Orthopedics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Division of Clinical Genetics, Seoul National University College of Medicine, Seoul, Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
7
|
Pignata L, Cecere F, Acquaviva F, D’Angelo E, Cioffi D, Pellino V, Palumbo O, Palumbo P, Carella M, Sparago A, De Brasi D, Cerrato F, Riccio A. Co-occurrence of Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type 1B: coincidence or common molecular mechanism? Front Cell Dev Biol 2023; 11:1237629. [PMID: 37635873 PMCID: PMC10448386 DOI: 10.3389/fcell.2023.1237629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Imprinting disorders are congenital diseases caused by dysregulation of genomic imprinting, affecting growth, neurocognitive development, metabolism and cancer predisposition. Overlapping clinical features are often observed among this group of diseases. In rare cases, two fully expressed imprinting disorders may coexist in the same patient. A dozen cases of this type have been reported so far. Most of them are represented by individuals affected by Beckwith-Wiedemann spectrum (BWSp) and Transient Neonatal Diabetes Mellitus (TNDM) or BWSp and Pseudo-hypoparathyroidism type 1B (PHP1B). All these patients displayed Multilocus imprinting disturbances (MLID). Here, we report the first case of co-occurrence of BWS and PHP1B in the same individual in absence of MLID. Genome-wide methylation and SNP-array analyses demonstrated loss of methylation of the KCNQ1OT1:TSS-DMR on chromosome 11p15.5 as molecular cause of BWSp, and upd(20)pat as cause of PHP1B. The absence of MLID and the heterodisomy of chromosome 20 suggests that BWSp and PHP1B arose through distinct and independent mechanism in our patient. However, we cannot exclude that the rare combination of the epigenetic defect on chromosome 11 and the UPD on chromosome 20 may originate from a common so far undetermined predisposing molecular lesion. A better comprehension of the molecular mechanisms underlying the co-occurrence of two imprinting disorders will improve genetic counselling and estimate of familial recurrence risk of these rare cases. Furthermore, our study also supports the importance of multilocus molecular testing for revealing MLID as well as complex cases of imprinting disorders.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Fabio Acquaviva
- UOSD Genetica Medica, Dipartimento di Pediatria Generale e d’Urgenza, AORN Santobono-Pausilipon, Naples, Italy
| | - Emilia D’Angelo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Daniela Cioffi
- UOSD Auxologia e Endocrinologia Pediatrica, Dipartimento di Pediatria Specialistica, AORN Santobono-Pausilipon, Naples, Italy
| | - Valeria Pellino
- UOSD Auxologia e Endocrinologia Pediatrica, Dipartimento di Pediatria Specialistica, AORN Santobono-Pausilipon, Naples, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Daniele De Brasi
- UOSD Genetica Medica, Dipartimento di Pediatria Generale e d’Urgenza, AORN Santobono-Pausilipon, Naples, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Istituto di Genetica e Biofisica “Adriano Buzzati Traverso” Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
8
|
Bilo L, Ochoa E, Lee S, Dey D, Kurth I, Kraft F, Rodger F, Docquier F, Toribio A, Bottolo L, Binder G, Fekete G, Elbracht M, Maher ER, Begemann M, Eggermann T. Molecular characterisation of 36 multilocus imprinting disturbance (MLID) patients: a comprehensive approach. Clin Epigenetics 2023; 15:35. [PMID: 36859312 PMCID: PMC9979536 DOI: 10.1186/s13148-023-01453-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Imprinting disorders (ImpDis) comprise diseases which are caused by aberrant regulation of monoallelically and parent-of-origin-dependent expressed genes. A characteristic molecular change in ImpDis patients is aberrant methylation signatures at disease-specific loci, without an obvious DNA change at the specific differentially methylated region (DMR). However, there is a growing number of reports on multilocus imprinting disturbances (MLIDs), i.e. aberrant methylation at different DMRs in the same patient. These MLIDs account for a significant number of patients with specific ImpDis, and several reports indicate a central role of pathogenic maternal effect variants in their aetiology by affecting the maturation of the oocyte and the early embryo. Though several studies on the prevalence and the molecular causes of MLID have been conducted, homogeneous datasets comprising both genomic and methylation data are still lacking. RESULTS Based on a cohort of 36 MLID patients, we here present both methylation data obtained from next-generation sequencing (NGS, ImprintSeq) approaches and whole-exome sequencing (WES). The compilation of methylation data did not reveal a disease-specific MLID episignature, and a predisposition for the phenotypic modification was not obvious as well. In fact, this lack of epigenotype-phenotype correlation might be related to the mosaic distribution of imprinting defects and their functional relevance in specific tissues. CONCLUSIONS Due to the higher sensitivity of NGS-based approaches, we suggest that ImprintSeq might be offered at reference centres in case of ImpDis patients with unusual phenotypes but MLID negative by conventional tests. By WES, additional MLID causes than the already known maternal effect variants could not be identified, neither in the patients nor in the maternal exomes. In cases with negative WES results, it is currently unclear to what extent either environmental factors or undetected genetic variants contribute to MLID.
Collapse
Affiliation(s)
- Larissa Bilo
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniela Dey
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ingo Kurth
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Florian Kraft
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Leonardo Bottolo
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Universiy of Tuebingen, Tuebingen, Germany
| | - György Fekete
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Miriam Elbracht
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthias Begemann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Goldkamp AK, Li Y, Rivera RM, Hagen DE. Differentially expressed tRNA-derived fragments in bovine fetuses with assisted reproduction induced congenital overgrowth syndrome. Front Genet 2022; 13:1055343. [PMID: 36457750 PMCID: PMC9705782 DOI: 10.3389/fgene.2022.1055343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Background: As couples struggle with infertility and livestock producers wish to rapidly improve genetic merit in their herd, assisted reproductive technologies (ART) have become increasingly popular in human medicine as well as the livestock industry. Utilizing ART can cause an increased risk of congenital overgrowth syndromes, such as Large Offspring Syndrome (LOS) in ruminants. A dysregulation of transcripts has been observed in bovine fetuses with LOS, which is suggested to be a cause of the phenotype. Our recent study identified variations in tRNA expression in LOS individuals, leading us to hypothesize that variations in tRNA expression can influence the availability of their processed regulatory products, tRNA-derived fragments (tRFs). Due to their resemblance in size to microRNAs, studies suggest that tRFs target mRNA transcripts and regulate gene expression. Thus, we have sequenced small RNA isolated from skeletal muscle and liver of day 105 bovine fetuses to elucidate the mechanisms contributing to LOS. Moreover, we have utilized our previously generated tRNA sequencing data to analyze the contribution of tRNA availability to tRF abundance. Results: 22,289 and 7,737 unique tRFs were predicted in the liver and muscle tissue respectively. The greatest number of reads originated from 5' tRFs in muscle and 5' halves in liver. In addition, mitochondrial (MT) and nuclear derived tRF expression was tissue-specific with most MT-tRFs and nuclear tRFs derived from LysUUU and iMetCAU in muscle, and AsnGUU and GlyGCC in liver. Despite variation in tRF abundance within treatment groups, we identified differentially expressed (DE) tRFs across Control-AI, ART-Normal, and ART-LOS groups with the most DE tRFs between ART-Normal and ART-LOS groups. Many DE tRFs target transcripts enriched in pathways related to growth and development in the muscle and tumor development in the liver. Finally, we found positive correlation coefficients between tRNA availability and tRF expression in muscle (R = 0.47) and liver (0.6). Conclusion: Our results highlight the dysregulation of tRF expression and its regulatory roles in LOS. These tRFs were found to target both imprinted and non-imprinted genes in muscle as well as genes linked to tumor development in the liver. Furthermore, we found that tRNA transcription is a highly modulated event that plays a part in the biogenesis of tRFs. This study is the first to investigate the relationship between tRNA and tRF expression in combination with ART-induced LOS.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
10
|
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Rumpf R, Lemos Júnior PES, Alves CS, Carneiro WDS, Dias AJB, Rios ÁFL. Multi-locus DNA methylation analysis of imprinted genes in cattle from somatic cell nuclear transfer. Theriogenology 2022; 186:95-107. [DOI: 10.1016/j.theriogenology.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
11
|
Pignata L, Cecere F, Verma A, Hay Mele B, Monticelli M, Acurzio B, Giaccari C, Sparago A, Hernandez Mora JR, Monteagudo-Sánchez A, Esteller M, Pereda A, Tenorio-Castano J, Palumbo O, Carella M, Prontera P, Piscopo C, Accadia M, Lapunzina P, Cubellis MV, de Nanclares GP, Monk D, Riccio A, Cerrato F. Novel genetic variants of KHDC3L and other members of the subcortical maternal complex associated with Beckwith-Wiedemann syndrome or Pseudohypoparathyroidism 1B and multi-locus imprinting disturbances. Clin Epigenetics 2022; 14:71. [PMID: 35643636 PMCID: PMC9148495 DOI: 10.1186/s13148-022-01292-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Ankit Verma
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Bruno Hay Mele
- Department of Biology, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Maria Monticelli
- Department of Biology, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Carlo Giaccari
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jose Ramon Hernandez Mora
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Monteagudo-Sánchez
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukeamia Research Institute, Can Ruti, Cami de les Escoles, Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, Rare Diseases Research Group, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, C/Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo Della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo Della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University and Hospital of Perugia, Perugia, Italy
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, "Antonio Cardarelli" Hospital, 80131, Naples, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", 73039, Tricase, Lecce, Italy
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | | | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Rare Diseases Research Group, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, C/Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - David Monk
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TG, UK
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy.
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy.
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
12
|
Vázquez-Mosquera ME, González-Vioque E, Barbosa-Gouveia S, Bellido-Guerrero D, Tejera-Pérez C, Martinez-Olmos MA, Fernández-Pombo A, Castaño-González LA, Chans-Gerpe R, Couce ML. Transcriptomic analysis of patients with clinical suspicion of maturity-onset diabetes of the young (MODY) with a negative genetic diagnosis. Orphanet J Rare Dis 2022; 17:105. [PMID: 35246208 PMCID: PMC8896342 DOI: 10.1186/s13023-022-02263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background Diagnosis of mature-onset diabetes of the young (MODY), a non-autoimmune monogenic form of diabetes mellitus, is confirmed by genetic testing. However, a positive genetic diagnosis is achieved in only around 50% of patients with clinical characteristics of this disease. Results We evaluated the diagnostic utility of transcriptomic analysis in patients with clinical suspicion of MODY but a negative genetic diagnosis. Using Nanostring nCounter technology, we conducted transcriptomic analysis of 19 MODY-associated genes in peripheral blood samples from 19 patients and 8 healthy controls. Normalized gene expression was compared between patients and controls and correlated with each patient’s biochemical and clinical variables. Z-scores were calculated to identify significant changes in gene expression in patients versus controls. Only 7 of the genes analyzed were detected in peripheral blood. HADH expression was significantly lower in patients versus controls. Among patients with suspected MODY, GLIS3 expression was higher in obese versus normal-weight patients, and in patients aged < 25 versus > 25 years at diabetes onset. Significant alteration with respect to controls of any gene was observed in 57.9% of patients. Conclusions Although blood does not seem to be a suitable sample for transcriptomic analysis of patients with suspected MODY, in our study, we detected expression alterations in some of the genes studied in almost 58% of patients. That opens the door for future studies that can clarify the molecular cause of the clinic of these patients and thus be able to maintain a more specific follow-up and treatment in each case. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02263-3.
