1
|
Kapur N, Alam MA, Hassan SA, Patel PH, Wempe LA, Bhogoju S, Goretsky T, Kim JH, Herzog J, Ge Y, Awuah SG, Byndloss M, Baumler AJ, Zadeh MM, Sartor RB, Barrett T. Enhanced mucosal mitochondrial function corrects dysbiosis and OXPHOS metabolism in IBD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584471. [PMID: 38559035 PMCID: PMC10979996 DOI: 10.1101/2024.03.14.584471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Mitochondrial (Mito) dysfunction in IBD reduces mucosal O2 consumption and increases O2 delivery to the microbiome. Increased enteric O2 promotes blooms of facultative anaerobes (eg. Proteobacteria ) and restricts obligate anaerobes (eg. Firmicutes ). Dysbiotic metabolites negatively affect host metabolism and immunity. Our novel compound (AuPhos) upregulates intestinal epithelial cell (IEC) mito function, attenuates colitis and corrects dysbiosis in humanized Il10-/- mice. We posit that AuPhos corrects IBD-associated dysbiotic metabolism. Methods Primary effect of AuPhos on mucosal Mito respiration and healing process was studied in ex vivo treated human colonic biopsies and piroxicam-accelerated (Px) Il10-/- mice. Secondary effect on microbiome was tested in DSS-colitis WT B6 and germ-free 129.SvEv WT or Il10-/- mice reconstituted with human IBD stool (Hu- Il10-/- ). Mice were treated orally with AuPhos (10- or 25- mg/kg; q3d) or vehicle, stool samples collected for fecal lipocalin-2 (f-LCN2) assay and microbiome analyses using 16S rRNA sequencing. AuPhos effect on microbial metabolites was determined using untargeted global metabolomics. AuPhos-induced hypoxia in IECs was assessed by Hypoxyprobe-1 staining in sections from pimonidazole HCl-infused DSS-mice. Effect of AuPhos on enteric oxygenation was assessed by E. coli Nissle 1917 WT (aerobic respiration-proficient) and cytochrome oxidase (cydA) mutant (aerobic respiration-deficient). Results Metagenomic (16S) analysis revealed AuPhos reduced relative abundances of Proteobacteria and increased blooms of Firmicutes in uninflamed B6 WT, DSS-colitis, Hu-WT and Hu- Il10-/- mice. AuPhos also increased hypoxyprobe-1 staining in surface IECs suggesting enhanced O2 utilization. AuPhos-induced anaerobiosis was confirmed by a significant increase in cydA mutant compared to WT (O2-utlizing) E.coli . Ex vivo treatment of human biopsies with AuPhos showed significant increase in Mito mass, and complexes I and IV. Further, gene expression analysis of AuPhos-treated biopsies showed increase in stem cell markers (Lgr4, Lgr5, Lrig1), with concomitant decreases in pro-inflammatory markers (IL1β,MCP1, RankL). Histological investigation of AuPhos-fed Px- Il10-/- mice showed significantly decreased colitis score in AuPhos-treated Px- Il10-/- mice, with decrease in mRNA of pro-inflammatory cytokines and increase in Mito complexes ( ND5 , ATP6 ). AuPhos significantly altered microbial metabolites associated with SCFA synthesis, FAO, TCA cycle, tryptophan and polyamine biosynthesis pathways. AuPhos increased pyruvate, 4-hydroxybutyrate, 2-hydroxyglutarate and succinate, suggesting an upregulation of pyruvate and glutarate pathways of butyrate production. AuPhos reduced IBD-associated primary bile acids (BA) with concomitant increase in secondary BA (SBA). AuPhos treatment significantly decreased acylcarnitines and increased L-carnitine reflective of enhanced FAO. AuPhos increases TCA cycle intermediates and creatine, energy reservoir substrates indicating enhanced OxPHOS. Besides, AuPhos also upregulates tryptophan metabolism, decreases Kynurenine and its derivatives, and increases polyamine biosynthesis pathway (Putresceine and Spermine). Conclusion These findings indicate that AuPhos-enhanced IEC mitochondrial function reduces enteric O2 delivery, which corrects disease-associated metabolomics by restoring short-chain fatty acids, SBA, AA and IEC energy metabolism. Graphical abstract
Collapse
|
2
|
