1
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024; 253:109963. [PMID: 38657945 PMCID: PMC11127754 DOI: 10.1016/j.neuropharm.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Morgan Sainsbury
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, USA; Molecular, Cellular and Integrative Neurosciences Program, USA.
| |
Collapse
|
2
|
Lewis SA, Ruttenberg A, Iyiyol T, Kong N, Jin SC, Kruer MC. Potential clinical applications of advanced genomic analysis in cerebral palsy. EBioMedicine 2024; 106:105229. [PMID: 38970919 PMCID: PMC11282942 DOI: 10.1016/j.ebiom.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Cerebral palsy (CP) has historically been attributed to acquired insults, but emerging research suggests that genetic variations are also important causes of CP. While microarray and whole-exome sequencing based studies have been the primary methods for establishing new CP-gene relationships and providing a genetic etiology for individual patients, the cause of their condition remains unknown for many patients with CP. Recent advancements in genomic technologies offer additional opportunities to uncover variations in human genomes, transcriptomes, and epigenomes that have previously escaped detection. In this review, we outline the use of these state-of-the-art technologies to address the molecular diagnostic challenges experienced by individuals with CP. We also explore the importance of identifying a molecular etiology whenever possible, given the potential for genomic medicine to provide opportunities to treat patients with CP in new and more precise ways.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States; Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Andrew Ruttenberg
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Tuğçe Iyiyol
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Nahyun Kong
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States; Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States; Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
3
|
Pauly M, Krumbiegel M, Trumpp S, Braig S, Rupprecht T, Kraus C, Uebe S, Reis A, Vasileiou G. Severe manifestation of Rauch-Azzarello syndrome associated with biallelic deletion of CTNND2. Clin Genet 2024; 106:180-186. [PMID: 38604781 DOI: 10.1111/cge.14532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
CTNND2 encodes δ-catenin, a component of an adherens junction complex, and plays an important role in neuronal structure and function. To date, only heterozygous loss-of-function CTNND2 variants have been associated with mild neurodevelopmental delay and behavioral anomalies, a condition, which we named Rauch-Azzarello syndrome. Here, we report three siblings of a consanguineous family of Syrian descent with a homozygous deletion encompassing the last 19 exons of CTNND2 predicted to disrupt the transcript. All presented with severe neurodevelopmental delay with absent speech, profound motor delay, stereotypic behavior, microcephaly, short stature, muscular hypotonia with lower limb hypertonia, and variable eye anomalies. The parents and the fourth sibling were heterozygous carriers of the deletion and exhibited mild neurodevelopmental impairment resembling that of the previously described heterozygous individuals. The present study unveils a severe manifestation of CTNND2-associated Rauch-Azzarello syndrome attributed to biallelic loss-of-function aberrations, clinically distinct from the already described mild presentation of heterozygous individuals. Furthermore, we demonstrate novel clinical features in homozygous individuals that have not been reported in heterozygous cases to date.
Collapse
Affiliation(s)
- Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Trumpp
- Children's Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Sonja Braig
- Children's Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Thomas Rupprecht
- Children's Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
- MCO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Qin L, Wang H, Ning W, Cui M, Wang Q. New advances in the diagnosis and treatment of autism spectrum disorders. Eur J Med Res 2024; 29:322. [PMID: 38858682 PMCID: PMC11163702 DOI: 10.1186/s40001-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that affect individuals' social interactions, communication skills, and behavioral patterns, with significant individual differences and complex etiology. This article reviews the definition and characteristics of ASD, epidemiological profile, early research and diagnostic history, etiological studies, advances in diagnostic methods, therapeutic approaches and intervention strategies, social and educational integration, and future research directions. The highly heritable nature of ASD, the role of environmental factors, genetic-environmental interactions, and the need for individualized, integrated, and technology-driven treatment strategies are emphasized. Also discussed is the interaction of social policy with ASD research and the outlook for future research and treatment, including the promise of precision medicine and emerging biotechnology applications. The paper points out that despite the remarkable progress that has been made, there are still many challenges to the comprehensive understanding and effective treatment of ASD, and interdisciplinary and cross-cultural research and global collaboration are needed to further deepen the understanding of ASD and improve the quality of life of patients.
Collapse
Affiliation(s)
- Lei Qin
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Haijiao Wang
- Department of Intensive Care Medicine, Feicheng People's Hospital, Taian, Shandong, China
| | - Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China.
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China.
| |
Collapse
|
5
|
Fehlings DL, Zarrei M, Engchuan W, Sondheimer N, Thiruvahindrapuram B, MacDonald JR, Higginbotham EJ, Thapa R, Behlim T, Aimola S, Switzer L, Ng P, Wei J, Danthi PS, Pellecchia G, Lamoureux S, Ho K, Pereira SL, de Rijke J, Sung WWL, Mowjoodi A, Howe JL, Nalpathamkalam T, Manshaei R, Ghaffari S, Whitney J, Patel RV, Hamdan O, Shaath R, Trost B, Knights S, Samdup D, McCormick A, Hunt C, Kirton A, Kawamura A, Mesterman R, Gorter JW, Dlamini N, Merico D, Hilali M, Hirschfeld K, Grover K, Bautista NX, Han K, Marshall CR, Yuen RKC, Subbarao P, Azad MB, Turvey SE, Mandhane P, Moraes TJ, Simons E, Maxwell G, Shevell M, Costain G, Michaud JL, Hamdan FF, Gauthier J, Uguen K, Stavropoulos DJ, Wintle RF, Oskoui M, Scherer SW. Comprehensive whole-genome sequence analyses provide insights into the genomic architecture of cerebral palsy. Nat Genet 2024; 56:585-594. [PMID: 38553553 DOI: 10.1038/s41588-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.
Collapse
Affiliation(s)
- Darcy L Fehlings
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Neal Sondheimer
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ritesh Thapa
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Tarannum Behlim
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sabrina Aimola
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Lauren Switzer
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Pamela Ng
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - John Wei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prakroothi S Danthi
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen Ho
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jill de Rijke
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wilson W L Sung
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alireza Mowjoodi
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer L Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roozbeh Manshaei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Siavash Ghaffari
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joseph Whitney
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rohan V Patel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Omar Hamdan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rulan Shaath
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shannon Knights
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Grandview Children's Centre, Oshawa, Ontario, Canada
| | - Dawa Samdup
- Department of Pediatrics, Queen's University, Kingston, Ontario, Canada
| | - Anna McCormick
- Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Carolyn Hunt
- Grandview Children's Centre, Oshawa, Ontario, Canada
| | - Adam Kirton
- Department of Pediatrics, Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Anne Kawamura
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ronit Mesterman
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jan Willem Gorter
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Nomazulu Dlamini
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Deep Genomics Inc., Toronto, Ontario, Canada
- Vevo Therapeutics Inc., San Francisco, CA, USA
| | - Murto Hilali
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kyle Hirschfeld
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kritika Grover
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nelson X Bautista
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kara Han
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Padmaja Subbarao
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piush Mandhane
- Faculty of Medicine & Dentistry, Pediatrics Department, University of Alberta, Edmonton, Alberta, Canada
| | - Theo J Moraes
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Translation Medicine & Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, Section of Allergy and Clinical Immunology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - George Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Michael Shevell
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Departments of Pediatrics and Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Gregory Costain
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacques L Michaud
- Departments of Pediatrics and Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
| | - Fadi F Hamdan
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | - Julie Gauthier
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | - Kevin Uguen
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maryam Oskoui
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Departments of Pediatrics and Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Zhang J, Zhang Y, Shang Q, Cheng Y, Su Y, Zhang J, Wang T, Ding J, Li Y, Xie Y, Xing Q. Gain-of-Function KIDINS220 Variants Disrupt Neuronal Development and Cause Cerebral Palsy. Mov Disord 2024; 39:498-509. [PMID: 38148610 DOI: 10.1002/mds.29694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Kinase D-interacting substrate of 220 kDa (KIDINS220) is a multifunctional scaffolding protein essential for neuronal development. It has been implicated in neurological diseases with either autosomal dominant (AD) or autosomal recessive (AR) inheritance patterns. The molecular mechanisms underlying the AR/AD dual nature of KIDINS220 remain elusive, posing challenges to genetic interpretation and clinical interventions. Moreover, increased KIDINS220 exhibited neurotoxicity, but its role in neurodevelopment remains unclear. OBJECTIVE The aim was to investigate the genotype-phenotype correlations of KIDINS220 and elucidate its pathophysiological role in neuronal development. METHODS Whole-exome sequencing was performed in a four-generation family with cerebral palsy. CRISPR/Cas9 was used to generate KIDINS220 mutant cell lines. In utero electroporation was employed to investigate the effect of KIDINS220 variants on neurogenesis in vivo. RESULTS We identified in KIDINS220 a pathogenic nonsense variant (c.4177C > T, p.Q1393*) that associated with AD cerebral palsy. We demonstrated that the nonsense variants located in the terminal exon of KIDINS220 are gain-of-function (GoF) variants, which enable the mRNA to escape nonsense-mediated decay and produce a truncated yet functional KIDINS220 protein. The truncated protein exhibited significant resistance to calpain and consequently accumulated within cells, resulting in the hyperactivation of Rac1 and defects in neuronal development. CONCLUSIONS Our findings demonstrate that the location of variants within KIDINS220 plays a crucial role in determining inheritance patterns and corresponding clinical outcomes. The proposed interaction between Rac1 and KIDINS220 provides new insights into the pathogenesis of cerebral palsy, implying potential therapeutic perspectives. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jin Zhang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yandong Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qing Shang
- Department of Pediatric Rehabilitation Medicine, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, China
| | - Ye Cheng
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yu Su
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Junjie Zhang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Ting Wang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Jian Ding
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yunqian Li
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yunli Xie
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qinghe Xing
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571709. [PMID: 38168404 PMCID: PMC10760095 DOI: 10.1101/2023.12.14.571709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic AMPA receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions. Highlights Prenatal exposure of valproic acid (VPA) in mice significantly reduces synaptic δ-catenin protein and AMPA receptor levels in the pups' brains.VPA treatment significantly impairs dendritic branching in cultured cortical neurons, which is reversed by increased δ-catenin expression.VPA exposed pups exhibit impaired communication such as ultrasonic vocalization.Neuronal activation linked to ultrasonic vocalization is absent in VPA-exposed pups.The loss of δ-catenin functions underlies VPA-induced autism spectrum disorder (ASD) in early childhood.
