1
|
Omdahl KI, Bermea RS, Fleming R, Kimler K, Kaminski J, Hariri LP, Ly A, Rui X, Cagnin L, Lane J, Gerdemann U, Blazar BR, Tkachev V, Kean LS. Organ-specific microenvironments drive divergent T cell evolution in acute graft-versus-host disease. Sci Transl Med 2025; 17:eads1298. [PMID: 39879321 DOI: 10.1126/scitranslmed.ads1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing. Transcriptional profiling revealed substantial biological differences between T cells infiltrating the lung and liver during aGVHD. These included enrichment for transcriptional pathways controlling extracellular matrix remodeling and chemotaxis in the lung and enrichment for transcriptional pathways linked to nucleic acid metabolism and proliferation in the liver. Single-cell RNA sequencing and TCR sequencing substantiated divergent organ-specific transcriptional programing of tissue-infiltrating T cells, which was linked to clonal expansion, with expanded clones progressively enriched for C-X3-C motif chemokine receptor 1 (CX3CR1)-expressing CD8 effector T cells in the lung and eomesodermin (EOMES)-expressing CD8 effector-memory T cells in the liver. This divergent evolution of T cells was maintained even for T cells sharing the same TCRs, indicating its independence from antigen specificity. Together, these results provide insights into the role that tissue microenvironment-derived signals play in local T cell transcriptional programming during alloimmune-mediated clonal expansion and suggest potential opportunities to develop tissue-specific therapeutics to curtail pathogenic immunity after transplant.
Collapse
Affiliation(s)
- Kayleigh Ingersoll Omdahl
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rene S Bermea
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Lung Transplant Program, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Ryan Fleming
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kyle Kimler
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lida P Hariri
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amy Ly
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xianliang Rui
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lorenzo Cagnin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jennifer Lane
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ulrike Gerdemann
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
2
|
Shengchao M, Bo T, Huihui L, Chenchen Q, Beichen L, Zhenhua W, Ning M, Yongjin S. Long-term CXCR3 antagonist AMG487 mitigated acute graft-versus-host disease by inhibiting T cell activation in a murine model. Transpl Immunol 2024; 87:102128. [PMID: 39260677 DOI: 10.1016/j.trim.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Lymphocyte migration plays a key role in the development of acute graft-versus-host disease (aGVHD). Blocking lymphocyte migration by targeting chemokine receptors, such as CXCR3, may be a promising strategy for preventing and treating aGVHD. Our previous studies have shown that short-term CXCR3 antagonist treatment combined with cyclosporine A alleviated aGVHD. However, the effect of long-term AMG487 treatment on aGVHD survival has not been thoroughly investigated. METHODS A murine aGVHD model was used to examine the expression of CXCR3 in donor T cells. The effects of short- and long-term AMG487 treatment on aGVHD survival were assessed. The infiltration of donor T cells into the liver and spleen tissues and the activation of donor T cells in splenic tissues were also examined. RESULTS CXCR3 was consistently highly expressed in donor T cells in a murine aGVHD model. Long-term AMG487 treatment, but not short-term, improved survival and aGVHD outcomes (p < 0.05). Furthermore, long-term AMG487 administration reduced the number of donor T cells in the liver but increased the number of donor T cells in the spleen (p < 0.05). Long-term AMG487 treatment also inhibited donor T cell activation in the spleen (p < 0.05). CONCLUSION This study demonstrates that long-term AMG487 treatment has a potential therapeutic effect on aGVHD and could be used as a novel therapy.
Collapse
Affiliation(s)
- Miao Shengchao
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Tang Bo
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Liu Huihui
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qin Chenchen
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Liu Beichen
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Wang Zhenhua
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ma Ning
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Shi Yongjin
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Naidoo L, Arumugam T, Ramsuran V. Host Genetic Impact on Infectious Diseases among Different Ethnic Groups. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2300181. [PMID: 38099246 PMCID: PMC10716055 DOI: 10.1002/ggn2.202300181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Indexed: 12/17/2023]
Abstract
Infectious diseases such as malaria, tuberculosis (TB), human immunodeficiency virus (HIV), and the coronavirus disease of 2019 (COVID-19) are problematic globally, with high prevalence particularly in Africa, attributing to most of the death rates. There have been immense efforts toward developing effective preventative and therapeutic strategies for these pathogens globally, however, some remain uncured. Disease susceptibility and progression for malaria, TB, HIV, and COVID-19 vary among individuals and are attributed to precautionary measures, environment, host, and pathogen genetics. While studying individuals with similar attributes, it is suggested that host genetics contributes to most of an individual's susceptibility to disease. Several host genes are identified to associate with these pathogens. Interestingly, many of these genes and polymorphisms are common across diseases. This paper analyzes genes and genetic variations within host genes associated with HIV, TB, malaria, and COVID-19 among different ethnic groups. The differences in host-pathogen interaction among these groups, particularly of Caucasian and African descent, and which gene polymorphisms are prevalent in an African population that possesses protection or risk to disease are reviewed. The information in this review could potentially help develop personalized treatment that could effectively combat the high disease burden in Africa.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
4
|
Larson JH, Jin S, Loschi M, Bolivar Wagers S, Thangavelu G, Zaiken MC, McDonald-Hyman C, Saha A, Aguilar EG, Koehn B, Osborn MJ, Panoskaltsis-Mortari A, Macdonald KPA, Hill GR, Murphy WJ, Serody JS, Maillard I, Kean LS, Kim SV, Littman DR, Blazar BR. Enforced gut homing of murine regulatory T cells reduces early graft-versus-host disease severity. Am J Transplant 2023; 23:1102-1115. [PMID: 36878433 PMCID: PMC10475494 DOI: 10.1016/j.ajt.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/31/2023] [Indexed: 03/07/2023]
Abstract
Damage to the gastrointestinal tract following allogeneic hematopoietic stem cell transplantation is a significant contributor to the severity and perpetuation of graft-versus-host disease. In preclinical models and clinical trials, we showed that infusing high numbers of regulatory T cells reduces graft-versus-host disease incidence. Despite no change in in vitro suppressive function, transfer of ex vivo expanded regulatory T cells transduced to overexpress G protein-coupled receptor 15 or C-C motif chemokine receptor 9, specific homing receptors for colon or small intestine, respectively, lessened graft-versus-host disease severity in mice. Increased regulatory T cell frequency and retention within the gastrointestinal tissues of mice that received gut homing T cells correlated with lower inflammation and gut damage early post-transplant, decreased graft-versus-host disease severity, and prolonged survival compared with those receiving control transduced regulatory T cells. These data provide evidence that enforced targeting of ex vivo expanded regulatory T cells to the gastrointestinal tract diminishes gut injury and is associated with decreased graft-versus-host disease severity.
Collapse
Affiliation(s)
- Jemma H Larson
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sujeong Jin
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sara Bolivar Wagers
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael C Zaiken
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cameron McDonald-Hyman
- Division of Hematology/Oncology/Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Asim Saha
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ethan G Aguilar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brent Koehn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kelli P A Macdonald
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Immunology Department, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA; Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jonathan S Serody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sangwon V Kim
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
5
|
Anti- E. coli Immunoglobulin Yolk (IgY): Reduction of pathogen receptors and inflammation factors could be caused by decrease in E. coli load. Heliyon 2023; 9:e13876. [PMID: 36873547 PMCID: PMC9982617 DOI: 10.1016/j.heliyon.2023.e13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Graft versus host disease (GVHD) remains the major cause of morbidity and mortality after allogeneic stem cell transplantation, especially for intestinal GVHD, as steroid resistant GVHD results in high mortality. For this reason, new treatments of GVHD are needed. One approach is the reduction of pathogenic bacteria using anti-E. coli Immunoglobulin Yolk (IgY). In a haploidentical murine model, B6D2F1 mice conditioned with total body irradiation (TBI), received bone marrow cells (BM) and splenocytes (SC) from either syngeneic (Syn = B6D2F1) or allogeneic (Allo = C57BL/6) donors. Following this, animals received from day -2 until day +28 chow contained IgY or control chow. Thereafter the incidence and severity of aGVHD, the cytokines, chemokines, IDO1 and different pathogen-recognition receptors (PRR) were analyzed and compared to control animals (received chow without IgY). We found that animals receiving chow with IgY antibody showed reduced GVHD severity compared to control animals. On day28 after alloBMT, IDO, NOD2, TLR2, TLR4 and the inflammatory chemokine CCL3, were reduced in the colon and correlated with a significant decrease in E. coli bacteria. In summary chow containing chicken antibodies (IgY) improved GVHD via decrease in bacterial load of E coli conducting to reduction of pathogen receptors (NOD2, TLR2 and 4), IDO, chemokines and cytokines.