Huang L, Zuo Y, Yang H, He X, Zhang L. Identification of key genes as potential diagnostic and therapeutic targets for comorbidity of myasthenia gravis and COVID-19. Front Neurol 2024; 14:1334131. [PMID: 38384322 PMCID: PMC10879883 DOI: 10.3389/fneur.2023.1334131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 02/23/2024] Open
Abstract
Introduction Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder. Coronavirus disease 2019 (COVID-19) has a significant impact on the health and quality of life of MG patients and may even trigger the onset of MG in some cases. With the worldwide development of the COVID-19 vaccination, several new-onset MG cases and exacerbations following the COVID-19 vaccines have been acknowledged. The potential link between myasthenia gravis (MG) and COVID-19 has prompted the need for further investigation into the underlying molecular mechanism. Methods and results The differential expression analysis identified six differentially expressed genes (DEGs) shared by myasthenia gravis (MG) and COVID-19, namely SAMD9, PLEK, GZMB, JUNB, NR4A1, and NR1D1. The relationship between the six common genes and immune cells was investigated in the COVID-19 dataset. The predictive value of the shared genes was assessed and a nomogram was constructed using machine learning algorithms. The regulatory miRNAs, transcription factors and small molecular drugs were predicted, and the molecular docking was carried out by AutoDock. Discussion We have identified six common DEGs of MG and COVID-19 and explored their immunological effects and regulatory mechanisms. The result may provide new insights for further mechanism research.
Collapse
Affiliation(s)
- Liyan Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yao Zuo
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
| | - Hui Yang
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Xiaofang He
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Zhang
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| |
Collapse
|
3
|
Guo H, Liu R, He J, Yao W, Zheng W. Heat Stress Modulates a Placental Immune Response Associated With Alterations in the Development of the Fetal Intestine and Its Innate Immune System in Late Pregnant Mouse. Front Physiol 2022; 13:841149. [PMID: 35444558 PMCID: PMC9014288 DOI: 10.3389/fphys.2022.841149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The placenta is critical for the regulation of fetal innate immune function. Maternal heat stress (HS) impairs the immune function and the intestinal barrier in the offspring. However, the effects of maternal HS on the placental immune response and the development of the fetal intestine and its innate immune system remain unclear. Fetal mice were divided into the utero control (IUTN) and heat stress (IUHS) groups according to the maternal ambient temperature. Transcriptome analysis revealed that the expressions of placental immune response–related genes such as macrophage antigen CD68 and Fc gamma receptors 1 and 3 (fcgγ1 and fcgγ3) were increased, but the mRNA expression and protein levels of colony-stimulating factor-1 (Csf1) were decreased in the HS group compared with the TN group (p < 0.05). Furthermore, there was no significant difference in the intestinal length normalized to pup weight between the IUTN and IUHS groups. The expression of genes (such as alpi and ttr) involved in fetal duodenum and jejunum development was downregulated by maternal HS, whereas the expression of genes enriched in the cell cycle was increased. The mRNA expression and protein levels of cell division cycle 6 (Cdc6) in the fetal duodenum and jejunum were much higher in the IUHS group than in the IUTN group (p < 0.05). Maternal HS also down-regulated the expression of genes enriched in the innate immune system in the fetal duodenum and jejunum. The mRNA expression and protein levels of interleukin 1 alpha (IL1a) were reduced in the IUHS group compared with the IUTN group (p < 0.05). Taken together, these data demonstrated that maternal HS modulated the expression of genes in the placenta related to the immune response and inhibited the development of the fetal intestine and its innate immune system.
