1
|
Rosa N, Speelman-Rooms F, Parys JB, Bultynck G. Modulation of Ca 2+ signaling by antiapoptotic Bcl-2 versus Bcl-xL: From molecular mechanisms to relevance for cancer cell survival. Biochim Biophys Acta Rev Cancer 2022; 1877:188791. [PMID: 36162541 DOI: 10.1016/j.bbcan.2022.188791] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Members of the Bcl-2-protein family are key controllers of apoptotic cell death. The family is divided into antiapoptotic (including Bcl-2 itself, Bcl-xL, Mcl-1, etc.) and proapoptotic members (Bax, Bak, Bim, Bim, Puma, Noxa, Bad, etc.). These proteins are well known for their canonical role in the mitochondria, where they control mitochondrial outer membrane permeabilization and subsequent apoptosis. However, several proteins are recognized as modulators of intracellular Ca2+ signals that originate from the endoplasmic reticulum (ER), the major intracellular Ca2+-storage organelle. More than 25 years ago, Bcl-2, the founding member of the family, was reported to control apoptosis through Ca2+ signaling. Further work elucidated that Bcl-2 directly targets and inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), thereby suppressing proapoptotic Ca2+ signaling. In addition to Bcl-2, Bcl-xL was also shown to impact cell survival by sensitizing IP3R function, thereby promoting prosurvival oscillatory Ca2+ release. However, new work challenges this model and demonstrates that Bcl-2 and Bcl-xL can both function as inhibitors of IP3Rs. This suggests that, depending on the cell context, Bcl-xL could support very distinct Ca2+ patterns. This not only raises several questions but also opens new possibilities for the treatment of Bcl-xL-dependent cancers. In this review, we will discuss the similarities and divergences between Bcl-2 and Bcl-xL regarding Ca2+ homeostasis and IP3R modulation from both a molecular and a functional point of view, with particular emphasis on cancer cell death resistance mechanisms.
Collapse
Affiliation(s)
- Nicolas Rosa
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
2
|
Wang W, Qin X, Lin L, Wu J, Sun X, Zhao Y, Ju Y, Zhao Z, Ren L, Pang X, Guan Y, Zhang Y. Prostaglandin E 2-Induced AKT Activation Regulates the Life Span of Short-Lived Plasma Cells by Attenuating IRE1α Hyperactivation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1912-1923. [PMID: 35379745 DOI: 10.4049/jimmunol.2100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The mechanism regulating the life span of short-lived plasma cells (SLPCs) remains poorly understood. Here we demonstrated that the EP4-mediated activation of AKT by PGE2 was required for the proper control of inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) hyperactivation and hence the endoplasmic reticulum (ER) homeostasis in IgM-producing SLPCs. Disruption of the PGE2-EP4-AKT signaling pathway resulted in IRE1α-induced activation of JNK, leading to accelerated death of SLPCs. Consequently, Ptger4-deficient mice (C57BL/6) exhibited a markedly impaired IgM response to T-independent Ags and increased susceptibility to Streptococcus pneumoniae infection. This study reveals a highly selective impact of the PGE2-EP4 signal on the humoral immunity and provides a link between ER stress response and the life span of SLPCs.
Collapse
Affiliation(s)
- Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xiaodan Qin
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jia Wu
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Laboratory Medicine Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiuyuan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ye Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yurong Ju
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ziheng Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Liwei Ren
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China; and
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China;
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
3
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
4
|
Nandi S, Upadhyay P, Roy A, Dasgupta A, Sen A, Adhikary A, Acharya K. A natural derivative from ethnomedicinal mushroom potentiates apoptosis, autophagy and attenuates cell migration, via fine tuning the Akt signaling in human lung adenocarcinoma cells (A549). ENVIRONMENTAL TOXICOLOGY 2022; 37:52-68. [PMID: 34581487 DOI: 10.1002/tox.23377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Although comprehensive exertions have been made in late decades for treating advanced lung cancer with inclusive therapies but efficient anti-lung cancer therapeutics are statically inadequate in the clinics. Hence, compelling novel anti-lung cancer drugs are considerably desired. This backdrop enticed us to unveil anticancer efficacy of astrakurkurol, derivative of wild edible mushroom against lung cancer, whose effects have not yet been described. Mechanistic analysis disclosed that sensitizing effect of astrakurkurol is due to cell cycle arrest at G0/G1 phase, increased level of Fas, FADD, decreased ratio of Bax/Bcl-2, and increased cleaved form of caspase 9, 8, and 3. Apart from the induction of apoptosis, it was demonstrated for the first time that astrakurkurol induced an autophagic response as evidenced by the development of acidic vesicular organelles (AVOs) with up-regulation of beclin-1, Atg7, and downregulated p62. Apoptosis and autophagy can be sparked by the same stimuli, which was as evident from the astrakurkurol-induced inactivation of PI3K/AKT signaling. The thorough scanning of the mechanism of crosstalk between apoptosis and autophagy is requisite for prosperous anticancer remedy. Triterpenoid has evidently intensified cytotoxicity, induced apoptosis and autophagy on A549 cells. Besides astrakurkurol could also curb migration and regress the size of tumor in ex ovo xenograft model. All these findings put forth astrakurkurol as a convincing novel anti-cancer agent, for scrutinizing the lung cancer therapies and as a robust contender for future in vitro and in vivo analysis.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Priyanka Upadhyay
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, Salt Lake City, India
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Adhiraj Dasgupta
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Arnab Sen
- Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, India
| | - Arghya Adhikary
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, Salt Lake City, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Gao FF, Quan JH, Lee MA, Ye W, Yuk JM, Cha GH, Choi IW, Lee YH. Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER-mitochondria crosstalk in SiHa cells. Parasit Vectors 2021; 14:603. [PMID: 34895315 PMCID: PMC8665556 DOI: 10.1186/s13071-021-05098-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Trichomonas vaginalis causes lesions on the cervicovaginal mucosa in women; however, its pathogenesis remains unclear. We have investigated the involvement of the endoplasmic reticulum (ER) in the induction of apoptosis by T. vaginalis and its molecular mechanisms in human cervical cancer SiHa cells. Methods Apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), ER stress response and Bcl-2 family protein expression were evaluated using immunocytochemistry, flow cytometry, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide dye staining and western blotting. Results Trichomonas vaginalis induced mitochondrial ROS production, apoptosis, the ER stress response and mitochondrial dysfunction, such as MMP depolarization and an imbalance in Bcl-2 family proteins, in SiHa cells in a parasite burden- and infection time-dependent manner. Pretreatment with N-acetyl cysteine (ROS scavenger) or 4-phenylbutyric acid (4-PBA; ER stress inhibitor) significantly alleviated apoptosis, mitochondrial ROS production, mitochondrial dysfunction and ER stress response in a dose-dependent manner. In addition, T. vaginalis induced the phosphorylation of apoptosis signal regulating kinase 1 (ASK1) and c-Jun N-terminal kinases (JNK) in SiHa cells, whereas 4-PBA or SP600125 (JNK inhibitor) pretreatment significantly attenuated ASK1/JNK phosphorylation, mitochondrial dysfunction, apoptosis and ER stress response in SiHa cells, in a dose-dependent manner. Furthermore, T. vaginalis excretory/secretory products also induced mitochondrial ROS production, apoptosis and the ER stress response in SiHa cells, in a time-dependent manner. Conclusions Trichomonas vaginalis induces apoptosis through mitochondrial ROS and ER stress responses, and also promotes ER stress-mediated mitochondrial apoptosis via the IRE1/ASK1/JNK/Bcl-2 family protein pathways in SiHa cells. These data suggest that T. vaginalis-induced apoptosis is affected by ROS and ER stress response via ER–mitochondria crosstalk. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05098-2.
