1
|
Ramachandran K, Futtner CR, Sommars MA, Quattrocelli M, Omura Y, Fruzyna E, Wang JC, Waldeck NJ, Senagolage MD, Telles CG, Demonbreun AR, Prendergast E, Lai N, Arango D, Bederman IR, McNally EM, Barish GD. Transcriptional programming of translation by BCL6 controls skeletal muscle proteostasis. Nat Metab 2024; 6:304-322. [PMID: 38337096 PMCID: PMC10949880 DOI: 10.1038/s42255-024-00983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Skeletal muscle is dynamically controlled by the balance of protein synthesis and degradation. Here we discover an unexpected function for the transcriptional repressor B cell lymphoma 6 (BCL6) in muscle proteostasis and strength in mice. Skeletal muscle-specific Bcl6 ablation in utero or in adult mice results in over 30% decreased muscle mass and force production due to reduced protein synthesis and increased autophagy, while it promotes a shift to a slower myosin heavy chain fibre profile. Ribosome profiling reveals reduced overall translation efficiency in Bcl6-ablated muscles. Mechanistically, tandem chromatin immunoprecipitation, transcriptomic and translational analyses identify direct BCL6 repression of eukaryotic translation initiation factor 4E-binding protein 1 (Eif4ebp1) and activation of insulin-like growth factor 1 (Igf1) and androgen receptor (Ar). Together, these results uncover a bifunctional role for BCL6 in the transcriptional and translational control of muscle proteostasis.
Collapse
Affiliation(s)
- Krithika Ramachandran
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christopher R Futtner
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Meredith A Sommars
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mattia Quattrocelli
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yasuhiro Omura
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ellen Fruzyna
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Janice C Wang
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nathan J Waldeck
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madhavi D Senagolage
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carmen G Telles
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nicola Lai
- Department of Mechanical, Chemical, and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ilya R Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Grant D Barish
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Nguyen P, Valanejad L, Cast A, Wright M, Garcia JM, El-Serag HB, Karns R, Timchenko NA. Elimination of Age-Associated Hepatic Steatosis and Correction of Aging Phenotype by Inhibition of cdk4-C/EBPα-p300 Axis. Cell Rep 2020; 24:1597-1609. [PMID: 30089269 PMCID: PMC8209958 DOI: 10.1016/j.celrep.2018.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/13/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
The aging liver is affected by several disorders, including steatosis, that can lead to a decline of liver functions. Here, we present evidence that the cdk4-C/EBPα-p300 axis is a critical regulator of age-associated disorders, including steatosis. We found that patients with non-alcoholic fatty liver disease (NAFLD) have increased levels of cdk4 and that cdk4-resistant C/EBPα-S193A mice do not develop hepatic steatosis with advancing age. Underlying mechanisms include a block in C/EBPα activation and subsequent failure in activation of enzymes involved in the development of NAFLD. Inhibition of cdk4 in aged wild-type (WT) mice by a specific cdk4 inhibitor, PD-0332991, reduces C/EBPα-p300 complexes and eliminates hepatic steatosis. Moreover, the inhibition of cdk4 in aged mice reverses many age-related disorders. Mechanisms of correction include elimination of cellular senescence and alterations in the chromatin structure of hepatocytes. Thus, the inhibition of cdk4 might be considered as a therapeutic approach to correct age-associated liver disorders. Nguyen et al. show that nuclear elevation of cdk4 leads to age-associated disorders, such as hepatic steatosis, and to age-dependent decline of liver functions and morphology. Elevation of cdk4 changes multiple molecular aspects of liver biology. Inhibition of cdk4 in old mice eliminates hepatic steatosis and corrects age-associated liver disorders.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Leila Valanejad
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ashley Cast