Collapse
Affiliation(s)
- María E Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,European Reference Network for Hereditary Metabolic Disorders (MetabERN), Padova, Italy
| | - Emiliano González-Vioque
- Division of Clinical Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Sofía Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,European Reference Network for Hereditary Metabolic Disorders (MetabERN), Padova, Italy
| | | | - Cristina Tejera-Pérez
- Division of Endocrinology, Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Miguel A Martinez-Olmos
- Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,Division of Endocrinology and Nutrition, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Antía Fernández-Pombo
- Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,Division of Endocrinology and Nutrition, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Luis A Castaño-González
- Endocrinology and Diabetes Research Group, Instituto de Investigación Sanitaria BioCruces, Barakaldo, Spain
| | - Roi Chans-Gerpe
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,European Reference Network for Hereditary Metabolic Disorders (MetabERN), Padova, Italy
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain. .,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Universidad de Santiago de Compostela, Santiago de Compostela, Spain. .,European Reference Network for Hereditary Metabolic Disorders (MetabERN), Padova, Italy.
| |
Collapse
|
13
|
Agarwal A, Maldonado Rosas I, Anagnostopoulou C, Cannarella R, Boitrelle F, Munoz LV, Finelli R, Durairajanayagam D, Henkel R, Saleh R. Oxidative Stress and Assisted Reproduction: A Comprehensive Review of Its Pathophysiological Role and Strategies for Optimizing Embryo Culture Environment. Antioxidants (Basel) 2022; 11:antiox11030477. [PMID: 35326126 PMCID: PMC8944628 DOI: 10.3390/antiox11030477] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) due to an imbalance between reactive oxygen species (ROS) and antioxidants has been established as an important factor that can negatively affect the outcomes of assisted reproductive techniques (ARTs). Excess ROS exert their pathological effects through damage to cellular lipids, organelles, and DNA, alteration of enzymatic function, and apoptosis. ROS can be produced intracellularly, from immature sperm, oocytes, and embryos. Additionally, several external factors may induce high ROS production in the ART setup, including atmospheric oxygen, CO2 incubators, consumables, visible light, temperature, humidity, volatile organic compounds, and culture media additives. Pathological amounts of ROS can also be generated during the cryopreservation-thawing process of gametes or embryos. Generally, these factors can act at any stage during ART, from gamete preparation to embryo development, till the blastocyst stage. In this review, we discuss the in vitro conditions and environmental factors responsible for the induction of OS in an ART setting. In addition, we describe the effects of OS on gametes and embryos. Furthermore, we highlight strategies to ameliorate the impact of OS during the whole human embryo culture period, from gametes to blastocyst stage.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (R.F.); (R.H.)
- Correspondence:
| | | | | | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, 78300 Poissy, France;
- Department BREED, UVSQ, INRAE, Paris Saclay University, 78350 Jouy-en-Josas, France
| | - Lina Villar Munoz
- Citmer Reproductive Medicine, IVF LAB, Mexico City 11520, Mexico; (I.M.R.); (L.V.M.)
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (R.F.); (R.H.)
| | - Damayanthi Durairajanayagam
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia;
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (R.F.); (R.H.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa
- LogixX Pharma, Theale RG7 4AB, UK
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt;
- Ajyal IVF Center, Ajyal Hospital, Sohag 82524, Egypt
| |
Collapse
|
14
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
15
|
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Dias AJB, Rios ÁFL. Multi-locus imprinting disturbances of Beckwith-Wiedemann and Large offspring syndrome/Abnormal offspring syndrome: A brief review. Theriogenology 2021; 173:193-201. [PMID: 34399383 DOI: 10.1016/j.theriogenology.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
In vitro fertilization and somatic cell nuclear transfer are assisted reproduction technologies commonly used in humans and cattle, respectively. Despite advances in these technologies, molecular failures can occur, increasing the chance of the onset of imprinting disorders in the offspring. Large offspring syndrome/abnormal offspring syndrome (LOS/AOS) has been described in cattle and has features such as hypergrowth, malformation of organs, and skeletal and placental defects. In humans, Beckwith-Wiedemann syndrome (BWS) has phenotypic characteristics similar to those found in LOS/AOS. In both syndromes, disruption of genomic imprinting associated with loss of parental-specific expression and parental-specific epigenetic marks is involved in the molecular etiology. Changes in the imprinting pattern of these genes lead to loss of imprinting (LOI) due to gain or loss of methylation, inducing the emergence of these syndromes. Several studies have reported locus-specific alterations in these syndromes, such as hypomethylation in imprinting control region 2 (KvDMR1) in BWS and LOS/AOS. These LOI events can occur at multiple imprinted loci in the same affected individual, which are called multi-locus methylation defect (MLMD) events. Although the bovine species has been proposed as a developmental model for human imprinting disorders, there is little information on bovine imprinted genes in the literature, even the correlation of epimutation data with clinical characteristics. In this study, we performed a systematic review of all the multi-locus LOI events described in human BWS and LOS/AOS, in order to determine in which imprinted genes the largest changes in the pattern of DNA methylation and expression occur, helping to fill gaps for a better understanding of the etiology of both syndromes.
Collapse
Affiliation(s)
- Paula Magnelli Mangiavacchi
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Maria Clara Caldas-Bussiere
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Mariana da Silva Mendonça
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Angelo José Burla Dias
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Álvaro Fabrício Lopes Rios
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
16
|
Pignata L, Sparago A, Palumbo O, Andreucci E, Lapi E, Tenconi R, Carella M, Riccio A, Cerrato F. Mosaic Segmental and Whole-Chromosome Upd(11)mat in Silver-Russell Syndrome. Genes (Basel) 2021; 12:genes12040581. [PMID: 33923683 PMCID: PMC8073375 DOI: 10.3390/genes12040581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Molecular defects altering the expression of the imprinted genes of the 11p15.5 cluster are responsible for the etiology of two congenital disorders characterized by opposite growth disturbances, Silver-Russell syndrome (SRS), associated with growth restriction, and Beckwith-Wiedemann syndrome (BWS), associated with overgrowth. At the molecular level, SRS and BWS are characterized by defects of opposite sign, including loss (LoM) or gain (GoM) of methylation at the H19/IGF2:intergenic differentially methylated region (H19/IGF2:IG-DMR), maternal or paternal duplication (dup) of 11p15.5, maternal (mat) or paternal (pat) uniparental disomy (upd), and gain or loss of function mutations of CDKN1C. However, while upd(11)pat is found in 20% of BWS cases and in the majority of them it is segmental, upd(11)mat is extremely rare, being reported in only two SRS cases to date, and in both of them is extended to the whole chromosome. Here, we report on two novel cases of mosaic upd(11)mat with SRS phenotype. The upd is mosaic and isodisomic in both cases but covers the entire chromosome in one case and is restricted to 11p14.1-pter in the other case. The segmental upd(11)mat adds further to the list of molecular defects of opposite sign in SRS and BWS, making these two imprinting disorders even more specular than previously described.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.P.); (A.S.); (F.C.)
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.P.); (A.S.); (F.C.)
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.C.)
| | - Elena Andreucci
- Medical Genetics Unit, Meyer Children’s Hospital, 50139 Firenze, Italy; (E.A.); (E.L.)
| | - Elisabetta Lapi
- Medical Genetics Unit, Meyer Children’s Hospital, 50139 Firenze, Italy; (E.A.); (E.L.)
| | - Romano Tenconi
- Department of Pediatrics, Clinical Genetics, Università di Padova, 35122 Padova, Italy;
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.C.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.P.); (A.S.); (F.C.)
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
- Correspondence:
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.P.); (A.S.); (F.C.)
| |
Collapse
|
17
|
Clinical and Molecular Diagnosis of Beckwith-Wiedemann Syndrome with Single- or Multi-Locus Imprinting Disturbance. Int J Mol Sci 2021; 22:ijms22073445. [PMID: 33810554 PMCID: PMC8036922 DOI: 10.3390/ijms22073445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinically and genetically heterogeneous overgrowth disease. BWS is caused by (epi)genetic defects at the 11p15 chromosomal region, which harbors two clusters of imprinted genes, IGF2/H19 and CDKN1C/KCNQ1OT1, regulated by differential methylation of imprinting control regions, H19/IGF2:IG DMR and KCNQ1OT1:TSS DMR, respectively. A subset of BWS patients show multi-locus imprinting disturbances (MLID), with methylation defects extended to other imprinted genes in addition to the disease-specific locus. Specific (epi)genotype-phenotype correlations have been defined in order to help clinicians in the classification of patients and referring them to a timely diagnosis and a tailored follow-up. However, specific phenotypic correlations have not been identified among MLID patients, thus causing a debate on the usefulness of multi-locus testing in clinical diagnosis. Finally, the high incidence of BWS monozygotic twins with discordant phenotypes, the high frequency of BWS among babies conceived by assisted reproductive technologies, and the female prevalence among BWS-MLID cases provide new insights into the timing of imprint establishment during embryo development. In this review, we provide an overview on the clinical and molecular diagnosis of single- and multi-locus BWS in pre- and post-natal settings, and a comprehensive analysis of the literature in order to define possible (epi)genotype-phenotype correlations in MLID patients.
Collapse
|
18
|
Choufani S, Ko JM, Lou Y, Shuman C, Fishman L, Weksberg R. Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome. Genes (Basel) 2021; 12:genes12020172. [PMID: 33513760 PMCID: PMC7911624 DOI: 10.3390/genes12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic alterations at imprinted genes on different chromosomes have been linked to several imprinting disorders (IDs) such as Beckwith-Wiedemann syndrome (BWS) and pseudohypoparathyroidism type 1b (PHP1b). Here, we present a male patient with these two distinct IDs caused by two independent mechanisms-loss of methylation (LOM) at chromosome 11p15.5 associated with multi-locus imprinting disturbances (MLID and paternal uniparental disomy of chromosome 20 (patUPD20). A clinical diagnosis of BWS was made based on the clinical features of macrosomia, macroglossia, and umbilical hernia. The diagnosis of PHP1b was supported by the presence of reduced growth velocity and mild learning disability as well as hypocalcemia and hyperphosphatemia at 14 years of age. Molecular analyses, including genome-wide DNA methylation (Illumina 450k array), bisulfite pyrosequencing, single nucleotide polymorphism (SNP) array and microsatellite analysis, demonstrated loss of methylation (LOM) at IC2 on chromosome 11p15.5, and paternal isodisomy of the entire chromosome 20. In addition, imprinting disturbances were noted at the differentially methylated regions (DMRs) associated with DIRAS3 on chromosome 1 and PLAGL1 on chromosome 6. This is the first case report of PHP1b due to patUPD20 diagnosed in a BWS patient with LOM at IC2 demonstrating etiologic heterogeneity for multiple imprinting disorders in a single individual.