Collapse
Affiliation(s)
- Fei Fei Gao
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea
| | - Juan-Hua Quan
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Min A Lee
- Department of Obstetrics and Gynecology, Chungnam National University, DeaJeon, 35015, Korea
| | - Wei Ye
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jae-Min Yuk
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea
| | - Guang-Ho Cha
- Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea
| | - In-Wook Choi
- Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea
| | - Young-Ha Lee
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea.
| |
Collapse
|
6
|
Deng J, Gutiérrez LG, Stoll G, Motiño O, Martins I, Núñez L, Bravo-San Pedro JM, Humeau J, Bordenave C, Pan J, Fohrer-Ting H, Souquere S, Pierron G, Hetz C, Villalobos C, Kroemer G, Senovilla L. Paradoxical implication of BAX/BAK in the persistence of tetraploid cells. Cell Death Dis 2021; 12:1039. [PMID: 34725331 PMCID: PMC8560871 DOI: 10.1038/s41419-021-04321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Pro-apoptotic multi-domain proteins of the BCL2 family such as BAX and BAK are well known for their important role in the induction of mitochondrial outer membrane permeabilization (MOMP), which is the rate-limiting step of the intrinsic pathway of apoptosis. Human or mouse cells lacking both BAX and BAK (due to a double knockout, DKO) are notoriously resistant to MOMP and cell death induction. Here we report the surprising finding that BAX/BAK DKO cells proliferate less than control cells expressing both BAX and BAK (or either BAX or BAK) when they are driven into tetraploidy by transient exposure to the microtubule inhibitor nocodazole. Mechanistically, in contrast to their BAX/BAK-sufficient controls, tetraploid DKO cells activate a senescent program, as indicated by the overexpression of several cyclin-dependent kinase inhibitors and the activation of β-galactosidase. Moreover, DKO cells manifest alterations in ionomycin-mobilizable endoplasmic reticulum (ER) Ca2+ stores and store-operated Ca2+ entry that are affected by tetraploidization. DKO cells manifested reduced expression of endogenous sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (Serca2a) and transfection-enforced reintroduction of Serca2a, or reintroduction of an ER-targeted variant of BAK into DKO cells reestablished the same pattern of Ca2+ fluxes as observed in BAX/BAK-sufficient control cells. Serca2a reexpression and ER-targeted BAK also abolished the tetraploidy-induced senescence of DKO cells, placing ER Ca2+ fluxes downstream of the regulation of senescence by BAX/BAK. In conclusion, it appears that BAX/BAK prevent the induction of a tetraploidization-associated senescence program. Speculatively, this may contribute to the low incidence of cancers in BAX/BAK DKO mice and explain why human cancers rarely lose the expression of both BAX and BAK.
Collapse
Affiliation(s)
- Jiayin Deng
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Lucía G Gutiérrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain
| | - José Manuel Bravo-San Pedro
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Juliette Humeau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada, H3C 3J7
- Department of Medicine, Université de Montréal, Montreal, QC, Canada, H3C 3J7
| | - Chloé Bordenave
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Juncheng Pan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Hélène Fohrer-Ting
- Centre de Recherche des Cordeliers, Center for Histology, Cell Imaging and Cytometry (CHIC), Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France
| | | | - Gerard Pierron
- CNRS, UMR9196, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, 7800003, Chile
- The Buck Institute for Research in Aging, Novato, CA, 94945, USA
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France.
| | - Laura Senovilla
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain.
| |
Collapse
|
7
|
Bcl-2 Family of Proteins in the Control of Mitochondrial Calcium Signalling: An Old Chap with New Roles. Int J Mol Sci 2021; 22:ijms22073730. [PMID: 33918511 PMCID: PMC8038216 DOI: 10.3390/ijms22073730] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.
Collapse
|
8
|
Li M. The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis 2021; 26:235-247. [PMID: 33783663 PMCID: PMC8197724 DOI: 10.1007/s10495-021-01667-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
P53 up-regulated modulator of apoptosis (PUMA), a pro-apoptotic BCL-2 homology 3 (BH3)-only member of the BCL-2 family, is a direct transcriptional target of P53 that elicits mitochondrial apoptosis under treatment with radiation and chemotherapy. It also induces excessive apoptosis in cardiovascular and/or neurodegenerative diseases. PUMA has been found to play a critical role in ovarian apoptosis. In the present paper, we review the progress of the study in PUMA over the past two decades in terms of its inducement and/or amplification of programmed cell death and describe recent updates to the understanding of both P53-dependent and P53-independent PUMA-mediated apoptotic pathways that are implicated in physiology and pathology, including the development of the ovary and cardiovascular and neurodegenerative diseases. We propose that PUMA may be a key regulator during ovary development, provide a model for PUMA-mediated apoptotic pathways, including intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Mei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
9
|
Kong Z, Zhou C, Kang J, Tan Z. Comparison of the Effects of Nonprotein and Protein Nitrogen on Apoptosis and Autophagy of Rumen Epithelial Cells in Goats. Animals (Basel) 2020; 10:E2079. [PMID: 33182520 PMCID: PMC7696569 DOI: 10.3390/ani10112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 12/04/2022] Open
Abstract
Protein nutrition is particularly important for the self-renewal processes of gastrointestinal epithelial cells. The self-renewal of cells is inseparable from the interaction between apoptosis and autophagy. However, there are few reports on the relationship between different nitrogen sources and apoptosis/autophagy. In this study, the relative protein expression of Bcl-2-associated X protein(Bax), caspase-3, and p62 was significantly higher (p < 0.05), while that of Bcl-xl, Bcl-2, Beclin1, and Microtuble-associated protein light chain 3 (LC3-II) was significantly lower (p < 0.05), in the NH4Cl group in comparison with the NH4Cl + 4-phenylbutyric acid (4PBA) group. In addition, the relative protein expression of Bax and caspase-3 was significantly higher (p < 0.05), while that of Bcl-2 and Bcl-xl was decreased significantly (p < 0.05), in the NH4Cl + 3-Methyladenine (3-MA) group and the methionine (Met) + 3-MA group in comparison with the NH4Cl group. Furthermore, the relative protein expression of Beclin1 and LC3B-II was significantly lower (p < 0.05), while that of p62 was significantly higher (p < 0.05), in the NH4Cl + Z-VAD-FMK group and the Met + Z-VAD-FMK group in comparison with the NH4Cl group. In conclusion, our results suggested that endoplasmic reticulum (ER) stress played a critical role in the crosstalk between apoptosis and autophagy induced by NH4Cl and Met. Autophagy had a more obvious ameliorative effect on ruminal epithelial cell apoptosis after treatment with nonprotein nitrogen than after treatment with protein nitrogen. These findings may reveal the molecular mechanism of apoptosis and autophagy induced by nonprotein nitrogen and protein nitrogen.
Collapse
Affiliation(s)
- Zhiwei Kong
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.K.); (J.K.); (Z.T.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Food Engineering and Biotechnology, Han Shan Normal University, Chaozhou 521041, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.K.); (J.K.); (Z.T.)
- Hunan Co-Innovation Center of Safety Animal Production, CICSAP, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China
| | - Jinhe Kang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.K.); (J.K.); (Z.T.)
- Hunan Co-Innovation Center of Safety Animal Production, CICSAP, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.K.); (J.K.); (Z.T.)
- Hunan Co-Innovation Center of Safety Animal Production, CICSAP, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China
| |
Collapse
|
10
|
Lindner P, Christensen SB, Nissen P, Møller JV, Engedal N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun Signal 2020; 18:12. [PMID: 31987044 PMCID: PMC6986015 DOI: 10.1186/s12964-019-0499-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cell death triggered by unmitigated endoplasmic reticulum (ER) stress plays an important role in physiology and disease, but the death-inducing signaling mechanisms are incompletely understood. To gain more insight into these mechanisms, the ER stressor thapsigargin (Tg) is an instrumental experimental tool. Additionally, Tg forms the basis for analog prodrugs designed for cell killing in targeted cancer therapy. Tg induces apoptosis via the unfolded protein response (UPR), but how apoptosis is initiated, and how individual effects of the various UPR components are integrated, is unclear. Furthermore, the role of autophagy and autophagy-related (ATG) proteins remains elusive. METHODS To systematically address these key questions, we analyzed the effects of Tg and therapeutically relevant Tg analogs in two human cancer cell lines of different origin (LNCaP prostate- and HCT116 colon cancer cells), using RNAi and inhibitory drugs to target death receptors, UPR components and ATG proteins, in combination with measurements of cell death by fluorescence imaging and propidium iodide staining, as well as real-time RT-PCR and western blotting to monitor caspase activity, expression of ATG proteins, UPR components, and downstream ER stress signaling. RESULTS In both cell lines, Tg-induced cell death depended on death receptor 5 and caspase-8. Optimal cytotoxicity involved a non-autophagic function of MAP1LC3B upstream of procaspase-8 cleavage. PERK, ATF4 and CHOP were required for Tg-induced cell death, but surprisingly acted in parallel rather than as a linear pathway; ATF4 and CHOP were independently required for Tg-mediated upregulation of death receptor 5 and MAP1LC3B proteins, whereas PERK acted via other pathways. Interestingly, IRE1 contributed to Tg-induced cell death in a cell type-specific manner. This was linked to an XBP1-dependent activation of c-Jun N-terminal kinase, which was pro-apoptotic in LNCaP but not HCT116 cells. Molecular requirements for cell death induction by therapy-relevant Tg analogs were identical to those observed with Tg. CONCLUSIONS Together, our results provide a new, integrated understanding of UPR signaling mechanisms and downstream mediators that induce cell death upon Tg-triggered, unmitigated ER stress. Video Abstract.