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Mary Wright
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jose M Garcia
- GRECC, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98108, USA
| | - Hashem B El-Serag
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA; Section of Gastroenterology and Hepatology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nikolai A Timchenko
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
3
|
p53 Functions in Adipose Tissue Metabolism and Homeostasis. Int J Mol Sci 2018; 19:ijms19092622. [PMID: 30181511 PMCID: PMC6165290 DOI: 10.3390/ijms19092622] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
As a tumor suppressor and the most frequently mutated gene in cancer, p53 is among the best-described molecules in medical research. As cancer is in most cases an age-related disease, it seems paradoxical that p53 is so strongly conserved from early multicellular organisms to humans. A function not directly related to tumor suppression, such as the regulation of metabolism in nontransformed cells, could explain this selective pressure. While this role of p53 in cellular metabolism is gradually emerging, it is imperative to dissect the tissue- and cell-specific actions of p53 and its downstream signaling pathways. In this review, we focus on studies reporting p53’s impact on adipocyte development, function, and maintenance, as well as the causes and consequences of altered p53 levels in white and brown adipose tissue (AT) with respect to systemic energy homeostasis. While whole body p53 knockout mice gain less weight and fat mass under a high-fat diet owing to increased energy expenditure, modifying p53 expression specifically in adipocytes yields more refined insights: (1) p53 is a negative regulator of in vitro adipogenesis; (2) p53 levels in white AT are increased in diet-induced and genetic obesity mouse models and in obese humans; (3) functionally, elevated p53 in white AT increases senescence and chronic inflammation, aggravating systemic insulin resistance; (4) p53 is not required for normal development of brown AT; and (5) when p53 is activated in brown AT in mice fed a high-fat diet, it increases brown AT temperature and brown AT marker gene expression, thereby contributing to reduced fat mass accumulation. In addition, p53 is increasingly being recognized as crucial player in nutrient sensing pathways. Hence, despite existence of contradictory findings and a varying density of evidence, several functions of p53 in adipocytes and ATs have been emerging, positioning p53 as an essential regulatory hub in ATs. Future studies need to make use of more sophisticated in vivo model systems and should identify an AT-specific set of p53 target genes and downstream pathways upon different (nutrient) challenges to identify novel therapeutic targets to curb metabolic diseases.
Collapse
|
4
|
Xiang H, Zhong ZX, Peng YD, Jiang SW. The Emerging Role of Zfp217 in Adipogenesis. Int J Mol Sci 2017; 18:ijms18071367. [PMID: 28653987 PMCID: PMC5535860 DOI: 10.3390/ijms18071367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022] Open
Abstract
Zinc finger protein 217 (Zfp217), a member of the krüppel-type zinc finger protein family, plays diverse roles in cell differentiation and development of mammals. Despite extensive research on the functions of Zfp217 in cancer, pluripotency and reprogramming, its physiological roles in adipogenesis remain unknown. Our previous RNA sequencing data suggest the involvement of Zfp217 in adipogenesis. In this study, the potential function of Zfp217 in adipogenesis was investigated through bioinformatics analysis and a series of experiments. The expression of Zfp217 was found to be gradually upregulated during the adipogenic differentiation in C3H10T1/2 cells, which was consistent with that of the adipogenic marker gene Pparg2. Furthermore, there was a positive, significant relationship between Zfp217 expression and adipocyte differentiation. It was also observed that Zfp217 could not only trigger proliferative defect in C3H10T1/2 cells, but also interact with Ezh2 and suppress the downstream target genes of Ezh2. Besides, three microRNAs (miR-503-5p, miR-135a-5p and miR-19a-3p) which target Zfp217 were found to suppress the process of adipogenesis. This is the first report showing that Zfp217 has the capacity to regulate adipogenesis.