Collapse
Affiliation(s)
- Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Jung Min Ko
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youliang Lou
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Cheryl Shuman
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Leona Fishman
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence:
| |
Collapse
|
19
|
Epigenetic mechanisms involved in intrauterine growth restriction and aberrant kidney development and function. J Dev Orig Health Dis 2020; 12:952-962. [PMID: 33349286 DOI: 10.1017/s2040174420001257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intrauterine growth restriction (IUGR) due to uteroplacental insufficiency results in a placenta that is unable to provide adequate nutrients and oxygen to the fetus. These growth-restricted babies have an increased risk of hypertension and chronic kidney disease later in life. In rats, both male and female growth-restricted offspring have nephron deficits but only males develop kidney dysfunction and high blood pressure. In addition, there is transgenerational transmission of nephron deficits and hypertension risk. Therefore, epigenetic mechanisms may explain the sex-specific programming and multigenerational transmission of IUGR-related phenotypes. Expression of DNA methyltransferases (Dnmt1and Dnmt3a) and imprinted genes (Peg3, Snrpn, Kcnq1, and Cdkn1c) were investigated in kidney tissues of sham and IUGR rats in F1 (embryonic day 20 (E20) and postnatal day 1 (PN1)) and F2 (6 and 12 months of age, paternal and maternal lines) generations (n = 6-13/group). In comparison to sham offspring, F1 IUGR rats had a 19% decrease in Dnmt3a expression at E20 (P < 0.05), with decreased Cdkn1c (19%, P < 0.05) and increased Kcnq1 (1.6-fold, P < 0.01) at PN1. There was a sex-specific difference in Cdkn1c and Snrpn expression at E20, with 29% and 34% higher expression in IUGR males compared to females, respectively (P < 0.05). Peg3 sex-specific expression was lost in the F2 IUGR offspring, only in the maternal line. These findings suggest that epigenetic mechanisms may be altered in renal embryonic and/or fetal development in growth-restricted offspring, which could alter kidney function, predisposing these offspring to kidney disease later in life.
Collapse
|
20
|
Brück J, Begemann M, Dey D, Elbracht M, Eggermann T. Molecular characterization of temple syndrome families with 14q32 epimutations. Eur J Med Genet 2020; 63:104077. [PMID: 33010492 DOI: 10.1016/j.ejmg.2020.104077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Temple Syndrome (TS14) is an imprinting disorder caused by molecular disruptions of the imprinted region in 14q32 (MEG3:TSS-DMR). The frequency of the three known TS14 subtypes (deletions, maternal uniparental disomy (upd(14)mat), loss of methylation (LOM)) is currently in discussion, and within the LOM group, the occurrence of Multilocus Imprinting Disturbances (MLID) has been identified. We present 16 TS14 patients with molecular alterations affecting the MEG3:TSS-DMR, comprising seven patients (43.8%) with LOM, six carriers with upd(14)mat (37.5%), and three cases (18.8%) with a deletion affecting the paternal MEG3:TSS-DMR. We did not find any evidence for MLID in the LOM group, including two cases in which different tissues were available. Whole exome sequencing (WES) in the MEG3:TSS-DMR LOM patients and their parents (Trio WES) did not reveal an obvious pathogenic variant which might cause aberrant methylation at imprinted loci. By summarizing our data with those from the literature, we could show that MLID affecting clinically relevant imprinted loci is rare in TS14 and therefore differs markedly from other imprinting disorders associated with MLID, e.g. Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS). However, consistent with the clinical overlap with TS14, in SRS patients carrying MLID the MEG3:TSS-DMR is frequently affected. Variants in the known candidate genes for maternal effect variants causing MLID and fetal MLID determinants could not be identified in TS14 patients. Thus, 14q32 epimutations probably have other molecular causes than epimutations in BWS or SRS patients.
Collapse
Affiliation(s)
- Johanna Brück
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Daniela Dey
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
21
|
Lafontaine S, Labrecque R, Palomino JM, Blondin P, Sirard MA. Specific imprinted genes demethylation in association with oocyte donor's age and culture conditions in bovine embryos assessed at day 7 and 12 post insemination. Theriogenology 2020; 158:321-330. [PMID: 33010654 DOI: 10.1016/j.theriogenology.2020.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
Abstract
The production of bovine embryos through in vitro maturation and fertilization is an important tool of the genomic revolution in dairy cattle. Gene expression analysis of these embryos revealed differences according to the culture conditions or oocyte donor's pubertal status compared to in vivo derived embryos. We hypothesized that some of the methylation patterns in oocytes are acquired in the last step of folliculogenesis and could be influenced by the environment created in the follicles containing these oocytes. These altered patterns may not be erased during the first week of embryonic development in culture or may be sensitive to the conditions during that time. To quantify the changes related to culture conditions, an in vivo control group consisting of embryos (Day 12 post fertilization for all groups) obtained from superovulated and artificially inseminated cows was compared to in vitro produced (IVP) embryos cultured with or without Fetal Bovine Serum (FBS). To measure the effect of the oocytes donor's age, we also compared a fourth group consisting of IVP embryos produced with oocytes collected following ovarian stimulation of pre-pubertal animals. Embryonic disk and trophoblast cells were processed separately and the methylation status of ten imprinted genes (H19, MEST, KCNQ1, SNRPN, PEG3, NNAT, GNASXL, IGF2R, PEG10, and PLAGL1) was assessed by pyrosequencing. Next, ten Day 7 blastocysts were produced following the same methodology as for the D12 embryos (four groups) to observe the most interesting genes (KCNQ1, SNRPN, IGF2R and PLAGL1) at an earlier developmental stage. For all samples, we observed overall lower methylation levels and greater variability in the three in vitro groups compared to the in vivo group. The individual embryo analysis indicated that some embryos were deviant from the others and some were not affected. We concluded that IGF2R, SNRPN, and PEG10 were particularly sensitive to culture conditions and the presence of FBS, while KCNQ1 and PLAGL1 were more affected in embryos derived from pre-pubertal donors. This work provides markers at the single imprinted control region (ICR) resolution to assess the culture environment required to minimize epigenetic perturbations in bovine embryos generated by assisted reproduction techniques, thus laying the groundwork for a better comprehension of the complex interplay between in vitro conditions and imprinted genes.
Collapse
Affiliation(s)
- Simon Lafontaine
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animals, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Rémi Labrecque
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | | | - Patrick Blondin
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animals, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada.
| |
Collapse
|
22
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
23
|
Cubellis MV, Pignata L, Verma A, Sparago A, Del Prete R, Monticelli M, Calzari L, Antona V, Melis D, Tenconi R, Russo S, Cerrato F, Riccio A. Loss-of-function maternal-effect mutations of PADI6 are associated with familial and sporadic Beckwith-Wiedemann syndrome with multi-locus imprinting disturbance. Clin Epigenetics 2020; 12:139. [PMID: 32928291 PMCID: PMC7489023 DOI: 10.1186/s13148-020-00925-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND PADI6 is a component of the subcortical maternal complex, a group of proteins that is abundantly expressed in the oocyte cytoplasm, but is required for the correct development of early embryo. Maternal-effect variants of the subcortical maternal complex proteins are associated with heterogeneous diseases, including female infertility, hydatidiform mole, and imprinting disorders with multi-locus imprinting disturbance. While the involvement of PADI6 in infertility is well demonstrated, its role in imprinting disorders is less well established. RESULTS We have identified by whole-exome sequencing analysis four cases of Beckwith-Wiedemann syndrome with multi-locus imprinting disturbance whose mothers are carriers of PADI6 variants. In silico analysis indicates that these variants result in loss of function, and segregation analysis suggests they act as either recessive or dominant-negative maternal-effect mutations. Genome-wide methylation analysis revealed heterogeneous and extensively altered methylation profiles of imprinted loci in the patients, including two affected sisters, but not in their healthy siblings. CONCLUSION Our results firmly establish the role of PADI6 in imprinting disorders. We report loss-of-function maternal-effect variants of PADI6 that are associated with heterogeneous multi-locus imprinting disturbances in the progeny. The rare finding of two siblings affected by Beckwith-Wiedemann syndrome suggests that in some cases, familial recurrence risk of these variants may be high. However, the heterogeneous phenotypes of the other pedigrees suggest that altered oocyte PADI6 function results in stochastic maintenance of methylation imprinting with unpredictable consequences on early embryo health.
Collapse
Affiliation(s)
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Ankit Verma
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosita Del Prete
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Monticelli
- Department of Biology, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Luciano Calzari
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Antona
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Daniela Melis
- Medical, Surgical, and Dental Department, Università degli Studi di Salerno, Salerno, Italy
| | - Romano Tenconi
- Department of Pediatrics, Clinical Genetics, Università di Padova, Padova, Italy
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| |
Collapse
|
24
|
Fontana L, Bedeschi MF, Cagnoli GA, Costanza J, Persico N, Gangi S, Porro M, Ajmone PF, Colapietro P, Santaniello C, Crippa M, Sirchia SM, Miozzo M, Tabano S. (Epi)genetic profiling of extraembryonic and postnatal tissues from female monozygotic twins discordant for Beckwith-Wiedemann syndrome. Mol Genet Genomic Med 2020; 8:e1386. [PMID: 32627967 PMCID: PMC7507324 DOI: 10.1002/mgg3.1386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is an overgrowth disorder caused by defects at the 11p15.5 imprinted region. Many cases of female monozygotic (MZ) twins discordant for BWS have been reported, but no definitive conclusions have been drawn regarding the link between epigenetic defects, twinning process, and gender. Here, we report a comprehensive characterization and follow‐up of female MZ twins discordant for BWS. Methods Methylation pattern at 11p15.5 and multilocus methylation disturbance (MLID) profiling were performed by pyrosequencing and MassARRAY in placental/umbilical cord samples and postnatal tissues. Whole‐exome sequencing was carried out to identify MLID causative mutations. X‐chromosome inactivation (XCI) was determined by HUMARA test. Results Both twins share KCNQ1OT1:TSS‐DMR loss of methylation (LOM) and MLID in blood and the epigenetic defect remained stable in the healthy twin over time. KCNQ1OT1:TSS‐DMRLOM was nonhomogeneously distributed in placental samples and the twins showed the same severely skewed XCI pattern. No MLID‐causative mutations were identified. Conclusion This is the first report on BWS‐discordant twins with methylation analyses extended to extraembryonic tissues. The results suggest that caution is required when attempting prenatal diagnosis in similar cases. Although the causative mechanism underlying LOM remains undiscovered, the XCI pattern and mosaic LOM suggest that both twinning and LOM/MLID occurred after XCI commitment.
