1
|
Kim YB, Park SY, Jeon HJ, Kim B, Kwon MG, Kim SM, Han JE, Kim JH. Genomic and Pathological Characterization of Acute Hepatopancreatic Necrosis Disease (AHPND)-Associated Natural Mutant Vibrio parahaemolyticus Isolated from Penaeus vannamei Cultured in Korea. Animals (Basel) 2024; 14:2788. [PMID: 39409739 PMCID: PMC11475263 DOI: 10.3390/ani14192788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is one of the most important diseases in the global shrimp industry. The emergence of mutant AHPND-associated V. parahaemolyticus (VpAHPND) strains has raised concerns regarding potential misdiagnosis and unforeseen pathogenicity. In this study, we report the first emergence of a type II (pirA-, pirB+) natural mutant, VpAHPND (strain 20-082A3), isolated from cultured Penaeus vannamei in Korea. Phenotypic and genetic analyses revealed a close relationship between the mutant strain 20-082A3 and the virulent Korean VpAHPND strain 19-021-D1, which caused an outbreak in 2019. Detailed sequence analysis of AHPND-associated plasmids showed that plasmid pVp_20-082A3B in strain 20-082A3 was almost identical (>99.9%) to that of strain 19-021-D1. Moreover, strains 20-082A3 and 19-021-D1 exhibited the same multilocus sequence type (ST 413) and serotype (O1:Un-typeable K-serogroup), suggesting that the mutant strain is closely related to and may have originated from the virulent strain 19-021-D1. Similar to previous reports on the natural mutant VpAHPND, strain 20-082A3 did not induce AHPND-related symptoms or cause mortality in the shrimp bioassay. The emergence of a mutant strain which is almost identical to the virulent VpAHPND highlights the need for surveillance of the pathogen prevalent in Korea. Further investigations to elucidate the potential relationship between ST 413 and recent Korean VpAHPND isolates are needed.
Collapse
Affiliation(s)
- Ye Bin Kim
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Seon Young Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hye Jin Jeon
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.J.J.); (B.K.)
| | - Bumkeun Kim
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.J.J.); (B.K.)
| | - Mun-Gyeong Kwon
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, Busan 46083, Republic of Korea; (M.-G.K.); (S.-M.K.)
| | - Su-Mi Kim
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, Busan 46083, Republic of Korea; (M.-G.K.); (S.-M.K.)
| | - Jee Eun Han
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.J.J.); (B.K.)
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
2
|
Yan Y, Lu H, Liang X, Xu T, Yan S, Yu Y, Wang Y. The virulence plasmid associated with AHPND in shrimp appears to have originated from Vibrio owensii through a process of homologous recombination of parental plasmids and the transposable insertion of two large fragments. J Invertebr Pathol 2024; 206:108173. [PMID: 39121985 DOI: 10.1016/j.jip.2024.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a highly contagious and lethal disease of shrimp caused by Vibrio strains carrying the virulence plasmid (pAHPND) containing the pirAB virulence genes. Through analysis of plasmid sequence similarity, clustering, and phylogeny, a horizontal transfer element similar to IS91 was discovered within the pAHPND plasmid. Additionally, two distinct clades of plasmids related to pAHPND (designated as pAHPND-r1 and pAHPND-r2) were identified, which may serve as potential parental plasmids for pAHPND. The available evidence, including the difference in G+C content between the plasmid and its host, codon usage preference, and plasmid recombination event prediction, suggests that the formation of the pAHPND plasmid in the Vibrio owensii strain was likely due to the synergistic effect of the recombinase RecA and the associated proteins RecBCD on the pAHPND-r1 and pAHPND-r2, resulting in the recombination and formation of the precursor plasmid for pAHPND (pre-pAHPND). The emergence of pAHPND was found to be a result of successive insertions of the horizontal transfer elements of pirAB-Tn903 and IS91-like segment, which led to the deletion of one third of the pre-pAHPND. This plasmid was then able to spread horizontally to other Vibrio strains, contributing to the epidemics of AHPND. These findings shed light on previously unknown mechanisms involved in the emergence of pAHPND and improve our understanding of the disease's spread.
Collapse
Affiliation(s)
- Yesheng Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haojie Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaosha Liang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tianqi Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuling Yan
- Entwicklungsgenetik und Zellbiologie der Tiere, Philipps-Universität Marburg, Marburg, Germany
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
3
|
Dong X, Xie J, Wang L, Li X, Lou H, Wang G, Huang J. Development of Monoclonal Antibody against PirB and Establishment of a Colloidal Gold Immunochromatographic Assay for the Rapid Detection of AHPND-Causing Vibrio. Animals (Basel) 2024; 14:1600. [PMID: 38891648 PMCID: PMC11171346 DOI: 10.3390/ani14111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) poses a significant threat to shrimp aquaculture worldwide, necessitating the accurate and rapid detection of the pathogens. However, the increasing number of Vibrio species that cause the disease makes diagnosis and control more difficult. This study focuses on developing a monoclonal antibody against the Photorhabdus insect-related (Pir) toxin B (PirB), a pivotal virulence factor in AHPND-causing Vibrio, and establishing a colloidal gold immunochromatographic assay for the enhanced early diagnosis and monitoring of AHPND. Monoclonal antibodies targeting PirB were developed and utilized in the preparation of colloidal-gold-labeled antibodies for the immunochromatographic assay. The specificity and sensitivity of the assay were evaluated through various tests, including antibody subclass detection, affinity detection, and optimal labeling efficiency assessment. The developed PirB immunochromatographic test strips exhibited a good specificity, as demonstrated by the positive detection of AHPND-causing Vibrio and negative results for non-AHPND-causing Vibrio. The study highlights the potential of the developed monoclonal antibody and immunochromatographic assay for the effective detection of AHPND-causing Vibrio. Further optimization is needed to enhance the sensitivity of the test strips for improved practical applications in disease prevention and control in shrimp aquaculture.
Collapse
Affiliation(s)
- Xuan Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (J.X.); (L.W.); (X.L.); (H.L.); (G.W.); (J.H.)
- Jiangsu Shufeng Aquatic Seed Industry Co., Ltd., Gaoyou 255654, China
| | - Jingmei Xie
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (J.X.); (L.W.); (X.L.); (H.L.); (G.W.); (J.H.)
| | - Liying Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (J.X.); (L.W.); (X.L.); (H.L.); (G.W.); (J.H.)
| | - Xuan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (J.X.); (L.W.); (X.L.); (H.L.); (G.W.); (J.H.)
| | - Haoyu Lou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (J.X.); (L.W.); (X.L.); (H.L.); (G.W.); (J.H.)
| | - Guohao Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (J.X.); (L.W.); (X.L.); (H.L.); (G.W.); (J.H.)
| | - Jie Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (J.X.); (L.W.); (X.L.); (H.L.); (G.W.); (J.H.)
| |
Collapse
|
4
|
Choi HJ, Choi DY, Lee JH, Kim JH, Kang YJ. First report and pathogenicity of Vibrio campbellii (VC AHPND) isolated in South Korea. JOURNAL OF FISH DISEASES 2024; 47:e13928. [PMID: 38268102 DOI: 10.1111/jfd.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Affiliation(s)
- Hee-Jae Choi
- Department of Aquatic Life Medicine, Kunsan National University, Gunsan City, Jeonbuk-do, South Korea
| | - Da-Yeon Choi
- Department of Aquatic Life Medicine, Kunsan National University, Gunsan City, Jeonbuk-do, South Korea
| | - Ji-Hoon Lee
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), Busan City, South Korea
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, College of Ocean Sciences, Jeju National University, Jeju City, South Korea
| | - Yue Jai Kang
- Department of Aquatic Life Medicine, Kunsan National University, Gunsan City, Jeonbuk-do, South Korea
| |
Collapse
|
5
|
Castellanos A, Restrepo L, Bajaña L, Betancourt I, Bayot B, Reyes A. Genomic and Evolutionary Features of Nine AHPND Positive Vibrio parahaemolyticus Strains Isolated from South American Shrimp Farms. Microbiol Spectr 2023; 11:e0485122. [PMID: 37272817 PMCID: PMC10433878 DOI: 10.1128/spectrum.04851-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Vibrio parahaemolyticus is a bacterial pathogen that becomes lethal to Penaeus shrimps when acquiring the pVA1-type plasmid carrying the PirABvp genes, causing acute hepatopancreatic necrosis disease (AHPND). This disease causes significant losses across the world, with outbreaks reported in Southeast Asia, Mexico, and South America. Virulence level and mortality differences have been reported in isolates from different locations, and whether this phenomenon is caused by plasmid-related elements or genomic-related elements from the bacteria remains unclear. Here, nine genomes of South American AHPND-causing V. parahaemolyticus (VPAHPND) isolates were assembled and analyzed using a comparative genomics approach at (i) whole-genome, (ii) secretion system, and (iii) plasmid level, and then included for a phylogenomic analysis with another 86 strains. Two main results were obtained from our analyses. First, all isolates contained pVA1-type plasmids harboring the toxin coding genes, and with high similarity with the prototypical sequence of Mexican-like origin, while phylogenomic analysis showed some level of heterogeneity with discrete clusters and wide diversity compared to other available genomes. Second, although a high genomic similarity was observed, variation in virulence genes and clusters was observed, which might be relevant in the expression of the disease. Overall, our results suggest that South American pathogenic isolates are derived from various genetic lineages which appear to have acquired the plasmid through horizontal gene transfer. Furthermore, pathogenicity seems to be a multifactorial trait where the degree of virulence could be altered by the presence or variations of several virulence factors. IMPORTANCE AHPND have caused losses of over $2.6 billion to the aquaculture industry around the world due to its high mortality rate in shrimp farming. The most common etiological agent is V. parahaemolyticus strains possessing the pVA1-type plasmid carrying the PirABvp toxin. Nevertheless, complete understanding of the role of genetic elements and their impact in the virulence of this pathogen remains unclear. In this work, we analyzed nine South American AHPND-causing V. parahaemolyticus isolates at a genomic level, and assessed their evolutionary relationship with other 86 strains. We found that all our isolates were highly similar and possessed the Mexican-type plasmid, but their genomic content did not cluster with other Mexican strains, but instead were spread across all isolates. These results suggest that South American VPAHPND have different genetic backgrounds, and probably proceed from diverse geographical locations, and acquire the pVA1-type plasmid via horizontal gene transfer at different times.