Collapse
Affiliation(s)
- Huiduo Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Riliang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jianwen He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Clinical Research Center, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Nanjing Agricultural University, Nanjing, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Weijiang Zheng,
| |
Collapse
|
4
|
Muehlbauer AL, Richards AL, Alazizi A, Burns MB, Gomez A, Clayton JB, Petrzelkova K, Cascardo C, Resztak J, Wen X, Pique-Regi R, Luca F, Blekhman R. Interspecies variation in hominid gut microbiota controls host gene regulation. Cell Rep 2021; 37:110057. [PMID: 34818542 PMCID: PMC8647622 DOI: 10.1016/j.celrep.2021.110057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome exhibits extreme compositional variation between hominid hosts. However, it is unclear how this variation impacts host physiology across species and whether this effect can be mediated through microbial regulation of host gene expression in interacting epithelial cells. Here, we characterize the transcriptional response of human colonic epithelial cells in vitro to live microbial communities extracted from humans, chimpanzees, gorillas, and orangutans. We find that most host genes exhibit a conserved response, whereby they respond similarly to the four hominid microbiomes. However, hundreds of host genes exhibit a divergent response, whereby they respond only to microbiomes from specific host species. Such genes are associated with intestinal diseases in humans, including inflammatory bowel disease and Crohn’s disease. Last, we find that inflammation-associated microbial species regulate the expression of host genes previously associated with inflammatory bowel disease, suggesting health-related consequences for species-specific host-microbiome interactions across hominids. Muehlbauer et al. investigate how variation between different hominid microbiomes drives host gene expression in colonic epithelial cell cultures. They find that host genes that respond only to microbiomes from a specific hominid species are linked to gastrointestinal diseases, suggesting implications for understanding how the microbiome can impact human health.
Collapse
Affiliation(s)
- Amanda L Muehlbauer
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Department of Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Allison L Richards
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Michael B Burns
- Department of Biology, Loyola University, Chicago, IL 60660, USA
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - Jonathan B Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NB, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NB, USA
| | - Klara Petrzelkova
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic; Liberec Zoo, Liberec, Czech Republic; The Czech Academy of Sciences, Institute of Parasitology, Ceske Budejovice, Czech Republic
| | - Camilla Cascardo
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Justyna Resztak
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Department of Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Rahnavard A, Chatterjee S, Sayoldin B, Crandall KA, Tekola-Ayele F, Mallick H. Omics community detection using multi-resolution clustering. Bioinformatics 2021; 37:3588-3594. [PMID: 33974004 PMCID: PMC8545346 DOI: 10.1093/bioinformatics/btab317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION The discovery of biologically interpretable and clinically actionable communities in heterogeneous omics data is a necessary first step towards deriving mechanistic insights into complex biological phenomena. Here we present a novel clustering approach, omeClust, for community detection in omics profiles by simultaneously incorporating similarities among measurements and the overall complex structure of the data. RESULTS We show that omeClust outperforms published methods in inferring the true community structure as measured by both sensitivity and misclassification rate on simulated datasets. We further validated omeClust in diverse, multiple omics datasets, revealing new communities and functionally related groups in microbial strains, cell line gene expression patterns, and fetal genomic variation. We also derived enrichment scores attributable to putatively meaningful biological factors in these datasets that can serve as hypothesis generators facilitating new sets of testable hypotheses. AVAILABILITY omeClust is open-source software, and the implementation is available online at http://github.com/omicsEye/omeClust. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Suvo Chatterjee
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bahar Sayoldin
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Himel Mallick
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
6
|
Kim Y, Wu AG, Jaja-Chimedza A, Graf BL, Waterman C, Verzi MP, Raskin I. Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice. PLoS One 2017; 12:e0184709. [PMID: 28922365 PMCID: PMC5602518 DOI: 10.1371/journal.pone.0184709] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