Collapse
Affiliation(s)
- Laura Fontana
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria F Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giulia A Cagnoli
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Jole Costanza
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Persico
- Obstetrics and Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of ClinicalSciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvana Gangi
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Matteo Porro
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paola F Ajmone
- Child and AdolescentNeuropsychiatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Carlo Santaniello
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Milena Crippa
- Medical Cytogenetics& Human Molecular Genetics, Istituto Auxologico Italiano-IRCCS, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvia Tabano
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Laboratory of Medical Genetics, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
25
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
26
|
Elbracht M, Mackay D, Begemann M, Kagan KO, Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update 2020; 26:197-213. [DOI: 10.1093/humupd/dmz045] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
BACKGROUND
Human reproductive issues affecting fetal and maternal health are caused by numerous exogenous and endogenous factors, of which the latter undoubtedly include genetic changes. Pathogenic variants in either maternal or offspring DNA are associated with effects on the offspring including clinical disorders and nonviable outcomes. Conversely, both fetal and maternal factors can affect maternal health during pregnancy. Recently, it has become evident that mammalian reproduction is influenced by genomic imprinting, an epigenetic phenomenon that regulates the expression of genes according to their parent from whom they are inherited. About 1% of human genes are normally expressed from only the maternally or paternally inherited gene copy. Since numerous imprinted genes are involved in (embryonic) growth and development, disturbance of their balanced expression can adversely affect these processes.
OBJECTIVE AND RATIONALE
This review summarises current our understanding of genomic imprinting in relation to human ontogenesis and pregnancy and its relevance for reproductive medicine.
SEARCH METHODS
Literature databases (Pubmed, Medline) were thoroughly searched for the role of imprinting in human reproductive failure. In particular, the terms ‘multilocus imprinting disturbances, SCMC, NLRP/NALP, imprinting and reproduction’ were used in various combinations.
OUTCOMES
A range of molecular changes to specific groups of imprinted genes are associated with imprinting disorders, i.e. syndromes with recognisable clinical features including distinctive prenatal features. Whereas the majority of affected individuals exhibit alterations at single imprinted loci, some have multi-locus imprinting disturbances (MLID) with less predictable clinical features. Imprinting disturbances are also seen in some nonviable pregnancy outcomes, such as (recurrent) hydatidiform moles, which can therefore be regarded as a severe form of imprinting disorders. There is growing evidence that MLID can be caused by variants in the maternal genome altering the imprinting status of the oocyte and the embryo, i.e. maternal effect mutations. Pregnancies of women carrying maternal affect mutations can have different courses, ranging from miscarriages to birth of children with clinical features of various imprinting disorders.
WIDER IMPLICATIONS
Increasing understanding of imprinting disturbances and their clinical consequences have significant impacts on diagnostics, counselling and management in the context of human reproduction. Defining criteria for identifying pregnancies complicated by imprinting disorders facilitates early diagnosis and personalised management of both the mother and offspring. Identifying the molecular lesions underlying imprinting disturbances (e.g. maternal effect mutations) allows targeted counselling of the family and focused medical care in further pregnancies.
Collapse
Affiliation(s)
- Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karl Oliver Kagan
- Obstetrics and Gynaecology, University Hospital of Tübingen, Tübingen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Sparago A, Verma A, Patricelli MG, Pignata L, Russo S, Calzari L, De Francesco N, Del Prete R, Palumbo O, Carella M, Mackay DJG, Rezwan FI, Angelini C, Cerrato F, Cubellis MV, Riccio A. The phenotypic variations of multi-locus imprinting disturbances associated with maternal-effect variants of NLRP5 range from overt imprinting disorder to apparently healthy phenotype. Clin Epigenetics 2019; 11:190. [PMID: 31829238 PMCID: PMC6907351 DOI: 10.1186/s13148-019-0760-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A subset of individuals affected by imprinting disorders displays multi-locus imprinting disturbances (MLID). MLID has been associated with maternal-effect variants that alter the maintenance of methylation at germline-derived differentially methylated regions (gDMRs) in early embryogenesis. Pedigrees of individuals with MLID also include siblings with healthy phenotype. However, it is unknown if these healthy individuals have MLID themselves or if their methylation patterns differ from those associated with imprinting disorders, and in general, if MLID affects the clinical phenotype. METHODS We have investigated gDMR methylation by locus-specific and whole-genome analyses in a family with multiple pregnancy losses, a child with Beckwith-Wiedemann syndrome (BWS) and a further child with no clinical diagnosis of imprinting disorder or other pathologies. RESULTS We detected MLID with different methylation profiles in the BWS-affected and healthy siblings. Whole-exome sequencing demonstrated the presence of novel loss-of-function variants of NLRP5 in compound heterozygosity in the mother. The methylation profiles of the two siblings were compared with those of other cases with MLID and control groups by principal component analysis and unsupervised hierarchical clustering, but while their patterns were clearly separated from those of controls, we were unable to cluster those associated with specific clinical phenotypes among the MLID cases. CONCLUSION The identification of two novel maternal-effect variants of NLRP5 associated with poly-abortivity and MLID adds further evidence to the role of this gene in the maintenance of genomic imprinting in early embryos. Furthermore, our results demonstrate that within these pedigrees, MLID can also be present in the progeny with healthy phenotype, indicating that some sort of compensation occurs between altered imprinted loci in these individuals. The analysis of larger cohorts of patients with MLID is needed to formulate more accurate epigenotype-phenotype correlations.
Collapse
Affiliation(s)
- Angela Sparago
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Ankit Verma
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy ,0000 0004 1758 2860grid.419869.bInstitute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Maria Grazia Patricelli
- 0000000417581884grid.18887.3eMolecular Biology and Citogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pignata
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Silvia Russo
- 0000 0004 1757 9530grid.418224.9Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- 0000 0004 1757 9530grid.418224.9Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Naomi De Francesco
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Rosita Del Prete
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Orazio Palumbo
- 0000 0004 1757 9135grid.413503.0Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Massimo Carella
- 0000 0004 1757 9135grid.413503.0Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Deborah J. G. Mackay
- 0000 0004 1936 9297grid.5491.9Faculty of Medicine, University of Southampton, Southampton, UK
| | - Faisal I. Rezwan
- 0000 0004 1936 9297grid.5491.9Faculty of Medicine, University of Southampton, Southampton, UK
| | - Claudia Angelini
- 0000 0001 1940 4177grid.5326.2Institute for Applied Mathematics “Mauro Picone” (IAC), Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Flavia Cerrato
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | | | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy. .,Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| |
Collapse
|
28
|
|
29
|
Colson C, Decamp M, Gruchy N, Coudray N, Ballandonne C, Bracquemart C, Molin A, Mittre H, Takatani R, Jüppner H, Kottler ML, Richard N. High frequency of paternal iso or heterodisomy at chromosome 20 associated with sporadic pseudohypoparathyroidism 1B. Bone 2019; 123:145-152. [PMID: 30905746 PMCID: PMC6637416 DOI: 10.1016/j.bone.2019.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
Pseudohypoparathyroidism 1B (PHP1B) is caused by maternal epigenetic defects in the imprinted GNAS cluster. PHP1B can follow an autosomal dominant mode of inheritance or occur sporadically (spor-PHP1B). These latter patients present broad methylation changes of two or more differentially methylated regions (DMR) that, when mimicking the paternal allele, raises the suspicious of the occurrence of paternal uniparental disomy of chromosome 20 (upd(20)pat). A cohort of 33 spor-PHP1B patients was screened for upd(20)pat using comparative genomic hybridization with SNP-chip. Methylation analyses were assessed by methylation specific-multiplex ligation-dependent probe amplification. Upd(20)pat was identified in 6 patients, all exhibiting typical paternal methylation pattern compared to normal controls, namely a complete loss of methylation of GNAS A/B:TSS-DMR, negligible methylation at GNAS-AS1:TSS-DMR and GNAS-XL:Ex1-DMR and complete gain of methylation at GNAS-NESP:TSS-DMR. The overall frequency of upd(20) is 18% in our cohort when searched considering both severe and partial loss of imprinting. However, twenty five patients displayed severe methylation pattern and the upd(20)pat frequency reaches 24% when searching in this group. Consequently, up to day, upd(20)pat is the most common anomaly than other genetic alterations in spor-PHP1B patients. Upd(20)pat occurrence is not linked to the parental age in contrast to upd(20)mat, strongly associated with an advanced maternal childbearing age. This study provides criteria to guide further investigations for upd(20)pat needed for an adequate genetic counseling.
Collapse
Affiliation(s)
- Cindy Colson
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Matthieu Decamp
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Nicolas Gruchy
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Nadia Coudray
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Céline Ballandonne
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Claire Bracquemart
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Arnaud Molin
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Hervé Mittre
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Rieko Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Harald Jüppner
- Endocrine Unit and Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marie-Laure Kottler
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Nicolas Richard
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France.
| |
Collapse
|
30
|
Li Y, Hagen DE, Ji T, Bakhtiarizadeh MR, Frederic WM, Traxler EM, Kalish JM, Rivera RM. Altered microRNA expression profiles in large offspring syndrome and Beckwith-Wiedemann syndrome. Epigenetics 2019; 14:850-876. [PMID: 31144574 PMCID: PMC6691986 DOI: 10.1080/15592294.2019.1615357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of assisted reproductive technologies (ART) can induce a congenital overgrowth condition in humans and ruminants, namely Beckwith-Wiedemann syndrome (BWS) and large offspring syndrome (LOS), respectively. Shared phenotypes and epigenotypes have been found between BWS and LOS. We have observed global misregulation of transcripts in bovine foetuses with LOS. microRNAs (miRNAs) are important post-transcriptional gene expression regulators. We hypothesize that there is miRNA misregulation in LOS and that this misregulation is shared with BWS. In this study, small RNA sequencing was conducted to investigate miRNA expression profiles in bovine and human samples. We detected 407 abundant known miRNAs and predicted 196 putative miRNAs from the bovine sequencing results and identified 505 abundant miRNAs in human tongue. Differentially expressed miRNAs (DE-miRNAs) were identified between control and LOS groups in all tissues analysed as well as between BWS and control human samples. DE-miRNAs were detected from several miRNA clusters including DLK1-DIO3 genomic imprinted cluster in LOS and BWS. DNA hypermethylation was associated with downregulation of miRNAs in the DLK1-DIO3. mRNA targets of the DE-miRNAs were predicted and signalling pathways associated with control of organ size (including the Hippo signalling pathway), cell proliferation, apoptosis, cell survival, cell cycle, and cell adhesion were found to be enriched with these genes. Yes associated protein 1 (YAP1) is the core effector of the Hippo signalling pathway, and increased level of active (non-phosphorylated) YAP1 protein was detected in skeletal muscle of LOS foetuses. Overall, our data provide evidence of miRNA misregulation in LOS and BWS.