Collapse
Affiliation(s)
- Alejandro Castellanos
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - Leda Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
- Postdoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Guayaquil, Ecuador
| | - Leandro Bajaña
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Guayaquil, Ecuador
| | - Irma Betancourt
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Guayaquil, Ecuador
| | - Bonny Bayot
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Marítima y Ciencias del Mar, FIMCM, Guayaquil, Ecuador
| | - Alejandro Reyes
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
- Center for Genome Sciences and Systems Biology, Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| |
Collapse
|
6
|
Wang HC, Lin SJ, Wang HC, Kumar R, Le PT, Leu JH. A bacterial binary toxin system that kills both insects and aquatic crustaceans: Photorhabdus insect-related toxins A and B. PLoS Pathog 2023; 19:e1011330. [PMID: 37141203 PMCID: PMC10159206 DOI: 10.1371/journal.ppat.1011330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Photorhabdus insect-related toxins A and B (PirA and PirB) were first recognized as insecticidal toxins from Photorhabdus luminescens. However, subsequent studies showed that their homologs from Vibrio parahaemolyticus also play critical roles in the pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimps. Based on the structural features of the PirA/PirB toxins, it was suggested that they might function in the same way as a Bacillus thuringiensis Cry pore-forming toxin. However, unlike Cry toxins, studies on the PirA/PirB toxins are still scarce, and their cytotoxic mechanism remains to be clarified. In this review, based on our studies of V. parahaemolyticus PirAvp/PirBvp, we summarize the current understanding of the gene locations, expression control, activation, and cytotoxic mechanism of this type of toxin. Given the important role these toxins play in aquatic disease and their potential use in pest control applications, we also suggest further topics for research. We hope the information presented here will be helpful for future PirA/PirB studies.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic of China
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, Republic of China
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Shin-Jen Lin
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Han-Ching Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, Republic of China
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ramya Kumar
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, Republic of China
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Phuoc Thien Le
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| |
Collapse
|
7
|
Yu Y, Zhang Y, Wang Y, Liao M, Li B, Rong X, Wang C, Ge J, Wang J, Zhang Z. The Genetic and Phenotypic Diversity of Bacillus spp. from the Mariculture System in China and Their Potential Function against Pathogenic Vibrio. Mar Drugs 2023; 21:md21040228. [PMID: 37103367 PMCID: PMC10146669 DOI: 10.3390/md21040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Bacillus spp. could be one of the most suitable substitutes for the control and prevention of aquatic diseases. The occurrence of species population, antimicrobial character, and virulence diversity in Bacillus spp. recovered from the mariculture system in China between 2009 and 2021 were investigated, screening for probiotic Bacillus strains with good biological safety that can inhibit Vibrio parahaemolyticus, V. alginolyticus, V. harveyi, V. owensii, V. campbellii. The results showed that 116 Bacillus isolates were divided into 24 species, and the top three species were B. subtilis (37/116), B. velezensis (28/116), and B. amyloliquefaciens (10/116). Among the 116 Bacillus isolates, 32.8% were effective against V. parahaemolyticus, 30.1% for V. alginolyticus, 60.3% for V. harveyi, 69.8% for V. owensii and 74.1% for V. campbellii. More than 62% of Bacillus isolates were susceptible to florfenicol, doxycycline and tetracycline, etc., and 26/116 Bacillus isolates were found to be multiple-antibiotic-resistant (MAR), with MARI values ranging from 0 to 0.06. Eighteen kinds of antibiotic resistance genes were tested; only tetB, blaTEM, and blaZ were detected. And 9 isolates in 2 Bacillus species were excluded by 6/10 kinds of Bacillus-related toxin gene (hblA, hblC, nheB, nheC, entFM, cykK). Bio-safety testing indicated that three kinds of probiotics were good probiotic candidates to prevent Vibriosis. These results provide comprehensive genetic diversity, potential risks, and probiotic characteristics of Bacillus in the mariculture system in China, and provide basic support for green and healthy development of aquatic industry.
Collapse
Affiliation(s)
- Yongxiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yang Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yingeng Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Meijie Liao
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaojun Rong
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Chunyuan Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
| | - Jianlong Ge
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
| | - Jinjin Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
| | - Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
8
|
Panwar S, Kumari S, Verma J, Bakshi S, Narendrakumar L, Paul D, Das B. Toxin-linked mobile genetic elements in major enteric bacterial pathogens. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e5. [PMID: 39295911 PMCID: PMC11406385 DOI: 10.1017/gmb.2023.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 12/31/2022] [Accepted: 02/24/2023] [Indexed: 09/21/2024]
Abstract
One of the fascinating outcomes of human microbiome studies adopting multi-omics technology is its ability to decipher millions of microbial encoded functions in the most complex and crowded microbial ecosystem, including the human gastrointestinal (GI) tract without cultivating the microbes. It is well established that several functions that modulate the human metabolism, nutrient assimilation, immunity, infections, disease severity and therapeutic efficacy of drugs are mostly of microbial origins. In addition, these microbial functions are dynamic and can disseminate between microbial taxa residing in the same ecosystem or other microbial ecosystems through horizontal gene transfer. For clinicians and researchers alike, understanding the toxins, virulence factors and drug resistance traits encoded by the microbes associated with the human body is of utmost importance. Nevertheless, when such traits are genetically linked with mobile genetic elements (MGEs) that make them transmissible, it creates an additional burden to public health. This review mainly focuses on the functions of gut commensals and the dynamics and crosstalk between commensal and pathogenic bacteria in the gut. Also, the review summarises the plethora of MGEs linked with virulence genes present in the genomes of various enteric bacterial pathogens, which are transmissible among other pathogens and commensals.
Collapse
Affiliation(s)
- Shruti Panwar
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Shashi Kumari
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Susmita Bakshi
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Lekshmi Narendrakumar
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Deepjyoti Paul
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
9
|
Transcriptome Analysis on Hepatopancreas Reveals the Metabolic Dysregulation Caused by Vibrio parahaemolyticus Infection in Litopenaeus vannamei. BIOLOGY 2023; 12:biology12030417. [PMID: 36979109 PMCID: PMC10044748 DOI: 10.3390/biology12030417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Acute hepatopancreas necrosis disease (AHPND) has caused massive deaths of shrimp and has led to huge economic losses in aquaculture. Vibrio parahaemolyticus (VPAHPND) carrying a plasmid encoding binary toxins homologous to the photorhabdus insect-related (Pir) toxins is one of the main pathogens causing this disease. Previous studies have reported many immune-related genes of shrimp in response to this pathogenic bacteria. However, few studies have so far focused on the metabolic changes in Litopenaeus vannamei upon VPAHPND infection. In the present study, comparative transcriptomic analysis was performed on the hepatopancreas of shrimp at different times during VPAHPND infection. Functional analyses on the differentially expressed genes (DEGs) during infection showed that pathways related to glucose, energy and amino acid metabolism, as well as nucleic acid synthesis, were obviously changed in the hepatopancreas after VPAHPND infection. Additionally, three signaling pathways, which could regulate metabolic processes, including HIF-1 signaling pathway, PI3K-Akt signaling pathway and NF-KappaB signaling pathway, also changed significantly. Collectively, these data reveal a close relationship between host metabolism processes and Vibrio infection. The information will enrich our understanding of the interaction mechanism between the shrimp and Vibrio.
Collapse
|
10
|
Huang MY, Lo CY, Lai CY, Yu JD, Lee PT. Dietary supplementation of synbiotic Leuconostoc mesenteroide B4 and dextran improves immune regulation and disease resistance of Penaeus vannamei against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108498. [PMID: 36539168 DOI: 10.1016/j.fsi.2022.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
White shrimp (Penaeus vannamei) is an important culture species in Taiwan but often encounters disease infection by Vibrio parahaemolyticus that cause acute hepatopancreatic necrosis disease (AHPND). This study investigates the effects of dietary supplementation of Leuconostoc mesenteroide B4 and its fermentate (dextran) on the immune response, intestinal morphology, disease resistance, and immune-related gene expression in white shrimp. In comparison to the control group, the shrimp fed with a diet containing B4+dextran (107 CFU B4/g feed and 0.05% dextran) for 14, 28, 42 and 56 days had a significantly higher feed efficiency, weight gain and specific growth rate. A significantly higher villus height in the intestine and higher survival rate after challenging with V. parahaemolyticus was recorded for the B4+dextran group. Flow cytometry analysis demonstrated that the group that had ingested B4+dextran had a higher total hemocyte count and a higher proportion of semi-granulocytes, but a lower percentage of granulocytes compared to the control group. The shotgun metagenomic results in the midgut revealed that Leuco. mesenteroides was barely found in the midgut of the shrimp, suggesting that this microbe and its transient presence in the midgut is not the direct mechanism underlying the improved shrimp growth in the treated sample. Instead, dextran, a key ingredient in the B4 fermentate, on the dynamic of the microbial populations in shrimp, possibly promoting the diversity of gut microbes, especially the beneficial microbes, and thereby rendering protection against AHPND. In terms of comparing the gene expression between the control and synbiotic groups, pre- and post-bacterial challenge, a higher expression level of immune genes was mostly found in the B4+dextran group after challenging it with V. parahaemolyticus (group B4+dextran-VP) in the hepatopancreas and hemocyte. In contrast, the transcript level of immune-related genes was found to be higher in the B4+dextran group than other combinations in the midgut. Taken together, this study found that dietary addition of synbiotic Leuco. mesenteroides B4 and dextran can improve the growth performance, intestinal morphology and microbiome, regulation of immune genes and disease resistance against V. parahaemolyticus infection in white shrimp.