Collapse
Affiliation(s)
- Hong Xiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhu-Xia Zhong
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yong-Dong Peng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China.
| | - Si-Wen Jiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
5
|
Strycharz J, Drzewoski J, Szemraj J, Sliwinska A. Is p53 Involved in Tissue-Specific Insulin Resistance Formation? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9270549. [PMID: 28194257 PMCID: PMC5282448 DOI: 10.1155/2017/9270549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
p53 constitutes an extremely versatile molecule, primarily involved in sensing the variety of cellular stresses. Functional p53 utilizes a plethora of mechanisms to protect cell from deleterious repercussions of genotoxic insults, where senescence deserves special attention. While the impressive amount of p53 roles has been perceived solely by the prism of antioncogenic effect, its presence seems to be vastly connected with metabolic abnormalities underlain by cellular aging, obesity, and inflammation. p53 has been found to regulate multiple biochemical processes such as glycolysis, oxidative phosphorylation, lipolysis, lipogenesis, β-oxidation, gluconeogenesis, and glycogen synthesis. Notably, p53-mediated metabolic effects are totally up to results of insulin action. Accumulating amount of data identifies p53 to be a factor activated upon hyperglycemia or excessive calorie intake, thus contributing to low-grade chronic inflammation and systemic insulin resistance. Prominent signs of its actions have been observed in muscles, liver, pancreas, and adipose tissue being associated with attenuation of insulin signalling. p53 is of crucial importance for the regulation of white and brown adipogenesis simultaneously being a repressor for preadipocyte differentiation. This review provides a profound insight into p53-dependent metabolic actions directed towards promotion of insulin resistance as well as presenting experimental data regarding obesity-induced p53-mediated metabolic abnormalities.
Collapse
Affiliation(s)
- Justyna Strycharz
- Diabetes Student Scientific Society at the Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Sliwinska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Yu H, He K, Wang L, Hu J, Gu J, Zhou C, Lu R, Jin Y. Stk40 represses adipogenesis through translational control of CCAAT/enhancer-binding proteins. J Cell Sci 2015; 128:2881-90. [PMID: 26065429 DOI: 10.1242/jcs.170282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023] Open
Abstract
A better understanding of molecular regulation in adipogenesis might help the development of efficient strategies to cope with obesity-related diseases. Here, we report that CCAAT/enhancer-binding protein (C/EBP) β and C/EBPδ, two crucial pro-adipogenic transcription factors, are controlled at a translational level by serine/threonine kinase 40 (Stk40). Genetic knockout (KO) or knockdown (KD) of Stk40 leads to increased protein levels of C/EBP proteins and adipocyte differentiation in mouse embryonic fibroblasts (MEFs), fetal liver stromal cells, and mesenchymal stem cells (MSCs). In contrast, overexpression of Stk40 abolishes the enhanced C/EBP protein translation and adipogenesis observed in Stk40-KO and -KD cells. Functionally, knockdown of C/EBPβ eliminates the enhanced adipogenic differentiation in Stk40-KO and -KD cells substantially. Mechanistically, deletion of Stk40 enhances phosphorylation of eIF4E-binding protein 1, leading to increased eIF4E-dependent translation of C/EBPβ and C/EBPδ. Knockdown of eIF4E in MSCs decreases translation of C/EBP proteins. Moreover, Stk40-KO fetal livers display an increased adipogenic program and aberrant lipid and steroid metabolism. Collectively, our study uncovers a new repressor of C/EBP protein translation as well as adipogenesis and provides new insights into the molecular mechanism underpinning the adipogenic program.