Collapse
Affiliation(s)
- Yahan Li
- a Division of Animal Sciences, University of Missouri , Columbia , MO , USA
| | - Darren Erich Hagen
- b Department of Animal and Food Science, Oklahoma State University , Stillwater , OK , USA
| | - Tieming Ji
- c Department of Statistics, University of Missouri , Columbia , MO , USA
| | | | - Whitney M Frederic
- e Division of Human Genetics, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Emily M Traxler
- e Division of Human Genetics, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Jennifer M Kalish
- e Division of Human Genetics, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia , Philadelphia , PA , USA.,f Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | | |
Collapse
|
31
|
Abstract
McCune-Albright syndrome (MAS) results from a GNAS gene mutation. It is associated with café au lait macules, fibrous dysplasia, and several endocrinopathies to include gonadotropin-independent precocious puberty, growth hormone excess, Cushing syndrome, thyroid disease, and renal phosphate wasting. It is recognized to be a rare cause of neonatal cholestasis. We describe the hepatic outcome of 3 children with MAS referred to a single national liver unit. All presented with high gamma-glutamyl transpeptidase cholestasis and hepatitis. Cholestasis resolved by 1 year; but hepatic inflammation persisted, and 2 children developed progressive atypical focal nodular hyperplasia and 1 developed hepatoblastoma. This the first reported malignant hepatic lesion associated with MAS. MAS should be considered part of the differential diagnosis of neonatal cholestasis and affected children should be closely monitored for the development of hepatic lesions with regular liver ultrasound and alpha fetoprotein level.
Collapse
|
32
|
Krzyzewska IM, Alders M, Maas SM, Bliek J, Venema A, Henneman P, Rezwan FI, Lip KVD, Mul AN, Mackay DJG, Mannens MMAM. Genome-wide methylation profiling of Beckwith-Wiedemann syndrome patients without molecular confirmation after routine diagnostics. Clin Epigenetics 2019; 11:53. [PMID: 30898153 PMCID: PMC6429826 DOI: 10.1186/s13148-019-0649-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/06/2019] [Indexed: 11/16/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is caused due to the disturbance of imprinted genes at chromosome 11p15. The molecular confirmation of this syndrome is possible in approximately 85% of the cases, whereas in the remaining 15% of the cases, the underlying defect remains unclear. The goal of our research was to identify new epigenetic loci related to BWS. We studied a group of 25 patients clinically diagnosed with BWS but without molecular conformation after DNA diagnostics and performed a whole genome methylation analysis using the HumanMethylation450 Array (Illumina).We found hypermethylation throughout the methylome in two BWS patients. The hypermethylated sites in these patients overlapped and included both non-imprinted and imprinted regions. This finding was not previously described in any BWS-diagnosed patient.Furthermore, one BWS patient exhibited aberrant methylation in four maternally methylated regions-IGF1R, NHP2L1, L3MBTL, and ZDBF2-that overlapped with the differentially methylated regions found in BWS patients with multi-locus imprinting disturbance (MLID). This finding suggests that the BWS phenotype can result from MLID without detectable methylation defects in the primarily disease-associated loci (11p15). Another patient manifested small but significant aberrant methylation in disease-associated loci at 11p near H19, possibly confirming the diagnosis in this patient.
Collapse
Affiliation(s)
- I M Krzyzewska
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam Reproduction & Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - M Alders
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam Reproduction & Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - S M Maas
- Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - J Bliek
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam Reproduction & Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - A Venema
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam Reproduction & Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - P Henneman
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam Reproduction & Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - F I Rezwan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - K V D Lip
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam Reproduction & Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - A N Mul
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam Reproduction & Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - D J G Mackay
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - M M A M Mannens
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam Reproduction & Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Hattori H, Hiura H, Kitamura A, Miyauchi N, Kobayashi N, Takahashi S, Okae H, Kyono K, Kagami M, Ogata T, Arima T. Association of four imprinting disorders and ART. Clin Epigenetics 2019; 11:21. [PMID: 30732658 PMCID: PMC6367766 DOI: 10.1186/s13148-019-0623-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Human-assisted reproductive technologies (ART) are a widely accepted treatment for infertile couples. At the same time, many studies have suggested the correlation between ART and increased incidences of normally rare imprinting disorders such as Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Silver-Russell syndrome (SRS). Major methylation dynamics take place during cell development and the preimplantation stages of embryonic development. ART may prevent the proper erasure, establishment, and maintenance of DNA methylation. However, the causes and ART risk factors for these disorders are not well understood. Results A nationwide epidemiological study in Japan in 2015 in which 2777 pediatrics departments were contacted and a total of 931 patients with imprinting disorders including 117 BWS, 227 AS, 520 PWS, and 67 SRS patients, were recruited. We found 4.46- and 8.91-fold increased frequencies of BWS and SRS associated with ART, respectively. Most of these patients were conceived via in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), and showed aberrant imprinted DNA methylation. We also found that ART-conceived SRS (ART-SRS) patients had incomplete and more widespread DNA methylation variations than spontaneously conceived SRS patients, especially in sperm-specific methylated regions using reduced representation bisulfite sequencing to compare DNA methylomes. In addition, we found that the ART patients with one of three imprinting disorders, PWS, AS, and SRS, displayed additional minor phenotypes and lack of the phenotypes. The frequency of ART-conceived Prader-Willi syndrome (ART-PWS) was 3.44-fold higher than anticipated. When maternal age was 37 years or less, the rate of DNA methylation errors in ART-PWS patients was significantly increased compared with spontaneously conceived PWS patients. Conclusions We reconfirmed the association between ART and imprinting disorders. In addition, we found unique methylation patterns in ART-SRS patients, therefore, concluded that the imprinting disorders related to ART might tend to take place just after fertilization at a time when the epigenome is most vulnerable and might be affected by the techniques of manipulation used for IVF or ICSI and the culture medium of the fertilized egg. Electronic supplementary material The online version of this article (10.1186/s13148-019-0623-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiromitsu Hattori
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.,Kyono ART Clinic, 1-1-1, Honcho, Aoba-ku, Sendai, 980-0014, Japan
| | - Hitoshi Hiura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Akane Kitamura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Naoko Miyauchi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Souta Takahashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Koichi Kyono
- Kyono ART Clinic, 1-1-1, Honcho, Aoba-ku, Sendai, 980-0014, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
34
|
Fontana L, Bedeschi MF, Maitz S, Cereda A, Faré C, Motta S, Seresini A, D'Ursi P, Orro A, Pecile V, Calvello M, Selicorni A, Lalatta F, Milani D, Sirchia SM, Miozzo M, Tabano S. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics 2018; 13:897-909. [PMID: 30221575 PMCID: PMC6284780 DOI: 10.1080/15592294.2018.1514230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The identification of multilocus imprinting disturbances (MLID) appears fundamental to uncover molecular pathways underlying imprinting disorders (IDs) and to complete clinical diagnosis of patients. However, MLID genetic associated mechanisms remain largely unknown. To characterize MLID in Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, we profiled by MassARRAY the methylation of 12 imprinted differentially methylated regions (iDMRs) in 21 BWS and 7 SRS patients with chromosome 11p15.5 epimutations. MLID was identified in 50% of BWS and 29% of SRS patients as a maternal hypomethylation syndrome. By next-generation sequencing, we searched for putative MLID-causative mutations in genes involved in methylation establishment/maintenance and found two novel missense mutations possibly causative of MLID: one in NLRP2, affecting ADP binding and protein activity, and one in ZFP42, likely leading to loss of DNA binding specificity. Both variants were paternally inherited. In silico protein modelling allowed to define the functional effect of these mutations. We found that MLID is very frequent in BWS/SRS. In addition, since MLID-BWS patients in our cohort show a peculiar pattern of BWS-associated clinical signs, MLID test could be important for a comprehensive clinical assessment. Finally, we highlighted the possible involvement of ZFP42 variants in MLID development and confirmed NLRP2 as causative locus in BWS-MLID.
Collapse
Affiliation(s)
- L Fontana
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| | - M F Bedeschi
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Maitz
- c Clinical Pediatric, Genetics Unit , MBBM Foundation, San Gerardo Monza , Monza , Italy
| | - A Cereda
- d Medical Genetics Unit , Papa Giovanni XXIII Hospital , Bergamo , Italy
| | - C Faré
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Motta
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - A Seresini
- f Medical Genetics Laboratory , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milano , Italy.,g Fondazione Grigioni per il Morbo di Parkinson , Milano , Italy
| | - P D'Ursi
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - A Orro
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - V Pecile
- i Medical Genetics Division , Institute for maternal and child health IRCCS Burlo Garofolo , Trieste , Italy
| | - M Calvello
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy.,j Division of Cancer Prevention and Genetics, IEO , European Institute of Oncology IRCCS , Milano , Italy
| | - A Selicorni
- k UOC Pediatria , ASST Lariana , Como , Italy
| | - F Lalatta
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - D Milani
- l Pediatric Highly Intensive Care Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S M Sirchia
- m Medical Genetics, Department of Health Sciences , Università degli Studi di Milano , Milano , Italy
| | - M Miozzo
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy.,e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Tabano
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
35
|
Yeung KS, Ho MSP, Lee SL, Kan ASY, Chan KYK, Tang MHY, Mak CCY, Leung GKC, So PL, Pfundt R, Marshall CR, Scherer SW, Choufani S, Weksberg R, Hon-Yin Chung B. Paternal uniparental disomy of chromosome 19 in a pair of monochorionic diamniotic twins with dysmorphic features and developmental delay. J Med Genet 2018; 55:847-852. [PMID: 30007940 DOI: 10.1136/jmedgenet-2018-105328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND We report here clinical, cytogenetic and molecular data for a pair of monochorionic diamniotic twins with paternal isodisomy for chromosome 19. Both twins presented with dysmorphic features and global developmental delay. This represents, to our knowledge, the first individual human case of paternal uniparental disomy for chromosome 19 (UPD19). METHODS Whole-exome sequencing, together with conventional karyotype and SNP array analysis were performed along with genome-wide DNA methylation array for delineation of the underlying molecular defects. RESULTS Conventional karyotyping on amniocytes and lymphocytes showed normal karyotypes for both twins. Whole-exome sequencing did not identify any pathogenic sequence variants but >5000 homozygous exonic variants on chromosome 19, suggestive of UPD19. SNP arrays on blood and buccal DNA both showed paternal isodisomy for chromosome 19. Losses of imprinting for known imprinted genes on chromosome 19 were identified, including ZNF331, PEG3, ZIM2 and MIMT1. In addition, imprinting defects were also identified in genes located on other chromosomes, including GPR1-AS, JAKMP1 and NHP2L1. CONCLUSION Imprinting defects are the most likely cause for the dysmorphism and developmental delay in this first report of monozygotic twins with UPD19. However, epigenotype-phenotype correlation will require identification of additional individuals with UPD19 and further molecular analysis.