Collapse
Affiliation(s)
- Mei-Ying Huang
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, Taiwan
| | - Chia-Yi Lo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
11
|
Wang D, Wang L, Bi D, Song J, Wang G, Gao Y, Tang KFJ, Meng F, Xie J, Zhang F, Huang J, Li J, Dong X. Conjugative Transfer of Acute Hepatopancreatic Necrosis Disease-Causing pVA1-Type Plasmid Is Mediated by a Novel Self-Encoded Type IV Secretion System. Microbiol Spectr 2022; 10:e0170222. [PMID: 36121241 PMCID: PMC9602635 DOI: 10.1128/spectrum.01702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022] Open
Abstract
The pathogenic pVA1-type plasmids that carry pirAB toxin genes are the genetic basis for Vibrio to cause acute hepatopancreatic necrosis disease (AHPND), a lethal shrimp disease posing an urgent threat to shrimp aquaculture. Emerging evidence also demonstrate the rapid spread of pVA1-type plasmids across Vibrio species. The pVA1-type plasmids have been predicted to encode a self-encoded type IV secretion system (T4SS). Here, phylogenetic analysis indicated that the T4SS is a novel member of Trb-type. We further confirmed that the T4SS was able to mediate the conjugation of pVA1-type plasmids. A trbE gene encoding an ATPase and a traG gene annotated as a type IV coupling protein (T4CP) were characterized as key components of the T4SS. Deleting either of these 2 genes abolished the conjugative transfer of a pVA1-type plasmid from AHPND-causing Vibrio parahaemolyticus to Vibrio campbellii, which was restored by complementation of the corresponding gene. Moreover, we found that bacterial density, temperature, and nutrient levels are factors that can regulate conjugation efficiency. In conclusion, we proved that the conjugation of pVA1-type plasmids across Vibrio spp. is mediated by a novel T4SS and regulated by environmental factors. IMPORTANCE AHPND is a global shrimp bacteriosis and was listed as a notifiable disease by the World Organization for Animal Health (WOAH) in 2016, causing losses of more than USD 7 billion each year. Several Vibrio species such as V. parahaemolyticus, V. harveyi, V. campbellii, and V. owensii harboring the virulence plasmid (designated as the pVA1-type plasmid) can cause AHPND. The increasing number of Vibrio species makes prevention and control more difficult, threatening the sustainable development of the aquaculture industry. In this study, we found that the horizontal transfer of pVA1-type plasmid is mediated by a novel type IV secretion system (T4SS). Our study explained the formation mechanism of pathogen diversity in AHPND. Moreover, bacterial density, temperature, and nutrient levels can regulate horizontal efficiency. We explore new ideas for controlling the spread of virulence plasmid and form the basis of management strategies leading to the prevention and control of AHPND.
Collapse
Affiliation(s)
- Dehao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shandong Agricultural University, College of Animal Science and Veterinary Medicine, Tai’an, China
| | - Liying Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shanghai Ocean University, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jipeng Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Guohao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Ye Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Kathy F. J. Tang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Fanzeng Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shanghai Ocean University, Shanghai, China
| | - Jingmei Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Tianjin Agricultural University, Tianjin, China
| | - Fan Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| | - Jianliang Li
- Shandong Agricultural University, College of Animal Science and Veterinary Medicine, Tai’an, China
| | - Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
12
|
Lomelí-Ortega CO, Barajas-Sandoval DR, Martínez-Villalobos JM, Jaramillo CR, Chávez EM, Gómez-Gil B, Balcázar JL, Quiroz-Guzmán E. A Broad-Host-Range Phage Cocktail Selectively and Effectively Eliminates Vibrio Species from Shrimp Aquaculture Environment. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02118-1. [PMID: 36194291 DOI: 10.1007/s00248-022-02118-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The protective effects of a phage cocktail composed of vB_Vc_SrVc2 and vB_Vc_SrVc9 were tested in Pacific white shrimp (Litopenaeus vannamei) postlarvae, which were originally isolated from diseased shrimps and selected due to their broad-host-range properties against several pathogenic Vibsrio species. We used culture-dependent and culture-independent approaches to explore its effect on bacterial communities associated with shrimp postlarvae. Both methods revealed that the levels of Vibrio species were significantly reduced after phage cocktail administration. Phage-treated shrimp also exhibisuppted lesser damage and higher lipid accumulation in B cells of the hepatopancreas, as revealed by histopathological examination. Taken together, this study provides clear evidence that phage therapy can selectively and effectively reduce Vibrio species, thereby providing an environmentally safe alternative to the prophylactic use of antibiotics in shrimp aquaculture.
Collapse
Affiliation(s)
- Carlos Omar Lomelí-Ortega
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096, La Paz, Baja California Sur, Mexico
| | - Diana R Barajas-Sandoval
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096, La Paz, Baja California Sur, Mexico
| | | | - Carmen Rodriguez Jaramillo
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096, La Paz, Baja California Sur, Mexico
| | - Eulalia Meza Chávez
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096, La Paz, Baja California Sur, Mexico
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación Y Desarrollo AC, Mazatlán, Sinaloa, Mexico
| | - José L Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- University of Girona, 17004, Girona, Spain
| | - Eduardo Quiroz-Guzmán
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, Baja California Sur, 23096, La Paz, Mexico.
| |
Collapse
|
13
|
Zhang H, Gong HY, Cao WW, Que MY, Ye L, Shi L. Duplex droplet digital PCR method for the detection of Enterocytozoon hepatopenaei and Vibrio parahaemolyticus acute hepatopancreatic necrosis disease. JOURNAL OF FISH DISEASES 2022; 45:761-769. [PMID: 35322884 DOI: 10.1111/jfd.13600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) and Vibrio parahaemolyticus acute hepatopancreatic necrosis disease (VPAHPND) are two of the diseases that have frequently infected farmed shrimp in recent years, causing great economic losses to the shrimp industry worldwide. In this study, we established a sensitive and accurate duplex droplet digital PCR (ddPCR) method that can simultaneously detect and quantify the two pathogens simultaneously. The results showed that the ddPCR methods could detect EHP and VPAHPND specifically. The sensitivity levels of ddPCR for EHP and VPAHPND were 2.3 copies/μl and 4.6 copies/μl, respectively, which were 10-fold higher than the sensitivity of the qPCR assay and showed good reproducibility. Twenty-six suspected diseased shrimp samples were used for practical determination. For EHP, the detection rates of ddPCR and qPCR were 53.84% and 42.31%, respectively; for VPAHPND, the detection rates of ddPCR and qPCR were both 23.08%. The results indicated that the ddPCR method shows superiority for detection in samples with low viral loads, which will facilitate monitoring of the source and transmission of EHP and VPAHPND and will help control shrimp epidemic disease.
Collapse
Affiliation(s)
- Huang Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Han-Yue Gong
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Wei-Wei Cao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Mu-Yi Que
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Yasin A, Begum MK, Eshik MME, Punom NJ, Ahmmed S, Rahman MS. Molecular identification and antibiotic resistance patterns of diverse bacteria associated with shrimp PL nurseries of Bangladesh: suspecting Acinetobacter venetianus as future threat. PeerJ 2022; 10:e12808. [PMID: 35223199 PMCID: PMC8868018 DOI: 10.7717/peerj.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
Shrimp aquaculture has been accomplished with breeding and nursing of shrimp in an artificial environment to fulfill the increasing demand of shrimp consumption worldwide. However, the microbial diseases appear as a serious problem in this industry. The study was designed to identify the diverse bacteria from shrimp PL (post-larvae) nurseries and to profile antibiotic resistance patterns. The rearing water (raw seawater, treated and outlet water) and shrimp PL were collected from eight nurseries of south-west Bangladesh. Using selective agar plates, thirty representative isolates were selected for 16S rRNA gene sequencing, antibiotic susceptibility test and MAR index calculation. Representative isolates were identified as Aeromonas caviae, Pseudomonas monteilii, Shewanella algae, Vibrio alginolyticus, V. brasiliensis, V. natriegens, V. parahaemolyticus, V. shilonii, V. xuii, Zobellella denitrificans which are Gram-negative, and Bacillus licheniformis and B. pumilus which are Gram-positive. Notably, six strains identified as Acinetobacter venetianus might be a concern of risk for shrimp industry. The antibiotic resistance pattern reveals that the strain YWO8-97 (identified as P. monteilii) was resistant to all twelve antibiotics. Ceftazidime was the most powerful antibiotic since most of the studied strains were sensitive against it. The six strains of A. venetianus showed multiple antibiotic resistance patterns. MAR index were ranged from 0.08 to 1.0, and values of 26 isolates were more than 0.2 which means prior high exposure to the antibiotics. From the present study, it can be concluded that shrimp PL nurseries in southern part of Bangladesh are getting contaminated with antibiotic resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Abdullah Yasin
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mst. Khadiza Begum
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Md. Mostavi Enan Eshik
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Nusrat Jahan Punom
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Shawon Ahmmed
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh,Brackishwater Station, Bangladesh Fisheries Research Institute (BFRI), Khulna, Bangladesh
| | - Mohammad Shamsur Rahman
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
15
|
Li C, Lin N, Feng Z, Lin M, Guan B, Chen K, Liang W, Wang Q, Li M, You Y, Chen Q. CRISPR/Cas12a Based Rapid Molecular Detection of Acute Hepatopancreatic Necrosis Disease in Shrimp. Front Vet Sci 2022; 8:819681. [PMID: 35146019 PMCID: PMC8821903 DOI: 10.3389/fvets.2021.819681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), formerly called early mortality syndrome (EMS), causes high mortality in cultured penaeid shrimp, particularly Penaeus vannamei and Penaeus monodon. AHPND is mainly caused by Vibrio species carrying the pVA1 plasmid encoding the virulence genes Photorhabdus insect-related (pir) pirVPA and pirVPB. We developed a new molecular assay that combines recombinase polymerase amplification (RPA) and CRISPR/Cas12a technology (RPA-CRISPR/Cas12a) to detect pirVPA and pirVPB, with a fluorescent signal result. The fluorescence RPA-CRISPR/Cas12a assay had a detection limit of 20 copies/μL for pirVPA and pirVPB. To improve usability and visualize RPA-CRISPR/Cas12a assay results, a lateral flow strip readout was added. With the lateral flow strip, the RPA-CRISPR/Cas12a assay had a lower limit of detection of 200 copies/μL (0.3 fmol/L). The lateral flow assay can be completed in 2 h and showed no cross-reactivity with pathogens causing other shrimp diseases. In a field test of 60 shrimp samples, the RPA-CRISPR/Cas12a lateral flow assay showed 92.5% positive predictive agreement and 100% negative predictive agreement. As the new RPA-CRISPR/Cas12a assay is rapid, specific, and does not require complicated experimental equipment, it may have important field applications for detecting AHPND in farmed shrimp.