Collapse
|
6
|
Abdellatif AAH, Abdelfattah A, Bouazzaoui A, Osman SK, Al-Moraya IS, Showail AMS, Alsharidah M, Aboelela A, Al Rugaie O, Faris TM, Tawfeek HM. Silver Nanoparticles Stabilized by Poly (Vinyl Pyrrolidone) with Potential Anticancer Activity towards Prostate Cancer. Bioinorg Chem Appl 2022; 2022:6181448. [PMID: 36248627 PMCID: PMC9553549 DOI: 10.1155/2022/6181448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor (TNF-α) and inflammatory cytokine (IL-6) play a vital role in various cellular incidents such as the proliferation and death of cells during carcinogenesis. Hence, regulation of these biomarkers could be a promising tool for controlling tumor progression using nanoformulations. Silver nanoparticles-poly (vinyl pyrrolidone) (AgNPs-PVP) were prepared using the reduction of silver nitrate and stabilized with PVP. They are characterized through yield percentage, UV-VIS, FT-IR, size, charge, and morphology. The obtained AgNPs were tested for anticancer activity against prostate cancer (PC 3) and human skin fibroblast (HFS) cell lines. Moreover, biomarker-based confirmations like TNF-α and IL-6 were estimated. The synthesized AgNPs-PVP were stable, spherical in shape, with particle sizes of 122.33 ± 17.61 nm, a polydispersity index of 0.49 ± 0.07, and a negative surface charge of -19.23 ± 0.61 mV. In vitro cytotoxicity testing showed the AgNPs-PVP exhibited antiproliferation properties in PC3 in a dose-dependent manner. In addition, when compared to control cells, AgNPs-PVP has lower TNF-α with a significant value ( ∗ p < 0.05); the value reached 16.84 ± 0.71 pg/ml versus 20.81 ± 0.44 pg/ml, respectively. In addition, HSF cells showed a high level of reduction ( ∗∗∗ p < 0.001) in IL-6 production. This study suggested that AgNPs-PVP could be a possible therapeutic agent for human prostate cancer and anti-IL-6 in cancerous and noncancerous cells. Further studies will be performed to investigate the effect of AgNPs-PVP in different types of cancer.
Collapse
Affiliation(s)
- Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Qassim 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed Abdelfattah
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Medical Clinic, Hematology, Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Shaaban K. Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Issa Saad Al-Moraya
- Clinical Toxicology, College of Medicine Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Forensic Medicine & Toxicology Center, Ministry of Health, Abha, Saudi Arabia
| | - Abdulaziz M. Saleh Showail
- Department of Urology, Khamis Mushait General Hospital, Ministry of Health, Khamis Mushait, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ashraf Aboelela
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, P.O. Box 991, Al Qassim 51911, Saudi Arabia
| | - Tarek M. Faris
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Docampo MD, da Silva MB, Lazrak A, Nichols KB, Lieberman SR, Slingerland AE, Armijo GK, Shono Y, Nguyen C, Monette S, Dwomoh E, Lee N, Geary CD, Perobelli SM, Smith M, Markey KA, Vardhana SA, Kousa AI, Zamir E, Greenfield I, Sun JC, Cross JR, Peled JU, Jenq RR, Stein-Thoeringer CK, van den Brink MRM. Alloreactive T cells deficient of the short-chain fatty acid receptor GPR109A induce less graft-versus-host disease. Blood 2022; 139:2392-2405. [PMID: 34653248 PMCID: PMC9012131 DOI: 10.1182/blood.2021010719] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/31/2021] [Indexed: 01/17/2023] Open
Abstract
The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a-/-) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a-/- T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a-/- T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a-/- T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.
Collapse
Affiliation(s)
- Melissa D Docampo
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Amina Lazrak
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | | | | | - Gabriel K Armijo
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Chi Nguyen
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Emmanuel Dwomoh
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Clair D Geary
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Melody Smith
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kate A Markey
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Eli Zamir
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany; and
| | | | - Joseph C Sun
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Justin R Cross
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Jonathan U Peled
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert R Jenq
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Marcel R M van den Brink
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
8
|
Igarashi K, Hori T, Yamamoto M, Sohma H, Suzuki N, Tsutsumi H, Kawasaki Y, Kokai Y. CCL8 deficiency in the host abrogates early mortality of acute graft-versus-host disease in mice with dysregulated IL-6 expression. Exp Hematol 2022; 106:47-57. [PMID: 34808257 DOI: 10.1016/j.exphem.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
Although allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for diverse malignant and nonmalignant diseases, acute graft-versus-host disease (aGVHD) is strongly linked to mortality caused by HSCT. We previously reported that CC chemokine ligand 8 (CCL8) is closely correlated to aGVHD mortality in both humans and mice. To study the role of CCL8 in aGVHD, CCL8 knockout (CCL8-/-) mice were transplanted with fully allogeneic marrow grafts. These mice exhibited a significant reduction in mortality (90.0% vs. 23.4% survival for CCL8-/- vs. wild-type recipients at day 28, p < 0.0001). As a result, apparent prolonged median survival from 9 days in wild-type mice to 45 days in CCL8-/- mice was observed. Acute GVHD pathology and liver dysfunction in CCL8-/- mice were significantly attenuated compared with those in wild-type mice. In association with the reduced mortality, a surge of plasma interleukin (IL)-6 was observed in CCL8-/- recipients with allogeneic marrow, which was significantly increased compared with wild-type mice that received allografts. Donor T-cell expansion and plasma levels of interferon-γ and TNF-α during aGVHD were similar in both types of mice. Collectively, these findings indicate that CCL8 plays a major role in aGVHD pathogenesis with possible involvement of an IL-6 signaling cascade.
Collapse
Affiliation(s)
- Keita Igarashi
- Department of Biomedical Engineering, Research Institute of Frontier Medicine; Department of Pediatrics, Sapporo Medical University School of Medicine.
| | - Tsukasa Hori
- Department of Pediatrics, Sapporo Medical University School of Medicine
| | - Masaki Yamamoto
- Department of Pediatrics, Sapporo Medical University School of Medicine
| | - Hitoshi Sohma
- Department of Educational Development, Center for Medical Education, Sapporo Medical University, Sapporo, Japan
| | | | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine
| | - Yukihiko Kawasaki
- Department of Pediatrics, Sapporo Medical University School of Medicine
| | - Yasuo Kokai
- Department of Biomedical Engineering, Research Institute of Frontier Medicine
| |
Collapse
|
9
|
Jeljeli M, Chêne C, Chouzenoux S, Thomas M, Segain B, Doridot L, Nicco C, Batteux F. LPS low-Macrophages Alleviate the Outcome of Graft- Versus-Host Disease Without Aggravating Lymphoma Growth in Mice. Front Immunol 2021; 12:670776. [PMID: 34413847 PMCID: PMC8369416 DOI: 10.3389/fimmu.2021.670776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Despite significant therapeutic advances, graft-versus-host disease (GvHD) remains the main life-threatening complication following allogeneic hematopoietic stem cell transplantation. The pathogenesis of GvHD is dominated by a dysregulated allogeneic immune response that drives fibrosis and autoimmunity in chronic forms. A multitude of cell therapy approaches, including infusion of myeloid cells, has been proposed to prevent GvHD through tolerance induction but yielded variable results. Myeloid cells like macrophages can be reprogrammed to develop adaptive-like features following antigenic challenge to reinforce or inhibit a subsequent immune response; a phenomenon termed ‘trained immunity’. Here we report that, whereas LPSlow-trained macrophages elicit a suppressor effect on allogeneic T cell proliferation and function in vitro in an IL-10-dependent manner, Bacille Calmette et Guérin (BCG)-trained macrophages exert an opposite effect. In a murine model of sclerodermatous chronic GvHD, LPSlow-trained macrophages attenuate clinical signs of GvHD with significant effects on T cell phenotype and function, autoantibodies production, and tissue fibrosis. Furthermore, infusion of LPSlow-macrophages significantly improves survival in mice with acute GvHD. Importantly, we also provide evidence that LPSlow-macrophages do not accelerate A20-lymphoma tumor growth, which is significantly reduced upon transfer of BCG-macrophages. Collectively, these data indicate that macrophages can be trained to significantly inhibit in vitro and in vivo allo-reactive T cell proliferation without exhibiting pro-tumoral effect, thereby opening the way to promising clinical applications.