Collapse
|
8
|
van Eyk CL, Fahey MC, Gecz J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 2023; 19:542-555. [PMID: 37537278 DOI: 10.1038/s41582-023-00847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.
Collapse
Affiliation(s)
- Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
9
|
Vaz R, Edwards S, Dueñas-Rey A, Hofmeister W, Lindstrand A. Loss of ctnnd2b affects neuronal differentiation and behavior in zebrafish. Front Neurosci 2023; 17:1205653. [PMID: 37465584 PMCID: PMC10351287 DOI: 10.3389/fnins.2023.1205653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Delta-catenin (CTNND2) is an adhesive junction associated protein belonging to the family of p120 catenins. The human gene is located on the short arm of chromosome 5, the region deleted in Cri-du-chat syndrome (OMIM #123450). Heterozygous loss of CTNND2 has been linked to a wide spectrum of neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we studied how heterozygous loss of ctnnd2b affects zebrafish embryonic development, and larvae and adult behavior. First, we observed a disorganization of neuronal subtypes in the developing forebrain, namely the presence of ectopic isl1-expressing cells and a local reduction of GABA-positive neurons in the optic recess region. Next, using time-lapse analysis, we found that the disorganized distribution of is1l-expressing forebrain neurons resulted from an increased specification of Isl1:GFP neurons. Finally, we studied the swimming patterns of both larval and adult heterozygous zebrafish and observed an increased activity compared to wildtype animals. Overall, this data suggests a role for ctnnd2b in the differentiation cascade of neuronal subtypes in specific regions of the vertebrate brain, with repercussions in the animal's behavior.
Collapse
Affiliation(s)
- Raquel Vaz
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Steven Edwards
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alfredo Dueñas-Rey
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Gonzalez-Mantilla PJ, Hu Y, Myers SM, Finucane BM, Ledbetter DH, Martin CL, Moreno-De-Luca A. Diagnostic Yield of Exome Sequencing in Cerebral Palsy and Implications for Genetic Testing Guidelines: A Systematic Review and Meta-analysis. JAMA Pediatr 2023; 177:472-478. [PMID: 36877506 PMCID: PMC9989956 DOI: 10.1001/jamapediatrics.2023.0008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/29/2022] [Indexed: 03/07/2023]
Abstract
Importance Exome sequencing is a first-tier diagnostic test for individuals with neurodevelopmental disorders, including intellectual disability/developmental delay and autism spectrum disorder; however, this recommendation does not include cerebral palsy. Objective To evaluate if the diagnostic yield of exome or genome sequencing in cerebral palsy is similar to that of other neurodevelopmental disorders. Data Sources The study team searched PubMed for studies published between 2013 and 2022 using cerebral palsy and genetic testing terms. Data were analyzed during March 2022. Study Selection Studies performing exome or genome sequencing in at least 10 participants with cerebral palsy were included. Studies with fewer than 10 individuals and studies reporting variants detected by other genetic tests were excluded. Consensus review was performed. The initial search identified 148 studies, of which 13 met inclusion criteria. Data Extraction and Synthesis Data were extracted by 2 investigators and pooled using a random-effects meta-analysis. Incidence rates with corresponding 95% CIs and prediction intervals were calculated. Publication bias was evaluated by the Egger test. Variability between included studies was assessed via heterogeneity tests using the I2 statistic. Main Outcomes and Measures The primary outcome was the pooled diagnostic yield (rate of pathogenic/likely pathogenic variants) across studies. Subgroup analyses were performed based on population age and on the use of exclusion criteria for patient selection. Results Thirteen studies were included consisting of 2612 individuals with cerebral palsy. The overall diagnostic yield was 31.1% (95% CI, 24.2%-38.6%; I2 = 91%). The yield was higher in pediatric populations (34.8%; 95% CI, 28.3%-41.5%) than adult populations (26.9%; 95% CI, 1.2%-68.8%) and higher among studies that used exclusion criteria for patient selection (42.1%; 95% CI, 36.0%-48.2%) than those that did not (20.7%; 95% CI, 12.3%-30.5%). Conclusions and Relevance In this systematic review and meta-analysis, the genetic diagnostic yield in cerebral palsy was similar to that of other neurodevelopmental disorders for which exome sequencing is recommended as standard of care. Data from this meta-analysis provide evidence to support the inclusion of cerebral palsy in the current recommendation of exome sequencing in the diagnostic evaluation of individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Yirui Hu
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - Scott M. Myers
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Brenda M. Finucane
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Christa L. Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Department of Radiology, Geisinger, Danville, Pennsylvania
- Diagnostic Medicine Institute, Geisinger, Danville, Pennsylvania
| |
Collapse
|
11
|
Mendez-Vazquez H, Roach RL, Nip K, Sathler MF, Garver T, Danzman RA, Moseley MC, Roberts JP, Koch ON, Steger AA, Lee R, Arikkath J, Kim S. The autism-associated loss of δ-catenin functions disrupts social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523372. [PMID: 36711484 PMCID: PMC9882145 DOI: 10.1101/2023.01.12.523372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism spectrum disorder (ASD) patients and induces loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we discover that the G34S mutation generates an additional phosphorylation site for glycogen synthase kinase 3β (GSK3β). This promotes δ-catenin degradation and causes the reduction of δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, inhibition of GSK3β activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3β inhibition-induced restoration of normal social behaviors in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3β inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits. Significance Statement δ-catenin is important for the localization and function of glutamatergic AMPA receptors at synapses in many brain regions. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism patients and results in the loss of δ-catenin functions. δ-catenin expression is also closely linked to other autism-risk genes involved in synaptic structure and function, further implying that it is important for the autism pathophysiology. Importantly, social dysfunction is a key characteristic of autism. Nonetheless, the links between δ-catenin functions and social behaviors are largely unknown. The significance of the current research is thus predicated on filling this gap by discovering the molecular, cellular, and synaptic underpinnings of the role of δ-catenin in social behaviors.
Collapse
|
12
|
Xin C, Guan X, Wang L, Liu J. Integrative Multi-Omics Research in Cerebral Palsy: Current Progress and Future Prospects. Neurochem Res 2022; 48:1269-1279. [PMID: 36512293 DOI: 10.1007/s11064-022-03839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Cerebral palsy (CP) describes a heterogeneous group of non-progressive neurodevelopmental disorders affecting movement and posture. The etiology and diagnostic biomarkers of CP are a hot topic in clinical research. Recent advances in omics techniques, including genomics, epigenomics, transcriptomics, metabolomics and proteomics, have offered new insights to further understand the pathophysiology of CP and have allowed for identification of diagnostic biomarkers of CP. In present study, we reviewed the latest multi-omics investigations of CP and provided an in-depth summary of current research progress in CP. This review will offer the basis and recommendations for future fundamental research on the pathogenesis of CP, identification of diagnostic biomarkers, and prevention strategies for CP.
Collapse
Affiliation(s)
- Chengqi Xin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China.