Collapse
Affiliation(s)
- Chenglong Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Nan Lin
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Minhua Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wangwang Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qiaohuang Wang
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Miaomiao Li
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Yu You
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
- *Correspondence: Yu You
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
- Qi Chen
| |
Collapse
|
16
|
Li G, Xie G, Wang H, Wan X, Li X, Shi C, Wang Z, Gong M, Li T, Wang P, Zhang Q, Huang J. Characterization of a novel shrimp pathogen, Vibrio brasiliensis, isolated from Pacific white shrimp, Penaeus vannamei. JOURNAL OF FISH DISEASES 2021; 44:1543-1552. [PMID: 34152602 DOI: 10.1111/jfd.13475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
A novel pathogenic strain Vibrio 20190611023 was isolated from the hepatopancreas of moribund cultured Penaeus vannamei suffering from black gill disease. This strain was identified as V. brasiliensis based on the phylogenetic analyses of 16S rDNA gene and five other housekeeping genes (i.e., gapA, ftsZ, mreB, topA and gyrB). Some biochemical features of this strain were determined with an API 20NE system, and its haemolytic activity was determined using a sheep blood agar plate. The pathogenicity of this isolate 20190611023 was confirmed by the experimental challenge tests and histopathological examinations. P. vannamei were challenged via reverse gavage with different doses of bacterial suspensions. The calculated median lethal dose (LD50 ) was (3.16 ± 1.78) × 105 CFU/g (body weight). Moreover, antibiotic susceptibility tests were performed, the results of which showed that the strain 20190611023 was sensitive to chloramphenicol, compound sulphamethoxazole, ciprofloxacin, doxycycline and oxacillin, but resistant to erythromycin, kanamycin, gentamicin, cefoperazone, ceftriaxone, cefamezin and piperacillin. To our knowledge, this is the first report for demonstrating V. brasiliensis as a shrimp pathogen, which expands the host range of V. brasiliensis infection. The present study highlights that more attention should be paid to this novel pathogen in intensive shrimp aquaculture.
Collapse
Affiliation(s)
- Ge Li
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Guosi Xie
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Hailiang Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiaoyuan Wan
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xinshu Li
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Chengyin Shi
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ziyan Wang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Miao Gong
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ting Li
- Hainan Zhongzheng Aquatic Science and Technology Co., Ltd, Dongfang, China
| | - Ping Wang
- Hainan Zhongzheng Aquatic Science and Technology Co., Ltd, Dongfang, China
| | - Qingli Zhang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Jie Huang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| |
Collapse
|
17
|
Zhang S, Yang Q, Defoirdt T. Indole decreases the virulence of pathogenic vibrios belonging to the Harveyi clade. J Appl Microbiol 2021; 132:167-176. [PMID: 34297464 DOI: 10.1111/jam.15227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/28/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
AIM Indole is a signaling molecule secreted by over 85 species of bacteria, including several Vibrio species, and it has been reported to affect different bacterial phenotypes such as biofilm formation, motility, and virulence. In this study, we aimed at investigating the inter-strain variability of the effect of indole in 12 different strains belonging to the Harveyi clade of vibrios. METHODS AND RESULTS Indole reduced the virulence of all strains towards gnotobiotic brine shrimp larvae. The survival rate of brine shrimp larvae challenged with vibrios pretreated with indole was increased by 1.3-fold to 1.8-fold. Additionally, indole significantly decreased the biofilm formation in all of the strains, decreased the swimming motility in eight of the strains, and decreased swarming motility in five of the strains. When cultured in the presence of exogenous indole, the mRNA level of the pirA and pirB toxin genes were down-regulated to 65% and 46%, and to 62% and 55% in the AHPND-causing strains Vibrio parahaemolyticus M0904 and Vibrio campbellii S01, respectively. CONCLUSIONS These data indicate that indole has a significant impact on the virulence of different strains belonging to the Harveyi clade of vibrios. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggest that indole signaling is a valid target for the development of novel therapeutics in order to control infections caused by Harveyi clade vibrios in aquaculture.
Collapse
Affiliation(s)
- Shanshan Zhang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| |
Collapse
|
18
|
Tran PTN, Kumar V, Bossier P. Do acute hepatopancreatic necrosis disease-causing PirAB VP toxins aggravate vibriosis? Emerg Microbes Infect 2021; 9:1919-1932. [PMID: 32799621 PMCID: PMC8284973 DOI: 10.1080/22221751.2020.1811778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gram-negative marine bacterium Vibrio parahaemolyticus is an important aquatic pathogen and has been demonstrated to be the causative agent of acute hepatopancreatic necrotic disease (AHPND) in shrimp aquaculture. The AHPND-causing V. parahaemolyticus strains contain a pVA1 plasmid encoding the binary PirAVP and PirBVP toxins, are the primary virulence factor that mediates AHPND and mortality in shrimp. Since PirABVP toxins are secreted extracellularly, one can hypothesize that PirABVP toxins would aggravate vibriosis in the aquatic environment. To address this, in vivo and in vitro experiments were conducted. Germ-free Artemia franciscana were co-challenged with PirABVP toxins and 10 Vibrio spp. The in vivo results showed that PirABVP toxin interact synergistically with MM30 (a quorum sensing AI-2 deficient mutant) and V. alginolyticus AQ13-91, aggravating vibriosis. However, co-challenge by PirABVP toxins and V. campbellii LMG21363, V. parahaemolyticus CAIM170, V. proteolyticus LMG10942, and V. anguillarum NB10 worked antagonistically, increasing the survival of Artemia larvae. The in vitro results showed that the addition of PirABVP toxins significantly modulated the production of the virulence factors of studied Vibrio spp. Yet these in vitro results did not help to explain the in vivo results. Hence it appears that PirABVP toxins can aggravate vibriosis. However, the dynamics of interaction is strain dependent.
Collapse
Affiliation(s)
- Phuong Thi Ngoc Tran
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| | - Vikash Kumar
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium.,ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - Peter Bossier
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| |
Collapse
|
19
|
Mai HN, Aranguren Caro LF, Cruz-Flores R, Dhar AK. Development of a Recombinase Polymerase Amplification (RPA) assay for acute hepatopancreatic necrosis disease (AHPND) detection in Pacific white shrimp (Penaeus vannamei). Mol Cell Probes 2021; 57:101710. [PMID: 33722662 DOI: 10.1016/j.mcp.2021.101710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is currently the most important bacterial disease of shrimp that has caused enormous losses to the shrimp industry worldwide. The causative agent of AHPND are Vibrio spp. Carrying plasmids containing the pirA and pirB genes which encode binary toxins, PirAB. Currently, AHPND is mostly diagnosed by PCR-based platforms which require the use of sophisticated laboratory instrumentation and are not suitable for a point-of-care diagnostics. Therefore, the availability of an alternative method based on isothermal amplification would be suitable for AHPND detection outside a laboratory setting and extremely useful at a pond side location. Isothermal amplification is based on the nucleic acid amplification at a single temperature and does not require the use of a thermal cycler. In this study, we developed an isothermal Recombinase Polymerase Amplification (RPA) assay for AHPND detection targeting both pirA and pirB genes, simultaneously and evaluated the specificity and sensitivity of the assay. The assay could detect AHPND without any cross-reaction with other microbial pathogens and Specific Pathogen Free (SPF) shrimp. The limit of detection of the assay was 5 copies of pirAB genes. To evaluate the reliability of the assay in detecting AHPND, DNA from Penaeus vannamei shrimp displaying acute and chronic infection were analyzed by the RPA assay and the results were compared with SYBR Green real-time PCR assay. While there was a 100% conformity between the two assay while detecting acute phase infection, RPA appeared to be more sensitive in detecting chronic phase infection. The data suggest that RPA assay described here would be a reliable method in detecting AHPND outside a standard laboratory setting.
Collapse
Affiliation(s)
- Hung Nam Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA
| | - Luis F Aranguren Caro
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA.
| |
Collapse
|
20
|
Bauer J, Teitge F, Neffe L, Adamek M, Jung A, Peppler C, Steinhagen D, Jung-Schroers V. Impact of a reduced water salinity on the composition of Vibrio spp. in recirculating aquaculture systems for Pacific white shrimp (Litopenaeus vannamei) and its possible risks for shrimp health and food safety. JOURNAL OF FISH DISEASES 2021; 44:89-105. [PMID: 32971569 DOI: 10.1111/jfd.13270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 05/27/2023]
Abstract
Tropical shrimp, like Litopenaeus vannamei, in land-based recirculating aquaculture systems (RAS) are often kept at low water salinities to reduce costs for artificial sea salt and the amount of salty wastewater. Although these shrimp are tolerant against low salinities, innate immunity suppression and changes in the microbial composition in the water can occur. As especially Vibrio spp. are relevant for shrimp health, alterations in the species composition of the Vibrio community were analysed in water from six RAS, run at 15‰ or 30‰. Additionally, pathogenicity factors including pirA/B, VPI, toxR, toxS, vhh, vfh, tdh, trh, flagellin genes and T6SS1/2 of V. parahaemolyticus were analysed. The Vibrio composition differed significantly depending on water salinity. In RAS at 15‰, higher numbers of the potentially pathogenic species V. parahaemolyticus, V. owensii and V. campbellii were detected, and especially in V. parahaemolyticus, various pathogenicity factors were present. A reduced salinity may therefore pose a higher risk of disease outbreaks in shrimp RAS. Because some of the detected pathogenicity factors are relevant for human health, this might also affect food safety. In order to produce healthy shrimp as a safe food for human consumption, maintaining high water salinities seems to be recommendable.
Collapse
Affiliation(s)
- Julia Bauer
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Neffe
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
21
|
Wang D, Li J, Zhu G, Zhao K, Jiang W, Li H, Wang W, Kumar V, Dong S, Zhu W, Tian X. Mechanism of the Potential Therapeutic Candidate Bacillus subtilis BSXE-1601 Against Shrimp Pathogenic Vibrios and Multifunctional Metabolites Biosynthetic Capability of the Strain as Predicted by Genome Analysis. Front Microbiol 2020; 11:581802. [PMID: 33193216 PMCID: PMC7649127 DOI: 10.3389/fmicb.2020.581802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/30/2020] [Indexed: 12/02/2022] Open
Abstract
The global shrimp industry has suffered bacterial diseases caused mainly by Vibrio species. The typical vibriosis, acute hepatopancreatic necrosis disease (AHPND), has resulted in mass mortality and devastating economic losses. Thus, therapeutic strategies are highly needed to decrease the risk of vibriosis outbreaks. Herein, we initially identified that the growth of the causative agent of AHPND, Vibrio parahaemolyticus (VP AHPND ) and other vibrios in Pacific white shrimp (Litopenaeus vannamei) was inhibited by a Bacillus subtilis strain BSXE-1601. The natural products amicoumacins A, B, and C were purified from the cell-free supernatant from the strain BSXE-1601, but only amicoumacin A was demonstrated to be responsible for this anti-Vibrio activity. Our discovery provided the first evidence that amicoumacin A was highly active against shrimp pathogens, including the representative strain VP AHPND . Furthermore, we elucidated the amicoumacin A biosynthetic gene cluster by whole genome sequencing of the B. subtilis strain BSXE-1601. In addition to amicoumacin A, the strain BSXE-1601 genome harbored other genes encoding bacillibactin, fengycin, surfactin, bacilysin, and subtilosin A, all of which have previously reported antagonistic activities against pathogenic strains. The whole-genome analysis provided unequivocal evidence in support of the huge potential of the strain BSXE-1601 to produce diverse biologically antagonistic natural products, which may facilitate further studies on the effective therapeutics for detrimental diseases in shrimp.