Collapse
Affiliation(s)
- Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Matthew Sai Pong Ho
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - So Lun Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Paediatrics and Adolescent Medicine, The Duchess of Kent Children's Hospital, Hong Kong
| | - Anita Sik Yau Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong.,Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong.,Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Mary Hoi Yin Tang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Gordon Ka Chun Leung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Po Lam So
- Department of Obstetrics and Gynecology, Tuen Mun Hospital, Hong Kong
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre and Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science and Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Paediatrics and Adolescent Medicine, The Duchess of Kent Children's Hospital, Hong Kong.,Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
36
|
O'Doherty AM, McGettigan P, Irwin RE, Magee DA, Gagne D, Fournier E, Al-Naib A, Sirard MA, Walsh CP, Robert C, Fair T. Intragenic sequences in the trophectoderm harbour the greatest proportion of methylation errors in day 17 bovine conceptuses generated using assisted reproductive technologies. BMC Genomics 2018; 19:438. [PMID: 29866048 PMCID: PMC5987443 DOI: 10.1186/s12864-018-4818-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background Assisted reproductive technologies (ART) are widely used to treat fertility issues in humans and for the production of embryos in mammalian livestock. The use of these techniques, however, is not without consequence as they are often associated with inauspicious pre- and postnatal outcomes including premature birth, intrauterine growth restriction and increased incidence of epigenetic disorders in human and large offspring syndrome in cattle. Here, global DNA methylation profiles in the trophectoderm and embryonic discs of in vitro produced (IVP), superovulation-derived (SOV) and unstimulated, synchronised control day 17 bovine conceptuses (herein referred to as AI) were interrogated using the EmbryoGENE DNA Methylation Array (EDMA). Pyrosequencing was used to validate four loci identified as differentially methylated on the array and to assess the differentially methylated regions (DMRs) of six imprinted genes in these conceptuses. The impact of embryo-production induced DNA methylation aberrations was determined using Ingenuity Pathway Analysis, shedding light on the potential functional consequences of these differences. Results Of the total number of differentially methylated loci identified (3140) 77.3 and 22.7% were attributable to SOV and IVP, respectively. Differential methylation was most prominent at intragenic sequences within the trophectoderm of IVP and SOV-derived conceptuses, almost a third (30.8%) of the differentially methylated loci mapped to intragenic regions. Very few differentially methylated loci were detected in embryonic discs (ED); 0.16 and 4.9% of the differentially methylated loci were located in the ED of SOV-derived and IVP conceptuses, respectively. The overall effects of SOV and IVP on the direction of methylation changes were associated with increased methylation; 70.6% of the differentially methylated loci in SOV-derived conceptuses and 57.9% of the loci in IVP-derived conceptuses were more methylated compared to AI-conceptuses. Ontology analysis of probes associated with intragenic sequences suggests enrichment for terms associated with cancer, cell morphology and growth. Conclusion By examining (1) the effects of superovulation and (2) the effects of an in vitro system (oocyte maturation, fertilisation and embryo culture) we have identified that the assisted reproduction process of superovulation alone has the largest impact on the DNA methylome of subsequent embryos. Electronic supplementary material The online version of this article (10.1186/s12864-018-4818-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alan M O'Doherty
- School of Agriculture and Food Science and Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Paul McGettigan
- School of Agriculture and Food Science and Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rachelle E Irwin
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - David A Magee
- School of Agriculture and Food Science and Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dominic Gagne
- Centre de Recherche en Biologie de la Reproduction (CRBR), Département des Sciences Animales, Université Laval, Québec, Qc, Canada
| | - Eric Fournier
- Centre de Recherche en Biologie de la Reproduction (CRBR), Département des Sciences Animales, Université Laval, Québec, Qc, Canada
| | - Abdullah Al-Naib
- Department of Animal and Poultry Science, School of Agriculture, Virginia Polytechnic Institute and State University, Blacksberg, VA, USA
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction (CRBR), Département des Sciences Animales, Université Laval, Québec, Qc, Canada
| | - Colum P Walsh
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Claude Robert
- Centre de Recherche en Biologie de la Reproduction (CRBR), Département des Sciences Animales, Université Laval, Québec, Qc, Canada
| | - Trudee Fair
- School of Agriculture and Food Science and Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
37
|
Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, Boonen SE, Cole T, Baker R, Bertoletti M, Cocchi G, Coze C, De Pellegrin M, Hussain K, Ibrahim A, Kilby MD, Krajewska-Walasek M, Kratz CP, Ladusans EJ, Lapunzina P, Le Bouc Y, Maas SM, Macdonald F, Õunap K, Peruzzi L, Rossignol S, Russo S, Shipster C, Skórka A, Tatton-Brown K, Tenorio J, Tortora C, Grønskov K, Netchine I, Hennekam RC, Prawitt D, Tümer Z, Eggermann T, Mackay DJG, Riccio A, Maher ER. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol 2018; 14:229-249. [PMID: 29377879 PMCID: PMC6022848 DOI: 10.1038/nrendo.2017.166] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia and the Department of Pediatrics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Neonatal Intensive Care Unit, Department of Gynaecology and Obstetrics, Sant'Anna Hospital, Città della Salute e della Scienza di Torino, Corso Spezia 60, 10126 Torino, Italy
| | - Alison C Foster
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jet Bliek
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Giovanni Battista Ferrero
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Susanne E Boonen
- Clinical Genetic Unit, Department of Pediatrics, Zealand University Hospital, Sygehusvej 10 4000 Roskilde, Denmark
| | - Trevor Cole
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
| | - Robert Baker
- Beckwith-Wiedemann Support Group UK, The Drum and Monkey, Wonston, Hazelbury Bryan, Sturminster Newton, Dorset DT10 2EE, UK
| | - Monica Bertoletti
- Italian Association of Beckwith-Wiedemann syndrome (AIBWS) Piazza Turati, 3, 21029, Vergiate (VA), Italy
| | - Guido Cocchi
- Alma Mater Studiorum, Bologna University, Paediatric Department, Neonatology Unit, Via Massarenti 11, 40138 Bologna BO, Italy
| | - Carole Coze
- Aix-Marseille Univ et Assistance Publique Hôpitaux de Marseille (APHM), Hôpital d'Enfants de La Timone, Service d'Hématologie-Oncologie Pédiatrique, 264 Rue Saint Pierre, 13385 Marseille, France
| | - Maurizio De Pellegrin
- Pediatric Orthopaedic Unit IRCCS Ospedale San Raffaele, Milan, Via Olgettina Milano, 60, 20132 Milano MI, Italy
| | - Khalid Hussain
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medical and Research Center, Al Gharrafa Street, Ar-Rayyan, Doha, Qatar
| | - Abdulla Ibrahim
- Department of Plastic and Reconstructive Surgery, North Bristol National Health Service (NHS) Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark D Kilby
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Fetal Medicine Centre, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Edgbaston, Birmingham, B15 2TG, UK
| | | | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1 30625, Hannover, Germany
| | - Edmund J Ladusans
- Department of Paediatric Cardiology, Royal Manchester Children's Hospital, Manchester, M13 8WL UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Yves Le Bouc
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Fiona Macdonald
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, B15 2TG UK
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, L. Puusepa 2, 51014, Tartu, Estonia
| | - Licia Peruzzi
- European Society for Paediatric Nephrology (ESPN), Inherited Kidney Disorders Working Group
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital, Turin, Italy
| | - Sylvie Rossignol
- Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Laboratoire de Génétique Médicale, INSERM U1112 Avenue Molière 67098 STRASBOURG Cedex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 4 Rue Kirschleger, 67000 Strasbourg, France
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano, Milan, Italy
| | - Caroleen Shipster
- Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, WC1N 3JH, UK
| | - Agata Skórka
- Department of Medical Genetics, The Children's Memorial Health Institute, 20, 04-730, Warsaw, Poland
- Department of Pediatrics, The Medical University of Warsaw, Zwirki i Wigury 63a, 02-091 Warszawa, Poland
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service and St George's University of London and Institute of Cancer Research, London, SW17 0RE, UK
| | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Chiara Tortora
- Regional Center for CLP, Smile House, San Paolo University Hospital, Via Antonio di Rudinì, 8, 20142, Milan, Italy
| | - Karen Grønskov
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Irène Netchine
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, Amsterdam, The Netherlands
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, D-55101, Mainz, Germany
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University of Aachen, Templergraben 55, 52062, Aachen, Germany
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrea Riccio
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Via Pietro Castellino, 111,80131, Naples, Italy
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
38
|
Aref-Eshghi E, Schenkel LC, Lin H, Skinner C, Ainsworth P, Paré G, Siu V, Rodenhiser D, Schwartz C, Sadikovic B. Clinical Validation of a Genome-Wide DNA Methylation Assay for Molecular Diagnosis of Imprinting Disorders. J Mol Diagn 2017; 19:848-856. [PMID: 28807811 DOI: 10.1016/j.jmoldx.2017.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/12/2017] [Accepted: 07/12/2017] [Indexed: 01/24/2023] Open
Abstract
Genomic imprinting involves a DNA methylation-dependent and parent-of-origin-specific regulation of gene expression. Clinical assays for imprinting disorders are genomic locus, disorder, and molecular defect specific. We aimed to clinically validate a genome-wide approach for simultaneous testing of common imprinting disorders in a single assay. Using genome-wide DNA methylation arrays, epigenetic profiles from peripheral blood of patients with Angelman, Prader-Willi, Beckwith-Wiedemann, or Silver-Russell syndromes were compared to a reference cohort of 361 unaffected individuals. The analysis was of developmental delay and intellectual disabilities. This approach has allowed 100% sensitivity and specificity in detecting imprinting defects in all 28 patients and enabled identification of defects beyond the classically tested imprinted loci. Analysis of the cohort of patients with developmental delay and intellectual disabilities identified two patients with Prader-Willi syndrome, one with Beckwith-Wiedemann syndrome, and several other patients with DNA methylation defects in novel putative imprinting loci. These findings demonstrate clinical validation of a sensitive and specific genome-wide DNA methylation array-based approach for molecular testing of imprinting disorders to allow simultaneous assessment of genome-wide epigenetic defects in a single analytical procedure, enabling replacement of multiple locus-specific molecular tests while allowing discovery of novel clinical epigenomic associations and differential diagnosis of other epigenomic disorders.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Cindy Skinner
- Greenwood Genetics Center, Greenwood, South Carolina
| | - Peter Ainsworth
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Victoria Siu
- Department of Pediatrics and Biochemistry, Western University, London, Ontario, Canada
| | - David Rodenhiser
- Department of Pediatrics and Biochemistry, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
39
|
Elhamamsy AR. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet 2017; 34:549-562. [PMID: 28281142 PMCID: PMC5427654 DOI: 10.1007/s10815-017-0895-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic imprinting is a complex epigenetic process that contributes substantially to embryogenesis, reproduction, and gametogenesis. Only small fraction of genes within the whole genome undergoes imprinting. Imprinted genes are expressed in a monoallelic parent-of-origin-specific manner, which means that only one of the two inherited alleles is expressed either from the paternal or maternal side. Imprinted genes are typically arranged in clusters controlled by differentially methylated regions or imprinting control regions. Any defect or relaxation in imprinting process can cause loss of imprinting in the key imprinted loci. Loss of imprinting in most cases has a harmful effect on fetal development and can result in neurological, developmental, and metabolic disorders. Since DNA methylation and histone modifications play a key role in the process of imprinting. This review focuses on the role of DNA methylation in imprinting process and describes DNA methylation aberrations in different imprinting disorders.