Collapse
Affiliation(s)
- Hongyao Yu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ke He
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Lina Wang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Hu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Chenlin Zhou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Rui Lu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
7
|
Tobi EW, Slieker RC, Stein AD, Suchiman HED, Slagboom PE, van Zwet EW, Heijmans BT, Lumey LH. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol 2015; 44:1211-23. [PMID: 25944819 PMCID: PMC4588866 DOI: 10.1093/ije/dyv043] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 01/10/2023] Open
Abstract
Background: The manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies have concentrated on the effects of nutrition during early gestation. Lacking in humans is an epigenome-wide association study of DNA methylation in relation to perturbations in nutrition across all gestation periods. Methods: We used the quasi-experimental setting of the Dutch famine of 1944–45 to evaluate the impact of famine exposure during specific 10-week gestation periods, or during any time in gestation, on genome-wide DNA methylation levels at age ∼ 59 years. In addition, we evaluated the impact of exposure during a shorter pre- and post-conception period. DNA methylation was assessed using the Illumina 450k array in whole blood among 422 individuals with prenatal famine exposure and 463 time- or sibling-controls without prenatal famine exposure. Results: Famine exposure during gestation weeks 1–10, but not weeks 11–20, 21–30 or 31-delivery, was associated with an increase in DNA methylation of CpG dinucleotides cg20823026 (FAM150B), cg10354880 (SLC38A2) and cg27370573 (PPAP2C) and a decrease of cg11496778 (OSBPL5/MRGPRG) (P < 5.9 × 10−7, PFDR < 0.031). There was an increase in methylation of TACC1 and ZNF385A after exposure during any time in gestation (P < 2.0 × 10−7, PFDR = 0.034) and a decrease of cg23989336 (TMEM105) after exposure around conception. These changes represent a shift of 0.3–0.6 standard deviations and are linked to genes involved in growth, development and metabolism. Conclusion: Early gestation, and not mid or late gestation, is identified as a critical time-period for adult DNA methylation changes in whole blood after prenatal exposure to famine.
Collapse
Affiliation(s)
- Elmar W Tobi
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roderick C Slieker
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aryeh D Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia USA
| | - H Eka D Suchiman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik W van Zwet
- Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands and
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - L H Lumey
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York USA
| |
Collapse
|
8
|
Dynamics of mRNA and polysomal abundance in early 3T3-L1 adipogenesis. BMC Genomics 2014; 15:381. [PMID: 24886538 PMCID: PMC4039748 DOI: 10.1186/1471-2164-15-381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Adipogenesis is a complex process, in which immature pre-adipocytes change morphology, micro-anatomy and physiology to become mature adipocytes. These store and accumulate fat and release diverse hormones. Massive changes in protein content and protein composition of the transforming cell take place within a short time-frame. In a previous study we analyzed changes in the abundance of free and polysomal, i.e. ribosome bound, RNAs in the first hours of adipogenesis in the murine cell line 3T3-L1. Here we analyze changes of mRNA levels and their potential contribution to the changing protein pool by determination of mRNA levels and ribosome binding to mRNAs in 3T3-L1 cells stimulated for adipogenesis. We grouped mRNA species into categories with respect to up- or down-regulated transcription and translation and analyzed the groups regarding specific functionalities based on Gene Ontology (GO). Results A shift towards up-regulation of gene expression in early adipogenesis was detected. Genes up-regulated at the transcriptional (TC:up) and translational (TL:up) level (TC:up/TL:up) are very likely involved in control and logistics of translation. Many of them are known to contain a TOP motif. In the TC:up/TL:unchanged group we detected most of the metal binding proteins and metal transporters. In the TC:unchanged/TL:up group several factors of the olfactory receptor family were