Collapse
Affiliation(s)
- Dongdong Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jiahui Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kun Zhao
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Wenwen Jiang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Haidong Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Wenjun Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Vikash Kumar
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| |
Collapse
|
22
|
Prevalence of Vibrio parahaemolyticus Causing Acute Hepatopancreatic Necrosis Disease of Shrimp in Shrimp, Molluscan Shellfish and Water Samples in the Mekong Delta, Vietnam. BIOLOGY 2020; 9:biology9100312. [PMID: 32992682 PMCID: PMC7600832 DOI: 10.3390/biology9100312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 02/04/2023]
Abstract
Simple Summary Recently, Vibrio parahaemolyticus has been identified as an important agent of acute hepatopancreatic necrosis disease in shrimp. In Vietnam, this disease has appeared since 2010 and caused a big economic loss for shrimp farming. However, the information of this agent in Vietnam has been not fully understood. This study aims to investigate the prevalence of shrimp pathogenic Vibrio parahaemolyticus and several it’s characteristics in the Mekong Delta of Vietnam. A total of 481 shrimp and molluscan shellfish samples from retail shops and farms and 64 water samples from shrimp and molluscan shellfish farms were examined for the presence of pathogenic strains. The pathogenic strains were isolated in 0.7% of molluscan shellfish samples from retail shops, 9.9% of shrimp samples from shrimp ponds, and 4.8% of water samples from shrimp ponds. These strains were classified into two types of O antigen (O1 and O3), in which O1 was the predominant. They showed resistance to several antimicrobial agents, multidrug resistance and pathogenicity to experimental shrimp. These results indicate that shrimp pathogenic Vibrio parahaemolyticus is widely prevalent in environment in the Mekong Delta, Vietnam. These findings can be used for understanding the risk of shrimp pathogenic Vibrio parahaemolyticus in the Mekong Delta. Abstract A total of 481 samples, including 417 shrimp and molluscan shellfish samples from retail shops and farms and 64 water samples from shrimp and molluscan shellfish farms in the Mekong Delta located the southern part of Vietnam, were examined for the presence of Vibrio parahaemolyticus (VpAHPND) caused acute haepatopancreatic necrosic disease (AHPND) in shrimp. VpAHPND strains were isolated in two of 298 (0.7%) molluscan shellfish samples from retail shops, seven of 71 (9.9%) shrimp samples from shrimp ponds, and two of 42 (4.8%) water samples from shrimp ponds. VpAHPND strains were classified into two types of O antigen, including O1 and O3, in which O1 was the predominant. VpAHPND strains isolated showed high resistance rates to colistin (100%), ampicillin (93.8%), and streptomycin (87.5%). These results indicate that VpAHPND is widely prevalent in environment in the Mekong Delta, Vietnam.
Collapse
|
23
|
Yan CZY, Austin CM, Ayub Q, Rahman S, Gan HM. Genomic characterization of Vibrio parahaemolyticus from Pacific white shrimp and rearing water in Malaysia reveals novel sequence types and structural variation in genomic regions containing the Photorhabdus insect-related (Pir) toxin-like genes. FEMS Microbiol Lett 2020; 366:5582596. [PMID: 31589302 DOI: 10.1093/femsle/fnz211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
The Malaysian and global shrimp aquaculture production has been significantly impacted by acute hepatopancreatic necrosis disease (AHPND) typically caused by Vibrio parahaemolyticus harboring the pVA plasmid containing the pirAVp and pirBVp genes, which code for Photorhabdus insect-related (Pir) toxin. The limited genomic resource for V. parahaemolyticus strains from Malaysian aquaculture farms precludes an in-depth understanding of their diversity and evolutionary relationships. In this study, we isolated shrimp-associated and environmental (rearing water) V. parahaemolyticus from three aquaculture farms located in Northern and Central Malaysia followed by whole-genome sequencing of 40 randomly selected isolates on the Illumina MiSeq. Phylogenomic analysis and multilocus sequence typing (MLST) reveal distinct lineages of V. parahaemolyticus that harbor the pirABVp genes. The recovery of pVA plasmid backbone devoid of pirAVp or pirABVp in some V. parahaemolyticus isolates suggests that the toxin genes are prone to deletion. The new insight gained from phylogenomic analysis of Asian V. parahaemolyticus, in addition to the observed genomic instability of pVa plasmid, will have implications for improvements in aquaculture practices to diagnose, treat or limit the impacts of this disease.
Collapse
Affiliation(s)
- Chrystine Zou Yi Yan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Christopher M Austin
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3220 Victoria, Australia.,Deakin Genomics Centre, Deakin University, Geelong 3220, Victoria, Australia
| | - Qasim Ayub
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Han Ming Gan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3220 Victoria, Australia.,Deakin Genomics Centre, Deakin University, Geelong 3220, Victoria, Australia
| |
Collapse
|
24
|
Mai HN, Cruz-Flores R, Dhar AK. Development of an indirect Enzyme Linked Immunoassay (iELISA) using monoclonal antibodies against Photorhabdus insect related toxins, PirA Vp and PirB Vp released from Vibrio spp. J Microbiol Methods 2020; 176:106002. [PMID: 32653400 DOI: 10.1016/j.mimet.2020.106002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022]
Abstract
An acute hepatopancreatic necrosis disease (AHPND) causes serious losses to the global shrimp industry. The etiologic agent of AHPND is Vibrio spp. carrying a large plasmid which encodes a binary toxin, PirAB. Currently, AHPND is diagnosed by PCR based methods that detect the presences of both pirA and pirB genes. However, the bacterial strains containing the pirA and pirB genes do not always express the binary toxin, resulting in mis-estimation of the virulence of bacterial strains containing pirA and pirB genes. Thus, the immuno based assay (i.e. ELISA) is a promising approach to detect PirAVp and PirBVp. In the present study, a total of forty monoclonal antibodies clones (mAb) against PirAVp (20 mAbs) and PirBVp (20 mAbs) were screened by western blot analysis to select four mAb clones that show the strongest immunoreactivity in indirect ELISA (iELISA). The four selected mAbs (i.e. 1B9 and 5E9 against PirAVp; 7B7 and 7B9 against PirBVp) detected specifically Vibrio spp. causing AHPND. In addition, four selected mAbs were able to detect either PirAVp or PirBVp down to 0.008 ng/μl. A double blind assay using thirty AHPND-infected and six SPF shrimp Penaeus vannamei were analyzed by iELISA to determine the detection sensitivity of the assay. The results showed that iELISA was able to accurately detect 29 out of 30 AHPND infected shrimp. These finding indicated that iELISA is a reliable method to detect PirAVp and PirBVp toxins in infected shrimp and will be a useful tool in AHPND diagnosis and in studying the role of binary toxins in AHPND pathogenesis.
Collapse
Affiliation(s)
- Hung Nam Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA.
| |
Collapse
|
25
|
Wang HC, Lin SJ, Mohapatra A, Kumar R, Wang HC. A Review of the Functional Annotations of Important Genes in the AHPND-Causing pVA1 Plasmid. Microorganisms 2020; 8:E996. [PMID: 32635298 PMCID: PMC7409025 DOI: 10.3390/microorganisms8070996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/20/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a lethal shrimp disease. The pathogenic agent of this disease is a special Vibrio parahaemolyticus strain that contains a pVA1 plasmid. The protein products of two toxin genes in pVA1, pirAvp and pirBvp, targeted the shrimp's hepatopancreatic cells and were identified as the major virulence factors. However, in addition to pirAvp and pirBvp, pVA1 also contains about ~90 other open-reading frames (ORFs), which may encode functional proteins. NCBI BLASTp annotations of the functional roles of 40 pVA1 genes reveal transposases, conjugation factors, and antirestriction proteins that are involved in horizontal gene transfer, plasmid transmission, and maintenance, as well as components of type II and III secretion systems that may facilitate the toxic effects of pVA1-containing Vibrio spp. There is also evidence of a post-segregational killing (PSK) system that would ensure that only pVA1 plasmid-containing bacteria could survive after segregation. Here, in this review, we assess the functional importance of these pVA1 genes and consider those which might be worthy of further study.
Collapse
Affiliation(s)
- Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
| | - Shin-Jen Lin
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Arpita Mohapatra
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Mits School of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Ramya Kumar
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Ching Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
26
|
Wang Z, Shi C, Wang H, Wan X, Zhang Q, Song X, Li G, Gong M, Ye S, Xie G, Huang J. A novel research on isolation and characterization of Photobacterium damselae subsp. damselae from Pacific white shrimp, Penaeus vannamei, displaying black gill disease cultured in China. JOURNAL OF FISH DISEASES 2020; 43:551-559. [PMID: 32196691 DOI: 10.1111/jfd.13153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
In June 2019, massive mortalities of cultured Penaeus vannamei occurred in a local farm in Hainan Province, China. The diseased shrimp displayed evident black gills. Three bacterial strains 20190611001, 20190611007 and 20190611022 were isolated from hepatopancreas and gills of the diseased shrimp and identified as Photobacterium damselae subsp. damselae based on the sequence analysis of 16S rRNA and toxR genes. These three isolates showed haemolytic activities. Of them, strain 20190611022 isolated from hepatopancreas was selected and processed for pathogenic analysis. The calculated median lethal dose (LD50 ) was 9.75 ± 4.29 × 105 CFU/g (body weight) by challenging P. vannameivia reverse gavage. The diseased shrimp displayed enlarged hepatopancreatic tubules and sloughing of epithelial cells in tubular lumens. The strain 20190611022 was also characterized by the testing of API 20NE systems and antibiotic susceptibility. The results of disc diffusion test showed that strain 20190611022 was sensitive to chloramphenicol, compound sulfamethoxazole, cefoperazone, ceftriaxone, ceftazidime and cefuroxime. To our knowledge, this is the first report of isolation and characterization of Photobacterium damselae subsp. damselae from natural diseased P. vannamei. Our findings can serve as a basis for further studies of its pathogenicity and provide technological support for disease controlling in shrimp aquaculture.