Collapse
Affiliation(s)
- Mohamed Jeljeli
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| | - Charlotte Chêne
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Sandrine Chouzenoux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Marine Thomas
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Benjamin Segain
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Ludivine Doridot
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Carole Nicco
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Frédéric Batteux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| |
Collapse
|
10
|
Mammadli M, Harris R, Mahmudlu S, Verma A, May A, Dhawan R, Waickman AT, Sen JM, August A, Karimi M. Human Wnt/β-Catenin Regulates Alloimmune Signaling during Allogeneic Transplantation. Cancers (Basel) 2021; 13:cancers13153798. [PMID: 34359702 PMCID: PMC8345079 DOI: 10.3390/cancers13153798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most widely applied forms of adoptive immunotherapy for the treatment of hematological malignancies. Detrimental graft-versus-host disease (GVHD), but also beneficial graft-versus-leukemia (GVL) effects occurring after allo-HSCT are largely mediated by alloantigen-reactive donor T cells in the graft. Separating GVHD from GVL effects is a formidable challenge, and a greater understanding of donor T cell biology is required to accomplish the uncoupling of GVHD from GVL. Here, we evaluated the role of β-catenin in this process. Using a unique mouse model of transgenic overexpression of human β-catenin (Cat-Tg) in an allo-HSCT model, we show here that T cells from Cat-Tg mice did not cause GVHD, and surprisingly, Cat-Tg T cells maintained the GVL effect. Donor T cells from Cat-Tg mice exhibited significantly lower inflammatory cytokine production and reduced donor T cell proliferation, while upregulating cytotoxic mediators that resulted in enhanced cytotoxicity. RNA sequencing revealed changes in the expression of 1169 genes for CD4, and 1006 genes for CD8+ T cells involved in essential aspects of immune response and GVHD pathophysiology. Altogether, our data suggest that β-catenin is a druggable target for developing therapeutic strategies to reduce GVHD while preserving the beneficial GVL effects following allo-HSCT treatment.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Sara Mahmudlu
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Anjali Verma
- Biomedical Research Center, National Institute on Aging-National Institutes of Health, 08C218, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; (A.V.); (J.M.S.)
| | - Adriana May
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Rohan Dhawan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Adam T. Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Jyoti Misra Sen
- Biomedical Research Center, National Institute on Aging-National Institutes of Health, 08C218, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; (A.V.); (J.M.S.)
- Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
- Correspondence: ; Tel.: +315-464-2344 or +315-464-7652
| |
Collapse
|
11
|
Bouazzaoui A, Abdellatif AAH, Al-Allaf FA, Bogari NM, Taher MM, Athar M, Schubert T, Habeebullah TM, Qari SH. Compound A Increases Cell Infiltration in Target Organs of Acute Graft-versus-Host Disease (aGVHD) in a Mouse Model. Molecules 2021; 26:molecules26144237. [PMID: 34299512 PMCID: PMC8303851 DOI: 10.3390/molecules26144237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Systemic steroids are used to treat acute graft-versus-host disease (aGVHD) caused by allogenic bone marrow transplantation (allo-BMT); however, their prolonged use results in complications. Hence, new agents for treating aGVHD are required. Recently, a new compound A (CpdA), with anti-inflammatory activity and reduced side effects compared to steroids, has been identified. Here, we aimed to determine whether CpdA can improve the outcome of aGVHD when administered after transplantation in a mouse model (C57BL/6 in B6D2F1). After conditioning with 9Gy total body irradiation, mice were infused with bone marrow (BM) cells and splenocytes from either syngeneic (B6D2F1) or allogeneic (C57BL/6) donors. The animals were subsequently treated (3 days/week) with 7.5 mg/kg CpdA from day +15 to day +28; the controls received 0.9% NaCl. Thereafter, the incidence and severity of aGVHD in aGVHD target organs were analyzed. Survival and clinical scores did not differ significantly; however, CpdA-treated animals showed high cell infiltration in the target organs. In bulk mixed lymphocyte reactions, CpdA treatment reduced the cell proliferation and expression of inflammatory cytokines and chemokines compared to controls, whereas levels of TNF, IL-23, chemokines, and chemokine receptors increased. CpdA significantly reduced proliferation in vitro but increased T cell infiltration in target organs.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Medical Clinic 3–Hematology/Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Correspondence: or ; Tel.: +966-571297636
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Faisal A. Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
| | - Neda M. Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
| | - Mohiuddin M. Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Thomas Schubert
- Institut für Angewandte Pathologie Speyer, Alter Postweg 1, 67346 Speyer, Germany;
| | - Turki M. Habeebullah
- Environment and Health Research Department, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Sameer H. Qari
- Biology Department, Aljumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
12
|
Cao M, Liu H, Dong Y, Liu W, Yu Z, Wang Q, Wang Q, Liang Z, Li Y, Ren H. Mesenchymal stem cells alleviate idiopathic pneumonia syndrome by modulating T cell function through CCR2-CCL2 axis. Stem Cell Res Ther 2021; 12:378. [PMID: 34215321 PMCID: PMC8254317 DOI: 10.1186/s13287-021-02459-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Idiopathic pneumonia syndrome (IPS) is a non-infectious fatal complication characterized by a massive infiltration of leukocytes in lungs and diffuse pulmonary injury after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Conventional immunosuppressive treatments for IPS have poor therapeutic effects. Safe and effective treatments are not yet available and under explorations. Our previous study demonstrated that mesenchymal stem cells (MSCs) can alleviate IPS, but the mechanisms remain unclear. METHODS Co-cultured pre-activated T cells and MSCs in vitro to observe the changes in the CCR2-CCL2 axis. By establishing an IPS mouse model and administering MSCs to further verify the results of in vitro experiments. RESULTS Co-culture of pre-activated T cells with MSCs in vitro modulated the CCR2-CCL2 axis, resulting in quiescent T cells and polarization toward CCR2+CD4+ T cell subsets. Blocking CCR2-CCL2 interaction abolished the immunoregulatory effect of MSCs, leading to re-activation of T cells and partial reversion of polarizing toward CCR2+CD4+ T cells. In IPS mouse model, application of MSCs prolonged the survival and reduced the pathological damage and T cell infiltration into lung tissue. Activation of CCR2-CCL2 axis and production of CCR2+CD4+ T cells were observed in the lungs treated with MSCs. The prophylactic effect of MSCs on IPS was significantly attenuated by the administration of CCR2 or CCL2 antagonist in MSC-treated mice. CONCLUSIONS We demonstrated an important role of CCR2-CCL2 axis in modulating T cell function which is one of the mechanisms of the prophylactic effect of MSCs on IPS.
Collapse
Affiliation(s)
- Min Cao
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Zhengyu Yu
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Qingya Wang
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Qingyun Wang
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Zeying Liang
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China.
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China.
| |
Collapse
|
13
|
The Prolyl Hydroxylase Inhibitor Dimethyl Oxalyl Glycine Decreases Early Gastrointestinal GVHD in Experimental Allogeneic Hematopoietic Cell Transplantation. Transplantation 2021; 104:2507-2515. [PMID: 32639407 DOI: 10.1097/tp.0000000000003383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Prolyl hydroxylase inhibitors (PHI) promote stabilization of hypoxia-inducible factor-1 alpha and affect signaling cascades of inflammation and cell death. Their beneficial use in experimental models of ulcerative colitis and lung allograft rejection led us to test the effect of the PHI dimethyl oxalyl glycine (DMOG) in the pathophysiology of graft versus host disease (GVHD). METHODS Acute GVHD was induced in lethally irradiated BALB/c mice. DMOG was administered intraperitoneally on alternate days for the first 2-weeks posttransplant, and then twice a week till day +50, while controls received vehicle only. Animals were monitored for clinical GVHD and analyzed at day +7 and at day +50. RESULTS DMOG treatment of allogeneic recipients improved survival by day +50, which was associated with decreased early gut injury and serum tumor necrosis factor-α compared with allogeneic controls. DMOG treatment of allogeneic recipients resulted in increased hypoxia-inducible factor-1 alpha expression and reduced apoptosis in the terminal ileum via Fas-associated protein with death domain protein repression along with decreased T-cell infiltration. Reduced pathology in colon after DMOG treatment associates with intestinal epithelium integrity and reduced damage caused by diminished recruitment of neutrophils. CONCLUSIONS Taken together, we show protective effects of DMOG on early gut GVHD and improved survival in a model of allogeneic hematopoietic cell transplantation, providing the rationale for further evaluation of PHIs, in the prevention and treatment of acute GVHD.