| |
Collapse
|
13
|
Srivastava S, Lewis SA, Cohen JS, Zhang B, Aravamuthan BR, Chopra M, Sahin M, Kruer MC, Poduri A. Molecular Diagnostic Yield of Exome Sequencing and Chromosomal Microarray in Cerebral Palsy: A Systematic Review and Meta-analysis. JAMA Neurol 2022; 79:1287-1295. [PMID: 36279113 PMCID: PMC9593320 DOI: 10.1001/jamaneurol.2022.3549] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 01/14/2023]
Abstract
Importance There are many known acquired risk factors for cerebral palsy (CP), but in some cases, CP is evident without risk factors (cryptogenic CP). Early CP cohort studies report a wide range of diagnostic yields for sequence variants assessed by exome sequencing (ES) and copy number variants (CNVs) assessed by chromosomal microarray (CMA). Objective To synthesize the emerging CP genetics literature and address the question of what percentage of individuals with CP have a genetic disorder via ES and CMA. Data Sources Searched articles were indexed by PubMed with relevant queries pertaining to CP and ES/CMA (query date, March 15, 2022). Study Selection Inclusion criteria were as follows: primary research study, case series with 10 or more nonrelated individuals, CP diagnosis, and ES and/or CMA data used for genetic evaluation. Nonblinded review was performed. Data Extraction and Synthesis Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were used for assessing data quality and validity. Data were extracted by a single observer. Main Outcomes and Measures A separate meta-analysis was performed for each modality (ES, CMA). The primary outcome was proportion/molecular diagnostic yield (number of patients with a discovered genetic disorder divided by the total number of patients in the cohort), evaluated via meta-analysis of single proportions using random-effects logistic regression. A subgroup meta-analysis was conducted, using risk factor classification as a subgroup. A forest plot was used to display diagnostic yields of individual studies. Results In the meta-analysis of ES yield in CP, the overall diagnostic yield of ES among the cohorts (15 study cohorts comprising 2419 individuals from 11 articles) was 23% (95% CI, 15%-34%). The diagnostic yield across cryptogenic CP cohorts was 35% (95% CI, 27%-45%), compared with 7% (95% CI, 4%-12%) across cohorts with known risk factors (noncryptogenic CP). In the meta-analysis of CMA yield in CP, the diagnostic yield of CMA among the cohorts (5 study cohorts comprising 294 individuals from 5 articles) was 5% (95% CI, 2%-12%). Conclusions and Relevance Results of this systematic review and meta-analysis suggest that for individuals with cryptogenic CP, ES followed by CMA to identify molecular disorders may be warranted.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Sara A. Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
- Department of Child Health, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Neurology, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Cellular & Molecular Medicine, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Program in Genetics, University of Arizona College of Medicine, Phoenix
| | - Julie S. Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bo Zhang
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | | | - Maya Chopra
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
- Department of Child Health, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Neurology, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Cellular & Molecular Medicine, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Program in Genetics, University of Arizona College of Medicine, Phoenix
| | - Annapurna Poduri
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Epilepsy, Boston Children’s Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Friedman JM, van Essen P, van Karnebeek CDM. Cerebral palsy and related neuromotor disorders: Overview of genetic and genomic studies. Mol Genet Metab 2022; 137:399-419. [PMID: 34872807 DOI: 10.1016/j.ymgme.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Cerebral palsy (CP) is a debilitating condition characterized by abnormal movement or posture, beginning early in development. Early family and twin studies and more recent genomic investigations clearly demonstrate that genetic factors of major effect contribute to the etiology of CP. Most copy number variants and small alterations of nucleotide sequence that cause CP arise as a result of de novo mutations, so studies that estimate heritability on basis of recurrence frequency within families substantially underestimate genetic contributions to the etiology. At least 4% of patients with typical CP have disease-causing CNVs, and at least 14% have disease-causing single nucleotide variants or indels. The rate of pathogenic genomic lesions is probably more than twice as high among patients who have atypical CP, i.e., neuromotor dysfunction with additional neurodevelopmental abnormalities or malformations, or with MRI findings and medical history that are not characteristic of a perinatal insult. Mutations of many different genetic loci can produce a CP-like phenotype. The importance of genetic variants of minor effect and of epigenetic modifications in producing a multifactorial predisposition to CP is less clear. Recognizing the specific cause of CP in an affected individual is essential to providing optimal clinical management. An etiological diagnosis provides families an "enhanced compass" that improves overall well-being, facilitates access to educational and social services, permits accurate genetic counseling, and, for a subset of patients such as those with underlying inherited metabolic disorders, may make precision therapy that targets the pathophysiology available. Trio exome sequencing with assessment of copy number or trio genome sequencing with bioinformatics analysis for single nucleotide variants, indels, and copy number variants is clinically indicated in the initial workup of CP patients, especially those with additional malformations or neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter van Essen
- Department of Pediatrics, Amalia Children's Hospital, Radboud Centre for Mitochondrial Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital, Radboud Centre for Mitochondrial Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Departments of Human Genetics and Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, the Netherlands; Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
15
|
Shevell M. The evolution of our understanding of the conceptualization and genetics of cerebral palsy: Implications for genetic testing. Mol Genet Metab 2022; 137:449-453. [PMID: 33423928 DOI: 10.1016/j.ymgme.2020.12.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Shevell
- Department of Pediatrics, McGill University, Montreal Children's Hospital-McGill University Health Centre, Room B.RC. 6354, 1001 Decarie Blvd, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
16
|
Upadhyay J, Ansari MN, Samad A, Sayana A. Dysregulation of multiple signaling pathways: A possible cause of cerebral palsy. Exp Biol Med (Maywood) 2022; 247:779-787. [PMID: 35253451 DOI: 10.1177/15353702221081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cerebral palsy (CP) is a lifelong disability characterized by the impairment of brain functions that result in improper posture and abnormal motor patterns. Understanding this brain abnormality and the role of genetic, epigenetic, and non-genetic factors such as signaling pathway dysregulation and cytokine dysregulation in the pathogenesis of CP is a complex process. Hypoxic-ischemic injury and prematurity are two well-known contributors of CP. Like in the case of other neurodevelopmental disorders such as intellectual disability and autism, the genomic constituents in CP are highly complex. The neuroinflammation that is triggered by maternal cytokine response plays a critical role in the pathogenesis of fetal inflammation response, which is one of the contributing factors of CP, and it continues even after the birth of children suffering from CP. Canonical Wnt signaling pathway is important for the development of mammalian fetal brain and it regulates distinct processes including neurogenesis. The glycogen synthase kinase-3 (GSK-3) antagonistic activity in the Wnt signaling pathway plays a crucial role in neurogenesis and neural development. In this review, we investigated several genetic and non-genetic pathways that are involved in the pathogenesis of CP and their regulation, impairment, and implications for causing CP during embryonic growth and developmental period. Investigating the role of these pathways help to develop novel therapeutic interventions and biomarkers for early diagnosis and treatment. This review also helps us to comprehend the mechanical approach of various signaling pathways, as well as their consequences and relevance in the understanding of CP.
Collapse
Affiliation(s)
- Jyoti Upadhyay
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | | |
Collapse
|
17
|
Chopra M, Gable DL, Love‐Nichols J, Tsao A, Rockowitz S, Sliz P, Barkoudah E, Bastianelli L, Coulter D, Davidson E, DeGusmao C, Fogelman D, Huth K, Marshall P, Nimec D, Sanders JS, Shore BJ, Snyder B, Stone SSD, Ubeda A, Watkins C, Berde C, Bolton J, Brownstein C, Costigan M, Ebrahimi‐Fakhari D, Lai A, O'Donnell‐Luria A, Paciorkowski AR, Pinto A, Pugh J, Rodan L, Roe E, Swanson L, Zhang B, Kruer MC, Sahin M, Poduri A, Srivastava S. Mendelian etiologies identified with whole exome sequencing in cerebral palsy. Ann Clin Transl Neurol 2022; 9:193-205. [PMID: 35076175 PMCID: PMC8862420 DOI: 10.1002/acn3.51506] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/24/2023] Open
Abstract
Objectives Cerebral palsy (CP) is the most common childhood motor disability, yet its link to single‐gene disorders is under‐characterized. To explore the genetic landscape of CP, we conducted whole exome sequencing (WES) in a cohort of patients with CP. Methods We performed comprehensive phenotyping and WES on a prospective cohort of individuals with cryptogenic CP (who meet criteria for CP; have no risk factors), non‐cryptogenic CP (who meet criteria for CP; have at least one risk factor), and CP masqueraders (who could be diagnosed with CP, but have regression/progressive symptoms). We characterized motor phenotypes, ascertained medical comorbidities, and classified brain MRIs. We analyzed WES data using an institutional pipeline. Results We included 50 probands in this analysis (20 females, 30 males). Twenty‐four had cryptogenic CP, 20 had non‐cryptogenic CP, five had CP masquerader classification, and one had unknown classification. Hypotonic‐ataxic subtype showed a difference in prevalence across the classification groups (p = 0.01). Twenty‐six percent of participants (13/50) had a pathogenic/likely pathogenic variant in 13 unique genes (ECHS1, SATB2, ZMYM2, ADAT3, COL4A1, THOC2, SLC16A2, SPAST, POLR2A, GNAO1, PDHX, ACADM, ATL1), including one patient with two genetic disorders (ACADM, PDHX) and two patients with a SPAST‐related disorder. The CP masquerader category had the highest diagnostic yield (n = 3/5, 60%), followed by the cryptogenic CP category (n = 7/24, 29%). Fifteen percent of patients with non‐cryptogenic CP (n = 3/20) had a Mendelian disorder on WES. Interpretation WES demonstrated a significant prevalence of Mendelian disorders in individuals clinically diagnosed with CP, including in individuals with known CP risk factors.
Collapse
|
18
|
An Emerging Role for Epigenetics in Cerebral Palsy. J Pers Med 2021; 11:jpm11111187. [PMID: 34834539 PMCID: PMC8625874 DOI: 10.3390/jpm11111187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
Cerebral palsy is a set of common, severe, motor disabilities categorized by a static, nondegenerative encephalopathy arising in the developing brain and associated with deficits in movement, posture, and activity. Spastic CP, which is the most common type, involves high muscle tone and is associated with altered muscle function including poor muscle growth and contracture, increased extracellular matrix deposition, microanatomic disruption, musculoskeletal deformities, weakness, and difficult movement control. These muscle-related manifestations of CP are major causes of progressive debilitation and frequently require intensive surgical and therapeutic intervention to control. Current clinical approaches involve sophisticated consideration of biomechanics, radiologic assessments, and movement analyses, but outcomes remain difficult to predict. There is a need for more precise and personalized approaches involving omics technologies, data science, and advanced analytics. An improved understanding of muscle involvement in spastic CP is needed. Unfortunately, the fundamental mechanisms and molecular pathways contributing to altered muscle function in spastic CP are only partially understood. In this review, we outline evidence supporting the emerging hypothesis that epigenetic phenomena play significant roles in musculoskeletal manifestations of CP.