identified, while in TC:unchanged/TL:down methylation and repair genes are represented. In the TC:down/TL:up group we detected many signaling factors. The TC:down/TL:unchanged group mainly consists of regulatory factors. Conclusions Within the first hours of adipogenesis, changes in transcriptional and translational regulation take place. Notably, genes with a specific biological or molecular function tend to cluster in groups according to their transcriptional and translational regulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-381) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Huang B, Takahashi K, Jennings EA, Pumtang-On P, Kiso H, Togo Y, Saito K, Sugai M, Akira S, Shimizu A, Bessho K. Prospective signs of cleidocranial dysplasia in Cebpb deficiency. J Biomed Sci 2014; 21:44. [PMID: 24885110 PMCID: PMC4039338 DOI: 10.1186/1423-0127-21-44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background Although runt-related transcription factor 2 (RUNX2) has been considered a determinant of cleidocranial dysplasia (CCD), some CCD patients were free of RUNX2 mutations. CCAAT/enhancer-binding protein beta (Cebpb) is a key factor of Runx2 expression and our previous study has reported two CCD signs including hyperdontia and elongated coronoid process of the mandible in Cebpb deficient mice. Following that, this work aimed to conduct a case-control study of thoracic, zygomatic and masticatory muscular morphology to propose an association between musculoskeletal phenotypes and deficiency of Cebpb, using a sample of Cebpb-/-, Cebpb+/- and Cebpb+/+ adult mice. Somatic skeletons and skulls of mice were inspected with soft x-rays and micro-computed tomography (μCT), respectively. Zygomatic inclination was assessed using methods of coordinate geometry and trigonometric function on anatomic landmarks identified with μCT. Masseter and temporal muscles were collected and weighed. Expression of Cebpb was examined with a reverse transcriptase polymerase chain reaction (RT-PCR) technique. Results Cebpb-/- mice displayed hypoplastic clavicles, a narrow thoracic cage, and a downward tilted zygomatic arch (p < 0.001). Although Cebpb+/- mice did not show the phenotypes above (p = 0.357), a larger mass percentage of temporal muscles over masseter muscles was seen in Cebpb+/- littermates (p = 0.012). The mRNA expression of Cebpb was detected in the clavicle, the zygoma, the temporal muscle and the masseter muscle, respectively. Conclusions Prospective signs of CCD were identified in mice with Cebpb deficiency. These could provide an additional aetiological factor of CCD. Succeeding investigation into interactions among Cebpb, Runx2 and musculoskeletal development is indicated.
Collapse
Affiliation(s)
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ramírez CM, Lin CS, Abdelmohsen K, Goedeke L, Yoon JH, Madrigal-Matute J, Martin-Ventura JL, Vo DT, Uren PJ, Penalva LO, Gorospe M, Fernández-Hernando C. RNA binding protein HuR regulates the expression of ABCA1. J Lipid Res 2014; 55:1066-76. [PMID: 24729624 DOI: 10.1194/jlr.m044925] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Indexed: 12/31/2022] Open
Abstract
ABCA1 is a major regulator of cellular cholesterol efflux and plasma HDL biogenesis. Even though the transcriptional activation of ABCA1 is well established, the posttranscriptional regulation of ABCA1 expression is poorly understood. Here, we investigate the potential contribution of the RNA binding protein (RBP) human antigen R (HuR) on the posttranscriptional regulation of ABCA1 expression. RNA immunoprecipitation assays demonstrate a direct interaction between HuR and ABCA1 mRNA. We found that HuR binds to the 3' untranslated region of ABCA1 and increases ABCA1 translation, while HuR silencing reduces ABCA1 expression and cholesterol efflux to ApoA1 in human hepatic (Huh-7) and monocytic (THP-1) cells. Interestingly, cellular cholesterol levels regulate the expression, intracellular localization, and interaction between HuR and ABCA1 mRNA. Finally, we found that HuR expression was significantly increased in macrophages from human atherosclerotic plaques, suggesting an important role for this RBP in controlling macrophage cholesterol metabolism in vivo. In summary, we have identified HuR as a novel posttranscriptional regulator of ABCA1 expression and cellular cholesterol homeostasis, thereby opening new avenues for increasing cholesterol efflux from atherosclerotic foam macrophages and raising circulat-ing HDL cholesterol levels.