Collapse
Affiliation(s)
- Paula Lindner
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, P.O. Box 1137, Blindern, N-0318 Oslo, Norway
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Poul Nissen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, P.O. Box 1137, Blindern, N-0318 Oslo, Norway
| |
Collapse
|
11
|
Chen F, Jin J, Hu J, Wang Y, Ma Z, Zhang J. Endoplasmic Reticulum Stress Cooperates in Silica Nanoparticles-Induced Macrophage Apoptosis via Activation of CHOP-Mediated Apoptotic Signaling Pathway. Int J Mol Sci 2019; 20:E5846. [PMID: 31766455 PMCID: PMC6929173 DOI: 10.3390/ijms20235846] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
While silica nanoparticles (SiNPs) have wide applications, they inevitably increase atmospheric particulate matter and human exposure to this nanomaterial. Numerous studies have focused on how to disclose SiNP toxicity and on understanding its toxic mechanisms. However, there are few studies in the literature reporting the interaction between endoplasmic reticulum (ER) stress and SiNP exposure, and the corresponding detailed mechanisms have not been clearly determined. In this study, CCK-8 and flow cytometry assays demonstrated that SiNPs gradually decreased cell viability and increased cell apoptosis in RAW 264.7 macrophage cells in dose- and time-dependent manners. Western blot analysis showed that SiNPs significantly activated ER stress by upregulating GRP78, CHOP, and ERO1α expression. Meanwhile, western blot analysis also showed that SiNPs activated the mitochondrial-mediated apoptotic signaling pathway by upregulating BAD and Caspase-3, and downregulating the BCL-2/BAX ratio. Moreover, 4-phenylbutyrate (4-PBA), an ER stress inhibitor, significantly decreased GRP78, CHOP, and ERO1α expression, and inhibited cell apoptosis in RAW 264.7 macrophage cells. Furthermore, overexpression of CHOP significantly enhanced cell apoptosis, while knockdown of CHOP significantly protected RAW 264.7 macrophage cells from apoptosis induced by SiNPs. We found that the CHOP-ERO1α-caspase-dependent apoptotic signaling pathway was activated by upregulating the downstream target protein ERO1α and caspase-dependent mitochondrial-mediated apoptotic signaling pathway by upregulating Caspase-3 and downregulating the ratio of BCL-2/BAX. In summary, ER stress participated in cell apoptosis induced by SiNPs and CHOP regulated SiNP-induced cell apoptosis, at least partly, via activation of the CHOP-ERO1α-caspase apoptotic signaling pathway in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jiaqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jiahui Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yujing Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jinlong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
12
|
Nam SM, Jeon YJ. Proteostasis In The Endoplasmic Reticulum: Road to Cure. Cancers (Basel) 2019; 11:E1793. [PMID: 31739582 PMCID: PMC6895847 DOI: 10.3390/cancers11111793] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER-mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.
Collapse
Affiliation(s)
- Su Min Nam
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
13
|
Colla E. Linking the Endoplasmic Reticulum to Parkinson's Disease and Alpha-Synucleinopathy. Front Neurosci 2019; 13:560. [PMID: 31191239 PMCID: PMC6550095 DOI: 10.3389/fnins.2019.00560] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
Accumulation of misfolded proteins is a central paradigm in neurodegeneration. Because of the key role of the endoplasmic reticulum (ER) in regulating protein homeostasis, in the last decade multiple reports implicated this organelle in the progression of Parkinson's Disease (PD) and other neurodegenerative illnesses. In PD, dopaminergic neuron loss or more broadly neurodegeneration has been improved by overexpression of genes involved in the ER stress response. In addition, toxic alpha-synuclein (αS), the main constituent of proteinaceous aggregates found in tissue samples of PD patients, has been shown to cause ER stress by altering intracellular protein traffic, synaptic vesicles transport, and Ca2+ homeostasis. In this review, we will be summarizing evidence correlating impaired ER functionality to PD pathogenesis, focusing our attention on how toxic, aggregated αS can promote ER stress and cell death.
Collapse
Affiliation(s)
- Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
14
|
Zhang M, Gao Y, Zhao W, Yu G, Jin F. ACE-2/ANG1-7 ameliorates ER stress-induced apoptosis in seawater aspiration-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L1015-L1027. [PMID: 30335496 DOI: 10.1152/ajplung.00163.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that apoptosis of alveolar cells can be regulated by autocrine of angiotensin (ANG)II and its counter regulatory ACE-2/ANG1-7 axis. Our earlier study has shown that endoplasmic reticulum (ER) stress in response to seawater aspiration eventually led to apoptosis in lung tissue. In this study, we examined the hypothesis that ER stress-induced apoptosis in seawater aspiration-induced acute lung injury (ALI) might also be regulated by the ANGII/ANG1-7 system. ER stress was induced by seawater stimulation and proteasome inhibitor MG132 (an ER stress inductor). Moreover, ER stress in seawater-stimulated lung tissues and rat pulmonary microvascular endothelial cells (RPMVECs) promoted ANGII expression and decreased ACE-2/ANG1-7 expression. ER stress induced by seawater stimulation also led to apoptosis. Apoptosis induced by seawater stimulation and MG132 were inhibited by ANGII receptor blocker and abrogated by the addition of ANG1-7. These results suggest that apoptosis induced by ER stress in seawater aspiration-induced ALI is regulated by ANG II/ANG1-7 in lung tissues and RPMVECs. In addition, the active form of X-box binding protein 1 (XBP1), spliced XBP1 (XBP1s), a transcription factor that regulates ER-associated degradation genes during ER stress was significantly activated in seawater stimulated cells. Based on this phenomenon we designed a tandem gene, Wfs1 promoter (a target gene promoter of XBP1s)- ACE2 and ANG1-7 and transfected this tandem gene into seawater-stimulated cells. ACE-2/ANG1-7 expression were significantly promoted and apoptosis was inhibited in cells transfected with the tandem gene. These results suggest that stimulation of ACE-2/ANG1-7 may be a therapeutic target of ER stress-induced apoptosis in seawater aspiration-induced ALI.
Collapse
Affiliation(s)
- MinLong Zhang
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University , Xi'an , People's Republic of China.,Department of Respiration, The 309th Hospital of the Chinese People's Liberation Army, Beijing , People's Republic of China
| | - Yongheng Gao
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University , Xi'an , People's Republic of China
| | - Weiguo Zhao
- Department of Respiration, The 309th Hospital of the Chinese People's Liberation Army, Beijing , People's Republic of China
| | - Gaole Yu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University , Xi'an , People's Republic of China
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University , Xi'an , People's Republic of China
| |
Collapse
|
15
|
Shen K, Johnson DW, Vesey DA, McGuckin MA, Gobe GC. Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies. Cell Stress Chaperones 2018; 23:317-334. [PMID: 28952072 PMCID: PMC5904077 DOI: 10.1007/s12192-017-0844-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Although there have been advances in our understanding of carcinogenesis and development of new treatments, cancer remains a common cause of death. Many regulatory pathways are incompletely understood in cancer development and progression, with a prime example being those related to the endoplasmic reticulum (ER). The pathological sequelae that arise from disruption of ER homeostasis are not well defined. The ER is an organelle that is responsible for secretory protein biosynthesis and the quality control of protein folding. The ER triggers an unfolded protein response (UPR) when misfolded proteins accumulate, and while the UPR acts to restore protein folding and ER homeostasis, this response can work as a switch to determine the death or survival of cells. The treatment of cancer with agents that target the UPR has shown promising outcomes. The UPR has wide crosstalk with other signaling pathways. Multi-targeted cancer therapies which target the intersections within signaling networks have shown synergistic tumoricidal effects. In the present review, the basic cellular and signaling pathways of the ER and UPR are introduced; then the crosstalk between the ER and other signaling pathways is summarized; and ultimately, the evidence that the UPR is a potential target for cancer therapy is discussed. Regulation of the UPR downstream signaling is a common therapeutic target for different tumor types. Tumoricidal effects achieved from modulating the UPR downstream signaling could be enhanced by phosphodiesterase 5 (PDE5) inhibitors. Largely untapped by Western medicine for cancer therapies are Chinese herbal medicines. This review explores and discusses the value of some Chinese herbal extracts as PDE5 inhibitors.
Collapse
Affiliation(s)
- Kunyu Shen
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - David W Johnson
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David A Vesey
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Michael A McGuckin
- Mucosal Disease Inflammatory Disease Biology and Therapeutics Group, UQ Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
16
|
Jia H, Zhan L, Wang X, He X, Chen G, Zhang Y, Feng Y, Wei Y, Zhang Y, Jing Z. Transcriptome analysis of sheep oral mucosa response to Orf virus infection. PLoS One 2017; 12:e0186681. [PMID: 29073164 PMCID: PMC5658058 DOI: 10.1371/journal.pone.0186681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/05/2017] [Indexed: 01/15/2023] Open
Abstract
Contagious ecthyma is a highly contagious disease with worldwide distribution, which is caused by the Orf virus (ORFV) belonging to the Parapoxvirus. To study the alteration of host gene expression in response to ORFV infection at the transcriptional level, several young small-tailed Han sheep were inoculated with ORFV, and their oral mucosa tissue samples (T0, T3, T7 and T15) were collected on day 0, 3, 7 and 15 after ORFV infection respectively. RNA-seq transcriptome comparisons were performed, showing that 1928, 3219 and 2646 differentially expressed genes (DEGs) were identified among T3 vs. T0, T7 vs. T0, and T15 vs. T0 respectively. Gene Ontology (GO) analyses of the DEGs from these comparisons, revealed that ORFV might provoke vigorous immune response of the host cells during the early stage of infection. Moreover, GO and network analysis showed that positive and negative regulative mechanisms of apoptosis were integrated in the host cells through up or down-regulating the expression level of DEGs involved in apoptotic pathways, in order to reach a homeostasis of oral mucosa tissues during the exposure to ORFV infection. In conclusion, our study for the first time describes the direct effects of ORFV on the global host gene expression of its host using high-throughput RNA sequencing, which provides a resource for future characterizing the interaction mechanism between the mammalian host and ORFV.