Collapse
|
19
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
20
|
Hale AT, Akinnusotu O, He J, Wang J, Hibshman N, Shannon CN, Naftel RP. Genome-Wide Association Study Identifies Genetic Risk Factors for Spastic Cerebral Palsy. Neurosurgery 2021; 89:435-442. [PMID: 34098570 PMCID: PMC8364821 DOI: 10.1093/neuros/nyab184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although many clinical risk factors of spastic cerebral palsy (CP) have been identified, the genetic basis of spastic CP is largely unknown. Here, using whole-genome genetic information linked to a deidentified electronic health record (BioVU) with replication in the UK Biobank and FinnGen, we perform the first genome-wide association study (GWAS) for spastic CP. OBJECTIVE To define the genetic basis of spastic CP. METHODS Whole-genome data were obtained using the multi-ethnic genotyping array (MEGA) genotyping array capturing single-nucleotide polymorphisms (SNPs), minor allele frequency (MAF) > 0.01, and imputation quality score (r2) > 0.3, imputed based on the 1000 genomes phase 3 reference panel. Threshold for genome-wide significance was defined after Bonferroni correction for the total number of SNPs tested (P < 5.0 × 10-8). Replication analysis (defined as P < .05) was performed in the UK Biobank and FinnGen. RESULTS We identify 1 SNP (rs78686911) reaching genome-wide significance with spastic CP. Expression quantitative trait loci (eQTL) analysis suggests that rs78686911 decreases expression of GRIK4, a gene that encodes a high-affinity kainate glutamatergic receptor of largely unknown function. Replication analysis in the UK Biobank and FinnGen reveals additional SNPs in the GRIK4 loci associated with CP. CONCLUSION To our knowledge, we perform the first GWAS of spastic CP. Our study indicates that genetic variation contributes to CP risk.
Collapse
Affiliation(s)
- Andrew T Hale
- Vanderbilt University School of Medicine, Medical Scientist Training Program, Nashville, Tennessee, USA
- Surgical Outcomes Center for Kids, Monroe Carell Jr Children's Hospital of Vanderbilt University, Nashville, Tennessee, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Oluwatoyin Akinnusotu
- Surgical Outcomes Center for Kids, Monroe Carell Jr Children's Hospital of Vanderbilt University, Nashville, Tennessee, USA
| | - Jing He
- Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Janey Wang
- Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natalie Hibshman
- Surgical Outcomes Center for Kids, Monroe Carell Jr Children's Hospital of Vanderbilt University, Nashville, Tennessee, USA
| | - Chevis N Shannon
- Surgical Outcomes Center for Kids, Monroe Carell Jr Children's Hospital of Vanderbilt University, Nashville, Tennessee, USA
- Division of Pediatric Neurosurgery, Monroe Carell Jr Children's Hospital of Vanderbilt University, Nashville, Tennessee, USA
| | - Robert P Naftel
- Surgical Outcomes Center for Kids, Monroe Carell Jr Children's Hospital of Vanderbilt University, Nashville, Tennessee, USA
- Division of Pediatric Neurosurgery, Monroe Carell Jr Children's Hospital of Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Lee S, Robinson K, Lodge M, Theroux M, Miller F, Akins R. Resistance to Neuromuscular Blockade by Rocuronium in Surgical Patients with Spastic Cerebral Palsy. J Pers Med 2021; 11:jpm11080765. [PMID: 34442409 PMCID: PMC8400439 DOI: 10.3390/jpm11080765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Individuals with spastic cerebral palsy (CP) often exhibit altered sensitivities to neuromuscular blocking agents (NMBAs) used for surgical intubation. We assessed usage of the NMBA rocuronium in patients with spastic CP and evaluated potential modifiers of dosing including gross motor function classification system (GMFCS) level, birthweight, gestational age, and the use of anticonvulsant therapy. In a case-control study, surgical patients with spastic CP (n = 64) or with idiopathic or non-neuromuscular conditions (n = 73) were enrolled after informed consent/assent. Patient data, GMFCS level, anticonvulsant use, and rocuronium dosing for intubation and post-intubation neuromuscular blockade were obtained from medical records. Findings reveal participants with CP required more rocuronium per body weight for intubation than controls (1.00 ± 0.08 versus 0.64 ± 0.03 mg/kg; p < 0.0001). Dosing increased with GMFCS level (Spearman's rho = 0.323; p = 0.005), and participants with moderate to severe disability (GMFCS III-V) had elevated rocuronium with (1.21 ± 0.13 mg/kg) or without (0.86 ± 0.09 mg/kg) concurrent anticonvulsant therapy. Children born full-term or with birthweight >2.5 kg in the CP cohort required more rocuronium than preterm and low birthweight counterparts. Individuals with CP exhibited highly varied and significant resistance to neuromuscular blockade with rocuronium that was related to GMFCS and gestational age and weight at birth.
Collapse
Affiliation(s)
- Stephanie Lee
- Nemours Biomedical Research, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.L.); (K.R.); (M.L.)
| | - Karyn Robinson
- Nemours Biomedical Research, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.L.); (K.R.); (M.L.)
| | - Madison Lodge
- Nemours Biomedical Research, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.L.); (K.R.); (M.L.)
| | - Mary Theroux
- Department of Anesthesiology, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA;
| | - Freeman Miller
- Department of Orthopedics, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA;
| | - Robert Akins
- Nemours Biomedical Research, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.L.); (K.R.); (M.L.)
- Correspondence: ; Tel.: +1-302-651-6779
| |
Collapse
|
22
|
Hidden etiology of cerebral palsy: genetic and clinical heterogeneity and efficient diagnosis by next-generation sequencing. Pediatr Res 2021; 90:284-288. [PMID: 33177673 DOI: 10.1038/s41390-020-01250-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022]
Abstract
Cerebral palsy (CP) is a heterogeneous neurodevelopmental disorder that causes movement and postural disabilities. Recent research studies focused on genetic diagnosis in patients with CP of unknown etiology. The present study was carried out in 20 families with one family member affected with idiopathic CP. Chromosomal microarray and exome sequencing techniques were performed in all patients. Chromosomal microarray analysis did not show any pathological or probable pathological structural variant. However, the next-generation sequencing study showed a high diagnostic yield. We report 11/20 patients (55%) with different pathogenic or potentially pathogenic variants detected by exome sequencing analysis: five patients with mutations in genes related to hereditary spastic paraplegia, two with mutations in genes related to Aicardi-Goutières syndrome, three with mutations in genes related to developmental/epileptic encephalopathies, and one with a mutation in the PGK1 gene. The accurate and precise patients' selection, the use of a high-throughput genetic platform, the selection of adequate target genes, and the application of rigorous criteria for the clinical interpretation are the most important elements for a good diagnostic performance. Based on our findings, next-generation sequencing should be considered in patients with cryptogenic CP as the first line of genetic workup. IMPACT: Sequencing techniques in CP of uncertain etiology provides a diagnostic yield of 55%. The appropriate selection of cases optimizes the diagnostic yield. NGS facilitate better understanding of new phenotypes of certain genetic diseases.
Collapse
|
23
|
Yechieli M, Gulsuner S, Ben-Pazi H, Fattal A, Aran A, Kuzminsky A, Sagi L, Guttman D, Schneebaum Sender N, Gross-Tsur V, Klopstock T, Walsh T, Renbaum P, Zeligson S, Shemer Meiri L, Lev D, Shmueli D, Blumkin L, Lahad A, King MC, Levy EL, Segel R. Diagnostic yield of chromosomal microarray and trio whole exome sequencing in cryptogenic cerebral palsy. J Med Genet 2021; 59:759-767. [PMID: 34321325 DOI: 10.1136/jmedgenet-2021-107884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/14/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To determine the yield of genetic diagnoses using chromosomal microarray (CMA) and trio whole exome sequencing (WES), separately and combined, among patients with cryptogenic cerebral palsy (CP). METHODS Trio WES of patients with prior CMA analysis for cryptogenic CP, defined as disabling, non-progressive motor symptoms beginning before the age of 3 years without known cause. RESULTS Given both CMA analysis and trio WES, clinically significant genetic findings were identified for 58% of patients (26 of 45). Diagnoses were eight large CNVs detected by CMA and 18 point mutations detected by trio WES. None had more than one severe mutation. Approximately half of events (14 of 26) were de novo. Yield was significantly higher in patients with CP with comorbidities (69%, 22 of 32) than in those with pure motor CP (31%, 4 of 13; p=0.02). Among patients with genetic diagnoses, CNVs were more frequent than point mutations among patients with congenital anomalies (OR 7.8, 95% CI 1.2 to 52.4) or major dysmorphic features (OR 10.5, 95% CI 1.4 to 73.7). Clinically significant mutations were identified in 18 different genes: 14 with known involvement in CP-related disorders and 4 responsible for other neurodevelopmental conditions. Three possible new candidate genes for CP were ARGEF10, RTF1 and TAOK3. CONCLUSIONS Cryptogenic CP is genetically highly heterogeneous. Genomic analysis has a high yield and is warranted in all these patients. Trio WES has higher yield than CMA, except in patients with congenital anomalies or major dysmorphic features, but these methods are complementary. Patients with negative results with one approach should also be tested by the other.