Collapse
|
14
|
Kumari R, Palaniyandi S, Strattan E, Huang T, Kohler K, Jabbour N, Dalland J, Du J, Kesler MV, Chen YH, Hildebrandt GC. TNFAIP8 Deficiency Exacerbates Acute Graft Versus Host Disease in a Murine Model of Allogeneic Hematopoietic Cell Transplantation. Transplantation 2019; 104:500-510. [PMID: 31634333 DOI: 10.1097/tp.0000000000003013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gastrointestinal acute graft-versus-host disease (GVHD) occurring after allogeneic hematopoietic cell transplant is an allo-reactive T cell and inflammatory cytokine driven organ injury with epithelial apoptosis as 1 of its hallmark findings and is associated with significant mortality. Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 or TIPE) acts as a negative mediator of apoptosis via inhibition of caspase-3 activation, promotes cell proliferation and Tipe deficiency is associated with increased inflammation. METHODS To evaluate the role of TIPE in acute GVHD, naive C57BL/6 and Tipe C57BL/6 mice were conditioned with 1000 cGy single dose total body irradiation, followed by transplantation of 10 million bone marrow cells and 20 million splenocytes from either syngeneic C57BL/6 or allogeneic BALB/c donors. RESULTS Allo TIPE-deficient mice developed exacerbated gut GVHD compared with allo controls and had significantly decreased survival (6 wk overall survival: 85% versus 37%; P < 0.05), higher clinical GVHD scores, more profound weight loss, increased serum proinflammatory cytokines (interleukin-17A, TNF, interleukin-6, and interferon-γ). T-cell infiltration into the ileum was increased; epithelial proliferation was decreased along with significantly higher levels of chemokines KC and monokine induced by gamma interferon. Using bone marrow chimeric experiments, TIPE was found to have a role in both hematopoietic and nonhematopoietic cells. CONCLUSIONS Absence of TIPE results in excessive inflammation and tissue injury after allo-HCT, supporting that TIPE confers immune homeostasis and has tissue-protective function during the development of gut GVHD and may be a potential future target to prevent or treat this complication after allogeneic HCT.
Collapse
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Ethan Strattan
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY.,Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| | - Timothy Huang
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Katharina Kohler
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Nashwan Jabbour
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Joanna Dalland
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Jing Du
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Melissa V Kesler
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Gerhard C Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY.,Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| |
Collapse
|
15
|
Alloreactive T Cells Display a Distinct Chemokine Profile in Response to Conditioning in Xenogeneic GVHD Models. Transplantation 2019; 103:1834-1843. [DOI: 10.1097/tp.0000000000002756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Golay H, Jurkovic Mlakar S, Mlakar V, Nava T, Ansari M. The Biological and Clinical Relevance of G Protein-Coupled Receptors to the Outcomes of Hematopoietic Stem Cell Transplantation: A Systematized Review. Int J Mol Sci 2019; 20:E3889. [PMID: 31404983 PMCID: PMC6719093 DOI: 10.3390/ijms20163889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for several malignant and non-malignant diseases at the cost of serious treatment-related toxicities (TRTs). Recent research on extending the benefits of HSCT to more patients and indications has focused on limiting TRTs and improving immunological effects following proper mobilization and engraftment. Increasing numbers of studies report associations between HSCT outcomes and the expression or the manipulation of G protein-coupled receptors (GPCRs). This large family of cell surface receptors is involved in various human diseases. With ever-better knowledge of their crystal structures and signaling dynamics, GPCRs are already the targets for one third of the current therapeutic arsenal. The present paper assesses the current status of animal and human research on GPCRs in the context of selected HSCT outcomes via a systematized survey and analysis of the literature.
Collapse
Affiliation(s)
- Hadrien Golay
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Vid Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Tiago Nava
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Marc Ansari
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| |
Collapse
|
17
|
Ashhurst AS, Flórido M, Lin LCW, Quan D, Armitage E, Stifter SA, Stambas J, Britton WJ. CXCR6-Deficiency Improves the Control of Pulmonary Mycobacterium tuberculosis and Influenza Infection Independent of T-Lymphocyte Recruitment to the Lungs. Front Immunol 2019; 10:339. [PMID: 30899256 PMCID: PMC6416161 DOI: 10.3389/fimmu.2019.00339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
T-lymphocytes are critical for protection against respiratory infections, such as Mycobacterium tuberculosis and influenza virus, with chemokine receptors playing an important role in directing these cells to the lungs. CXCR6 is expressed by activated T-lymphocytes and its ligand, CXCL16, is constitutively expressed by the bronchial epithelia, suggesting a role in T-lymphocyte recruitment and retention. However, it is unknown whether CXCR6 is required in responses to pulmonary infection, particularly on CD4+ T-lymphocytes. Analysis of CXCR6-reporter mice revealed that in naïve mice, lung leukocyte expression of CXCR6 was largely restricted to a small population of T-lymphocytes, but this population was highly upregulated after either infection. Nevertheless, pulmonary infection of CXCR6-deficient mice with M. tuberculosis or recombinant influenza A virus expressing P25 peptide (rIAV-P25), an I-Ab-restricted epitope from the immunodominant mycobacterial antigen, Ag85B, demonstrated that the receptor was redundant for recruitment of T-lymphocytes to the lungs. Interestingly, CXCR6-deficiency resulted in reduced bacterial burden in the lungs 6 weeks after M. tuberculosis infection, and reduced weight loss after rIAV-P25 infection compared to wild type controls. This was paradoxically associated with a decrease in Th1-cytokine responses in the lung parenchyma. Adoptive transfer of P25-specific CXCR6-deficient T-lymphocytes into WT mice revealed that this functional change in Th1-cytokine production was not due to a T-lymphocyte intrinsic mechanism. Moreover, there was no reduction in the number or function of CD4+ and CD8+ tissue resident memory cells in the lungs of CXCR6-deficient mice. Although CXCR6 was not required for T-lymphocyte recruitment or retention in the lungs, CXCR6 influenced the kinetics of the inflammatory response so that deficiency led to increased host control of M. tuberculosis and influenza virus.
Collapse
Affiliation(s)
- Anneliese S Ashhurst
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Manuela Flórido
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Leon C W Lin
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Diana Quan
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Ellis Armitage
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Sebastian A Stifter
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Central Clinical School Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Warwick J Britton
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Central Clinical School Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
18
|
Li Z, Gu J, Zhu Q, Liu J, Lu H, Lu Y, Wang X. Obese donor mice splenocytes aggravated the pathogenesis of acute graft-versus-host disease via regulating differentiation of Tregs and CD4 + T cell induced-type I inflammation. Oncotarget 2017; 8:74880-74896. [PMID: 29088831 PMCID: PMC5650386 DOI: 10.18632/oncotarget.20425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) remains one of the most severe complications in organ and bone marrow transplantation, leading to much morbidity and mortality. Obesity has been associated with increased risk of development of various inflammatory diseases. Here, we investigated the in vitro and in vivo effects of obese donor splenocytes on the development of acute graft-versus-host disease (aGVHD). In this study, mixed lymphocyte reactions (MLR) in vitro showed that obese donor mouse CD4+ T cell promoted the production of interleukin-2 (IL-2), interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Meanwhile, the inducible Tregs population decreased greatly in obese donor mouse CD4+ T cells' induction group, compared with normal group. Then in the murine aGVHD model, we found that obese donor splenocytes dramatically increased the severity of aGVHD through down-regulating immune tolerance while enhancing systemic and local immunity. Moreover, we showed that aGVHD induced by obese donors resulted in massive expansion of donor CD3+ T cells, release of Th1-related cytokines, interleukin-17 (IL-17) and chemokines, significant increase of Th17 cells and inhibition of CD4+CD25+Foxp3+ regulatory T cells (Tregs) and impaired suppressive ability of donor Tregs. Expression of sphingosine-1-phosphate receptor 1 (S1PR1), phosphorylated Akt, mammalian target of rapamycin (mTOR) and Raptor increased, while the phosphorylation level of SMAD3 was decreased in the skin, intestine, lung and liver from obese donor splenocytes-treated aGVHD mice. Furthermore, at mRNA and protein levels, we defined several molecules that may account for the enhanced ability of obese donor splenocytes to migrate into target organs, such as IL-2, IL-17, IFN-γ, TNF-α, CXCR3, CXCL9, CXCL10, CXCL11 and CCL3. Therefore, these results imply that obese donor cells may be related to the risk of aGVHD and helping obese donor individuals lose weight represent a compulsory clinical strategy before implementing transplantation to control aGVHD of recipients.