Collapse
Affiliation(s)
- Ziyan Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chengyin Shi
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Hailiang Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaoyuan Wan
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qingli Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaoling Song
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ge Li
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Miao Gong
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shigen Ye
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Guosi Xie
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jie Huang
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
27
|
NanGong Z, Guo X, Yang Q, Song P, Wang Q, Parajulee MN. Identification of Arylphorin interacting with the insecticidal protein PirAB from Xenorhabdus nematophila by yeast two-hybrid system. World J Microbiol Biotechnol 2020; 36:56. [PMID: 32211973 DOI: 10.1007/s11274-020-02833-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
Abstract
PirAB toxin was initially found in the Photorhabdus luminescens TT01 strain and is a demonstrated binary toxin with high insecticidal activity. In this paper, we co-expressed the pirAB gene of Xenorhabdus nematophila HB310 in a prokaryotic expression system, and we found that the PirAB protein showed high hemocoel insecticidal activity against Galleria mellonella, Helicoverpa armigera and Spodoptera exigua. LD50 values were 1.562, 2.003 and 2.17 μg/larvae for G. mellonella, H. armigera, and S. exigua, respectively (p > 0.05). Additionally, PirAB-interaction proteins were identified from G. mellonella by 6 × His Protein Pulldown combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Of which, arylphorin of G. mellonella showed the highest matching rate. A protein domain conservative structure analysis indicated that arylphorin has three domains including Hemocyanin-N, Hemocyanin-M, and Hemocyanin-C. Among these protein domains, Hemocyanin-C has immune and recognition functions. Further, Hemocyanin-C domain of arylphorin was identified to interact with PirA but not PirB by Yeast two-hybrid system. These findings reveal, for the first time, new host protein interacting with PirAB. The identification of interaction protein may serve as the foundation for further study on the function and insecticidal mechanism of this binary toxin from Xenorhabdus.
Collapse
Affiliation(s)
- Ziyan NanGong
- Plant Protection College, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiaoxiao Guo
- Plant Protection College, Hebei Agricultural University, Baoding, 071000, China
| | - Qing Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Ping Song
- Plant Protection College, Hebei Agricultural University, Baoding, 071000, China
| | - Qinying Wang
- Plant Protection College, Hebei Agricultural University, Baoding, 071000, China
| | - Megha N Parajulee
- Texas A&M AgriLife Research and Extension Center, Lubbock, TX, 79403, USA
| |
Collapse
|
28
|
Santos HM, Tsai CY, Maquiling KRA, Tayo LL, Mariatulqabtiah AR, Lee CW, Chuang KP. Diagnosis and potential treatments for acute hepatopancreatic necrosis disease (AHPND): a review. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2020; 28:169-185. [PMID: 32834683 PMCID: PMC7223513 DOI: 10.1007/s10499-019-00451-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/04/2019] [Indexed: 05/05/2023]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) or formerly known as early mortality syndrome (EMS) is an emerging disease that has caused significant economic losses to the aquaculture industry. The primary causative agent of AHPND is Vibrio parahaemolyticus, a Gram-negative rod-shaped bacterium that has gained plasmids encoding the fatal binary toxins Pir A/Pir B that cause rapid death of the infected shrimp. In this review, the current research studies and information about AHPND in shrimps have been presented. Molecular diagnostic tools and potential treatments regarding AHPND were also included. This review also includes relevant findings which may serve as guidelines that can help for further investigation and studies on AHPND or other shrimp diseases.
Collapse
Affiliation(s)
- Harvey M. Santos
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Neipu, 912 Pingtung Taiwan
| | - Ching-Yi Tsai
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Neipu, 912 Pingtung Taiwan
| | - Kenth Roger A. Maquiling
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, 1002 Intramuros, Manila Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, 1002 Intramuros, Manila Philippines
| | - Abdul R. Mariatulqabtiah
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Chi-Wen Lee
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, 41354 Taiwan
| | - Kuo Pin Chuang
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Neipu, 912 Pingtung Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, 912 Pingtung Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Neipu, 912 Pingtung Taiwan
| |
Collapse
|
29
|
PirAB VP Toxin Binds to Epithelial Cells of the Digestive Tract and Produce Pathognomonic AHPND Lesions in Germ-Free Brine Shrimp. Toxins (Basel) 2019; 11:toxins11120717. [PMID: 31835437 PMCID: PMC6950649 DOI: 10.3390/toxins11120717] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 01/22/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), a newly emergent farmed penaeid shrimp bacterial disease originally known as early mortality syndrome (EMS), is causing havoc in the shrimp industry. The causative agent of AHPND was found to be a specific strain of bacteria, e.g., Vibrio and Shewanella sps., that contains pVA1 plasmid (63–70 kb) encoding the binary PirAVP and PirBVP toxins. The PirABVP and toxins are the primary virulence factors of AHPND-causing bacteria that mediates AHPND and mortality in shrimp. Hence, in this study using a germ-free brine shrimp model system, we evaluated the PirABVP toxin-mediated infection process at cellular level, including toxin attachment and subsequent toxin-induced damage to the digestive tract. The results showed that, PirABVP toxin binds to epithelial cells of the digestive tract of brine shrimp larvae and produces characteristic symptoms of AHPND. In the PirABVP-challenged brine shrimp larvae, shedding or sloughing of enterocytes in the midgut and hindgut regions was regularly visualized, and the intestinal lumen was filled with moderately electron-dense cells of variable shapes and sizes. In addition, the observed cellular debris in the intestinal lumen of the digestive tract was found to be of epithelial cell origin. The detailed morphology of the digestive tract demonstrates further that the PirABVP toxin challenge produces focal to extensive necrosis and damages epithelial cells in the midgut and hindgut regions, resulting in pyknosis, cell vacuolisation, and mitochondrial and rough endoplasmic reticulum (RER) damage to different degrees. Taken together, our study provides substantial evidence that PirABVP toxins bind to the digestive tract of brine shrimp larvae and seem to be responsible for generating characteristic AHPND lesions and damaging enterocytes in the midgut and hindgut regions.
Collapse
|
30
|
Dang LT, Nguyen HT, Hoang HH, Lai HNT, Nguyen HT. Efficacy of Rose Myrtle Rhodomyrtus tomentosa Seed Extract against Acute Hepatopancreatic Necrosis Disease in Pacific Whiteleg Shrimp Penaeus vannamei. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:311-319. [PMID: 31344755 DOI: 10.1002/aah.10080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a new emerging bacterial disease that has been recently reported to cause mass mortalities in Pacific whiteleg shrimp Penaeus vannamei. Antibiotics have been used to treat bacterial diseases in shrimp, but most of them have been ineffective and have resulted in drug residues in the harvested shrimp products. In this study, an alternative approach was tested for its efficacy in controlling AHPND. The extract of rose myrtle Rhodomyrtus tomentosa seed, a traditional Vietnamese medicine, was tested for antibacterial effect against three AHPND bacterial strains in vitro (Vibrio parahaemolyticus [VPAHPND ] KC12.020, VPAHPND KC13.14.2, and V. harveyi KC13.17.5) and was further evaluated for its potential efficacy in prevention of AHPND in shrimp in vivo. The in vitro studies showed that the antibacterial activity of the R. tomentosa extract was dose dependent, with the strongest bacterial susceptibility (≥18.0 mm) at a concentration of around 3,500 μg/disc. The in vivo studies showed that after challenge with VPAHPND KC12.020, the survival rates for shrimp in the groups that received feed pellets supplemented with extract at 3.5% or 7.0% (survival ~48.9% and 52.2%, respectively) were significantly higher than the zero survival rate in the positive control group, which received feed without the extract. These results indicate that the use of the R. tomentosa extract as an alternative therapy for control of AHPND in shrimp could help to minimize disease outbreaks. As a result, the extract is further expected to reduce drug/chemical residues in shrimp products.
Collapse
Affiliation(s)
- Lua T Dang
- Center for Environment and Disease Monitoring in Aquaculture, Research Institute for Aquaculture Number 1, Tuson, Bacninh, Vietnam
| | - Hanh T Nguyen
- Center for Environment and Disease Monitoring in Aquaculture, Research Institute for Aquaculture Number 1, Tuson, Bacninh, Vietnam
| | - Ha H Hoang
- Faculty of Food Sciences and Technology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| | - Ha N T Lai
- Faculty of Food Sciences and Technology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| | - Hai T Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| |
Collapse
|
31
|
Carrillo-Méndez GD, Zermeño-Cervantes LA, Venancio-Landeros AA, Díaz SF, Cardona-Félix CS. Natural genetic transformation of Vibrio parahaemolyticus via pVA1 plasmid acquisition as a potential mechanism causing AHPND. DISEASES OF AQUATIC ORGANISMS 2019; 137:33-40. [PMID: 31777397 DOI: 10.3354/dao03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vibrio parahaemolyticus is the causative bacterium of acute hepatopancreatic necrosis disease (AHPND) in white shrimp Litopenaeus vannamei. This bacterium secretes protein toxins whose genes are encoded in an auto-transmissible plasmid called pVA1. The presence of this plasmid in V. parahaemolyticus is determinant for disease development. Its propagation is not only linked to bacterial colonisation capacity but also to horizontal gene transfer mechanisms. Nevertheless, the active uptake of plasmid, which is known as natural genetic transformation (NGT), has not yet been proposed as a possible acquisition mechanism of the pVA1 plasmid among Vibrio species. Previous studies suggest that some Vibrio species have the ability to undergo NGT in the presence of chitin. Therefore, the objective of this study was to evaluate the induction of NGT mediated by chitin in V. parahaemolyticus (ATCC-17802) through its ability to incorporate and express the pVA1 plasmid. The results showed that a reference strain that does not initially contain the plasmid can incorporate the plasmid under the appropriate transformation conditions, and cause mortality in white shrimp similar to that observed for pathogenic strains isolated from infectious outbreaks. Given the management and conditions of a shrimp farm with large amounts of chitinous exoskeletons, it is feasible that NGT could be a possible acquisition mechanism of plasmid pVA1 among Vibrio species, turning a non-causative strain of V. parahaemolyticus into a causative strain. With this study, we have expanded the knowledge of the pathogenesis process mediated by NGT and the understanding of the possible propagation mechanisms of emerging diseases in the aquaculture sector.