Moringa (Moringa oleifera Lam.) seed extract (MSE) has anti-inflammatory and antioxidant activities. We investigated the effects of MSE enriched in moringa isothiocyanate-1 (MIC-1), its putative bioactive, on ulcerative colitis (UC) and its anti-inflammatory/antioxidant mechanism likely mediated through Nrf2-signaling pathway. Dextran sulfate sodium (DSS)-induced acute (n = 8/group; 3% DSS for 5 d) and chronic (n = 6/group; cyclic rotations of 2.5% DSS/water for 30 d) UC was induced in mice that were assigned to 4 experimental groups: healthy control (water/vehicle), disease control (DSS/vehicle), MSE treatment (DSS/MSE), or 5-aminosalicyic acid (5-ASA) treatment (positive control; DSS/5-ASA). Following UC induction, water (vehicle), 150 mg/kg MSE, or 50 mg/kg 5-ASA were orally administered for 1 or 2 wks. Disease activity index (DAI), spleen/colon sizes, and colonic histopathology were measured. From colon and/or fecal samples, pro-inflammatory biomarkers, tight-junction proteins, and Nrf2-mediated enzymes were analyzed at protein and/or gene expression levels. Compared to disease control, MSE decreased DAI scores, and showed an increase in colon lengths and decrease in colon weight/length ratios in both UC models. MSE also reduced colonic inflammation/damage and histopathological scores (modestly) in acute UC. MSE decreased colonic secretions of pro-inflammatory keratinocyte-derived cytokine (KC), tumor necrosis factor (TNF)-α, nitric oxide (NO), and myeloperoxidase (MPO) in acute and chronic UC; reduced fecal lipocalin-2 in acute UC; downregulated gene expression of pro-inflammatory interleukin (IL)-1, IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) in acute UC; upregulated expression of claudin-1 and ZO-1 in acute and chronic UC; and upregulated GSTP1, an Nrf2-mediated phase II detoxifying enzyme, in chronic UC. MSE was effective in mitigating UC symptoms and reducing UC-induced colonic pathologies, likely by suppressing pro-inflammatory biomarkers and increasing tight-junction proteins. This effect is consistent with Nrf2-mediated anti-inflammatory/antioxidant signaling pathway documented for other isothiocyanates similar to MIC-1. Therefore, MSE, enriched with MIC-1, may be useful in prevention and treatment of UC.
Collapse
Affiliation(s)
- Youjin Kim
- Nutrasorb, LLC., Freehold, New Jersey, United States of America
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Alex G. Wu
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway Township, New Jersey, United States of America
| | - Asha Jaja-Chimedza
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Brittany L. Graf
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Carrie Waterman
- Department of Nutrition, University of California-Davis, Davis, California, United States of America
| | - Michael P. Verzi
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway Township, New Jersey, United States of America
| | - Ilya Raskin
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
7
|
Histamine Receptor 2 is Required to Suppress Innate Immune Responses to Bacterial Ligands in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:1575-86. [PMID: 27271490 DOI: 10.1097/mib.0000000000000825] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Histamine is a key immunoregulatory mediator in immediate-type hypersensitivity reactions and chronic inflammatory responses, in particular histamine suppresses proinflammatory responses to bacterial ligands, through histamine receptor 2 (H2R). The aim of this study was to investigate the effects of histamine and H2R on bacteria-induced inflammatory responses in patients with IBD. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from patients with Crohn's disease, patients with ulcerative colitis, and healthy controls. PBMC histamine receptor expression was evaluated by flow cytometry. Cytokine secretion following Toll-like receptor (TLR)-2, TLR-4, TLR-5, or TLR-9 stimulation in the presence or absence of histamine or famotidine (H2R antagonist) was quantified. Biopsy histamine receptor gene expression was evaluated using reverse transcription-polymerase chain reaction. The in vivo role of H2R was evaluated in the T-cell transfer murine colitis model. RESULTS The percentage of circulating H2R monocytes was significantly reduced in patients with IBD. Histamine effectively suppressed TLR-induced cytokine secretion from healthy volunteer PBMCs but not for PBMCs from patients with IBD. Famotidine reversed this suppressive effect. H1R, H2R, and H4R gene expression was increased in inflamed gastrointestinal mucosa compared with noninflamed mucosa from the same patient and expression levels correlated with proinflammatory cytokine gene expression. Mice receiving lymphocytes from H2R donors, or treated with famotidine, displayed more severe weight loss, higher disease scores and increased numbers of mucosal IFN-γ and IL-17 T cells. CONCLUSION Patients with IBD display dysregulated expression of histamine receptors, with diminished anti-inflammatory effects associated with H2R signaling. Deliberate manipulation of H2R signaling may suppress excessive TLR responses to bacteria within the gut.