Collapse
Affiliation(s)
- Zengyao Li
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Qin Zhu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jing Liu
- Department of Radiotherapy, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hao Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yunjie Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xuehao Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
Gam R, Shah P, Crossland RE, Norden J, Dickinson AM, Dressel R. Genetic Association of Hematopoietic Stem Cell Transplantation Outcome beyond Histocompatibility Genes. Front Immunol 2017; 8:380. [PMID: 28421078 PMCID: PMC5377073 DOI: 10.3389/fimmu.2017.00380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hematopoietic stem cell transplantation (HSCT) is controlled by genetic factors among which the leukocyte antigen human leukocyte antigen (HLA) matching is most important. In addition, minor histocompatibility antigens and non-HLA gene polymorphisms in genes controlling immune responses are known to contribute to the risks associated with HSCT. Besides single-nucleotide polymorphisms (SNPs) in protein coding genes, SNPs in regulatory elements such as microRNAs (miRNAs) contribute to these genetic risks. However, genetic risks require for their realization the expression of the respective gene or miRNA. Thus, gene and miRNA expression studies may help to identify genes and SNPs that indeed affect the outcome of HSCT. In this review, we summarize gene expression profiling studies that were performed in recent years in both patients and animal models to identify genes regulated during HSCT. We discuss SNP–mRNA–miRNA regulatory networks and their contribution to the risks associated with HSCT in specific examples, including forkheadbox protein 3 and regulatory T cells, the role of the miR-155 and miR-146a regulatory network for graft-versus-host disease, and the function of MICA and its receptor NKG2D for the outcome of HSCT. These examples demonstrate how SNPs affect expression or function of proteins that modulate the alloimmune response and influence the outcome of HSCT. Specific miRNAs targeting these genes and directly affecting expression of mRNAs are identified. It might be valuable in the future to determine SNPs and to analyze miRNA and mRNA expression in parallel in cohorts of HSCT patients to further elucidate genetic risks of HSCT.
Collapse
Affiliation(s)
- Rihab Gam
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Rachel E Crossland
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jean Norden
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Li Z, Gu J, Liu J, Zhu Q, Lu H, Lu Y, Rao J, Lu L, Wang X. Chitinase 3-like-1 deficient donor splenocytes accentuated the pathogenesis of acute graft-versus-host diseases through regulating T cell expansion and type I inflammation. Int Immunopharmacol 2017; 46:201-209. [PMID: 28324830 DOI: 10.1016/j.intimp.2017.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/20/2017] [Accepted: 03/08/2017] [Indexed: 01/05/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major complication following transplantation, limiting the success of this therapy. Chitinase 3-like-1 (CHI3L1), a member of the glycosyl hydrolase 18 family, plays a critical role in bacterial infections, allergic disease and a variety of malignancies. Here, we investigated whether CHI3L1 could affect the pathogenesis of aGVHD in a mouse allo-HCT model. In this study, we show that CHI3L1 deficiency in donor T cells increased the severity of aGVHD through enhancing systemic and local inflammation. In addition, we found that aGVHD induced by CHI3L1-knockout (CHI3L1-KO) donors resulted in massive expansion of donor CD3+ T cells, release of Th1-related cytokines and chemokines, and significant inhibition of CD4+CD25+Foxp3+ regulatory T cells (Tregs) without changing the suppressive ability of donor Tregs remarkably. Expression of PERK1/2 and PAkt increased both in the skin and intestine from CHI3L1-KO splenocytes-treated aGVHD mice. Moreover, at mRNA and protein levels, we defined several molecules that may account for the enhanced ability of CHI3L1-KO splenocytes to migrate into target organs and produce Th1-related cytokines and chemokines, such as CXCL9, CXCL11, IFN-γ and TNF-α. Therefore, these results imply that CHI3L1 levels in donor cells may be related to the risk of aGVHD and targeting CHI3L1 may be a promising clinical strategy to control aGVHD.
Collapse
Affiliation(s)
- Zengyao Li
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jing Liu
- Department of Radiotherapy, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Qin Zhu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Hao Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Yunjie Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jianhua Rao
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Xuehao Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
21
|
Boieri M, Shah P, Jalapothu D, Zaitseva O, Walter L, Rolstad B, Naper C, Dressel R, Inngjerdingen M. Rat acute GvHD is Th1 driven and characterized by predominant donor CD4 + T-cell infiltration of skin and gut. Exp Hematol 2017; 50:33-45.e3. [PMID: 28238806 DOI: 10.1016/j.exphem.2017.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Acute graft-versus-host disease (aGvHD) remains a significant hurdle to successful treatment of many hematological disorders. The disease is caused by infiltration of alloactivated donor T cells primarily into the gastrointestinal tract and skin. Although cytotoxic T cells mediate direct cellular damage, T helper (Th) cells differentially secrete immunoregulatory cytokines. aGvHD is thought to be initiated primarily by Th1 cells but a consensus is still lacking regarding the role of Th2 and Th17 cells. The aim of this study was to determine the contribution of distinct T-cell subsets to aGvHD in the rat. aGvHD was induced by transplanting irradiated rats with T-cell-depleted major histocompatibility complex-mismatched bone marrow, followed 2 weeks later by donor lymphocyte infusion. Near complete donor T-cell chimerism was achieved in the blood and lymphatic tissues, in contrast to mixed chimerism in the skin and gut. Skin and gut donor T cells were predominantly CD4+, in contrast to T cells in the blood and lymphatic tissues. Genes associated with Th1 cells were upregulated in gut, liver, lung, and skin tissues affected by aGvHD. Increased serum levels of CXCL10 and IL-18 preceded symptoms of aGvHD, accompanied by increased responsiveness to CXCL10 by blood CD4+ T cells. No changes in the expression of Th2- or Th17-associated genes were observed, indicating that aGvHD in this rat model is mainly Th1 driven. The rat model of aGvHD could be instrumental for further investigations of donor T-cell subsets in the skin and gut and for exploring therapeutic options to ameliorate symptoms of aGvHD.
Collapse
Affiliation(s)
- Margherita Boieri
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dasaradha Jalapothu
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Olena Zaitseva
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Bent Rolstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christian Naper
- Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Marit Inngjerdingen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
22
|
Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, Fowler DH, van den Brink MRM, Hansen JA, Parkman R, Miklos DB, Martin PJ, Paczesny S, Vogelsang G, Pavletic S, Ritz J, Schultz KR, Blazar BR. The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:211-234. [PMID: 27713092 PMCID: PMC6020045 DOI: 10.1016/j.bbmt.2016.09.023] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) is the leading cause of late, nonrelapse mortality and disability in allogeneic hematopoietic cell transplantation recipients and a major obstacle to improving outcomes. The biology of chronic GVHD remains enigmatic, but understanding the underpinnings of the immunologic mechanisms responsible for the initiation and progression of disease is fundamental to developing effective prevention and treatment strategies. The goals of this task force review are as follows: This document is intended as a review of our understanding of chronic GVHD biology and therapies resulting from preclinical studies, and as a platform for developing innovative clinical strategies to prevent and treat chronic GVHD.