Collapse
Affiliation(s)
- Gerardo de Carrillo-Méndez
- Departamento Académico de Biología Marina, Universidad Autónoma de Baja California Sur, 23080 La Paz, BCS, Mexico
| | | | | | | | | |
Collapse
|
32
|
Dong X, Song J, Chen J, Bi D, Wang W, Ren Y, Wang H, Wang G, Tang KFJ, Wang X, Huang J. Conjugative Transfer of the pVA1-Type Plasmid Carrying the pirAB vp Genes Results in the Formation of New AHPND-Causing Vibrio. Front Cell Infect Microbiol 2019; 9:195. [PMID: 31231618 PMCID: PMC6568040 DOI: 10.3389/fcimb.2019.00195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 11/27/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) has caused sharp declines in aquaculture industries of whiteleg shrimp Penaeus vannamei in Asia and the Americas since 2010. Vibrio parahaemolyticus, V. campbellii, V. owensii, and V. punensis have been proved to cause AHPND. However, the mechanisms underlying the burgeoning number of Vibrio species that cause AHPND is not known. All of AHPND-causing Vibrio bacteria (VAHPND) harbor a highly homologous plasmid (designated as pVA1-type) carrying pirABvp toxin genes. In this study, we demonstrate conclusively that the pVA1-type plasmid can be transferred from VAHPND to non-pathogenic bacteria. We constructed a pVPGX1-Cmr plasmid (a pVA1-type plasmid) by adding a chloramphenicol resistance gene as a marker in a donor AHPND-causing V. parahaemolyticus 20130629002S01 (Vp2S01). Horizontal transfer of this plasmid was successfully performed from the AHPND-Vp2S01 to a non-pathogenic strain of V. campbellii at the transfer efficiency of 2.6×10−8 transconjugant/recipient, and DNase I treatment did not eliminate the transfer. The recipient V. campbellii acquired the pVA1-type plasmid and was shown to produce pirABvp RNA and proteins. Challenge studies using the transconjugant caused 100% mortality in exposed groups of P. vannamei. The challenged shrimp, infected with the transconjugant bacteria, showed typical gross signs and histological lesions of AHPND. These results demonstrated the conjugative transfer of an AHPND pVA1-type plasmid. It provides timely information for explaining the increased species of AHPND-causing Vibrio bacteria and will be useful in the development of management strategies leading to the prevention and control of AHPND.
Collapse
Affiliation(s)
- Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jipeng Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jiayuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenchao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Yanbei Ren
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hailiang Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Guohao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Kathy F J Tang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Xuepeng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| |
Collapse
|
33
|
Lin SJ, Chen YF, Hsu KC, Chen YL, Ko TP, Lo CF, Wang HC, Wang HC. Structural Insights to the Heterotetrameric Interaction between the Vibrio parahaemolyticus PirA vp and PirB vp Toxins and Activation of the Cry-Like Pore-Forming Domain. Toxins (Basel) 2019; 11:toxins11040233. [PMID: 31013623 PMCID: PMC6520838 DOI: 10.3390/toxins11040233] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a newly emergent penaeid shrimp disease which can cause 70-100% mortality in Penaeus vannamei and Penaeus monodon, and has resulted in enormous economic losses since its appearance. AHPND is caused by the specific strains of Vibrio parahaemolyticus that harbor the pVA1 plasmid and express PirAvp and PirBvp toxins. These two toxins have been reported to form a binary complex. When both are present, they lead to the death of shrimp epithelial cells in the hepatopancreas and cause the typical histological symptoms of AHPND. However, the binding mode of PirAvp and PirBvp has not yet been determined. Here, we used isothermal titration calorimetry (ITC) to measure the binding affinity of PirAvp and PirBvp. Since the dissociation constant (Kd = 7.33 ± 1.20 μM) was considered too low to form a sufficiently stable complex for X-ray crystallographic analysis, we used alternative methods to investigate PirAvp-PirBvp interaction, first by using gel filtration to evaluate the molecular weight of the PirAvp/PirBvp complex, and then by using cross-linking and hydrogen-deuterium exchange (HDX) mass spectrometry to further understand the interaction interface between PirAvp and PirBvp. Based on these results, we propose a heterotetrameric interaction model of this binary toxin complex. This model provides insight of how conformational changes might activate the PirBvp N-terminal pore-forming domain and should be helpful for devising effective anti-AHPND strategies in the future.
Collapse
Affiliation(s)
- Shin-Jen Lin
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Biomedical Commercialization Center, Taipei Medical University, Taipei 110, Taiwan.
| | - Yun-Ling Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Chu-Fang Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan.
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan.
| | - Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
34
|
Yang Q, Dong X, Xie G, Fu S, Zou P, Sun J, Wang Y, Huang J. Comparative genomic analysis unravels the transmission pattern and intra-species divergence of acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus strains. Mol Genet Genomics 2019; 294:1007-1022. [PMID: 30968246 DOI: 10.1007/s00438-019-01559-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a recently discovered shrimp disease that has become a severe threat to global shrimp-farming industry. The causing agents of AHPND were identified as Vibrio parahaemolyticus and other vibrios harboring a plasmid encoding binary toxins PirAvp/PirBvp. However, the epidemiological involvement of environmental vibrios in AHPND is poorly understood. In this study, with an aim to reveal the possible transmission route of AHPND-causing V. parahaemolyticus, we sequenced and analyzed the genomes of four pairs of V. parahaemolyticus strains from four representative regions of shrimp farming in China, each including one strain isolated from diseased shrimp during an AHPND outbreak and one strain isolated from sediment before AHPND outbreaks. Our results showed that all the four shrimp-isolated and three of the sediment-isolated strains encode and secret PirAvp/PirBvp toxins and, therefore, are AHPND-causing strains. In silico multilocus sequence typing and high-resolution phylogenomic analysis based on single-nucleotide polymorphisms, as well as comparison of genomic loci in association with prophages and capsular polysaccharides (CPSs) consistently pointed to a close genetic relationship between the shrimp- and sediment-isolated strains obtained from the same region. In addition, our analyses revealed that the sequences associated with prophages, CPSs, and type VI secretion system-1 are highly divergent among strains from different regions, implying that these genes may play vital roles in environmental adaptation for AHPND-causing V. parahaemolyticus and thereby be potential targets for AHPND control. Summing up, this study provides the first direct evidence regarding the transmission route of AHPND-causing V. parahaemolyticus and underscores that V. parahaemolyticus in shrimp are most likely originated from local environment. The importance of environmental disinfection measures in shrimp farming was highlighted.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xuan Dong
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Guosi Xie
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Songzhe Fu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China.
| | - Peizhuo Zou
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jing Sun
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yi Wang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Jie Huang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| |
Collapse
|
35
|
Dhar AK, Piamsomboon P, Aranguren Caro LF, Kanrar S, Adami R, Juan YS. First report of acute hepatopancreatic necrosis disease (AHPND) occurring in the USA. DISEASES OF AQUATIC ORGANISMS 2019; 132:241-247. [PMID: 31019129 DOI: 10.3354/dao03330] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In June 2017, mass mortalities were reported at whiteleg shrimp Penaeus vannamei farms in Texas, USA. PCR testing for OIE-listed and non-listed pathogens detected the pirA and pirB toxin genes associated with acute hepatopancreatic necrosis disease (AHPND). DNA sequence analyses of cloned pirA and pirB genes showed them to be identical to those detected in other AHPND-causing Vibrio sp. Amplicons generated using PCR tests targeted to the toxR gene showed the Pir toxin genes to be associated with a V. parahaemolyticus type more similar to a genotype found in Mexico compared to that found in Asia. Histology detected masses of bacteria and hemocytic infiltrations as well as extensive necrosis and sloughing of epithelial cells in hepatopancreatic tubules pathognomonic of AHPND. The data support AHPND as the cause of the mortalities. Given that US companies produce shrimp broodstock for farms in Asia and Latin America, the further spread of AHPND in the USA needs to be prevented to avoid serious economic consequences to these industries.
Collapse
Affiliation(s)
- Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
36
|
Tinwongger S, Thawonsuwan J, Kondo H, Hirono I. Identification of an anti-lipopolysaccharide factor AV-R isoform (LvALF AV-R) related to Vp_PirAB-like toxin resistance in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 84:178-188. [PMID: 30292804 DOI: 10.1016/j.fsi.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a shrimp farming disease, caused by the pathogenic Vibrio parahaemolyticus carrying a plasmid encoding Vp_PirAB-like toxins. Formalin-killed cells of V. parahaemolyticus AHPND-causing strain D6 (FKC-VpD6) were used to select Vp_PirAB-like toxin-resistant Litopenaeus vannamei by oral administration. Stomach and hepatopancreas tissues of shrimps that survived for one week were subjected to RNA sequencing. Differentially expressed genes (DEGs) between surviving shrimp, AHPND-infected shrimp, and normal shrimp were identified. The expressions of 10 DEGs were validated by qPCR. Only one gene (a gene homologous to L. vannamei anti-lipopolysaccharide factor AV-R isoform (LvALF AV-R)) was expressed significantly more strongly in the hepatopancreas of surviving shrimp than in the other groups. Significantly higher expression of LvALF AV-R was also observed in shrimp that survived two other trials of FKC-VpD6 selection. Recombinant ALF AV-R bound to LPS, PGN, Gram-negative bacteria, and some Gram-positive bacteria in ELISAs. ALF AV-R recombinant protein did not interact with native Vp_PirAB-like toxin in an ELISA or a Far-Western blot. For L. vannamei orally fed ALF AV-R protein for 3 days, the survival rate following challenge with VpD6-immersion was not significantly different from that of shrimp fed two control diets. These results suggest that LvALF AV-R expression was induced in the hepatopancreas of shrimp in response to the presence of Vp_PirAB-like toxin, although other factors might also be involved in the resistance mechanism.