Collapse
|
8
|
Smith NLD, Bromley MJ, Denning DW, Simpson A, Bowyer P. Elevated levels of the neutrophil chemoattractant pro-platelet basic protein in macrophages from individuals with chronic and allergic aspergillosis. J Infect Dis 2014; 211:651-60. [PMID: 25193981 DOI: 10.1093/infdis/jiu490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aspergillus fumigatus causes chronic cavitary pulmonary aspergillosis (CCPA) and allergic bronchopulmonary aspergillosis (ABPA) in overtly immunocompetent and atopic individuals, respectively. Disease mechanisms are poorly understood but may be related to increased neutrophil presence and activation. Pro-platelet basic protein (PPBP) is a potent neutrophil chemoattractant and activator whose expression is repressed by interleukin 10 (IL-10). METHODS PPBP expression by monocyte-derived macrophages from patients with ABPA or CCPA and asthmatic and healthy controls (10 individuals per group) was analyzed using reverse-transcription polymerase chain reaction. PPBP and IL-10 protein levels in cell culture supernatants were measured by enzyme-linked immunosorbent assay. Two PPBP single-nucleotide polymorphisms (SNPs) were genotyped in 638 individuals. The gene was resequenced in 20 individuals. RESULTS PPBP expression and protein levels were significantly increased in the ABPA (19.7-fold) and CCPA (27.7-fold) groups, compared with the control groups. PPBP SNPs were not associated with disease. IL-10 protein levels were significantly lower in the ABPA and CCPA groups, compared with the healthy group, suggesting that differences in PPBP levels may result from regulatory mechanisms. CONCLUSIONS The results suggest a role for increased PPBP expression in ABPA and CCPA. Repression of PPBP expression may benefit some patients. Increased PPBP expression in ABPA and CCPA may be useful as a future diagnostic tool or possible target for novel therapeutics.
Collapse
Affiliation(s)
- Nicola L D Smith
- Manchester Fungal Infection Group Manchester Academic Health Science Centre National Aspergillosis Centre, University Hospital South Manchester NHS Foundation Trust NIHR South Manchester Respiratory and Allergy Clinical Research Facility, United Kingdom
| | - Michael J Bromley
- Manchester Fungal Infection Group Manchester Academic Health Science Centre National Aspergillosis Centre, University Hospital South Manchester NHS Foundation Trust NIHR South Manchester Respiratory and Allergy Clinical Research Facility, United Kingdom
| | - David W Denning
- Manchester Fungal Infection Group Respiratory and Allergy Centre, Faculty of Medical and Human Science, University of Manchester Manchester Academic Health Science Centre National Aspergillosis Centre, University Hospital South Manchester NHS Foundation Trust NIHR South Manchester Respiratory and Allergy Clinical Research Facility, United Kingdom
| | - Angela Simpson
- Respiratory and Allergy Centre, Faculty of Medical and Human Science, University of Manchester Manchester Academic Health Science Centre National Aspergillosis Centre, University Hospital South Manchester NHS Foundation Trust NIHR South Manchester Respiratory and Allergy Clinical Research Facility, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group Manchester Academic Health Science Centre National Aspergillosis Centre, University Hospital South Manchester NHS Foundation Trust NIHR South Manchester Respiratory and Allergy Clinical Research Facility, United Kingdom
| |
Collapse
|
9
|
Wagner AE, Will O, Sturm C, Lipinski S, Rosenstiel P, Rimbach G. DSS-induced acute colitis in C57BL/6 mice is mitigated by sulforaphane pre-treatment. J Nutr Biochem 2014; 24:2085-91. [PMID: 24231100 DOI: 10.1016/j.jnutbio.2013.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/18/2022]
Abstract