Collapse
Affiliation(s)
- Kenneth R Cooke
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland.
| | - Leo Luznik
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Department of Immunology and Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Frances T Hakim
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Madan Jagasia
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marcel R M van den Brink
- Departments of Immunology and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John A Hansen
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Robertson Parkman
- Division of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford University, Palo Alto, California
| | - David B Miklos
- Division of Blood and Marrow Transplantation, Stanford University, Palo Alto, California
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Sophie Paczesny
- Departments of Pediatrics and Immunology, Wells Center for Pediatric Research, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Georgia Vogelsang
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Steven Pavletic
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
23
|
Grønningsæter IS, Tsykunova G, Lilleeng K, Ahmed AB, Bruserud Ø, Reikvam H. Bronchiolitis obliterans syndrome in adults after allogeneic stem cell transplantation-pathophysiology, diagnostics and treatment. Expert Rev Clin Immunol 2017; 13:553-569. [DOI: 10.1080/1744666x.2017.1279053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ida Sofie Grønningsæter
- Department of Medicine, Hematology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Galina Tsykunova
- Department of Medicine, Hematology, Haukeland University Hospital, Bergen, Norway
| | - Kyrre Lilleeng
- Department of Medicine, Hematology, Haukeland University Hospital, Bergen, Norway
| | - Aymen Bushra Ahmed
- Department of Medicine, Hematology, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Medicine, Hematology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
24
|
Capuccini B, Lin J, Talavera-López C, Khan SM, Sodenkamp J, Spaccapelo R, Langhorne J. Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria. Sci Rep 2016; 6:39258. [PMID: 27991544 PMCID: PMC5171943 DOI: 10.1038/srep39258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/22/2016] [Indexed: 02/08/2023] Open
Abstract
Cerebral malaria is a pathology involving inflammation in the brain. There are many immune cell types activated during this process, but there is little information on the response of microglia, in this severe complication. We examined microglia by genome wide transcriptomic analysis in a model of experimental cerebral malaria (ECM), in which C57BL/6 mice are infected with Plasmodium berghei ANKA. Thousands of transcripts were differentially expressed in microglia at two different time points during infection. Proliferation of microglia was a dominant feature before the onset of ECM, and supporting this, we observed an increase in numbers of these cells in the brain. When cerebral malaria symptoms were manifest, genes involved in immune responses and chemokine production were upregulated, which were possibly driven by Type I Interferon. Consistent with this hypothesis, in vitro culture of a microglial cell line with Interferon-β, but not infected red blood cells, resulted in production of several of the chemokines shown to be upregulated in the gene expression analysis. It appears that these responses are associated with ECM, as microglia from mice infected with a mutant P. berghei parasite (ΔDPAP3), which does not cause ECM, did not show the same level of activation or proliferation.
Collapse
Affiliation(s)
| | - Jingwen Lin
- The Francis Crick Institute, London NW1 1AT, UK
| | | | - Shahid M. Khan
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | | | - Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | | |
Collapse
|
25
|
Hu R, Liu Y, Song Y, Su M, Lu X, Rood D, Lai L. Recombinant IL-7/HGFβ hybrid cytokine separates acute graft-versus-host-disease from graft-versus-tumour activity by altering donor T cell trafficking. Br J Haematol 2016; 175:505-516. [PMID: 27447780 DOI: 10.1111/bjh.14268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
Abstract
Given that donor T cells from a transplant contribute both the desired graft-versus-tumour (GVT) effect and detrimental graft-versus-host disease (GVHD), strategies to separate GVHD and GVT activity are a major clinical goal. We have previously demonstrated that in vivo administration of a recombinant (r)IL-7/HGFβ hybrid cytokine, consisting of interleukin-7 (IL-7, IL7) and the β-chain of hepatocyte growth factor (HGFβ), significantly inhibits the growth of cancer cells in murine tumour models. The antit-umour effect of rIL-7/HGFβ is related to a marked infiltration T cells in the tumour tissues. We have also shown that GVHD was not induced in rIL-7/HGFβ-treated T cell-depleted allogeneic haematopoietic stem cell transplantation (HSCT) recipients. We show here that, in T cell-replete allogeneic HSCT murine models, rIL-7/HGFβ attenuated acute GVHD (aGVHD), while promoting GVT activity. This was related to an alteration of donor T cell trafficking, with an increased infiltration of donor T cells into tumour tissues and the lympho-haematopoietic system but decreased number of the T cells in the GVHD target organs. Therefore, rIL-7/HGFβ may offer a new tool to alleviate aGVHD while prompting GVT, and to study the molecular regulation of T cell trafficking.
Collapse
Affiliation(s)
- Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,Guizhou Medical University, Guizhou, China
| | - Yalan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA. .,University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
26
|
The Roles of CXCL16 and CXCR6 in Liver Inflammation and Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0090-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Bernardes PTT, Rezende BM, Resende CB, De Paula TP, Reis AC, Gonçalves WA, Vieira EG, Pinheiro MVB, Souza DG, Castor MGM, Teixeira MM, Pinho V. Nanocomposite treatment reduces disease and lethality in a murine model of acute graft-versus-host disease and preserves anti-tumor effects. PLoS One 2015; 10:e0123004. [PMID: 25875016 PMCID: PMC4395348 DOI: 10.1371/journal.pone.0123004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Graft versus host disease (GVHD) is an immunological disorder triggered by bone marrow transplantation that affects several organs, including the gastrointestinal tract and liver. Fullerenes and their soluble forms, fullerols, are nanocomposites with a closed symmetrical structure with anti-inflammatory and anti-oxidant properties. The present study evaluated the effects of treatment with the fullerol (C60(OH)18-20) in the development and pathogenesis of GVHD in a murine model. Mice with experimental GVHD that were treated with the fullerol showed reduced clinical signs of disease and mortality compared with untreated mice. Treatment with the fullerol decreased the hepatic damage associated with reduced hepatic levels of reactive oxygen species, pro-inflammatory cytokines and chemokines (IFN-γ TNF-α, CCL2, CCL3 and CCL5) and reduced leukocyte accumulation. The amelioration of GVHD after treatment with the fullerol was also associated with reduced intestinal lesions and consequent bacterial translocation to the blood, liver and peritoneal cavity. Moreover, the fullerol treatment alleviated the GVHD while preserving effects of the graft against a leukemia cell line (GFP+P815). In summary, the fullerol was effective in reducing the GVHD inflammatory response in mice and may suggest novel ways to treat this disease.
Collapse
Affiliation(s)
- Priscila T. T. Bernardes
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bárbara M. Rezende
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina B. Resende
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Talles P. De Paula
- Laboratório de Interação Microorganismo e Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alesandra C. Reis
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - William A. Gonçalves
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elias G. Vieira
- Laboratório de Ressonância Paramagnética, Departamento de Física Instituto de Ciências Exatas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício V. B. Pinheiro
- Laboratório de Ressonância Paramagnética, Departamento de Física Instituto de Ciências Exatas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle G. Souza
- Laboratório de Interação Microorganismo e Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina G. M. Castor
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M. Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Pinho
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
28
|
Radhakrishnan SV, Palaniyandi S, Mueller G, Miklos S, Hager M, Spacenko E, Karlsson FJ, Huber E, Kittan NA, Hildebrandt GC. Preventive azithromycin treatment reduces noninfectious lung injury and acute graft-versus-host disease in a murine model of allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014; 21:30-8. [PMID: 25445642 DOI: 10.1016/j.bbmt.2014.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Noninfectious lung injury and acute graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) are associated with significant morbidity and mortality. Azithromycin is widely used in allogeneic HCT recipients for pulmonary chronic GVHD, although current data appear controversial. We induced GVHD and noninfectious lung injury in lethally irradiated B6D2F1 mice by transplanting bone marrow and splenic T cells from allogeneic C57BL/6 mice. Experimental groups were treated with oral azithromycin starting on day 14 until the end of week 6 or week 14 after transplantation. Azithromycin treatment resulted in improved survival and decreased lung injury; the latter characterized by improved pulmonary function, reduced peribronchial and perivascular inflammatory cell infiltrates along with diminished collagen deposition, and a decrease in lung cytokine and chemokine expression. Azithromycin also improved intestinal GVHD but did not affect liver GVHD at week 6 early after transplantation. At week 14, azithromycin decreased liver GVHD but had no effect on intestinal GVHD. In vitro, allogeneic antigen-presenting cell (APC)- dependent T cell proliferation and cytokine production were suppressed by azithromycin and inversely correlated with relative regulatory T cell (Treg) expansion, whereas no effect was seen when T cell proliferation occurred APC independently through CD3/CD28-stimulation. Further, azithromycin reduced alloreactive T cell expansion but increased Treg expansion in vivo with corresponding downregulation of MHC II on CD11c(+) dendritic cells. These results demonstrate that preventive administration of azithromycin can reduce the severity of acute GVHD and noninfectious lung injury after allo-HCT, supporting further investigation in clinical trials.