Collapse
Affiliation(s)
- Cristina M Ramírez
- Vascular Biology and Therapeutics Program, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520 Departments of Medicine and Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Chin Sheng Lin
- Departments of Medicine and Cell Biology, New York University School of Medicine, New York, NY 10016 Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520 Departments of Medicine and Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Julio Madrigal-Matute
- Departments of Medicine and Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Jose L Martin-Ventura
- Vascular Research Lab, IIS-Fundación Jimenez Díaz, Autónoma University, Madrid 28040, Spain
| | - Dat T Vo
- Children's Cancer Research Institute, Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Philip J Uren
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Luiz O Penalva
- Children's Cancer Research Institute, Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520 Departments of Medicine and Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
11
|
Regulation of β-cell function by RNA-binding proteins. Mol Metab 2013; 2:348-55. [PMID: 24327951 DOI: 10.1016/j.molmet.2013.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 02/05/2023] Open
Abstract
β-cells of the pancreatic islets are highly specialized and high-throughput units for the production of insulin, the key hormone for maintenance of glucose homeostasis. Elevation of extracellular glucose and/or GLP-1 levels triggers a rapid upregulation of insulin biosynthesis through the activation of post-transcriptional mechanisms. RNA-binding proteins are emerging as key factors in the regulation of these mechanisms as well as in other aspects of β-cell function and glucose homeostasis at large, and thus may be implicated in the pathogenesis of diabetes. Here we review current research in the field, with a major emphasis on RNA-binding proteins that control biosynthesis of insulin and other components of the insulin secretory granules by modulating the stability and translation of their mRNAs.
Collapse
|
12
|
Franck D, Tracy L, Armata HL, Delaney CL, Jung DY, Ko HJ, Ong H, Kim JK, Scrable H, Sluss HK. Glucose Tolerance in Mice is Linked to the Dose of the p53 Transactivation Domain. Endocr Res 2013; 38:139-150. [PMID: 23102272 PMCID: PMC5074905 DOI: 10.3109/07435800.2012.735735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To test the transactivation domain-mediated control of glucose homeostasis by the tumor suppressor p53. BACKGROUND The tumor suppressor p53 has a critical role in maintenance of glucose homeostasis. Phosphorylation of Ser18 in the transaction domain of p53 controls the expression of Zpf385a, a zinc finger protein that regulates adipogenesis and adipose function. This results suggest that the transactivation domain of p53 is essential to the control of glucose homeostasis. MATERIALS AND METHODS Mice with mutations in the p53 transactivation domain were examined for glucose homeostasis as well as various metabolic parameters. Glucose tolerance and insulin tolerance tests were performed on age matched wild type and mutant animals. In addition, mice expressing increased dosage of p53 were also examined. RESULTS Mice with a mutation in p53Ser18 exhibit reduced Zpf385a expression in adipose tissue, adipose tissue-specific insulin resistance, and glucose intolerance. Mice with relative deficits in the transactivation domain of p53 exhibit similar defects in glucose homeostasis, while "Super p53" mice with an increased dosage of p53 exhibit improved glucose tolerance. CONCLUSION These data support the role of an ATM-p53 cellular stress axis that helps combat glucose intolerance and insulin resistance and regulates glucose homeostasis.
Collapse
Affiliation(s)
- Debra Franck
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Department of Biology, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| | - Laura Tracy
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Department of Biology, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| | - Heather L. Armata
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Christine L. Delaney
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Hwi Jin Ko
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Helena Ong
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jason K. Kim
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | | | - Hayla K. Sluss
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Corresponding author: Hayla K. Sluss, Department of Medicine, LRB 370W, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01655 USA, Phone: (508) 856-3372,
| |
Collapse
|
13
|
Abstract
Post-transcriptional gene regulation by microRNAs (miRNAs) and RNA-binding proteins (RBPs) is central to many biological functions. Aberrant gene expression patterns underlie many metabolic diseases that represent major public health concerns and formidable therapeutic challenges. Several studies have established a number of post-transcriptional regulators implicated in metabolic diseases such as diabetes and obesity. In addition, emerging knowledge of metabolically active and insulin-sensitive organs, such as the pancreas, liver, muscle and adipose compartment, is rapidly expanding the panel of potential therapeutic targets for the treatment of metabolic diseases. Here, we review our current understanding of miRNAs and RBPs that affect glucose and lipid homeostasis, and their roles in normal physiology and metabolic disorders, especially type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Wook Kim
- Laboratory of Clinical Investigation, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD, USA
| | | |
Collapse
|
14
|
Miglino N, Roth M, Tamm M, Borger P. Asthma and COPD - The C/EBP Connection. Open Respir Med J 2012; 6:1-13. [PMID: 22715349 PMCID: PMC3377872 DOI: 10.2174/1874306401206010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are the two most prominent chronic inflammatory lung diseases with increasing prevalence. Both diseases are associated with mild or severe remodeling of the airways. In this review, we postulate that the pathologies of asthma and COPD may result from inadequate responses and/or a deregulated balance of a group of cell differentiation regulating factors, the CCAAT/Enhancer Binding Proteins (C/EBPs). In addition, we will argue that the exposure to environmental factors, such as house dust mite and cigarette smoke, changes the response of C/EBPs and are different in diseased cells. These novel insights may lead to a better understanding of the etiology of the diseases and may provide new aspects for therapies.