Collapse
Affiliation(s)
- Michal Yechieli
- Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Suleyman Gulsuner
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Hilla Ben-Pazi
- Pediatric Neurology, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviva Fattal
- Pediatric Neurology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Aran
- Pediatric Neurology, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alla Kuzminsky
- Pediatric Neurology Institute, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Liora Sagi
- Pediatric Neurology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dafna Guttman
- Pediatric Rehabilitation Department, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Nira Schneebaum Sender
- Pediatric Neurology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Varda Gross-Tsur
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Pediatric Neurology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tehila Klopstock
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tom Walsh
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Paul Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Sharon Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Dorit Lev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Medical Genetics, Edith Wolfson Medical Center, Holon, Israel
| | - Dorit Shmueli
- Child Development Services, Clalit Health Services, Tel Aviv, Israel
| | - Luba Blumkin
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Neurology, Edith Wolfson Hospital, Holon, Israel
| | - Amnon Lahad
- Braun School of Public Health, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Family Medicine, Clalit Health Services, Jerusalem, Israel
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ephrat Lahad Levy
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Reeval Segel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel .,Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
24
|
Abstract
Neurodevelopmental disorders are the most prevalent chronic medical conditions encountered in pediatric primary care. In addition to identifying appropriate descriptive diagnoses and guiding families to evidence-based treatments and supports, comprehensive care for individuals with neurodevelopmental disorders includes a search for an underlying etiologic diagnosis, primarily through a genetic evaluation. Identification of an underlying genetic etiology can inform prognosis, clarify recurrence risk, shape clinical management, and direct patients and families to condition-specific resources and supports. Here we review the utility of genetic testing in patients with neurodevelopmental disorders and describe the three major testing modalities and their yields - chromosomal microarray, exome sequencing (with/without copy number variant calling), and FMR1 CGG repeat analysis for fragile X syndrome. Given the diagnostic yield of genetic testing and the potential for clinical and personal utility, there is consensus that genetic testing should be offered to all patients with global developmental delay, intellectual disability, and/or autism spectrum disorder. Despite this recommendation, data suggest that a minority of children with autism spectrum disorder and intellectual disability have undergone genetic testing. To address this gap in care, we describe a structured but flexible approach to facilitate integration of genetic testing into clinical practice across pediatric specialties and discuss future considerations for genetic testing in neurodevelopmental disorders to prepare pediatric providers to care for patients with such diagnoses today and tomorrow.
Collapse
Affiliation(s)
- Juliann M. Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States
| | | |
Collapse
|
25
|
Moreno-De-Luca A, Millan F, Pesacreta DR, Elloumi HZ, Oetjens MT, Teigen C, Wain KE, Scuffins J, Myers SM, Torene RI, Gainullin VG, Arvai K, Kirchner HL, Ledbetter DH, Retterer K, Martin CL. Molecular Diagnostic Yield of Exome Sequencing in Patients With Cerebral Palsy. JAMA 2021; 325:467-475. [PMID: 33528536 PMCID: PMC7856544 DOI: 10.1001/jama.2020.26148] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Cerebral palsy is a common neurodevelopmental disorder affecting movement and posture that often co-occurs with other neurodevelopmental disorders. Individual cases of cerebral palsy are often attributed to birth asphyxia; however, recent studies indicate that asphyxia accounts for less than 10% of cerebral palsy cases. OBJECTIVE To determine the molecular diagnostic yield of exome sequencing (prevalence of pathogenic and likely pathogenic variants) in individuals with cerebral palsy. DESIGN, SETTING, AND PARTICIPANTS A retrospective cohort study of patients with cerebral palsy that included a clinical laboratory referral cohort with data accrued between 2012 and 2018 and a health care-based cohort with data accrued between 2007 and 2017. EXPOSURES Exome sequencing with copy number variant detection. MAIN OUTCOMES AND MEASURES The primary outcome was the molecular diagnostic yield of exome sequencing. RESULTS Among 1345 patients from the clinical laboratory referral cohort, the median age was 8.8 years (interquartile range, 4.4-14.7 years; range, 0.1-66 years) and 601 (45%) were female. Among 181 patients in the health care-based cohort, the median age was 41.9 years (interquartile range, 28.0-59.6 years; range, 4.8-89 years) and 96 (53%) were female. The molecular diagnostic yield of exome sequencing was 32.7% (95% CI, 30.2%-35.2%) in the clinical laboratory referral cohort and 10.5% (95% CI, 6.0%-15.0%) in the health care-based cohort. The molecular diagnostic yield ranged from 11.2% (95% CI, 6.4%-16.2%) for patients without intellectual disability, epilepsy, or autism spectrum disorder to 32.9% (95% CI, 25.7%-40.1%) for patients with all 3 comorbidities. Pathogenic and likely pathogenic variants were identified in 229 genes (29.5% of 1526 patients); 86 genes were mutated in 2 or more patients (20.1% of 1526 patients) and 10 genes with mutations were independently identified in both cohorts (2.9% of 1526 patients). CONCLUSIONS AND RELEVANCE Among 2 cohorts of patients with cerebral palsy who underwent exome sequencing, the prevalence of pathogenic and likely pathogenic variants was 32.7% in a cohort that predominantly consisted of pediatric patients and 10.5% in a cohort that predominantly consisted of adult patients. Further research is needed to understand the clinical implications of these findings.
Collapse
Affiliation(s)
- Andrés Moreno-De-Luca
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
- Department of Radiology, Geisinger, Danville, Pennsylvania
- Diagnostic Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Denis R. Pesacreta
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Matthew T. Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Karen E. Wain
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Scott M. Myers
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | | | | | - H. Lester Kirchner
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - David H. Ledbetter
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Christa L. Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| |
Collapse
|
26
|
Lewis SA, Shetty S, Wilson BA, Huang AJ, Jin SC, Smithers-Sheedy H, Fahey MC, Kruer MC. Insights From Genetic Studies of Cerebral Palsy. Front Neurol 2021; 11:625428. [PMID: 33551980 PMCID: PMC7859255 DOI: 10.3389/fneur.2020.625428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cohort-based whole exome and whole genome sequencing and copy number variant (CNV) studies have identified genetic etiologies for a sizable proportion of patients with cerebral palsy (CP). These findings indicate that genetic mutations collectively comprise an important cause of CP. We review findings in CP genomics and propose criteria for CP-associated genes at the level of gene discovery, research study, and clinical application. We review the published literature and report 18 genes and 5 CNVs from genomics studies with strong evidence of for the pathophysiology of CP. CP-associated genes often disrupt early brain developmental programming or predispose individuals to known environmental risk factors. We discuss the overlap of CP-associated genes with other neurodevelopmental disorders and related movement disorders. We revisit diagnostic criteria for CP and discuss how identification of genetic etiologies does not preclude CP as an appropriate diagnosis. The identification of genetic etiologies improves our understanding of the neurobiology of CP, providing opportunities to study CP pathogenesis and develop mechanism-based interventions.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Bryce A Wilson
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Aris J Huang
- Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Hayley Smithers-Sheedy
- Cerebral Palsy Alliance, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States.,Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
27
|
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020; 52:1046-1056. [PMID: 32989326 PMCID: PMC9148538 DOI: 10.1038/s41588-020-0695-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Michael C Sierant
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sandra M Nordlie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Aureliane Elie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Mark A Corbett
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bethany Y Norton
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Clare L van Eyk
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Brandon S Guida
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Helen Magee
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - James Liu
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Stephen Pastore
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - John B Vincent
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | - Michael C Fahey
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jesia G Berry
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Harper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chongchen Zhou
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Jennifer Heim
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Dani L Webber
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mahalia S B Frank
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Amar H Sheth
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, APHP.Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Julien Buratti
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Diane Doummar
- Sorbonne Université, APHP, Service de Neurologie Pédiatrique et Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | | | | | | | - Yangong Wang
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Jeff L Waugh
- Departments of Pediatrics & Neurology, University of Texas Southwestern and Children's Medical Center of Dallas, Dallas, TX, USA
| | - Lance Rodan
- Departments of Genetics & Genomics and Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Julie S Cohen
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ali Fatemi
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - John P Phillips
- Departments of Pediatrics and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Timothy Feyma
- Division of Pediatric Neurology, Gillette Children's Hospital, St Paul, MN, USA
| | - Suzanna C MacLennan
- Department of Paediatric Neurology, Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Spencer Vaughan
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Kylie E Crompton
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan M Reid
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Dinah S Reddihough
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Qing Shang
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Rehabilitation Department, Children's Hospital of Zhengzhou University/Henan Children's Hospital, Zhengzhou, China
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Yana A Wilson
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah J McIntyre
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shrikant M Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daniela C Zarnescu
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qinghe Xing
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alastair H MacLennan
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
28
|
van Eyk CL, Corbett MA, Frank MSB, Webber DL, Newman M, Berry JG, Harper K, Haines BP, McMichael G, Woenig JA, MacLennan AH, Gecz J. Targeted resequencing identifies genes with recurrent variation in cerebral palsy. NPJ Genom Med 2019; 4:27. [PMID: 31700678 PMCID: PMC6828700 DOI: 10.1038/s41525-019-0101-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/17/2019] [Indexed: 01/13/2023] Open
Abstract
A growing body of evidence points to a considerable and heterogeneous genetic aetiology of cerebral palsy (CP). To identify recurrently variant CP genes, we designed a custom gene panel of 112 candidate genes. We tested 366 clinically unselected singleton cases with CP, including 271 cases not previously examined using next-generation sequencing technologies. Overall, 5.2% of the naïve cases (14/271) harboured a genetic variant of clinical significance in a known disease gene, with a further 4.8% of individuals (13/271) having a variant in a candidate gene classified as intolerant to variation. In the aggregate cohort of individuals from this study and our previous genomic investigations, six recurrently hit genes contributed at least 4% of disease burden to CP: COL4A1, TUBA1A, AGAP1, L1CAM, MAOB and KIF1A. Significance of Rare VAriants (SORVA) burden analysis identified four genes with a genome-wide significant burden of variants, AGAP1, ERLIN1, ZDHHC9 and PROC, of which we functionally assessed AGAP1 using a zebrafish model. Our investigations reinforce that CP is a heterogeneous neurodevelopmental disorder with known as well as novel genetic determinants.