Collapse
Affiliation(s)
- Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Leilei Zhan
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Xiaoxia Wang
- School of Public Health, Faculty of Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, Hubei, China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail:
| |
Collapse
|
17
|
Pihán P, Carreras-Sureda A, Hetz C. BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 2017. [PMID: 28622296 DOI: 10.1038/cdd.2017.82] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the endoplasmic reticulum (ER) has emerged as a central organelle regulating the core mitochondrial apoptosis pathway. At the ER membrane, a variety of stress signals are integrated toward determining cell fate, involving a complex cross talk between key homeostatic pathways including the unfolded protein response, autophagy, calcium signaling and mitochondrial bioenergetics. In this context, key regulators of cell death of the BCL-2 and TMBIM/BI-1 family of proteins have relevant functions as stress rheostats mediated by the formation of distinct protein complexes that regulate the switch between adaptive and proapoptotic phases under stress. Here, we overview recent advances on our molecular understanding of how the apoptotic machinery integrates stress signals toward cell fate decisions upstream of the mitochondrial gateway of death.
Collapse
Affiliation(s)
- Philippe Pihán
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Amado Carreras-Sureda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA
| |
Collapse
|
18
|
Hatok J, Racay P. Bcl-2 family proteins: master regulators of cell survival. Biomol Concepts 2017; 7:259-70. [PMID: 27505095 DOI: 10.1515/bmc-2016-0015] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival.
Collapse
|
19
|
Bhat TA, Chaudhary AK, Kumar S, O'Malley J, Inigo JR, Kumar R, Yadav N, Chandra D. Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:58-66. [PMID: 27988298 DOI: 10.1016/j.bbcan.2016.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Abrogation of endoplasmic reticulum (ER) protein folding triggered by exogenous or endogenous factors, stimulates a cellular stress response, termed ER stress. ER stress re-establishes ER homeostasis through integrated signaling termed the ER-unfolded protein response (UPRER). In the presence of severe toxic or prolonged ER stress, the pro-survival function of UPRER is transformed into a lethal signal transmitted to and executed through mitochondria. Mitochondria are key for both apoptotic and autophagic cell death. Thus ER is vital in sensing and coordinating stress pathways to maintain overall physiological homeostasis. However, this function is deregulated in cancer, resulting in resistance to apoptosis induction in response to various stressors including therapeutic agents. Here we review the connections between ER stress and mitochondrial apoptosis, describing potential cancer therapeutic targets.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|
20
|
Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS One 2016; 11:e0157590. [PMID: 27311010 PMCID: PMC4910991 DOI: 10.1371/journal.pone.0157590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is the major cause of loss of sight globally. There is currently no effective treatment available. Retinal pigment epithelial (RPE) cells are an important part of the outer blood-retina barrier and their death is a determinant of AMD. Propofol, a common clinically used intravenous anesthetic agent, has been shown to act as an efficacious neuroprotective agent with antioxidative and anti-inflammatory properties in vivo and in vitro. However, little is known about its effects on RPE cells. The purpose of our research was to investigate whether propofol could protect RPE cells from apoptosis through endoplasmic reticulum (ER) stress–dependent pathways. To this end, prior to stimulation with thapsigargin (TG), ARPE-19 cells were pretreated with varying concentrations of propofol. A protective effect of propofol in TG-treated ARPE-9 was apparent, TUNEL and flow cytometric assays showed decreased apoptosis. We further demonstrated that propofol pretreatment attenuated or inhibited the effects caused by TG, such as upregulation of Bax, BiP, C/EBP homologous protein (CHOP), active caspase 12, and cleaved caspase 3, and downregulation of Bcl2. It also decreased the TG-induced levels of ER stress–related molecules such as p-PERK, p-eIF2α, and ATF4. Furthermore, it downregulated the expression of nuclear factor κB (NF-κB). This study elucidated novel propofol-induced cellular mechanisms for antiapoptotic activities in RPE cells undergoing ER stress and demonstrated the potential value of using propofol in the treatment of AMD.
Collapse
Affiliation(s)
- Xuezhi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suo Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaochong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
21
|
The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1. Nat Commun 2016; 7:11821. [PMID: 27273576 PMCID: PMC4899871 DOI: 10.1038/ncomms11821] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/03/2016] [Indexed: 02/06/2023] Open
Abstract
A coding polymorphism of human ATG16L1 (rs2241880; T300A) increases the risk of Crohn's disease and it has been shown to enhance susceptibility of ATG16L1 to caspase cleavage. Here we show that T300A also alters the ability of the C-terminal WD40-repeat domain of ATG16L1 to interact with an amino acid motif that recognizes this region. Such alteration impairs the unconventional autophagic activity of TMEM59, a transmembrane protein that contains the WD40 domain-binding motif, and disrupts its normal intracellular trafficking and its ability to engage ATG16L1 in response to bacterial infection. TMEM59-induced autophagy is blunted in cells expressing the fragments generated by caspase processing of the ATG16L1-T300A risk allele, whereas canonical autophagy remains unaffected. These results suggest that the T300A polymorphism alters the function of motif-containing molecules that engage ATG16L1 through the WD40 domain, either by influencing this interaction under non-stressful conditions or by inhibiting their downstream autophagic signalling after caspase-mediated cleavage. The T300A substitution in ATG16L is associated with Crohn's disease risk and disrupts clearance of intracellular pathogens by autophagy. Here the authors show that the mutation impairs interaction of ATG16L with TMEM59 and disrupts unconventional TMEM-induced autophagy, an aspect of innate immunity.
Collapse
|
22
|
Abstract
Sepsis is an enormous public health issue and the leading cause of death in critically ill patients in intensive care units. Overwhelming inflammation, characterized by cytokine storm, oxidative threats, and neutrophil sequestration, is an underlying component of sepsis-associated organ failure. Despite recent advances in sepsis research, there is still no effective treatment available beyond the standard of care and supportive therapy. To reduce sepsis-related mortality, a better understanding of the biological mechanism associated with sepsis is essential. Endoplasmic reticulum (ER), a subcellular organelle, is responsible for the facilitation of protein folding and assembly and involved in several other physiological activities. Under stress and inflammatory conditions, ER loses homeostasis in its function, which is termed ER stress. During ER stress, unfolded protein response (UPR) is activated to restore ER function to its normal balance. However, once stress is beyond the compensatory capacity of UPR or protracted, apoptosis would be initiated by triggering cell injuries, even cell death. As such, ER stress and UPR are reported to be implicated in several pathological and inflammatory conditions. Although the detrimental role of ER stress during infections has been demonstrated, there is growing evidence that ER stress participates in the pathogenesis of sepsis. In this review, we summarize current research in the context of ER stress and UPR signaling associated with sepsis and its related clinical conditions, such as trauma-hemorrhage and ischemia/reperfusion injury. We also discuss the potential implications of ER stress as a novel therapeutic target and prognostic marker in patients with sepsis.