Collapse
Affiliation(s)
- Sabarinath Venniyil Radhakrishnan
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, Shreveport, Louisiana; Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Senthilnathan Palaniyandi
- Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah; Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana
| | - Gunnar Mueller
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Sandra Miklos
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Max Hager
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Elena Spacenko
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Fridrik J Karlsson
- Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana
| | - Elisabeth Huber
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | - Nicolai A Kittan
- Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana
| | - Gerhard C Hildebrandt
- Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah; Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana.
| |
Collapse
|
29
|
Dosanjh A. Activation of eosinophil CCR3 signaling and eotaxin using a bioinformatics analysis of a mouse model of obliterative airway disease. J Interferon Cytokine Res 2014; 34:543-6. [PMID: 24702154 DOI: 10.1089/jir.2013.0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of eosinophils in the development and progression of chronic allograft rejection is recognized in multiple organ transplantation settings. The CCR3 signaling pathway is one of the key regulatory pathways in eosinophil migration to the engrafted tissue. Eotaxin is a ligand for CCR3 and reflects eosinophilic inflammation, which can lead to fibrosis. We hypothesized that the CCR3 pathway would be upregulated in obliterative airway disease (OAD) in an established model of chronic airway allograft rejection. The mouse gene microarray data from a heterotopic mouse model of OAD in the NIH Gene Expression Omnibus (GEO) repository were analyzed for differentially expressed eosinophil pathways, using the Partek Suite and Ingenuity Pathway Analysis. A P value of <0.005 was defined as significant for differential expression, and P value of <0.05 for pathways. Day 25 allografts were defined as chronic allograft rejection and day 4 as acute allograft rejection. The isografts and allografts at day 25 showed significant upregulation of the eosinophil CCR3 pathway (P=0.04), based on the analysis of 1,299 uniquely expressed genes. The isografts at day 4 were compared with those at day 25 based on the identification of 1,859 unique genes, and there was a trend toward the CCR3 pathway upregulation over time (P=0.06). CCR3 pathways were not upregulated during the progression of alloimmune rejection in the allografts at day 4 versus day 25 in comparison, based on the analysis of 1,603 genes. Eotaxin was upregulated in chronic allograft rejection by 2.5-fold. The eosinophil signaling pathway CCR3 and eotaxin were significantly expressed in chronic allograft rejection and our results imply a role in controlling early alloimmune damage in controls.
Collapse
Affiliation(s)
- Amrita Dosanjh
- The Department of Molecular and Experimental Medicine, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
30
|
Bouazzaoui A, Dickhöfer S, Kreuz M, Huber E, Holler E, Wolff D. Cytostatic conditioning in experimental allogeneic bone marrow transplantation: Busulfan causes less early gastrointestinal toxicity but Treosulfan results in improved immune reconstitution. Immunopharmacol Immunotoxicol 2014; 36:158-64. [PMID: 24588615 DOI: 10.3109/08923973.2014.895743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Acute graft versus host disease (aGVHD) after allogeneic bone marrow transplantation (allo-BMT) is associated with significant morbidity and mortality. We evaluated the impact of the conditioning regimen on aGVHD comparing Treosulfan (Treo) and Busulfan (Bu) with total body irradiation (TBI). METHODS Using a haploidentical murine model, B6D2F1 mice conditioned with Bu (100 mg/kg)/Fludarabine (Flu, 500 mg/kg) or Treo (6000 mg/kg)/Flu (500 mg/kg) or TBI with 14 Gy received bone marrow cells and splenocytes (20 × 10(6)) from either syngeneic (B6D2F1) or allogeneic (C57BL/6N) donors in order to analyze aGVHD outcome. RESULTS Conditioning with Bu/Flu or Treo/Flu resulted in significantly reduced aGVHD severity and improved survival (p < 0.05) after allo-BMT compared to TBI. On day 5 after allo-BMT, the organ damages of Bu/Flu conditioned animals were significantly reduced in association with diminished expression of tumor necrosis factor in serum compared to Treo/Flu. Interestingly, the early toxicity of Treo/Flu did not result in significantly higher aGVHD severity; furthermore, a significantly improved immune reconstitution of B220-positive B cells was observed at day 42 after Treo/Flu conditioning compared to Bu/Flu. CONCLUSION Conditioning with Treo/Flu or Bu/Flu results in decreased aGVHD severity compared to TBI. Moreover, Treo/Flu was associated with improved immune reconstitution despite the early toxicity.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Hematology and Oncology, University of Regensburg Medical School , Regensburg , Germany and
| | | | | | | | | | | |
Collapse
|
31
|
Raza A, Vierling JM. Graft-Versus-Host Disease. LIVER IMMUNOLOGY 2014:425-441. [DOI: 10.1007/978-3-319-02096-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
A novel differential predict model based on matrix-assisted laser ionization time-of-flight mass spectrometry and serum ferritin for acute graft-versus-host disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:563751. [PMID: 24195075 PMCID: PMC3806346 DOI: 10.1155/2013/563751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/20/2013] [Indexed: 12/12/2022]
Abstract
Clinical diagnosis of acute graft-versus-host disease (aGVHD) mainly depends on clinical manifestation and tissue biopsies, leading to a delayed diagnosis and treatment for aGVHD patients when the early symptom is insignificant. Our objective was to investigate the possibility of prewarning the risk of aGVHD before and after allogeneic hematopoietic stem cell transplantation (allo-HSCT) by serum protein profiling combined with serum ferritin. The difference in polypeptide expression before and after transplantation had been compared by using CLINPROT technology, and serum ferritin levels have been analyzed simultaneously. Through combining serum ferritin and MS spectral data, the diagnosis sensitivity and specificity of our model for prewarning severe aGVHD (III~IV°aGVHD) before transplant all increased to 90.0%, while after transplant, the sensitivity and specificity are 78.3% and 86.4%. Our joint prewarning model could predict the risk of aGVHD, especially severe aGVHD before and after transplant, which also provides a reliable method to the continuous monitoring of the condition of patients.
Collapse
|
33
|
Rezende BM, Bernardes PTT, Resende CB, Arantes RME, Souza DG, Braga FC, Castor MGM, Teixeira MM, Pinho V. Lithothamnion muelleri controls inflammatory responses, target organ injury and lethality associated with graft-versus-host disease in mice. Mar Drugs 2013; 11:2595-615. [PMID: 23873335 PMCID: PMC3736440 DOI: 10.3390/md11072595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/31/2022] Open
Abstract
Lithothamnion muelleri (Hapalidiaceae) is a marine red alga, which is a member of a group of algae with anti-inflammatory, antitumor, and immunomodulatory properties. The present study evaluated the effects of treatment with Lithothamnion muelleri extract (LM) in a model of acute graft-versus-host disease (GVHD), using a model of adoptive splenocyte transfer from C57BL/6 donors into B6D2F1 recipient mice. Mice treated with LM showed reduced clinical signs of disease and mortality when compared with untreated mice. LM-treated mice had reduced tissue injury, less bacterial translocation, and decreased levels of proinflammatory cytokines and chemokines (interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3) and chemokine (C-C motif) ligand 5 (CCL5)). The polysaccharide-rich fraction derived from LM could inhibit leukocyte rolling and adhesion in intestinal venules, as assessed by intravital microscopy. LM treatment did not impair the beneficial effects of graft-versus-leukaemia (GVL). Altogether, our studies suggest that treatment with Lithothamnion muelleri has a potential therapeutic application in GVHD treatment.