Collapse
Affiliation(s)
- C L van Eyk
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - M A Corbett
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - M S B Frank
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - D L Webber
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - M Newman
- 3Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA Australia
| | - J G Berry
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - K Harper
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - B P Haines
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - G McMichael
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - J A Woenig
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - A H MacLennan
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - J Gecz
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,4South Australian Health and Medical Research Institute, Adelaide, SA Australia
| |
Collapse
|
29
|
Martín-Doncel E, Rojas AM, Cantarero L, Lazo PA. VRK1 functional insufficiency due to alterations in protein stability or kinase activity of human VRK1 pathogenic variants implicated in neuromotor syndromes. Sci Rep 2019; 9:13381. [PMID: 31527692 PMCID: PMC6746721 DOI: 10.1038/s41598-019-49821-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Very rare polymorphisms in the human VRK1 (vaccinia-related kinase 1) gene have been identified in complex neuromotor phenotypes associated to spinal muscular atrophy (SMA), pontocerebellar hypoplasia (PCH), microcephaly, amyotrophic lateral sclerosis (ALS) and distal motor neuron dysfunctions. The mechanisms by which these VRK1 variant proteins contribute to the pathogenesis of these neurological syndromes are unknown. The syndromes are manifested when both of these rare VRK1 polymorphic alleles are implicated, either in homozygosis or compound heterozygosis. In this report, to identify the common underlying pathogenic mechanism of VRK1 polymorphisms, we have studied all human VRK1 variants identified in these neurological phenotypes from a biochemical point of view by molecular modeling, protein stability and kinase activity assays. Molecular modelling predicted that VRK1 variant proteins are either unstable or have an altered kinase activity. The stability and kinase activity of VRK1 pathogenic variants detected two groups. One composed by variants with a reduced protein stability: R133C, R358X, L195V, G135R and R321C. The other group includes VRK1variants with a reduced kinase activity tested on several substrates: histones H3 and H2AX, p53, c-Jun, coilin and 53BP1, a DNA repair protein. VRK1 variants with reduced kinase activity are H119R, R133C, G135R, V236M, R321C and R358X. The common underlying effect of VRK1 pathogenic variants with reduced protein stability or kinase activity is a functional insufficiency of VRK1 in patients with neuromotor developmental syndromes. The G135 variant cause a defective formation of 53BP1 foci in response to DNA damage, and loss Cajal bodies assembled on coilin.
Collapse
Affiliation(s)
- Elena Martín-Doncel
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana M Rojas
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS), CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Lara Cantarero
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Laboratorio de Neurogenética y Medicina Molecular, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
30
|
|
31
|
Graham D, Paget SP, Wimalasundera N. Current thinking in the health care management of children with cerebral palsy. Med J Aust 2019; 210:129-135. [DOI: 10.5694/mja2.12106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David Graham
- Concord Centre for Mental Health Sydney NSW
- Kids Neuroscience CentreKids Research Sydney NSW
| | - Simon P Paget
- Kids RehabChildren's Hospital at Westmead Sydney NSW
| | | |
Collapse
|
32
|
Corbett MA, van Eyk CL, Webber DL, Bent SJ, Newman M, Harper K, Berry JG, Azmanov DN, Woodward KJ, Gardner AE, Slee J, Pérez-Jurado LA, MacLennan AH, Gecz J. Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy. NPJ Genom Med 2018; 3:33. [PMID: 30564460 PMCID: PMC6294788 DOI: 10.1038/s41525-018-0073-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 11/10/2022] Open
Abstract
Cerebral palsy (CP) is the most frequent movement disorder of childhood affecting 1 in 500 live births in developed countries. We previously identified likely pathogenic de novo or inherited single nucleotide variants (SNV) in 14% (14/98) of trios by exome sequencing and a further 5% (9/182) from evidence of outlier gene expression using RNA sequencing. Here, we detected copy number variants (CNV) from exomes of 186 unrelated individuals with CP (including our original 98 trios) using the CoNIFER algorithm. CNV were validated with Illumina 850 K SNP arrays and compared with RNA-Seq outlier gene expression analysis from lymphoblastoid cell lines (LCL). Gene expression was highly correlated with gene dosage effect. We resolved an additional 3.7% (7/186) of this cohort with pathogenic or likely pathogenic CNV while a further 7.7% (14/186) had CNV of uncertain significance. We identified recurrent genomic rearrangements previously associated with CP due to 2p25.3 deletion, 22q11.2 deletions and duplications and Xp monosomy. We also discovered a deletion of a single gene, PDCD6IP, and performed additional zebrafish model studies to support its single allele loss in CP aetiology. Combined SNV and CNV analysis revealed pathogenic and likely pathogenic variants in 22.7% of unselected individuals with CP.
Collapse
Affiliation(s)
- Mark A. Corbett
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Clare L. van Eyk
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Dani L. Webber
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Stephen J. Bent
- Data61, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Brisbane, QLD 4102 Australia
| | - Morgan Newman
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005 Australia
| | - Kelly Harper
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Jesia G. Berry
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Dimitar N. Azmanov
- Department of Diagnostic Genomics, Queen Elizabeth II Medical Centre, PathWest, Nedlands, WA 6009 Australia
| | - Karen J. Woodward
- Department of Diagnostic Genomics, Queen Elizabeth II Medical Centre, PathWest, Nedlands, WA 6009 Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009 Australia
| | - Alison E. Gardner
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Jennie Slee
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA 6008 Australia
| | - Luís A. Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Barcelona, 08003 Spain
- Hospital del Mar Research Institute (IMIM) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08003 Spain
- SA Clinical Genetics, Women’s and Children’s Hospital & University of Adelaide, Adelaide, South Australia 5006 Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia 5000 Australia
| | - Alastair H. MacLennan
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Jozef Gecz
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia 5000 Australia
| |
Collapse
|
33
|
Morgan C, Fahey M, Roy B, Novak I. Diagnosing cerebral palsy in full-term infants. J Paediatr Child Health 2018; 54:1159-1164. [PMID: 30294991 DOI: 10.1111/jpc.14177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022]
Abstract
More than 50% of infants with cerebral palsy (CP) are born at or near term, with the vast majority having pre- or perinatally acquired CP. While some have a clinical history predictive of CP, such as neonatal encephalopathy or neonatal stroke, others have no readily identifiable risk factors. Paediatricians are often required to discriminate generalised motor delay from a variety of other diagnoses, including CP. This paper outlines known causal pathways to CP in term-born infants with a focus on differential diagnosis. Early and accurate diagnosis is important as it allows prompt access to early intervention during the critical periods of brain development. A combination of clinical history taking, standard clinical examination, neuroimaging and genetic testing should be started at the time of referral. Attention to the investigation of common comorbidities of CP, including feeding and sleep difficulties, and referral to early intervention are recommended.
Collapse
Affiliation(s)
- Catherine Morgan
- School of Medicine, Paediatrics and Child Health, Sydney, New South Wales, Australia
- Cerebral Palsy Alliance, School of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Bithi Roy
- School of Medicine, Paediatrics and Child Health, Sydney, New South Wales, Australia
- School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
- Special Care Nursery, Mater Hospital Sydney, Sydney, New South Wales, Australia
| | - Iona Novak
- School of Medicine, Paediatrics and Child Health, Sydney, New South Wales, Australia
- Cerebral Palsy Alliance, School of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Identification of pathways and genes associated with cerebral palsy. Genes Genomics 2018; 40:1339-1349. [DOI: 10.1007/s13258-018-0729-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/12/2018] [Indexed: 01/01/2023]
|
35
|
Clinical and Functional Characterization of the Recurrent TUBA1A p.(Arg2His) Mutation. Brain Sci 2018; 8:brainsci8080145. [PMID: 30087272 PMCID: PMC6119949 DOI: 10.3390/brainsci8080145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022] Open
Abstract
The TUBA1A gene encodes tubulin alpha-1A, a protein that is highly expressed in the fetal brain. Alpha- and beta-tubulin subunits form dimers, which then co-assemble into microtubule polymers: dynamic, scaffold-like structures that perform key functions during neurogenesis, neuronal migration, and cortical organisation. Mutations in TUBA1A have been reported to cause a range of brain malformations. We describe four unrelated patients with the same de novo missense mutation in TUBA1A, c.5G>A, p.(Arg2His), as found by next generation sequencing. Detailed comparison revealed similar brain phenotypes with mild variability. Shared features included developmental delay, microcephaly, hypoplasia of the cerebellar vermis, dysplasia or thinning of the corpus callosum, small pons, and dysmorphic basal ganglia. Two of the patients had bilateral perisylvian polymicrogyria. We examined the effects of the p.(Arg2His) mutation by computer-based protein structure modelling and heterologous expression in HEK-293 cells. The results suggest the mutation subtly impairs microtubule function, potentially by affecting inter-dimer interaction. Based on its sequence context, c.5G>A is likely to be a common recurrent mutation. We propose that the subtle functional effects of p.(Arg2His) may allow for other factors (such as genetic background or environmental conditions) to influence phenotypic outcome, thus explaining the mild variability in clinical manifestations.