Collapse
|
23
|
Nakka VP, Prakash-Babu P, Vemuganti R. Crosstalk Between Endoplasmic Reticulum Stress, Oxidative Stress, and Autophagy: Potential Therapeutic Targets for Acute CNS Injuries. Mol Neurobiol 2016; 53:532-544. [PMID: 25482050 PMCID: PMC4461562 DOI: 10.1007/s12035-014-9029-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/30/2014] [Indexed: 01/06/2023]
Abstract
Endoplasmic reticulum (ER) stress induces a variety of neuronal cell death pathways that play a critical role in the pathophysiology of stroke. ER stress occurs when unfolded/misfolded proteins accumulate and the folding capacity of ER chaperones exceeds the capacity of ER lumen to facilitate their disposal. As a consequence, a complex set of signaling pathways will be induced that transmit from ER to cytosol and nucleus to compensate damage and to restore the normal cellular homeostasis, collectively known as unfolded protein response (UPR). However, failure of UPR due to severe or prolonged stress leads to cell death. Following acute CNS injuries, chronic disturbances in protein folding and oxidative stress prolong ER stress leading to sustained ER dysfunction and neuronal cell death. While ER stress responses have been well studied after stroke, there is an emerging need to study the association of ER stress with other cell pathways that exacerbate neuronal death after an injury. In this review, we summarize the current understanding of the role for ER stress in acute brain injuries, highlighting the diverse molecular mechanisms associated with ER stress and its relation to oxidative stress and autophagy. We also discussed the existing and developing therapeutic options aimed to reduce ER stress to protect the CNS after acute injuries.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
- Department of Biotechnology & Bioinformatics, School of Life sciences, University of Hyderabad, Hyderabad, India
| | - Phanithi Prakash-Babu
- Department of Biotechnology & Bioinformatics, School of Life sciences, University of Hyderabad, Hyderabad, India
| | - Raghu Vemuganti
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA.
| |
Collapse
|
24
|
Iurlaro R, Muñoz-Pinedo C. Cell death induced by endoplasmic reticulum stress. FEBS J 2015; 283:2640-52. [PMID: 26587781 DOI: 10.1111/febs.13598] [Citation(s) in RCA: 723] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/27/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum is an organelle with multiple functions. The synthesis of transmembrane proteins and proteins that are to be secreted occurs in this organelle. Many conditions that impose stress on cells, including hypoxia, starvation, infections and changes in secretory needs, challenge the folding capacity of the cell and promote endoplasmic reticulum stress. The cellular response involves the activation of sensors that transduce signaling cascades with the aim of restoring homeostasis. This is known as the unfolded protein response, which also intersects with the integrated stress response that reduces protein synthesis through inactivation of the initiation factor eIF2α. Central to the unfolded protein response are the sensors PERK, IRE1 and ATF6, as well as other signaling nodes such as c-Jun N-terminal kinase 1 (JNK) and the downstream transcription factors XBP1, ATF4 and CHOP. These proteins aim to restore homeostasis, but they can also induce cell death, which has been shown to occur by necroptosis and, more commonly, through the regulation of Bcl-2 family proteins (Bim, Noxa and Puma) that leads to mitochondrial apoptosis. In addition, endoplasmic reticulum stress and proteotoxic stress have been shown to induce TRAIL receptors and activation of caspase-8. Endoplasmic reticulum stress is a common feature in the pathology of numerous diseases because it plays a role in neurodegeneration, stroke, cancer, metabolic diseases and inflammation. Understanding how cells react to endoplasmic reticulum stress can accelerate discovery of drugs against these diseases.
Collapse
Affiliation(s)
- Raffaella Iurlaro
- Cell Death Regulation Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| |
Collapse
|
25
|
Maurel M, McGrath EP, Mnich K, Healy S, Chevet E, Samali A. Controlling the unfolded protein response-mediated life and death decisions in cancer. Semin Cancer Biol 2015; 33:57-66. [PMID: 25814342 DOI: 10.1016/j.semcancer.2015.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
Abstract
Cancer cells are exposed to intrinsic (oncogene) or extrinsic (microenvironmental) challenges, leading to activation of stress response pathways. The unfolded protein response (UPR) is the cellular response to endoplasmic reticulum (ER) stress and plays a pivotal role in tumor development. Depending on ER stress intensity and duration, the UPR is either pro-survival to preserve ER homeostasis or pro-death if the stress cannot be resolved. On one hand, the adaptive arm of the UPR is essential for cancer cells to survive the harsh conditions they are facing, and on the other hand, cancer cells have evolved mechanisms to bypass ER stress-induced cell death, thereby conferring them with a selective advantage for malignant transformation. Therefore, the mechanisms involved in the balance between survival and death outcomes of the UPR may be exploited as therapeutic tools to treat cancer.
Collapse
Affiliation(s)
- Marion Maurel
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland; Centre de Lutte Contre le Cancer Eugène Marquis, 35000 Rennes, France
| | - Eoghan P McGrath
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | - Sandra Healy
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | - Eric Chevet
- Inserm U1052, F-33000, University of Bordeaux, Bordeaux, France; Centre de Lutte Contre le Cancer Eugène Marquis, 35000 Rennes, France
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
26
|
Dufey E, Sepúlveda D, Rojas-Rivera D, Hetz C. Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 1. An overview. Am J Physiol Cell Physiol 2014; 307:C582-94. [DOI: 10.1152/ajpcell.00258.2014] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased demand on the protein folding capacity of the endoplasmic reticulum (ER) engages an adaptive reaction known as the unfolded protein response (UPR). The UPR regulates protein translation and the expression of numerous target genes that contribute to restore ER homeostasis or induce apoptosis of irreversibly damaged cells. UPR signaling is highly regulated and dynamic and integrates information about the type, intensity, and duration of the stress stimuli, thereby determining cell fate. Recent advances highlight novel physiological outcomes of the UPR beyond specialized secretory cells, particularly in innate immunity, metabolism, and cell differentiation. Here we discuss studies on the fine-tuning of the UPR and its physiological role in diverse organs and diseases.
Collapse
Affiliation(s)
- Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Denisse Sepúlveda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; and
- Neurounion Biomedical Foundation, CENPAR, Santiago, Chile
| |
Collapse
|
27
|
Darling NJ, Cook SJ. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2150-63. [DOI: 10.1016/j.bbamcr.2014.01.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/20/2013] [Accepted: 01/09/2014] [Indexed: 12/30/2022]
|
28
|
CHENG XIU, LIU HAO, JIANG CHENCHEN, FANG LIN, CHEN CHAO, ZHANG XUDONG, JIANG ZHIWEN. Connecting endoplasmic reticulum stress to autophagy through IRE1/JNK/beclin-1 in breast cancer cells. Int J Mol Med 2014; 34:772-81. [DOI: 10.3892/ijmm.2014.1822] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/27/2014] [Indexed: 11/06/2022] Open
|
29
|
Lorenzo IM, Fleischer A, Bachiller D. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells. Stem Cell Rev Rep 2014; 9:435-50. [PMID: 23104133 DOI: 10.1007/s12015-012-9412-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cellular reprogramming consists of the conversion of differentiated cells into pluripotent cells; the so-called induced Pluripotent Stem Cells. iPSC are amenable to in vitro manipulation and, in theory, direct production of any differentiated cell type. Furthermore, iPSC can be obtained from sick individuals and subsequently used for disease modeling, drug discovery and regenerative treatments. iPSC production was first achieved by transducing, with the use of retroviral vectors, four specific transcription factors: Oct4, Klf4, Sox2 and c-Myc (OKSM), into primary cells in culture Takahashi and Yamanaka, (Cell 126(4):663-676, 2006). Many alternative protocols have since been proposed: repeated transfections of expression plasmids containing the four pluripotency-associated genes Okita et al. (Science 322(5903):949-953, 2008), lentiviral delivery of the four factors Sommer et al. (Stem Cells 27(3):543-549, 2009), Sendai virus delivery Fusaki et al. (Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 85(8):348-362, 2009), removal of the reprogramming vectors by 'piggyBac' transposition Woltjen et al. (Nature 458(7239):766-770, 2009); Kaji et al. (Nature 458(7239):771-775, 2009), Cre-recombinase excisable viruses Soldner et al. (Cell 136(5):964-977, 2009), episomal vectors Yu et al. (Science 324(5928):797-801, 2009), cell-penetrating reprogramming proteins Zhou et al. (Stem Cells 4(5):381-384, 2009), mammalian artificial chromosomes Hiratsuka et al. (PLoS One 6(10):e25961, 2011) synthetically modified mRNAs Warren et al. (Scientific Reports 2:657, 2012), miRNA Anokye-Danso et al. (Cell Stem Cell 8(4):376-388, 2009); however, although some of these methods are commercially available, in general they still need to attain the reproducibility and reprogramming efficiency required for routine applications Mochiduki and Okita (Biotechnol Journal 7(6):789-797, 2012). Herein we explain, in four detailed protocols, the isolation of mouse and human somatic cells and their reprogramming into iPSC. All-encompassing instructions, not previously published in a single document, are provided for mouse and human iPSC colony isolation and derivation. Although mouse and human iPSC share similarities in the cellular reprogramming process and culture, both cell types need to be handled differently.