Collapse
Affiliation(s)
- Sasiwipa Tinwongger
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan; Department of Fisheries, Kasetklang Chatuchak, Bangkok, 10900, Thailand
| | - Jumroensri Thawonsuwan
- Songkhla Aquatic Animal Health Research Center, Department of Fisheries, Songkhla, Thailand
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| |
Collapse
|
37
|
Cruz-Flores R, Mai HN, Dhar AK. Multiplex SYBR Green and duplex TaqMan real-time PCR assays for the detection of Photorhabdus Insect-Related (Pir) toxin genes pirA and pirB. Mol Cell Probes 2018; 43:20-28. [PMID: 30576786 PMCID: PMC7127373 DOI: 10.1016/j.mcp.2018.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
Acute hepatopancreatic necrosis disease (AHPND), also known as Early mortality syndrome (EMS), is a recently emerged lethal disease that has caused major economic losses in shrimp aquaculture. The etiologic agents are Vibrio spp. that carry Photorhabdus Insect-Related (Pir) toxin genes pirA and pirB. A multiplex SYBR Green real-time PCR was developed that detects pirA, pirB, and two internal control genes, the shrimp 18S rRNA and the bacterial 16S rRNA genes in a single reaction. The pirB primers amplify the 3'-end of the pirB gene allowing the detection of Vibrio spp. mutants that contain a complete deletion of pirA and the partial deletion of pirB. The assay also detects mutants that contain the entire pirA gene and the deletion of the pirB gene. Since both toxin genes are needed for disease development, this assays can distinguish between pathogenic strains of Vibrio spp. that cause AHPND in shrimp and mutants that do not cause disease. The amplicons for pirA, pirB, 18S rRNA and 16S rRNA showed easily distinguishable melting temperatures of 78.21 ± 0.18, 75.20 ± 0.20, 82.28 ± 0.34 and 85.41 ± 0.21 °C respectively. Additionally, a duplex real-time PCR assay was carried out by designing TaqMan probes for the pirA and pirB primers. The diagnostic sensitivity and specificity was compared between the SYBR Green and TaqMan assays. Both assays showed similar sensitivity with a limit of detection being 10 copies for pirA and pirB, and neither assays showed any cross reaction with other known bacterial and viral pathogens in shrimp. The high sensitivity of both assays make them suitable for the detection of low copies of the pirA and pirB genes in AHPND causing Vibrio spp. as well as for detecting non-pathogenic mutants. Development of a multiplex SYBR Green real-time PCR for the simultaneous detection of the pirA and pirB genes of Vibrio spp. Comparison of the SYBR Green assay with the TaqMan assay for the detection of the pirA and pirB genes of Vibrio spp. First report of real-time PCR assays for the simultaneous detection of the pirA and pirB genes of Vibrio spp.
Collapse
Affiliation(s)
- Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, AZ. 85721, USA
| | - Hung Nam Mai
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, AZ. 85721, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, AZ. 85721, USA.
| |
Collapse
|
38
|
Defoirdt T, Mai Anh NT, De Schryver P. Virulence-inhibitory activity of the degradation product 3-hydroxybutyrate explains the protective effect of poly-β-hydroxybutyrate against the major aquaculture pathogen Vibrio campbellii. Sci Rep 2018; 8:7245. [PMID: 29740008 PMCID: PMC5940922 DOI: 10.1038/s41598-018-25385-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/19/2018] [Indexed: 11/23/2022] Open
Abstract
The bacterial storage compound poly-β-hydroxybutyrate, a polymer of the short-chain fatty acid 3-hydroxybutyrate, has been reported to protect various aquatic animals from bacterial disease. In order to obtain a better mechanistic insight, we aimed to (1) investigate whether 3-hydroxybutyrate is released from poly-β-hydroxybutyrate within sterile brine shrimp larvae, (2) determine the impact of 3-hydroxybutyrate on the virulence of Vibrio campbellii to brine shrimp larvae and on its cell density in the shrimp, and (3) determine the impact of this compound on virulence factor production in the pathogen. We detected 3-hydroxybutyrate in poly-β-hydroxybutyrate-fed brine shrimp, resulting in 24 mM 3-hydroxybutyrate in the intestinal tract of shrimp reared in the presence of 1000 mg l-1 poly-β-hydroxybutyrate. We further demonstrate that this concentration of 3-hydroxybutyrate does not affect the growth of V. campbellii, whereas it decreases the production of different virulence factors, including hemolysin, phospholipase and protease activities, and swimming motility. We hypothesize that by affecting all these virulence factors at once, 3-hydroxybutyrate (and thus also poly-β-hydroxybutyrate) can exert a significant impact on the virulence of V. campbellii. This hypothesis was confirmed in a challenge test showing that 3-hydroxybutyrate protected gnotobiotic brine shrimp from pathogenic V. campbellii, without affecting the number of host-associated vibrios.
Collapse
Affiliation(s)
- Tom Defoirdt
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, Ghent, Belgium.
| | - Nguyen Thi Mai Anh
- Laboratory of Aquaculture & Artemia Reference Center, Gent University, Coupure Links 653, Ghent, Belgium
- Research Institue in Aquaculture no 2, Ho Chi Minh City, Vietnam
| | - Peter De Schryver
- Laboratory of Aquaculture & Artemia Reference Center, Gent University, Coupure Links 653, Ghent, Belgium
- INVE Technologies NV, Hoogveld 93, Dendermonde, Belgium
| |
Collapse
|
39
|
Liu L, Xiao J, Zhang M, Zhu W, Xia X, Dai X, Pan Y, Yan S, Wang Y. A Vibrio owensii strain as the causative agent of AHPND in cultured shrimp, Litopenaeus vannamei. J Invertebr Pathol 2018; 153:156-164. [DOI: 10.1016/j.jip.2018.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/24/2018] [Accepted: 02/06/2018] [Indexed: 11/29/2022]
|
40
|
Dong X, Bi D, Wang H, Zou P, Xie G, Wan X, Yang Q, Zhu Y, Chen M, Guo C, Liu Z, Wang W, Huang J. pirABvp -Bearing Vibrio parahaemolyticus and Vibrio campbellii Pathogens Isolated from the Same AHPND-Affected Pond Possess Highly Similar Pathogenic Plasmids. Front Microbiol 2017; 8:1859. [PMID: 29051747 PMCID: PMC5633605 DOI: 10.3389/fmicb.2017.01859] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a severe shrimp disease originally shown to be caused by virulent strains of Vibrio parahaemolyticus (VPAHPND). Rare cases of AHPND caused by Vibrio species other than V. parahaemolyticus were reported. We compared an AHPND-causing V. campbellii (VCAHPND) and a VPAHPND isolate from the same AHPND-affected pond. Both strains are positive for the virulence genes pirABvp. Immersion challenge test with Litopenaeus vannamei indicated the two strains possessed similar pathogenicity. Complete genome comparison showed that the pirABvp-bearing plasmids in the two strains were highly homologous, and they both shared high homologies with plasmid pVA1, the reported pirABvp-bearing plasmid. Conjugation and DNA-uptake genes were found on the pVA1-type plasmids and the host chromosomes, respectively, which may facilitate the dissemination of pirABvp. Novel variations likely driven by ISVal1 in the genetic contexts of the pirABvp genes were found in the two strains. Moreover, the VCAHPND isolate additionally contains multiple antibiotic resistance genes, which may bring difficulties to control its future outbreak. The dissemination of the pirABvp in non-parahaemolyticus Vibrio also rises the concern of missing detection in industrial settings since the isolation method currently used mainly targeting V. parahaemolyticus. This study provides timely information for better understanding of the causes of AHPND and molecular epidemiology of pirABvp and also appeals for precautions to encounter the dissemination of the hazardous genes.
Collapse
Affiliation(s)
- Xuan Dong
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Peizhuo Zou
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of fisheries and life science, Shanghai Ocean University, Shanghai, China
| | - Guosi Xie
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaoyuan Wan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qian Yang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yanping Zhu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Mengmeng Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of fisheries and life science, Shanghai Ocean University, Shanghai, China
| | - Chengcheng Guo
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhen Liu
- Shanghai Majorbio Bio-pharm Biotechnology, Shanghai, China
| | - Wenchao Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jie Huang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
41
|
Complete Genome Sequence of Acute Hepatopancreatic Necrosis Disease-Causing Vibrio campbellii LA16-V1, Isolated from Penaeus vannamei Cultured in a Latin American Country. GENOME ANNOUNCEMENTS 2017; 5:5/37/e01011-17. [PMID: 28912332 PMCID: PMC5597773 DOI: 10.1128/genomea.01011-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the complete genome sequence of Vibrio campbellii, isolated from Penaeus vannamei cultured in a Latin American country. The Tn3-like transposon and pirAB genes were encoded on the plasmid pLA16-2. These data support the geographical variations in the virulence plasmid found among acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio isolates from Latin America and Asia.
Collapse
|
42
|
Dong X, Wang H, Zou P, Chen J, Liu Z, Wang X, Huang J. Complete genome sequence of Vibrio campbellii strain 20130629003S01 isolated from shrimp with acute hepatopancreatic necrosis disease. Gut Pathog 2017; 9:31. [PMID: 28580017 PMCID: PMC5452529 DOI: 10.1186/s13099-017-0180-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/22/2017] [Indexed: 11/26/2022] Open
Abstract
Background Vibrio campbellii is widely distributed in the marine environment and is an important pathogen of aquatic organisms such as shrimp, fish, and mollusks. An isolate of V. campbellii carrying the pirABvp gene, causing acute hepatopancreatic necrosis disease (AHPND), has been reported. There are no previous reports about the complete genome of V. campbellii causing AHPND (VCAHPND). To extend our understanding of the pathogenesis of VCAHPND at the genomic level, the genome of V. campbellii 20130629003S01 isolated from a shrimp with AHPND was sequenced and analysed. Results The complete genome sequence of V. campbellii 20130629003S01 was generated using the PacBio RSII platform with single molecule, real-time sequencing. The 20130629003S01 strain consists of two circular chromosomes (3,621,712 bp in chromosome 1 and 2,245,751 bp in chromosome 2) and four plasmids of 70,066, 204,531, 143,140, and 86,121 bp. The genome contains a total of 5855 protein coding genes, 134 tRNA genes and 37 rRNA genes. The average nucleotide identity value of 20130629003S01 and other reference V. campbellii strains was 97.46%, suggesting that they are closely related. Conclusions The genome sequence of V. campbellii 20130629003S01 and its comparative analysis with other V. campbellii strains that we present here are important for a better understanding of the genomic characteristics of VCAHPND. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0180-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Hailiang Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China.,Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Peizhuo Zou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China.,Shanghai Ocean University, Shanghai, China
| | - Jiayuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China.,Shandong Agricultural University, Taian, China
| | - Zhen Liu
- Shanghai Majorbio Bio-pharm Biotechnology, Shanghai, China
| | | | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| |
Collapse
|