Collapse
Affiliation(s)
| | | | | | - Peter Borger
- Pulmonary Cell Research, Departments of Biomedicine and Pneumology, University Hospital Basel,
Switzerland
| |
Collapse
|
15
|
Fromm-Dornieden C, von der Heyde S, Lytovchenko O, Salinas-Riester G, Brenig B, Beissbarth T, Baumgartner BG. Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells. BMC Mol Biol 2012; 13:9. [PMID: 22436005 PMCID: PMC3347988 DOI: 10.1186/1471-2199-13-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/21/2012] [Indexed: 01/06/2023] Open
Abstract
Background Control of translation allows for rapid adaptation of the cell to stimuli, rather than the slower transcriptional control. We presume that translational control is an essential process in the control of adipogenesis, especially in the first hours after hormonal stimulation. 3T3-L1 preadipocytes were cultured to confluency and adipogenesis was induced by standard protocols using a hormonal cocktail. Cells were harvested before and 6 hours after hormonal induction. mRNAs attached to ribosomes (polysomal mRNAs) were separated from unbound mRNAs by velocity sedimentation. Pools of polysomal and unbound mRNA fractions were analyzed by microarray analysis. Changes in relative abundance in unbound and polysomal mRNA pools were calculated to detect putative changes in translational activity. Changes of expression levels of selected genes were verified by qPCR and Western blotting. Results We identified 43 genes that shifted towards the polysomal fraction (up-regulated) and 2 genes that shifted towards free mRNA fraction (down-regulated). Interestingly, we found Ghrelin to be down-regulated. Up-regulated genes comprise factors that are nucleic acid binding (eIF4B, HSF1, IRF6, MYC, POLR2a, RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, TSC22d3), form part of ribosomes (RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa), act on the regulation of translation (eIF4B) or transcription (HSF1, IRF6, MYC, TSC22d3). Others act as chaperones (BAG3, HSPA8, HSP90ab1) or in other metabolic or signals transducing processes. Conclusions We conclude that a moderate reorganisation of the functionality of the ribosomal machinery and translational activity are very important steps for growth and gene expression control in the initial phase of adipogenesis.