Collapse
Affiliation(s)
- I M Lorenzo
- Caubet-Cimera Foundation, Centre for Advanced Respiratory Medicine, Crta. Sóller Km12, 07110 Bunyola, Illes Balears, Mallorca, Spain
| | | | | |
Collapse
|
30
|
Kamp DW, Liu G, Cheresh P, Kim SJ, Mueller A, Lam AP, Trejo H, Williams D, Tulasiram S, Baker M, Ridge K, Chandel NS, Beri R. Asbestos-induced alveolar epithelial cell apoptosis. The role of endoplasmic reticulum stress response. Am J Respir Cell Mol Biol 2014; 49:892-901. [PMID: 23885834 DOI: 10.1165/rcmb.2013-0053oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asbestos exposure results in pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) apoptosis is important in the development of pulmonary fibrosis after exposure to an array of toxins, including asbestos. An endoplasmic reticulum (ER) stress response and mitochondria-regulated (intrinsic) apoptosis occur in AECs of patients with idiopathic pulmonary fibrosis, a disease with similarities to asbestosis. Asbestos induces AEC intrinsic apoptosis, but the role of the ER is unclear. The objective of this study was to determine whether asbestos causes an AEC ER stress response that promotes apoptosis. Using human A549 and rat primary isolated alveolar type II cells, amosite asbestos fibers increased AEC mRNA and protein expression of ER stress proteins involved in the unfolded protein response, such as inositol-requiring kinase (IRE) 1 and X-box-binding protein-1, as well as ER Ca²(2+) release ,as assessed by a FURA-2 assay. Eukarion-134, a superoxide dismutase/catalase mimetic, as well as overexpression of Bcl-XL in A549 cells each attenuate asbestos-induced AEC ER stress (IRE-1 and X-box-binding protein-1 protein expression; ER Ca²(2+) release) and apoptosis. Thapsigargin, a known ER stress inducer, augments AEC apoptosis, and eukarion-134 or Bcl-XL overexpression are protective. Finally, 4-phenylbutyric acid, a chemical chaperone that attenuates ER stress, blocks asbestos- and thapsigargin-induced AEC IRE-1 protein expression, but does not reduce ER Ca²(2+) release or apoptosis. These results show that asbestos triggers an AEC ER stress response and subsequent intrinsic apoptosis that is mediated in part by ER Ca²(2+) release.
Collapse
Affiliation(s)
- David W Kamp
- 1 Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li S, Yang L, Selzer ME, Hu Y. Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration. Ann Neurol 2013; 74:768-77. [PMID: 23955583 PMCID: PMC3963272 DOI: 10.1002/ana.24005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
Injuries to central nervous system axons result not only in Wallerian degeneration of the axon distal to the injury, but also in death or atrophy of the axotomized neurons, depending on injury location and neuron type. No method of permanently avoiding these changes has been found, despite extensive knowledge concerning mechanisms of secondary neuronal injury. The autonomous endoplasmic reticulum (ER) stress pathway in neurons has recently been implicated in retrograde neuronal degeneration. In addition to the emerging role of ER morphology in axon maintenance, we propose that ER stress is a common neuronal response to disturbances in axon integrity and a general mechanism for neurodegeneration. Thus, manipulation of the ER stress pathway could have important therapeutic implications for neuroprotection.
Collapse
Affiliation(s)
- Shaohua Li
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liu Yang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Neurology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yang Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
32
|
Kato H, Katoh R, Kitamura M. Dual regulation of cadmium-induced apoptosis by mTORC1 through selective induction of IRE1 branches in unfolded protein response. PLoS One 2013; 8:e64344. [PMID: 23696882 PMCID: PMC3655991 DOI: 10.1371/journal.pone.0064344] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/11/2013] [Indexed: 12/20/2022] Open
Abstract
Cadmium (Cd) causes generation of reactive oxygen species (ROS) that trigger renal tubular injury. We found that rapamycin, an inhibitor of mTORC1, attenuated Cd-induced apoptosis in renal tubular cells. Knockdown of Raptor, a positive regulator of mTORC1, also had the similar effect. However, rapamycin did not alter generation of ROS, suggesting that mTORC1 is a target downstream of ROS. Indeed, ROS caused activation of mTORC1, which contributed to induction of a selective branch of the unfolded protein response (UPR); i.e., the IRE1 pathway. Although Cd triggered three major UPR pathways, activation of mTORC1 by Cd did not contribute to induction of the PERK-eIF2α and ATF6 pathways. Consistently, knockdown of Raptor caused suppression of JNK without affecting the PERK-eIF2α pathway in Cd-exposed cells. Knockdown of TSC2, a negative regulator of mTORC1, caused activation of mTORC1 and enhanced Cd induction of the IRE1-JNK pathway and apoptosis without affecting other UPR branches. Inhibition of IRE1α kinase led to suppression of JNK activity and apoptosis in Cd-treated cells. Dominant-negative inhibition of JNK also suppressed Cd-induced apoptosis. In contrast, inhibition of IRE1α endoribonuclease activity or downstream XBP1 modestly enhanced Cd-induced apoptosis. In vivo, administration with rapamycin suppressed activation of mTORC1 and JNK, but not eIF2α, in the kidney of Cd-treated mice. It was correlated with attenuation of tubular injury and apoptotic cell death in the tubules. These results elucidate dual regulation of Cd-induced renal injury by mTORC1 through selective induction of IRE1 signaling.
Collapse
Affiliation(s)
- Hironori Kato
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Ryohei Katoh
- Department of Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
33
|
Chen Y, Decker KF, Zheng D, Matkovich SJ, Jia L, Dorn GW. A nucleus-targeted alternately spliced Nix/Bnip3L protein isoform modifies nuclear factor κB (NFκB)-mediated cardiac transcription. J Biol Chem 2013; 288:15455-65. [PMID: 23603904 DOI: 10.1074/jbc.m113.452342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Several Bcl2 family proteins are expressed both as mitochondrial-targeted full-length and as cytosolic truncated alternately spliced isoforms. Recombinantly expressed shorter Bcl2 family isoforms can heterotypically bind to and prevent mitochondrial localization of their full-length analogs, thus suppressing their activity by sequestration. This "sponge" role requires 1:1 expression stoichiometry; absent this an alternate role is suggested. Here, RNA sequencing revealed coordinate regulation of BH3-only protein Nix/Bnip3L (Nix) and its alternately spliced soluble form (sNix) in hearts, but relative sNix/Nix expression of ∼1:10. Accordingly, we examined other putative functions of sNix. Although Nix expressed in H9c2 rat myoblasts localized to mitochondria, sNix showed variable cytoplasmic and nuclear distribution. Tumor necrosis factor α (TNFα) induced rapid and complete sNix nucleoplasmic translocation concomitant with nuclear translocation of the p65/RelA subunit of NFκB. sNix co-localized and co-precipitated with p65/RelA after TNFα stimulation; TNFα-induced sNix nuclear translocation did not occur in p65/RelA null murine embryonic fibroblasts. ChIP sequencing of TNFα-stimulated H9c2 cells revealed sNix suppression of p65/RelA binding to a subset of weaker DNA binding sites, accounting for its ability to alter gene expression in cultured cells and in vivo mouse hearts. These findings reveal TNFα-stimulated cytoplasmic-nuclear shuttling of the alternately spliced non-mitochondrial Nix isoform and uncover a role for sNix as a modulator of TNFα/NFκB-stimulated cardiac gene expression. Transcriptional co-regulation of sNix and Nix, combined with sNix posttranslational regulation by TNFα, comprises a previously unknown mechanism for molecular cross-talk between extrinsic death receptor and intrinsic mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Yun Chen
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
34
|
Liu G, Cheresh P, Kamp DW. Molecular basis of asbestos-induced lung disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 8:161-87. [PMID: 23347351 DOI: 10.1146/annurev-pathol-020712-163942] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asbestos causes asbestosis and malignancies by molecular mechanisms that are not fully understood. The modes of action underlying asbestosis, lung cancer, and mesothelioma appear to differ depending on the fiber type, lung clearance, and genetics. After reviewing the key pathologic changes following asbestos exposure, we examine recently identified pathogenic pathways, with a focus on oxidative stress. Alveolar epithelial cell apoptosis, which is an important early event in asbestosis, is mediated by mitochondria- and p53-regulated death pathways and may be modulated by the endoplasmic reticulum. We review mitochondrial DNA (mtDNA)-damage and -repair mechanisms, focusing on 8-oxoguanine DNA glycosylase, as well as cross talk between reactive oxygen species production, mtDNA damage, p53, OGG1, and mitochondrial aconitase. These new insights into the molecular basis of asbestos-induced lung diseases may foster the development of novel therapeutic targets for managing degenerative diseases (e.g., asbestosis and idiopathic pulmonary fibrosis), tumors, and aging, for which effective management is lacking.