The Brassica-derived isothiocyanate sulforaphane (SFN) is known to induce factor erythroid 2-related factor 2 (Nrf2), a transcription factor centrally involved in chemoprevention. Furthermore, SFN exhibits anti-inflammatory properties in vitro and in vivo. However, little is known regarding the anti-inflammatory properties of SFN in severe inflammatory phenotypes. In the present study, we tested if pre-treatment with SFN protects mice from dextran sodium sulphate (DSS)-induced colitis. C57BL/6 mice received either phosphate-buffered saline (control) or 25 mg/kg body weight (BW) SFN per os for 7 days. Subsequently, acute colitis was induced by administering 4% DSS via drinking water for 5 days and BWs, stool consistency and faecal blood loss were recorded. Following endoscopic colonoscopy, mice were sacrificed, the organs excised and spleen weights and colon lengths measured. For histopathological analysis, distal colon samples were fixed in 4% para-formaldehyde, sectioned and stained with hematoxylin/eosin. Inflammatory biomarkers were also measured in distal colon. Treatment with SFN prior to colitis induction significantly minimised both BW loss and the disease activity index compared to control mice. Furthermore, colon lengths in SFN pre-treated mice were significantly longer than in control mice. Both macroscopic and microscopic analysis of the colon revealed attenuated inflammation in SFN pre-treated animals. mRNA analysis of distal colon samples confirmed reduced expression of inflammatory markers and increased expression of Nrf2-dependent genes in SFN pre-treated mice. Our results indicate that pre-treating mice with SFN confers protection from DSS-induced colitis. These protective effects were corroborated macroscopically, microscopically and at the molecular level.
Collapse
Affiliation(s)
- Anika E Wagner
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, 24118 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Smolinska S, Jutel M, Crameri R, O'Mahony L. Histamine and gut mucosal immune regulation. Allergy 2014; 69:273-81. [PMID: 24286351 DOI: 10.1111/all.12330] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 11/28/2022]
Abstract
Histamine is a biogenic amine with extensive effects on many cell types, mediated by the activation of its four receptors (H1R-H4R). Distinct effects are dependent on receptor subtypes and their differential expression. Within the gastrointestinal tract, histamine is present at relatively high concentrations, particularly during inflammatory responses. In this review, we discuss the immunoregulatory influence of histamine on a number of gastrointestinal disorders, including food allergy, scombroid food poisoning, histamine intolerance, irritable bowel syndrome, and inflammatory bowel disease. It is clear that the effects of histamine on mucosal immune homeostasis are dependent on expression and activity of the four currently known histamine receptors; however, the relative protective or pathogenic effects of histamine on inflammatory processes within the gut are still poorly defined and require further investigation.
Collapse
Affiliation(s)
- S. Smolinska
- Department of Clinical Immunology; Wroclaw Medical University; Wroclaw Poland
- ‘ALL-MED’ Medical Research Institute; Wroclaw Poland
| | - M. Jutel
- Department of Clinical Immunology; Wroclaw Medical University; Wroclaw Poland
- ‘ALL-MED’ Medical Research Institute; Wroclaw Poland
| | - R. Crameri
- Swiss Institute of Allergy and Asthma Research; University of Zurich; Davos Switzerland
| | - L. O'Mahony
- Swiss Institute of Allergy and Asthma Research; University of Zurich; Davos Switzerland
| |
Collapse
|
11
|
Cabrera S, Fernández AF, Mariño G, Aguirre A, Suárez MF, Español Y, Vega JA, Laurà R, Fueyo A, Fernández-García MS, Freije JMP, Kroemer G, López-Otín C. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy 2013; 9:1188-200. [PMID: 23782979 DOI: 10.4161/auto.24797] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagy-related 4B, cysteine peptidase/autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase in parallel with the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b (-/-) mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohn disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b (-/-) mice. Taken together, these results provided additional evidence for the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency.