Collapse
|
16
|
Couturier J, Patel SG, Iyer D, Balasubramanyam A, Lewis DE. Human monocytes accelerate proliferation and blunt differentiation of preadipocytes in association with suppression of C/EBPΑ mRNA. Obesity (Silver Spring) 2012; 20:253-62. [PMID: 21869759 PMCID: PMC4364279 DOI: 10.1038/oby.2011.275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Obesity, type 2 diabetes, and HIV-associated lipodystrophy are associated with abnormalities in adipocyte growth and differentiation. In persons with these conditions, adipose depots contain increased numbers of macrophages, but the origins of these cells and their specific effects are uncertain. Peripheral blood mononuclear cells (PBMC)-derived monocytes, but not T cells, cocultured via transwells with primary subcutaneous preadipocytes, increased proliferation (approximately twofold) and reduced differentiation (~50%) of preadipocytes. Gene expression analyses in proliferating preadipocytes (i.e., prior to hormonal induction of terminal differentiation) revealed that monocytes down-regulated mRNA levels of CCAAT/enhancer binding protein, alpha (C/EBPα) and up-regulated mRNA levels of G0/G1 switch 2 (G0S2) message, genes important for the regulation of adipogenesis and the cell cycle. These data indicate that circulating peripheral blood monocytes can disrupt adipogenesis by interfering with a critical step in C/EBPα and G0S2 transcription required for preadipocytes to make the transition from proliferation to differentiation. Interactions between preadipocytes and monocytes also increased the inflammatory cytokines IL-6 and IL-8, as well as a novel chemotactic cytokine, CXCL1. Additionally, the levels of both IL-6 and CXCL1 were highest when preadipocytes and monocytes were cultured together, compared to each cell in culture alone. Such cross-talk amplifies the production of mediators of tissue inflammation.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, Texas, USA
| | - Sanjeet G. Patel
- Translational Metabolism Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Dinakar Iyer
- Translational Metabolism Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ashok Balasubramanyam
- Translational Metabolism Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Dorothy E. Lewis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
17
|
Cooperative role of the RNA-binding proteins Hzf and HuR in p53 activation. Mol Cell Biol 2011; 31:1997-2009. [PMID: 21402775 DOI: 10.1128/mcb.01424-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding protein Hzf (hematopoietic zinc finger) plays important roles in mRNA translation in cerebellar Purkinje cells and adipocytes. We along with others have reported that the expression of the Hzf gene is transcriptionally regulated by the p53 tumor suppressor protein. We show here that Hzf regulates p53 expression in cooperation with HuR. Hzf and HuR independently interact with the 3' untranslated region (UTR) of p53 mRNA, which facilitates the cytoplasmic localization of p53 mRNA in the presence of the ARF tumor suppressor protein. In the absence of Hzf and HuR, p53 induction by p19(ARF) is significantly attenuated, and the cells consequently acquire resistance to p19(ARF). Thus, these findings demonstrate that in addition to Mdm2 inhibition, p19(ARF) increases the concentration of p53 through posttranscriptional control of p53 mRNA and suggest critical roles for the RNA-binding proteins Hzf and HuR in p53 induction.
Collapse
|
18
|
Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 2010; 30:5787-94. [PMID: 20956556 DOI: 10.1128/mcb.00347-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.
Collapse
|
19
|
Bazuine M, Stenkula KG, Cam M, Arroyo M, Cushman SW. Guardian of corpulence: a hypothesis on p53 signaling in the fat cell. ACTA ACUST UNITED AC 2009; 4:231-243. [PMID: 20126301 DOI: 10.2217/clp.09.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adipocytes provide an organism with fuel in times of caloric deficit, and are an important type of endocrine cell in the maintenance of metabolic homeostasis. In addition, as a lipid-sink, adipocytes serve an equally important role in the protection of organs from the damaging effects of ectopic lipid deposition. For the organism, it is of vital importance to maintain adipocyte viability, yet the fat depot is a demanding extracellular environment with high levels of interstitial free fatty acids and associated lipotoxic effects. These surroundings are less than beneficial for the overall health of any resident cell, adipocyte and preadipocyte alike. In this review, we discuss the process of adipogenesis and the potential involvement of the p53 tumor-suppressor protein in alleviating some of the cellular stress experienced by these cells. In particular, we discuss p53-mediated mechanisms that prevent damage caused by reactive oxygen species and the effects of lipotoxicity. We also suggest the potential for two p53 target genes, START domain-containing protein 4 (StARD4) and oxysterol-binding protein (OSBP), with the concomitant synthesis of the signaling molecule oxysterol, to participate in adipogenesis.
Collapse
Affiliation(s)
- Merlijn Bazuine
- Experimental Diabetes, Metabolism & Nutrition Section, Diabetes Branch, NIDDK, NIH, Building 10-CRC, Room 5W-5816, 10 Center Drive, Bethesda, MD 20892, USA, Tel.: +1 301 496 7354, ,
| | | | | | | | | |
Collapse
|