Collapse
|
36
|
Analysis of 182 cerebral palsy transcriptomes points to dysregulation of trophic signalling pathways and overlap with autism. Transl Psychiatry 2018; 8:88. [PMID: 29681622 PMCID: PMC5911435 DOI: 10.1038/s41398-018-0136-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/18/2018] [Indexed: 12/01/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disability of childhood. It is characterised by permanent, non-progressive but not unchanging problems with movement, posture and motor function, with a highly heterogeneous clinical spectrum and frequent neurodevelopmental comorbidities. The aetiology of CP is poorly understood, despite recent reports of a genetic contribution in some cases. Here we demonstrate transcriptional dysregulation of trophic signalling pathways in patient-derived cell lines from an unselected cohort of 182 CP-affected individuals using both differential expression analysis and weighted gene co-expression network analysis (WGCNA). We also show that genes differentially expressed in CP, as well as network modules significantly correlated with CP status, are enriched for genes associated with ASD. Combining transcriptome and whole exome sequencing (WES) data for this CP cohort likely resolves an additional 5% of cases separated to the 14% we have previously reported as resolved by WES. Collectively, these results support a convergent molecular abnormality in CP and ASD.
Collapse
|
37
|
van Eyk C, Corbett M, Maclennan A. The emerging genetic landscape of cerebral palsy. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:331-342. [DOI: 10.1016/b978-0-444-63233-3.00022-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Bateman MS, Collinson MN, Bunyan DJ, Collins AL, Duncan P, Firth R, Harrison V, Homfray T, Huang S, Kirk B, Lachlan KL, Maloney VK, Barber JCK. Incomplete penetrance, variable expressivity, or dosage insensitivity in four families with directly transmitted unbalanced chromosome abnormalities. Am J Med Genet A 2017; 176:319-329. [DOI: 10.1002/ajmg.a.38564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 09/15/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Mark S. Bateman
- Wessex Regional Genetics LaboratorySalisbury NHS Foundation TrustSalisburyUK
| | - Morag N. Collinson
- Wessex Regional Genetics LaboratorySalisbury NHS Foundation TrustSalisburyUK
| | - David J. Bunyan
- Wessex Regional Genetics LaboratorySalisbury NHS Foundation TrustSalisburyUK
| | - Amanda L. Collins
- Wessex Clinical Genetics ServiceSouthampton University Hospitals NHS Foundation TrustPrincess Anne HospitalSouthamptonUK
| | - Philippa Duncan
- Wessex Regional Genetics LaboratorySalisbury NHS Foundation TrustSalisburyUK
| | - Rachel Firth
- Wessex Clinical Genetics ServiceSouthampton University Hospitals NHS Foundation TrustPrincess Anne HospitalSouthamptonUK
| | - Victoria Harrison
- Wessex Clinical Genetics ServiceSouthampton University Hospitals NHS Foundation TrustPrincess Anne HospitalSouthamptonUK
| | | | - Shuwen Huang
- National Genetics Reference Laboratory (Wessex)Salisbury NHS Foundation TrustSalisburyUK
| | - Beth Kirk
- Wessex Regional Genetics LaboratorySalisbury NHS Foundation TrustSalisburyUK
| | - Katherine L. Lachlan
- Wessex Clinical Genetics ServiceSouthampton University Hospitals NHS Foundation TrustPrincess Anne HospitalSouthamptonUK
| | - Viv K. Maloney
- Wessex Regional Genetics LaboratorySalisbury NHS Foundation TrustSalisburyUK
| | - John C. K. Barber
- Department of Human Genetics and Genomic MedicineUniversity of SouthamptonSouthampton General HospitalSouthamptonUK
| |
Collapse
|
39
|
Jiao Z, Jiang Z, Wang J, Xu H, Zhang Q, Liu S, Du N, Zhang Y, Qiu H. Whole‑genome scale identification of methylation markers specific for cerebral palsy in monozygotic discordant twins. Mol Med Rep 2017; 16:9423-9430. [PMID: 29039597 PMCID: PMC5779998 DOI: 10.3892/mmr.2017.7800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/09/2017] [Indexed: 12/23/2022] Open
Abstract
Cerebral palsy (CP) is a severe type of brain disease affecting movement and posture. Although CP has strong genetic and environmental components, considerable differences in the methylome between monozygotic (MZ) twins discordant for CP implicates epigenetic contributors as well. In order to determine the differences in methylation in patients with CP without interference of the interindividual genomic variation, four pairs of MZ twins discordant for CP were profiled for DNA methylation changes using reduced representation bisulfite sequencing on the genomic-scale. Similar DNA methylation patterns were observed in all samples. However, MZ twins demonstrated higher correlations and closer evolutionary associations compared with the other samples, indicating a stable methylome of MZ twins. A total of 190 differentially methylated genes (DMGs) were identified using Student's t-test, of which 37 genes were hypermethylated in the CP group while the remainders were hypomethylated compared with control group. The identified DMGs were enriched in several cerebral abnormalities, including cerebral cortical atrophy and cerebral atrophy, suggesting that the occurrence of CP may be associated with the methylation alterations. The neighboring genes of DMGs in the protein-protein interaction network were enriched in numerous important functions in essential processes. The results of the present study identified important genes that may epigenetically contribute to the occurrence and development of CP in MZ twins, suggesting that the different prevalence of CP in identical twins may be associated with DNA methylation alterations.
Collapse
Affiliation(s)
- Zhe Jiao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhimei Jiang
- Heilongjiang Cerebral Palsy Treatment and Management Center, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jingtao Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hui Xu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Qiang Zhang
- School of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Shuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Ning Du
- School of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yuanyuan Zhang
- School of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hongbin Qiu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
40
|
Wang FF, Luo R, Qu Y, Mu DZ. [Advances in genetic research of cerebral palsy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1022-1026. [PMID: 28899476 PMCID: PMC7403069 DOI: 10.7499/j.issn.1008-8830.2017.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Cerebral palsy is a group of syndromes caused by non-progressive brain injury in the fetus or infant and can cause disabilities in childhood. Etiology of cerebral palsy has always been a hot topic for clinical scientists. More and more studies have shown that genetic factors are closely associated with the development of cerebral palsy. With the development and application of various molecular and biological techniques such as chromosome microarray analysis, genome-wide association study, and whole exome sequencing, new achievements have been made in the genetic research of cerebral palsy. Chromosome abnormalities, copy number variations, susceptibility genes, and single gene mutation associated with the development of cerebral palsy have been identified, which provides new opportunities for the research on the pathogenesis of cerebral palsy. This article reviews the advances in the genetic research on cerebral palsy in recent years.
Collapse
Affiliation(s)
- Fang-Fang Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | | | | | | |
Collapse
|
41
|
De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet Med 2017; 20:172-180. [PMID: 28771244 PMCID: PMC5846809 DOI: 10.1038/gim.2017.83] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/24/2017] [Indexed: 02/04/2023] Open
Abstract
Purpose Hemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP. Methods We genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of “CNV-positive” trios. Results We detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders. Conclusion We found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.
Collapse
|
42
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
43
|
Fahey MC, Maclennan AH, Kretzschmar D, Gecz J, Kruer MC. The genetic basis of cerebral palsy. Dev Med Child Neurol 2017; 59:462-469. [PMID: 28042670 DOI: 10.1111/dmcn.13363] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2016] [Indexed: 12/23/2022]
Abstract
Although prematurity and hypoxic-ischaemic injury are well-recognized contributors to the pathogenesis of cerebral palsy (CP), as many as one-third of children with CP may lack traditional risk factors. For many of these children, a genetic basis to their condition is suspected. Recent findings have implicated copy number variants and mutations in single genes in children with CP. Current studies are limited by relatively small patient numbers, the underlying genetic heterogeneity identified, and the paucity of validation studies that have been performed. However, several genes mapping to intersecting pathways controlling neurodevelopment and neuronal connectivity have been identified. Analogous to other neurodevelopmental disorders such as autism and intellectual disability, the genomic architecture of CP is likely to be highly complex. Although we are just beginning to understand genetic contributions to CP, new insights are anticipated to serve as a unique window into the neurobiology of CP and suggest new targets for intervention.
Collapse
Affiliation(s)
- Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Alastair H Maclennan
- The Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Jozef Gecz
- The Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Michael C Kruer
- Departments of Child Health, Neurology and Genetics, University of Arizona, College of Medicine, Phoenix, AZ, USA.,Programs in Neuroscience and Molecular & Cellular Biology, Arizona State University, Tempe, AZ, USA.,Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
44
|
Chen F, Duggal P, Klein BEK, Lee KE, Truitt B, Klein R, Iyengar SK, Klein AP. Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent. Mol Vis 2016; 22:783-96. [PMID: 27440996 DOI: pmid/27440996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Ocular refraction is measured in spherical equivalent as the power of the external lens required to focus images on the retina. Myopia (nearsightedness) and hyperopia (farsightedness) are the most common refractive errors, and the leading causes of visual impairment and blindness in the world. The goal of this study is to identify rare and low-frequency variants that influence spherical equivalent. METHODS We conducted variant-level and gene-level quantitative trait association analyses for mean spherical equivalent, using data from 1,560 individuals in the Beaver Dam Eye Study. Genotyping was conducted using the Illumina exome array. We analyzed 34,976 single nucleotide variants and 11,571 autosomal genes across the genome, using single-variant tests as well as gene-based tests. RESULTS Spherical equivalent was significantly associated with five genes in gene-based analysis: PTCHD2 at 1p36.22 (p = 3.6 × 10(-7)), CRISP3 at 6p12.3 (p = 4.3 × 10(-6)), NAP1L4 at 11p15.5 (p = 3.6 × 10(-6)), FSCB at 14q21.2 (p = 1.5 × 10(-7)), and AP3B2 at 15q25.2 (p = 1.6 × 10(-7)). The variant-based tests identified evidence suggestive of association with two novel variants in linkage disequilibrium (pairwise r(2) = 0.80) in the TCTE1 gene region at 6p21.1 (rs2297336, minor allele frequency (MAF) = 14.1%, β = -0.62 p = 3.7 × 10(-6); rs324146, MAF = 16.9%, β = -0.55, p = 1.4 × 10(-5)). In addition to these novel findings, we successfully replicated a previously reported association with rs634990 near GJD2 at 15q14 (MAF = 47%, β = -0.29, p=1.8 × 10(-3)). We also found evidence of association with spherical equivalent on 2q37.1 in PRSS56 at rs1550094 (MAF = 31%, β = -0.33, p = 1.7 × 10(-3)), a region previously associated with myopia. CONCLUSIONS We identified several novel candidate genes that may play a role in the control of spherical equivalent. However, further studies are needed to replicate these findings. In addition, our results contribute to the increasing evidence that variation in the GJD2 and PRSS56 genes influence the development of refractive errors. Identifying that variation in these genes is associated with spherical equivalent may provide further insight into the etiology of myopia and consequent vision loss.