Collapse
Affiliation(s)
- Amr Rafat Elhamamsy
- Department of Clinical Pharmacy, School of Pharmacy, Tanta University, Tanta, 31512, Gharbia, Egypt.
| |
Collapse
|
40
|
Duffy KA, Deardorff MA, Kalish JM. The utility of alpha-fetoprotein screening in Beckwith-Wiedemann syndrome. Am J Med Genet A 2017; 173:581-584. [PMID: 28160403 DOI: 10.1002/ajmg.a.38068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/11/2016] [Indexed: 01/10/2023]
Abstract
Beckwith-Wiedemann syndrome (BWS) is one of the most common cancer predisposition disorders. As a result, BWS patients receive tumor screening as part of their clinical management. Until recently, this screening has been employed uniformly across all genetic and epigenetic causes of BWS, including the utilization of ultrasonography to detect abdominal tumors and alpha-fetoprotein (AFP) to detect hepatoblastoma. The advancements in our understanding of the genetics and epigenetics leading to BWS has evolved over time, and has led to the development of genotype/phenotype correlations. As tumor risk appears to correlate with genetic and epigenetic causes of BWS, several groups have proposed alterations to tumor screening protocols based on the etiology of BWS, with the elimination of AFP as a screening measure and the elimination of all screening measures in BWS patients with loss of methylation at the KCNQ1OT1:TSS-DMR 2 (IC2). There are many challenges to this suggestion, as IC2 patients may have additional factors that contribute to risk of hepatoblastoma including fetal growth patterns, relationship with assisted reproductive technologies, and the regulation of the IC2 locus. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kelly A Duffy
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew A Deardorff
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Manzardo AM, Butler MG. Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome. ACTA ACUST UNITED AC 2017; 2. [PMID: 28111641 DOI: 10.21767/2472-1158.100026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). OBJECTIVE Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. DESIGN Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. SETTING Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. PARTICIPANTS Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). RESULTS A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. INTERVENTION None. MAIN OUTCOME MEASURES Percentage methylation and the methylation index. CONCLUSION The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology.
Collapse
Affiliation(s)
- A M Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 4015, Kansas City, Kansas, USA
| | - M G Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 4015, Kansas City, Kansas, USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
42
|
Grafodatskaya D, Choufani S, Basran R, Weksberg R. An Update on Molecular Diagnostic Testing of Human Imprinting Disorders. J Pediatr Genet 2016; 6:3-17. [PMID: 28180023 DOI: 10.1055/s-0036-1593840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
Imprinted genes are expressed in a parent of origin manner. Dysregulation of imprinted genes expression causes various disorders associated with abnormalities of growth, neurodevelopment, and metabolism. Molecular mechanisms leading to imprinting disorders and strategies for their diagnosis are discussed in this review article.
Collapse
Affiliation(s)
- Daria Grafodatskaya
- Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raveen Basran
- Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Õunap K. Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome: Opposite Phenotypes with Heterogeneous Molecular Etiology. Mol Syndromol 2016; 7:110-21. [PMID: 27587987 DOI: 10.1159/000447413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 clinically opposite growth-affecting disorders belonging to the group of congenital imprinting disorders. The expression of both syndromes usually depends on the parental origin of the chromosome in which the imprinted genes reside. SRS is characterized by severe intrauterine and postnatal growth retardation with various additional clinical features such as hemihypertrophy, relative macrocephaly, fifth finger clinodactyly, and triangular facies. BWS is an overgrowth syndrome with many additional clinical features such as macroglossia, organomegaly, and an increased risk of childhood tumors. Both SRS and BWS are clinically and genetically heterogeneous, and for clinical diagnosis, different diagnostic scoring systems have been developed. Six diagnostic scoring systems for SRS and 4 for BWS have been previously published. However, neither syndrome has common consensus diagnostic criteria yet. Most cases of SRS and BWS are associated with opposite epigenetic or genetic abnormalities in the 11p15 chromosomal region leading to opposite imbalances in the expression of imprinted genes. SRS is also caused by maternal uniparental disomy 7, which is usually identified in 5-10% of the cases, and is therefore the first imprinting disorder that affects 2 different chromosomes. In this review, we describe in detail the clinical diagnostic criteria and scoring systems as well as molecular causes in both SRS and BWS.
Collapse
Affiliation(s)
- Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, and Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
44
|
Bens S, Kolarova J, Beygo J, Buiting K, Caliebe A, Eggermann T, Gillessen-Kaesbach G, Prawitt D, Thiele-Schmitz S, Begemann M, Enklaar T, Gutwein J, Haake A, Paul U, Richter J, Soellner L, Vater I, Monk D, Horsthemke B, Ammerpohl O, Siebert R. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics 2016; 8:801-16. [PMID: 27323310 DOI: 10.2217/epi-2016-0007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To characterize the genotypic and phenotypic extent of multilocus imprinting disturbances (MLID). MATERIALS & METHODS We analyzed 37 patients with imprinting disorders (explorative cohort) for DNA methylation changes using the Infinium HumanMethylation450 BeadChip. For validation, three independent cohorts with imprinting disorders or cardinal features thereof were analyzed (84 patients with imprinting disorders, 52 with growth disorder, 81 with developmental delay). RESULTS In the explorative cohort 21 individuals showed array-based MLID with each one displaying an Angelman or Temple syndrome phenotype, respectively. Epimutations in ZDBF2 and FAM50B were associated with severe MLID regarding number of affected regions. By targeted analysis we identified methylation changes of ZDBF2 and FAM50B also in the three validation cohorts. CONCLUSION We corroborate epimutations in ZDBF2 and FAM50B as frequent changes in MLID whereas these rarely occur in other patients with cardinal features of imprinting disorders. Moreover, we show cell lineage specific differences in the genomic extent of FAM50B epimutation.
Collapse
Affiliation(s)
- Susanne Bens
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | | | - Dirk Prawitt
- Section of Molecular Pediatrics University Medical Centre of the Johannes Gutenberg-University Mainz, D 55131 Mainz, Germany
| | - Susanne Thiele-Schmitz
- Division of Experimental Paediatric Endocrinology & Diabetes, Department of Paediatrics, University of Lübeck, D 23562 Lübeck, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | - Thorsten Enklaar
- Section of Molecular Pediatrics University Medical Centre of the Johannes Gutenberg-University Mainz, D 55131 Mainz, Germany
| | - Jana Gutwein
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Andrea Haake
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Ulrike Paul
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Lukas Soellner
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | - Inga Vater
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - David Monk
- Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Cancer Epigenetic & Biology Program (PEBC), Catalan Institute of Oncology, Hospital Duran i Reynals Barcelona, Barcelona, ES 08907, Spain
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| |
Collapse
|
45
|
Vega-Benedetti AF, Saucedo C, Zavattari P, Vanni R, Zugaza JL, Parada LA. PLAGL1: an important player in diverse pathological processes. J Appl Genet 2016; 58:71-78. [PMID: 27311313 DOI: 10.1007/s13353-016-0355-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022]
Abstract
The PLAGL1 gene encodes a homonymous zinc finger protein that promotes cell cycle arrest and apoptosis through multiple pathways. The protein has been implicated in metabolic, genetic, and neoplastic illnesses, but the molecular mechanisms by which the protein PLAGL1 participates in such diverse processes remains to be elucidated. In this review, we focus mainly on the molecular biology of PLAGL1 and the relevance of its abnormalities to several pathological processes.
Collapse
Affiliation(s)
- Ana F Vega-Benedetti
- Institute of Experimental Pathology, UNSa-CONICET, Ave. Bolivia 5150, 4400, Salta, Argentina
| | - Cinthia Saucedo
- Institute of Experimental Pathology, UNSa-CONICET, Ave. Bolivia 5150, 4400, Salta, Argentina
| | - Patrizia Zavattari
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Km 0.700, 09042, Monserrato, Cagliari, Italy
| | - Roberta Vanni
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Km 0.700, 09042, Monserrato, Cagliari, Italy
| | - José L Zugaza
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, Zamudio, Spain.,Department of Genetics, Physic Anthropology and Animal Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Luis Antonio Parada
- Institute of Experimental Pathology, UNSa-CONICET, Ave. Bolivia 5150, 4400, Salta, Argentina.