Collapse
Affiliation(s)
- Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhangjiang, China.
| | | | | |
Collapse
|
35
|
Boada-Romero E, Letek M, Fleischer A, Pallauf K, Ramón-Barros C, Pimentel-Muiños FX. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J 2013; 32:566-82. [PMID: 23376921 DOI: 10.1038/emboj.2013.8] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 12/21/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19-amino-acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD-repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1-binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Emilio Boada-Romero
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Bonneau B, Prudent J, Popgeorgiev N, Gillet G. Non-apoptotic roles of Bcl-2 family: the calcium connection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1755-65. [PMID: 23360981 DOI: 10.1016/j.bbamcr.2013.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 01/06/2023]
Abstract
The existence of the bcl-2 (B-cell lymphoma-2) gene was reported nearly 30 years ago. Yet, Bcl-2 family group of proteins still surprises us with their structural and functional diversity. Since the discovery of the Bcl-2 family of proteins as one of the main apoptosis judges, the precise mechanism of their action remains a hot topic of intensive scientific research and debates. Although extensive work has been performed on the role of mitochondria in apoptosis, more and more studies point out an implication of the endoplasmic reticulum in this process. Interestingly, Bcl-2 family proteins could be localized to both the mitochondria and the endoplasmic reticulum highlighting their crucial role in apoptosis control. In particular, in these organelles Bcl-2 proteins seem to be involved in calcium homeostasis regulation although the mechanisms underlying this function are still misunderstood. We now assume with high degree of certainty that the majority of Bcl-2 family members take part not only in apoptosis regulation but also in other processes important for the cell physiology briefly denominated as "non-apoptotic" functions. Drawing a complete and comprehensive image of Bcl-2 family requires the understanding of their implications in all cellular processes. Here, we review the current knowledge on the control of calcium homeostasis by the Bcl-2 family at the endoplasmic reticulum and at the mitochondria. Then we focus on the non-apoptotic functions of the Bcl-2 proteins in relation with the regulation of this versatile intracellular messenger. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
37
|
Barrasa JI, Olmo N, Lizarbe MA, Turnay J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol In Vitro 2012; 27:964-77. [PMID: 23274766 DOI: 10.1016/j.tiv.2012.12.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 02/07/2023]
Abstract
Bile acids are natural detergents mainly involved in facilitating the absorption of dietary fat in the intestine. In addition to this absorptive function, bile acids are also essential in the maintenance of the intestinal epithelium homeostasis. To accomplish this regulatory function, bile acids may induce programmed cell death fostering the renewal of the epithelium. Here we first discuss on the different molecular pathways of cell death focusing on apoptosis in colon epithelial cells. Bile acids may induce apoptosis in colonocytes through different mechanisms. In contrast to hepatocytes, the extrinsic apoptotic pathway seems to have a low relevance regarding bile acid cytotoxicity in the colon. On the contrary, these molecules mainly trigger apoptosis through direct or indirect mitochondrial perturbations, where oxidative stress plays a key role. In addition, bile acids may also act as regulatory molecules involved in different cell signaling pathways in colon cells. On the other hand, there is increasing evidence that the continuous exposure to certain hydrophobic bile acids, due to a fat-rich diet or pathological conditions, may induce oxidative DNA damage that, in turn, may lead to colorectal carcinogenesis as a consequence of the appearance of cell populations resistant to bile acid-induced apoptosis. Finally, some bile acids, such as UDCA, or low concentrations of hydrophobic bile acids, can protect colon cells against apoptosis induced by high concentrations of cytotoxic bile acids, suggesting a dual behavior of these agents as pro-death or pro-survival molecules.
Collapse
Affiliation(s)
- Juan I Barrasa
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Cheresh P, Kim SJ, Tulasiram S, Kamp DW. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1028-40. [PMID: 23219955 DOI: 10.1016/j.bbadis.2012.11.021] [Citation(s) in RCA: 343] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory/interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis is not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria/NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways is examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Paul Cheresh
- Department of Medicine, Northwestern University Feinberg School of Medicine and Jesse Brown VA Medical Center, USA
| | | | | | | |
Collapse
|
39
|
Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer's disease: from pathogenesis to biomarkers. Int J Cell Biol 2012; 2012:735206. [PMID: 22701485 PMCID: PMC3373122 DOI: 10.1155/2012/735206] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/06/2012] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting several million of people worldwide. Pathological changes in the AD brain include the presence of amyloid plaques, neurofibrillary tangles, loss of neurons and synapses, and oxidative damage. These changes strongly associate with mitochondrial dysfunction and stress of the endoplasmic reticulum (ER). Mitochondrial dysfunction is intimately linked to the production of reactive oxygen species (ROS) and mitochondrial-driven apoptosis, which appear to be aggravated in the brain of AD patients. Concomitantly, mitochondria are closely associated with ER, and the deleterious crosstalk between both organelles has been shown to be involved in neuronal degeneration in AD. Stimuli that enhance expression of normal and/or folding-defective proteins activate an adaptive unfolded protein response (UPR) that, if unresolved, can cause apoptotic cell death. ER stress also induces the generation of ROS that, together with mitochondrial ROS and decreased activity of several antioxidant defenses, promotes chronic oxidative stress. In this paper we discuss the critical role of mitochondrial and ER dysfunction in oxidative injury in AD cellular and animal models, as well as in biological fluids from AD patients. Progress in developing peripheral and cerebrospinal fluid biomarkers related to oxidative stress will also be summarized.
Collapse
Affiliation(s)
- E. Ferreiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - I. Baldeiras
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
- University Coimbra Hospital, 3000-075, Coimbra, Portugal
| | - I. L. Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - R. O. Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - A. C. Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. F. Pereira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. R. Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| |
Collapse
|
40
|
BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1α. EMBO J 2012; 31:2322-35. [PMID: 22510886 DOI: 10.1038/emboj.2012.84] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/13/2012] [Indexed: 12/12/2022] Open
Abstract
Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the unfolded protein response (UPR) stress sensor inositol-requiring enzyme 1α (IRE1α), which functions as an endoribonuclease that splices the mRNA of the transcription factor XBP-1 (X-box-binding protein-1). Through a global proteomic approach we identified the BCL-2 family member PUMA as a novel IRE1α interactor. Immun oprecipitation experiments confirmed this interaction and further detected the association of IRE1α with BIM, another BH3-only protein. BIM and PUMA double-knockout cells failed to maintain sustained XBP-1 mRNA splicing after prolonged ER stress, resulting in early inactivation. Mutation in the BH3 domain of BIM abrogated the physical interaction with IRE1α, inhibiting its effects on XBP-1 mRNA splicing. Unexpectedly, this regulation required BCL-2 and was antagonized by BAD or the BH3 domain mimetic ABT-737. The modulation of IRE1α RNAse activity by BH3-only proteins was recapitulated in a cell-free system suggesting a direct regulation. Moreover, BH3-only proteins controlled XBP-1 mRNA splicing in vivo and affected the ER stress-regulated secretion of antibodies by primary B cells. We conclude that a subset of BCL-2 family members participates in a new UPR-regulatory network, thus assuming apoptosis-unrelated functions.
Collapse
|
41
|
Jäger R, Bertrand MJM, Gorman AM, Vandenabeele P, Samali A. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell 2012; 104:259-70. [PMID: 22268789 DOI: 10.1111/boc.201100055] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022]
Abstract
One of the early cellular responses to endoplasmic reticulum (ER) stress is the activation of the unfolded protein response (UPR). ER stress and the UPR are both implicated in numerous human diseases and pathologies. In spite of this, our knowledge of the molecular mechanisms that regulate cell fate following ER stress is limited. The UPR is initiated by three ER transmembrane receptors: PKR-like ER kinase (PERK), activating transcription factor (ATF) 6 and inositol-requiring enzyme 1 (IRE1). These proteins sense the accumulation of unfolded proteins and their activation triggers specific adaptive responses to resolve the stress. Intriguingly, the very same receptors can initiate signalling pathways that lead to apoptosis when the attempts to resolve the ER stress fail. In this review, we describe the known pro-apoptotic signalling pathways emanating from activated PERK, ATF6 and IRE1 and discuss how their signalling switches from an adaptive to a pro-apoptotic response.
Collapse
Affiliation(s)
- Richard Jäger
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
42
|
Gorman AM, Healy SJM, Jäger R, Samali A. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 2012; 134:306-16. [PMID: 22387231 DOI: 10.1016/j.pharmthera.2012.02.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) is an elaborate cellular organelle essential for cell function and survival. Conditions that interfere with ER function lead to the accumulation and aggregation of unfolded proteins which are detected by ER transmembrane receptors that initiate the unfolded protein response (UPR) to restore normal ER function. If the ER stress is prolonged, or the adaptive response fails, apoptotic cell death ensues. Many studies have focused on how this failure initiates apoptosis, particularly because ER stress-induced apoptosis is implicated in the pathophysiology of several neurodegenerative and cardiovascular diseases. In this review we aim to shed light on the proteins that are not core components of the UPR signaling pathway but which can influence the course of the ER stress response by regulating the switch from the adaptive phase to apoptosis.
Collapse
Affiliation(s)
- Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, University Road., Galway, Ireland
| | | | | | | |
Collapse
|
43
|
Grimm S. The ER-mitochondria interface: the social network of cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:327-34. [PMID: 22182703 DOI: 10.1016/j.bbamcr.2011.11.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/20/2011] [Accepted: 11/21/2011] [Indexed: 12/23/2022]
Abstract
When cellular organelles communicate bad things can happen. Recent findings uncovered that the junction between the endoplasmic reticulum (ER) and the mitochondria holds a crucial role for cell death regulation. Not only does this locale connect the two best-known organelles in apoptosis, numerous regulators of cell death are concentrated at this spot, providing a terrain for intense signal transfers. Ca2+ is the most prominent signalling factor that is released from the ER and, at high concentration, mediates the transfer of an apoptosis signal to mitochondria as the executioner organelle for cell death. An elaborate array of checks and balances is fine-tuning this process including Bcl-2 family members. Moreover, MAMs, "mitochondria-associated membranes", are distinct membrane sections at the ER that are in close contact with mitochondria and have been found to exchange lipids and lipid-derived molecules such as ceramide for apoptosis induction. Recent work has also described a reverse transfer of apoptosis signals, from mitochondria to the ER, via cytochrome c release and prolonged IP3R opening or through the mitochondrial fission factor Fis1 and Bap31 at the ER, which form the ARCosome, a novel caspase-activation complex.