Collapse
Affiliation(s)
- Fei Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kristine E Lee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Barbara Truitt
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sudha K Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Alison P Klein
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
45
|
Andersen EW, Leventer RJ, Reddihough DS, Davis MR, Ryan MM. Cerebral palsy is not a diagnosis: A case report of a novel atlastin-1 mutation. J Paediatr Child Health 2016; 52:669-71. [PMID: 27333849 DOI: 10.1111/jpc.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Erik W Andersen
- Children's Neurosciences Centre, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Richard J Leventer
- Children's Neurosciences Centre, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria
| | - Dinah S Reddihough
- Department of Developmental Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Monique M Ryan
- Children's Neurosciences Centre, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria
| |
Collapse
|
46
|
Erickson RP. The importance of de novo mutations for pediatric neurological disease--It is not all in utero or birth trauma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:42-58. [PMID: 27036065 DOI: 10.1016/j.mrrev.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/30/2023]
Abstract
The advent of next generation sequencing (NGS, which consists of massively parallel sequencing to perform TGS (total genome sequencing) or WES (whole exome sequencing)) has abundantly discovered many causative mutations in patients with pediatric neurological disease. A surprisingly high number of these are de novo mutations which have not been inherited from either parent. For epilepsy, autism spectrum disorders, and neuromotor disorders, including cerebral palsy, initial estimates put the frequency of causative de novo mutations at about 15% and about 10% of these are somatic. There are some shared mutated genes between these three classes of disease. Studies of copy number variation by comparative genomic hybridization (CGH) proceded the NGS approaches but they also detect de novo variation which is especially important for ASDs. There are interesting differences between the mutated genes detected by CGS and NGS. In summary, de novo mutations cause a very significant proportion of pediatric neurological disease.
Collapse
Affiliation(s)
- Robert P Erickson
- Dept. of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724, United States.
| |
Collapse
|
47
|
MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 2015; 213:779-88. [PMID: 26003063 DOI: 10.1016/j.ajog.2015.05.034] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
Cerebral palsy (CP) is heterogeneous with different clinical types, comorbidities, brain imaging patterns, causes, and now also heterogeneous underlying genetic variants. Few are solely due to severe hypoxia or ischemia at birth. This common myth has held back research in causation. The cost of litigation has devastating effects on maternity services with unnecessarily high cesarean delivery rates and subsequent maternal morbidity and mortality. CP rates have remained the same for 50 years despite a 6-fold increase in cesarean birth. Epidemiological studies have shown that the origins of most CP are prior to labor. Increased risk is associated with preterm delivery, congenital malformations, intrauterine infection, fetal growth restriction, multiple pregnancy, and placental abnormalities. Hypoxia at birth may be primary or secondary to preexisting pathology and international criteria help to separate the few cases of CP due to acute intrapartum hypoxia. Until recently, 1-2% of CP (mostly familial) had been linked to causative mutations. Recent genetic studies of sporadic CP cases using new-generation exome sequencing show that 14% of cases have likely causative single-gene mutations and up to 31% have clinically relevant copy number variations. The genetic variants are heterogeneous and require function investigations to prove causation. Whole genome sequencing, fine scale copy number variant investigations, and gene expression studies may extend the percentage of cases with a genetic pathway. Clinical risk factors could act as triggers for CP where there is genetic susceptibility. These new findings should refocus research about the causes of these complex and varied neurodevelopmental disorders.
Collapse
|
48
|
Abstract
Since the launch of our journal as Nature Clinical Practice Neurology in 2005, we have seen remarkable progress in many areas of neurology research, but what does the future hold? Will advances in basic research be translated into effective disease-modifying therapies, and will personalized medicine finally become a reality? For this special Viewpoint article, we invited a panel of Advisory Board members and other journal contributors to outline their research priorities and predictions in neurology for the next 10 years.
Collapse
|
49
|
Clinically relevant copy number variations detected in cerebral palsy. Nat Commun 2015; 6:7949. [PMID: 26236009 PMCID: PMC4532872 DOI: 10.1038/ncomms8949] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/30/2015] [Indexed: 12/29/2022] Open
Abstract
Cerebral palsy (CP) represents a group of non-progressive clinically heterogeneous disorders that are characterized by motor impairment and early age of onset, frequently accompanied by co-morbidities. The cause of CP has historically been attributed to environmental stressors resulting in brain damage. While genetic risk factors are also implicated, guidelines for diagnostic assessment of CP do not recommend for routine genetic testing. Given numerous reports of aetiologic copy number variations (CNVs) in other neurodevelopmental disorders, we used microarrays to genotype a population-based prospective cohort of children with CP and their parents. Here we identify de novo CNVs in 8/115 (7.0%) CP patients (∼1% rate in controls). In four children, large chromosomal abnormalities deemed likely pathogenic were found, and they were significantly more likely to have severe neuromotor impairments than those CP subjects without such alterations. Overall, the CNV data would have impacted our diagnosis or classification of CP in 11/115 (9.6%) families.
Collapse
|
50
|
Parolin Schnekenberg R, Perkins EM, Miller JW, Davies WIL, D'Adamo MC, Pessia M, Fawcett KA, Sims D, Gillard E, Hudspith K, Skehel P, Williams J, O'Regan M, Jayawant S, Jefferson R, Hughes S, Lustenberger A, Ragoussis J, Jackson M, Tucker SJ, Németh AH. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain 2015; 138:1817-32. [PMID: 25981959 PMCID: PMC4572487 DOI: 10.1093/brain/awv117] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/25/2015] [Indexed: 01/06/2023] Open
Abstract
Cerebral palsy is commonly attributed to perinatal asphyxia. However, Schnekenberg et al. describe here four individuals with ataxic cerebral palsy likely due to de novo dominant mutations associated with increased paternal age. Therefore, patients with cerebral palsy should be investigated for genetic causes before the disorder is ascribed to asphyxia. Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies.
Collapse
Affiliation(s)
- Ricardo Parolin Schnekenberg
- 1 Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN, UK 2 Universidade Positivo, School of Medicine, Rua Parigot de Souza 5300, 81280-330, Curitiba, Brazil
| | - Emma M Perkins
- 3 Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Jack W Miller
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Wayne I L Davies
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK 5 School of Animal Biology, University of Western Australia, Perth, Australia 6 Section of Physiology & Biochemistry, Department of Experimental Medicine, School of Medicine & Surgery, University of Perugia, P.le Gambuli 1, Edificio D, Piano 106132 San Sisto, Perugia, Italy
| | - Maria Cristina D'Adamo
- 6 Section of Physiology & Biochemistry, Department of Experimental Medicine, School of Medicine & Surgery, University of Perugia, P.le Gambuli 1, Edificio D, Piano 106132 San Sisto, Perugia, Italy
| | - Mauro Pessia
- 6 Section of Physiology & Biochemistry, Department of Experimental Medicine, School of Medicine & Surgery, University of Perugia, P.le Gambuli 1, Edificio D, Piano 106132 San Sisto, Perugia, Italy 7 Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | - Katherine A Fawcett
- 8 CGAT Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - David Sims
- 8 CGAT Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Elodie Gillard
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Karl Hudspith
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Paul Skehel
- 3 Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Jonathan Williams
- 9 Oxford Medical Genetics Laboratories, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Mary O'Regan
- 10 Fraser of Allander Neurosciences Unit, Royal Hospital for Sick Children, Glasgow G3 8SJ, UK
| | - Sandeep Jayawant
- 11 Department of Paediatrics, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Rosalind Jefferson
- 12 Department of Paediatrics, Royal Berkshire Foundation Trust Hospital, Reading, UK
| | - Sarah Hughes
- 12 Department of Paediatrics, Royal Berkshire Foundation Trust Hospital, Reading, UK
| | - Andrea Lustenberger
- 13 Department of Neuropaediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Bern, Switzerland
| | - Jiannis Ragoussis
- 1 Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Mandy Jackson
- 3 Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Stephen J Tucker
- 14 Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU, UK 15 OXION Initiative in Ion Channels and Disease, University of Oxford, OX1 3PT, UK
| | - Andrea H Németh
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK 16 Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 7LJ, UK
| |
Collapse
|