| |
Collapse
|
46
|
Boonen SE, Freschi A, Christensen R, Valente FM, Lildballe DL, Perone L, Palumbo O, Carella M, Uldbjerg N, Sparago A, Riccio A, Cerrato F. Two maternal duplications involving the CDKN1C gene are associated with contrasting growth phenotypes. Clin Epigenetics 2016; 8:69. [PMID: 27313795 PMCID: PMC4910218 DOI: 10.1186/s13148-016-0236-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/08/2016] [Indexed: 01/20/2023] Open
Abstract
Background The overgrowth-associated Beckwith-Wiedemann syndrome (BWS) and the undergrowth-associated Silver-Russell syndrome (SRS) are characterized by heterogeneous molecular defects affecting a large imprinted gene cluster at chromosome 11p15.5-p15.4. While maternal and paternal duplications of the entire cluster consistently result in SRS and BWS, respectively, the phenotypes associated with smaller duplications are difficult to predict due to the complexity of imprinting regulation. Here, we describe two cases with novel inherited partial duplications of the centromeric domain on chromosome 11p15 associated with contrasting growth phenotypes. Findings In a male patient affected by intrauterine growth restriction and postnatal short stature, we identified an in cis maternally inherited duplication of 0.88 Mb including the CDKN1C gene that was significantly up-regulated. The duplication did not include the long non-coding RNA KCNQ1OT1 nor the imprinting control region of the centromeric domain (KCNQ1OT1:TSS-DMR or ICR2) in which methylation was normal. In the mother, also referring a growth restriction phenotype in her infancy, the duplication was de novo and present on her paternal chromosome. A different in cis maternal duplication, 1.13 Mb long and including the abovementioned duplication, was observed in a child affected by Tetralogy of Fallot but with normal growth. In this case, the rearrangement also included most of the KCNQ1OT1 gene and resulted in ICR2 loss of methylation (LOM). In this second family, the mother carried the duplication on her paternal chromosome and showed a normal growth phenotype as well. Conclusions We report two novel in cis microduplications encompassing part of the centromeric domain of the 11p15.5-p15.4 imprinted gene cluster and both including the growth inhibitor CDKN1C gene. Likely, as a consequence of the differential involvement of the regulatory KCNQ1OT1 RNA and ICR2, the smaller duplication is associated with growth restriction on both maternal and paternal transmissions, while the larger duplication, although it includes the smaller one, does not result in any growth anomaly. Our study provides further insights into the phenotypes associated with imprinted gene alterations and highlights the importance of carefully evaluating the affected genes and regulatory elements for accurate genetic counselling of the 11p15 chromosomal rearrangements. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0236-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Andrea Freschi
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Federica Maria Valente
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | | | | | - Orazio Palumbo
- Unità di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Massimo Carella
- Unità di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Angela Sparago
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Andrea Riccio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy.,Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche CNR, Napoli, Italy
| | - Flavia Cerrato
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| |
Collapse
|
47
|
Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D, Monk D. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. Trends Genet 2016; 32:444-455. [PMID: 27235113 DOI: 10.1016/j.tig.2016.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).
Collapse
Affiliation(s)
- Marta Sanchez-Delgado
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain
| | - Andrea Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta; Institute of Genetics and Biophysics - ABT, CNR, Napoli, Italy
| | - Thomas Eggermann
- Institute of Human Genetics University Hospital Aachen, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; CIBERER, Centro deInvestigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK
| | - David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain.
| |
Collapse
|
48
|
Mackay DJG, Eggermann T, Buiting K, Garin I, Netchine I, Linglart A, de Nanclares GP. Multilocus methylation defects in imprinting disorders. Biomol Concepts 2016; 6:47-57. [PMID: 25581766 DOI: 10.1515/bmc-2014-0037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022] Open
Abstract
Mammals inherit two complete sets of chromosomes, one from the father and one from the mother, and most autosomal genes are expressed from both maternal and paternal alleles. In imprinted genes, the expression of the allele is dependent upon its parental origin. Appropriate regulation of imprinted genes is important for normal development, with several genetic diseases associated with imprinting defects. A common process for controlling gene activity is methylation. The first steps for understanding the functions of DNA methylation and its regulation in mammalian development have led us to identify common (epi)genetic mechanisms involved in the eight human congenital imprinting disorders.
Collapse
|
49
|
Mussa A, Russo S, de Crescenzo A, Freschi A, Calzari L, Maitz S, Macchiaiolo M, Molinatto C, Baldassarre G, Mariani M, Tarani L, Bedeschi MF, Milani D, Melis D, Bartuli A, Cubellis MV, Selicorni A, Silengo MC, Larizza L, Riccio A, Ferrero GB. Fetal growth patterns in Beckwith-Wiedemann syndrome. Clin Genet 2016; 90:21-7. [PMID: 26857110 DOI: 10.1111/cge.12759] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 01/04/2023]
Abstract
We provide data on fetal growth pattern on the molecular subtypes of Beckwith-Wiedemann syndrome (BWS): IC1 gain of methylation (IC1-GoM), IC2 loss of methylation (IC2-LoM), 11p15.5 paternal uniparental disomy (UPD), and CDKN1C mutation. In this observational study, gestational ages and neonatal growth parameters of 247 BWS patients were compared by calculating gestational age-corrected standard deviation scores (SDS) and proportionality indexes to search for differences among IC1-GoM (n = 21), UPD (n = 87), IC2-LoM (n = 147), and CDKN1C mutation (n = 11) patients. In IC1-GoM subgroup, weight and length are higher than in other subgroups. Body proportionality indexes display the following pattern: highest in IC1-GoM patients, lowest in IC2-LoM/CDKN1C patients, intermediate in UPD ones. Prematurity was significantly more prevalent in the CDKN1C (64%) and IC2-LoM subgroups (37%). Fetal growth patterns are different in the four molecular subtypes of BWS and remarkably consistent with altered gene expression primed by the respective molecular mechanisms. IC1-GoM cases show extreme macrosomia and severe disproportion between weight and length excess. In IC2-LoM/CDKN1C patients, macrosomia is less common and associated with more proportionate weight/length ratios with excess of preterm birth. UPD patients show growth patterns closer to those of IC2-LoM, but manifest a body mass disproportion rather similar to that seen in IC1-GoM cases.
Collapse
Affiliation(s)
- A Mussa
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - S Russo
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | | | - A Freschi
- DiSTABiF, Second University of Naples, Naples, Italy
| | - L Calzari
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - S Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italia
| | - M Macchiaiolo
- Rare Disease and Medical Genetics Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - C Molinatto
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - G Baldassarre
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - M Mariani
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italia
| | - L Tarani
- Department of Pediatric and Pediatric Neuropsychiatry, Sapienza University, Rome, Italy
| | - M F Bedeschi
- Medical Genetics Unit, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, Milan, Italy
| | - D Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - D Melis
- Clinical Pediatric Genetics, Department of Pediatrics, University "Federico II", Naples, Italy
| | - A Bartuli
- Rare Disease and Medical Genetics Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - M V Cubellis
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - A Selicorni
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italia
| | - M C Silengo
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - L Larizza
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - A Riccio
- DiSTABiF, Second University of Naples, Naples, Italy.,Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | - G B Ferrero
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
50
|
Russo S, Calzari L, Mussa A, Mainini E, Cassina M, Di Candia S, Clementi M, Guzzetti S, Tabano S, Miozzo M, Sirchia S, Finelli P, Prontera P, Maitz S, Sorge G, Calcagno A, Maghnie M, Divizia MT, Melis D, Manfredini E, Ferrero GB, Pecile V, Larizza L. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann syndromes. Clin Epigenetics 2016; 8:23. [PMID: 26933465 PMCID: PMC4772365 DOI: 10.1186/s13148-016-0183-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple (epi)genetic defects affecting the expression of the imprinted genes within the 11p15.5 chromosomal region underlie Silver-Russell (SRS) and Beckwith-Wiedemann (BWS) syndromes. The molecular diagnosis of these opposite growth disorders requires a multi-approach flowchart to disclose known primary and secondary (epi)genetic alterations; however, up to 20 and 30 % of clinically diagnosed BWS and SRS cases remain without molecular diagnosis. The complex structure of the 11p15 region with variable CpG methylation and low-rate mosaicism may account for missed diagnoses. Here, we demonstrate the relevance of complementary techniques for the assessment of different CpGs and the importance of testing multiple tissues to increase the SRS and BWS detection rate. RESULTS Molecular testing of 147 and 450 clinically diagnosed SRS and BWS cases provided diagnosis in 34 SRS and 185 BWS patients, with 9 SRS and 21 BWS cases remaining undiagnosed and herein referred to as "borderline." A flowchart including complementary techniques and, when applicable, the analysis of buccal swabs, allowed confirmation of the molecular diagnosis in all borderline cases. Comparison of methylation levels by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in borderline and control cases defined an interval of H19/IGF2:IG-DMR loss of methylation that was distinct between "easy to diagnose" and "borderline" cases, which were characterized by values ≤mean -3 standard deviations (SDs) compared to controls. Values ≥mean +1 SD at H19/IGF2: IG-DMR were assigned to borderline hypermethylated BWS cases and those ≤mean -2 SD at KCNQ1OT1: TSS-DMR to hypomethylated BWS cases; these were supported by quantitative pyrosequencing or Southern blot analysis. Six BWS cases suspected to carry mosaic paternal uniparental disomy of chromosome 11 were confirmed by SNP array, which detected mosaicism till 10 %. Regarding the clinical presentation, borderline SRS were representative of the syndromic phenotype, with exception of one patient, whereas BWS cases showed low frequency of the most common features except hemihyperplasia. CONCLUSIONS A conclusive molecular diagnosis was reached in borderline methylation cases, increasing the detection rate by 6 % for SRS and 5 % for BWS cases. The introduction of complementary techniques and additional tissue analyses into routine diagnostic work-up should facilitate the identification of cases undiagnosed because of mosaicism, a distinctive feature of epigenetic disorders.
Collapse
Affiliation(s)
- Silvia Russo
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Luciano Calzari
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Alessandro Mussa
- Department of Pediatric and Public Health Sciences, University of Turin, Torino, Italy
| | - Ester Mainini
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padova, Italy
| | - Stefania Di Candia
- Department of Pediatrics, San Raffaele Scientific Institute, Milano, Italy
| | - Maurizio Clementi
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padova, Italy
| | - Sara Guzzetti
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Tabano
- Division of Pathology - Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Monica Miozzo
- Division of Pathology - Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Silvia Sirchia
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Palma Finelli
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Department of Surgical and Biomedical Sciences, University of Perugia, Hospital "S. M. della Misericordia", Perugia, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italy
| | - Giovanni Sorge
- Department of Pediatrics and Medical Sciences, AO "Policlinico Vittorio Emanuele", Catania, Italy
| | - Annalisa Calcagno
- Pediatric Endocrine Unit, Department of Pediatrics, IRCCS, Children's Hospital Giannina Gaslini, Genova, Italy
| | - Mohamad Maghnie
- Pediatric Endocrine Unit, Department of Pediatrics, IRCCS, Children's Hospital Giannina Gaslini, Genova, Italy
| | - Maria Teresa Divizia
- Department of Medical Genetics, IRCCS, Children's Hospital Giannina Gaslini, Genova, Italy
| | - Daniela Melis
- Clinical Pediatric Genetics, Department of Pediatrics, University "Federico II", Napoli, Italy
| | - Emanuela Manfredini
- Medical Genetics Unit, Department of Laboratory Medicine, Niguarda Ca' Granda Hospital, Milano, Italy
| | | | - Vanna Pecile
- Institute for Maternal and Child Health, Foundation IRCCS Burlo Garofolo Institute, Trieste, Italy
| | - Lidia Larizza
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| |
Collapse
|