Collapse
Affiliation(s)
- Sandra Cabrera
- Departamento de Bioquímica y Biología Molecular; Facultad de Medicina; Instituto Universitario de Oncología (IUOPA); Universidad de Oviedo; Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Meng S, Ciment S, Jan M, Tran T, Pham H, Cueto R, Yang XF, Wang H. Homocysteine induces inflammatory transcriptional signaling in monocytes. Front Biosci (Landmark Ed) 2013; 18:685-95. [PMID: 23276953 DOI: 10.2741/4131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease. Here, we studied transcriptional regulation in homocysteine (Hcy)-induced gene expression in monocytes (MC). We identified 11 Hcy-induced genes, 17 anti-inflammatory cytokine interleukin 10-induced, 8 pro-inflammatory cytokine interferon gamma (IFN gamma)-induced and 8 pro-inflammatory cytokine tumor necrosis factor alpha (TNF alpha)-induced genes through literature search. Binding frequency of 36 transcription factors (TFs) implicated in inflammation and MC differentiation were analyzed within core promoter regions of identified genes, and classified into 3 classes based on the significant binding frequency to the promoter of Hcy-induced genes. Class 1 TFs exert high significant binding frequency in Hcy-induced genes. Class 2 and 3 TFs have low and no significant binding frequency, respectively. Class 1 TF binding occurrence in Hcy-induced genes is similar to that in IFN gamma -induced genes, but not that in TNF alpha -induced. We conclude that Hcy is a pro-inflammatory amino acid and induces inflammatory transcriptional signal pathways mediated by class 1 TF. We term class 1 TF as putative Hcy-responsive TFs.
Collapse
Affiliation(s)
- Shu Meng
- Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, 10th floor, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sina C, Arlt A, Gavrilova O, Midtling E, Kruse ML, Müerköster SS, Kumar R, Fölsch UR, Schreiber S, Rosenstiel P, Schäfer H. Ablation of gly96/immediate early gene-X1 (gly96/iex-1) aggravates DSS-induced colitis in mice: role for gly96/iex-1 in the regulation of NF-kappaB. Inflamm Bowel Dis 2010; 16:320-331. [PMID: 19714745 PMCID: PMC3927407 DOI: 10.1002/ibd.21066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) result from environmental and genetic factors and are characterized by an imbalanced immune response in the gut and deregulated activation of the transcription factor NF-kappaB. Addressing the potential role of gly96/iex-1 in the regulation of NF-kappaB in IBD, we used the dextran sodium sulfate (DSS) colitis model in mice in which the gly96/iex-1 gene had been deleted. METHODS C57BL/6 mice of gly96/iex-1(-/-) or gly96/iex-1(+/+) genotype were treated continuously with 4% DSS (5 days) and repeatedly with 2% DSS (28 days) for inducing acute and chronic colitis, respectively. In addition to clinical and histological exploration, colon organ culture and bone marrow-derived cells (BMCs) were analyzed for chemo/cytokine expression and NF-kappaB activation. RESULTS Compared to wildtype littermates, gly96/iex-1(-/-) mice exhibited an aggravated phenotype of both acute and chronic colitis, along with a greater loss of body weight and colon length. Colonic endoscopy revealed a higher degree of hyperemia, edema, and bleeding in gly96/iex-1(-/-) mice, and immunohistochemistry detected massive mucosal infiltration of leukocytes and marked histological changes. The expression of proinflammatory chemo- and cytokines was higher in the colon of DSS-treated gly96/iex-1(-/-) mice, and the NF-kappaB activation was enhanced particularly in the distal colon. In cultured BMCs from gly96/iex-1(-/-) mice, Pam(3)Cys(4) treatment induced expression of proinflammatory mediators to a higher degree than in gly96/iex-1(+/+) BMCs, along with greater NF-kappaB activation. CONCLUSIONS Based on the observation that genetic ablation of gly96/iex-1 triggers intestinal inflammation in mice, we demonstrate for the first time that gly96/iex-1 exerts strong antiinflammatory activity via its NF-kappaB-counterregulatory effect.