Collapse
|
44
|
Hetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev 2011; 91:1219-43. [PMID: 22013210 DOI: 10.1152/physrev.00001.2011] [Citation(s) in RCA: 447] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stress induced by accumulation of unfolded proteins at the endoplasmic reticulum (ER) is a classic feature of secretory cells and is observed in many tissues in human diseases including cancer, diabetes, obesity, and neurodegeneration. Cellular adaptation to ER stress is achieved by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that transmits information about the protein folding status at the ER to the nucleus and cytosol to restore ER homeostasis. Inositol-requiring transmembrane kinase/endonuclease-1 (IRE1α), the most conserved UPR stress sensor, functions as an endoribonuclease that processes the mRNA of the transcription factor X-box binding protein-1 (XBP1). IRE1α signaling is a highly regulated process, controlled by the formation of a dynamic scaffold onto which many regulatory components assemble, here referred to as the UPRosome. Here we provide an overview of the signaling and regulatory mechanisms underlying IRE1α function and discuss the emerging role of the UPR in adaptation to protein folding stress in specialized secretory cells and in pathological conditions associated with alterations in ER homeostasis.
Collapse
Affiliation(s)
- Claudio Hetz
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Endoplasmic reticulum (ER) stress is triggered by perturbations in ER function such as those caused by protein misfolding or by increases in protein secretion. Eukaryotic cells respond to ER stress by activating 3 ER-resident proteins, activating transcription factor-6, inositol requiring protein-1, and protein kinase RNA-like ER kinase (PERK). These proteins direct signaling pathways that relieve ER stress in a process known as the unfolded protein response (UPR). In pathological settings, however, prolonged UPR activation can promote cell death, and this process has recently emerged as an important concept in atherosclerosis. We review here the evidence for UPR activation and cell death in macrophages, smooth muscle cells, and endothelial cells in the context of advanced atherosclerosis as well as the existing literature regarding mechanisms of UPR-induced cell death. Knowledge in this area may suggest new therapeutic targets relevant to the formation of clinically dangerous atherosclerotic plaques.
Collapse
Affiliation(s)
- Christopher M Scull
- Department of Medicine, Columbia University-PH 9-405, 630 W. 168th St., New York, NY 10032, USA.
| | | |
Collapse
|
46
|
Greiner M, Kreutzer B, Lang S, Jung V, Cavalié A, Unteregger G, Zimmermann R, Wullich B. Sec62 protein level is crucial for the ER stress tolerance of prostate cancer. Prostate 2011; 71:1074-83. [PMID: 21557272 DOI: 10.1002/pros.21324] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/22/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND We previously reported that over-expression of the SEC62 gene is a widespread phenomenon in prostate cancer. Since the use of endoplasmic reticulum (ER) stress-inducing substances such as thapsigargin in prostate cancer therapy is widely discussed in the literature, we investigated the influence of Sec62 protein content on the cellular response to these drugs. METHODS Growth effects were analyzed by real-time cell analysis and viability tests in DU145-cells representing an increased SEC62 expression or PC3- and LNCaP-cells representing a similar SEC62 expression compared to non-tumor cells. Ca(2+) -imaging in an established HeLa-system with fluorescent dye was used to study molecular effects of Sec62 depletion. RESULTS We found a lower propensity toward apoptotic cell death after thapsigargin treatment for DU145 cells compared to PC3 or LNCaP and siRNA-mediated silencing of SEC62 resulted in a reduced viability of thapsigargin-treated PC3 cells, indicating that Sec62 functions in cellular stress response. Measurement of cytosolic [Ca(2+) ] demonstrated the influence of Sec62 on the cellular response to thapsigargin on a molecular level. Using real-time cell analysis, we observed the loss of androgen stimulation of LNCaP cells in the presence of thapsigargin, and an additional negative effect on cell growth of Sec62 depletion. Also, for PC3- and DU145-cells Sec62 depletion inhibited growth after thapsigargin treatment. CONCLUSIONS Our data indicate a crucial function of Sec62 in the response to thapsigargin-induced ER stress. This will be of great significance on the background of elevated Sec62 protein levels in prostate cancer cells when treatment with thapsigargin analogs is considered.
Collapse
Affiliation(s)
- Markus Greiner
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Costa RO, Ferreiro E, Martins I, Santana I, Cardoso SM, Oliveira CR, Pereira CMF. Amyloid β-induced ER stress is enhanced under mitochondrial dysfunction conditions. Neurobiol Aging 2011; 33:824.e5-16. [PMID: 21704433 DOI: 10.1016/j.neurobiolaging.2011.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 04/13/2011] [Accepted: 04/29/2011] [Indexed: 01/10/2023]
Abstract
Previously we reported that endoplasmic reticulum (ER)-mitochondria crosstalk is involved in amyloid-β (Aβ)-induced apoptosis. Now we show that mitochondrial dysfunction affects the ER stress response triggered by Aβ using cybrids that recreate the defect in mitochondrial cytochrome c oxidase (COX) activity detected in platelets from Alzheimer's disease (AD) patients. AD and control cybrids were treated with Aβ or classical ER stressors and the ER stress-mediated apoptotic cell death pathway was accessed. Upon treatment, we found increased glucose-regulated protein 78 (GRP78) levels and caspase-4 activation (ER stress markers) which were more pronounced in AD cybrids. Treated AD cybrids also exhibited decreased cell survival as well as increased caspase-3-like activity, poli-ADP-ribose-polymerase (PARP) levels and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells. Finally, we showed that Aβ-induced caspase-3 activation in both cybrid cell lines was prevented by dantrolene, thus implicating ER Ca(2+) release in ER stress-mediated apoptosis. Our results demonstrate that mitochondrial dysfunction occurring in AD patients due to COX inhibition potentiates cell susceptibility to Aβ-induced ER stress. This study further supports the close communication between ER and mitochondria during apoptosis in AD.
Collapse
Affiliation(s)
- Rui O Costa
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
It is well known that apoptosis is an actively mediated cell suicide process. In contrast, necrosis, a morphologically distinct form of cell death, has traditionally been regarded as passive and unregulated. Over the past decade, however, experiments in Caenorhabditis elegans and mammalian cells have revealed that a significant proportion of necrotic death is, in fact, actively mediated by the doomed cell. Although a comprehensive understanding of necrosis is still lacking, some key molecular events have come into focus. Cardiac myocyte apoptosis and necrosis are prominent features of the major cardiac syndromes. Accordingly, the recognition of necrosis as a regulated process mandates a reexamination of cell death in the heart. This review discusses pathways that mediate programmed necrosis, how they intersect with apoptotic pathways, roles of necrosis in heart disease, and new therapeutic opportunities that the regulated nature of necrosis presents.
Collapse
Affiliation(s)
- Gloria Kung
- Wilf Family Cardiovascular Research Institute, Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
49
|
Liu Y, Ye Y. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res 2011; 21:867-83. [PMID: 21537343 PMCID: PMC3203708 DOI: 10.1038/cr.2011.75] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To deal with the constant challenge of protein misfolding in the endoplasmic reticulum (ER), eukaryotic cells have evolved an ER protein quality control (ERQC) mechanism that is integrated with an adaptive stress response. The ERQC pathway is comprised of factors residing in the ER lumen that function in the identification and retention of aberrantly folded proteins, factors in the ER membrane for retrotranslocation of misfolded polypeptides, and enzymes in the cytosol that degrade retrotranslocated proteins. The integrated stress response (termed ER stress or unfolded protein response, UPR) contains several signaling branches elicited from the ER membrane, which fine-tune the rate of protein synthesis and entry into the ER to match the ER folding capacity. The fitness of the cell, particularly those bearing a high secretory burden, is critically dependent on functional integrity of the ER, which in turn relies on these stress-attenuating mechanisms to maintain protein homeostasis, or proteostasis. Aberrant proteostasis can trigger cellular apoptosis, making these adaptive stress response systems attractive targets for perturbation in treatment of cell malignancies. Here, we review our current understanding of how the cell preserves ER proteostasis and discuss how we may harness the mechanistic information on this process to develop new cancer therapeutics.
Collapse
Affiliation(s)
- Yanfen Liu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| |
Collapse
|
50
|
Integrating stress signals at the endoplasmic reticulum: The BCL-2 protein family rheostat. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:564-74. [DOI: 10.1016/j.bbamcr.2010.11.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/11/2010] [Accepted: 11/14/2010] [Indexed: 11/18/2022]
|