Collapse
Affiliation(s)
- Christian Sina
- Institute of Clinical Molecular Biology, UKSH-Campus Kiel, Kiel, Germany
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology & Hepatology, Department of General Medicine, UKSH-Campus Kiel, Kiel, Germany
| | - Olga Gavrilova
- Institute of Clinical Molecular Biology, UKSH-Campus Kiel, Kiel, Germany
| | - Emilie Midtling
- Institute of Clinical Molecular Biology, UKSH-Campus Kiel, Kiel, Germany
| | - Marie-Luise Kruse
- Laboratory of Molecular Gastroenterology & Hepatology, Department of General Medicine, UKSH-Campus Kiel, Kiel, Germany
| | - Susanne Sebens Müerköster
- Laboratory of Molecular Gastroenterology & Hepatology, Department of General Medicine, UKSH-Campus Kiel, Kiel, Germany
| | - Rajiv Kumar
- Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Ulrich R. Fölsch
- Laboratory of Molecular Gastroenterology & Hepatology, Department of General Medicine, UKSH-Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, UKSH-Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, UKSH-Campus Kiel, Kiel, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology & Hepatology, Department of General Medicine, UKSH-Campus Kiel, Kiel, Germany
| |
Collapse
|
14
|
Abstract
Technological advances in genomics and transcriptomics have resulted in the introduction of molecular tests into the clinical arena. Despite established uses of such tests in the oncology field, their integration into the management of complex diseases has not been widely evaluated. Progress in the field of inflammatory bowel disease (IBD) genetics has been rapid in recent years, and these advances have provided more urgent impetus to investigating the role of molecular tests in IBD. This article summarizes the current state of molecular testing available for IBD, and the potential utility of such tests as research in the area widens.
Collapse
|
15
|
García-Martín E, Ayuso P, Martínez C, Blanca M, Agúndez JAG. Histamine pharmacogenomics. Pharmacogenomics 2009; 10:867-83. [DOI: 10.2217/pgs.09.26] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic polymorphisms for histamine-metabolizing enzymes are responsible for interindividual variation in histamine metabolism and are associated with diverse diseases. Initial reports on polymorphisms of histamine-related genes including those coding for the enzymes histidine decarboxylase (HDC), diamine oxidase (ABP1) and histamine N-methyltransferase (HNMT), as well as histamine receptor genes, often have pointed to polymorphisms that occur with extremely low frequencies or that could not be verified by later studies. In contrast, common and functionally significant polymorphisms recently described have been omitted in many association studies. In this review we analyze allele frequencies, functional and clinical impact and interethnic variability on histamine-related polymorphisms. The most relevant nonsynonymous polymorphisms for the HDC gene are rs17740607 Met31Thr, rs16963486 Leu553Phe and rs2073440 Asp644Glu. For ABP1 the most relevant polymorphisms are rs10156191 Thr16Met, rs1049742 Ser332Phe, and particularly because of its functional effect, rs1049793 His645Asp. In addition the ABP1 polymorphisms rs45558339 Ile479Met and rs35070995 His659Asn are relevant to Asian and African subjects, respectively. For HNMT the only nonsynonymous polymorphism present with a relevant frequency is rs1801105 Thr105Ile. For HRH1 the polymorphism rs7651620 Glu270Gly is relevant to African subjects only. The HRH2 rs2067474 polymorphism, located in an enhancer element of the gene promoter, is common in all populations. No common nonsynonymous SNPs were observed in the HRH3 gene and two SNPs were observed with a significant frequency in the HRH4 gene: rs11665084 Ala138Val and rs11662595 His206Arg. This review summarizes relevant polymorphisms, discusses controversial findings on association of histamine-related polymorphisms and allergies and other diseases, and identifies topics requiring further investigation.
Collapse
Affiliation(s)
| | - Pedro Ayuso
- University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Carmen Martínez
- University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Miguel Blanca
- Allergy Service, Carlos Haya Hospital, Málaga, Spain
| | - José AG Agúndez
- University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| |
Collapse
|