Collapse
Affiliation(s)
- Barbara M. Rezende
- Laboratory of Resolution of Inflammatory Response, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil; E-Mails: (B.M.R.); (P.T.T.B.); (C.B.R.); (M.G.M.C.)
| | - Priscila T. T. Bernardes
- Laboratory of Resolution of Inflammatory Response, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil; E-Mails: (B.M.R.); (P.T.T.B.); (C.B.R.); (M.G.M.C.)
| | - Carolina B. Resende
- Laboratory of Resolution of Inflammatory Response, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil; E-Mails: (B.M.R.); (P.T.T.B.); (C.B.R.); (M.G.M.C.)
| | - Rosa M. E. Arantes
- Laboratory of Experimental Neuro-Immunopathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil; E-Mail:
| | - Danielle G. Souza
- Host-Microbes Interaction Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil; E-Mail:
| | - Fernão C. Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil; E-Mail:
| | - Marina G. M. Castor
- Laboratory of Resolution of Inflammatory Response, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil; E-Mails: (B.M.R.); (P.T.T.B.); (C.B.R.); (M.G.M.C.)
| | - Mauro M. Teixeira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil; E-Mail:
| | - Vanessa Pinho
- Laboratory of Resolution of Inflammatory Response, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil; E-Mails: (B.M.R.); (P.T.T.B.); (C.B.R.); (M.G.M.C.)
| |
Collapse
|
34
|
Huen AC, Wells A. The Beginning of the End: CXCR3 Signaling in Late-Stage Wound Healing. Adv Wound Care (New Rochelle) 2012; 1:244-248. [PMID: 24527313 DOI: 10.1089/wound.2011.0355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Prior to 2009, research regarding the role of CXC receptor 3 (CXCR3) in cutaneous biology was primarily in the context of inflammatory reactions. Foundational research performed at that time demonstrated that, in addition to recruited inflammatory cells, cellular components of the skin, keratinocytes, fibroblasts, and endothelial cells, also express CXCR3 and are capable of expressing CXCR3 ligands, specifically CXC ligand 10 (CXCL10) and CXCL11. Surprisingly, in vitro experimentation demonstrated differential effects on the different cell types, suggesting that the CXCR3 signaling pathway may serve as a coordinator of wound remodeling. In support of this, a CXCR3 null mouse line and a mouse line abrogating CXCL11 expression in the epidermis demonstrated delayed wound closure and disordered dermal wound healing. THE PROBLEM These findings demonstrate the role of CXCR3 signaling in the latter stages of wounding healing and opened a new avenue of investigation into the molecular and cellular mechanisms of coordinating the events of cutaneous tissue regeneration. BASIC SCIENCE ADVANCES More recent investigation highlights the role of CXCR3 signaling in the dramatic vascular pruning events after the proliferative stage of wound healing and its importance in guiding remodeling of dermal collagen during cicatrix formation. CONCLUSION CXCR3 signaling plays a strong role in coordinating the actions of several cell types during cutaneous wound healing. The disruption of this signaling pathway results in delayed return to homeostasis and dystrophic scarring.
Collapse
Affiliation(s)
- Arthur C Huen
- Department of Dermatology, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania. ; Department of Pathology, Veterans Administration Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Bortezomib regulates the chemotactic characteristics of T cells through downregulation of CXCR3/CXCL9 expression and induction of apoptosis. Int J Hematol 2012. [PMID: 23179902 DOI: 10.1007/s12185-012-1195-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chemotactic movement of T lymphocytes mediated by chemokines and their receptors plays an important role in the pathogenesis of graft-versus-host disease (GVHD) post-allogeneic hematopoietic stem cell transplantation (allo-HSCT). CCR7 and CXCR3 are two receptors associated with the development of GVHD. Bortezomib, a proteasome inhibitor, was recently found to prevent GVHD in a mouse model and to decrease the production of Th1 cytokines. Here, we report that bortezomib differentially regulates the expression of CXCR3 and CCR7 on T cells; it significantly decreases CXCR3 expression on T cells as well as its CD4(+)/CD8(+) subsets in a dose-dependent manner, while it does not significantly affect CCR7 expression on T cells and subsets. Moreover, the secretion of CXCL9 by activated T cells is also increasingly downregulated with increasing concentrations of bortezomib. Meanwhile, bortezomib inhibits T-cell chemotactic movements toward CXCL9 in a dose-dependent manner, but has no effect on CCL19-induced T-cell chemotaxis. Additionally, it was found that bortezomib treatment also prompts T-lymphocyte apoptosis through activation of caspase-3 and its downstream PARP cleavage in a dose- and time-dependent manner. These results suggest that bortezomib may act as a suppressor of GVHD by downregulating T-cell chemotatic movement toward GVHD target organs, as well as by inducing apoptosis.
Collapse
|
36
|
Early-phase GVHD gene expression profile in target versus non-target tissues: kidney, a possible target? Bone Marrow Transplant 2012; 48:284-93. [DOI: 10.1038/bmt.2012.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Castor MGM, Pinho V, Teixeira MM. The role of chemokines in mediating graft versus host disease: opportunities for novel therapeutics. Front Pharmacol 2012; 3:23. [PMID: 22375119 PMCID: PMC3285883 DOI: 10.3389/fphar.2012.00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/08/2012] [Indexed: 11/25/2022] Open
Abstract
Bone marrow transplantation (BMT) is the current therapy of choice for several malignancies and severe autoimmune diseases. Graft versus host disease (GVHD) is the major complication associated with BMT. T lymphocytes and other leukocytes migrate into target organs during GVHD, become activated and mediate tissue damage. Chemokines are well known inducers of leukocyte trafficking and activation and contribute to the pathogenesis of GVHD. Here, we review the major animal models used to study GVHD and the role of chemokines in mediating tissue damage in these models. The role of these molecules in promoting potential beneficial effects of the graft, especially graft versus leukemia, is also discussed. Finally, the various pharmacological strategies to block the chemokine system or downstream signaling events in the context of GVHD are discussed.
Collapse
Affiliation(s)
- Marina G M Castor
- Immunopharmacology, Department of Immunology and Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | | | | |
Collapse
|
38
|
Abstract
Natural killer (NK) cells are bone marrow–derived granular lymphocytes that have a key role in immune defense against viral and bacterial infections and malignancies. NK cells are traditionally defined as cells of the innate immune response because they lack RAG recombinase–dependent clonal antigen receptors. However, evidence suggests that specific subsets of mouse NK cells can nevertheless develop long-lived and highly specific memory to a variety of antigens. Here we review published evidence of NK cell–mediated, RAG-independent adaptive immunity. We also compare and contrast candidate mechanisms for mammalian NK cell memory and antigen recognition with other examples of RAG-independent pathways that generate antigen receptor diversity in non-mammalian species and discuss NK cell memory in the context of lymphocyte evolution.
Collapse
Affiliation(s)
- Silke Paust
- Harvard Medical School, Department of Pathology, Boston, Massachusetts, USA
| | | |
Collapse
|
39
|
Steroid treatment alters adhesion molecule and chemokine expression in experimental acute graft-vs.-host disease of the intestinal tract. Exp Hematol 2010; 39:238-249.e1. [PMID: 21108989 DOI: 10.1016/j.exphem.2010.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Acute graft-vs.-host disease (aGVHD) is a major complication after allogeneic bone marrow transplantation (allo-BMT) that is characterized by high morbidity and mortality. Systemic treatment with steroids has been the mainstay of first-line therapy of aGVHD, although controlled experimental data in this context are limited. MATERIALS AND METHODS Using a haploidentical murine BMT model, steroid effects on hepatic and intestinal inflammation during aGVHD have been investigated. Lethally irradiated B6D2F1 mice received bone marrow cells and splenocytes from either syngeneic (B6D2F1) or allogeneic (C57BL/6) donors. RESULTS Intraperitoneal administration of prednisolone (2 mg/kg body weight every day) early after onset of GVHD from day +10 until day +42 resulted in reduced clinical GVHD severity and improved survival of allogeneic recipients. Although the liver was barely affected by prednisolone treatment, aGVHD-related histopathologic injury of the gastrointestinal tract was strongly reduced in association with diminished expression of interferon-γ, tumor necrosis factor, CXCL 9-11, CCL2-3, mucosal addressin cell adhesion molecule-1, and intercellular adhesion molecule-1. Prednisolone-induced reduction of adhesion molecule expression in the gut manifested earlier than seen for cytokines or chemokines. Interestingly, when starting steroid treatment on day +28, the course of GVHD was unchanged and no major differences in cyto- or chemokine expression in gastrointestinal tract or liver on day +42 were seen. CONCLUSIONS When started early after GVHD onset, prednisolone-related beneficial effects can affect aGVHD target organs differently, involving divergent regulation of inflammation and leukocyte migration. Specifically, a change in adhesion properties between leukocytes and endothelial cells in the gastrointestinal tract may be one of the initial steps in a cascade of steroid-related aGVHD-attenuating events.
Collapse
|
40
|
Kittan NA, Hildebrandt GC. The chemokine system: a possible therapeutic target in acute graft versus host disease. Curr Top Microbiol Immunol 2010; 341:97-120. [PMID: 20379809 DOI: 10.1007/82_2010_23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Allogeneic hematopoetic stem cell transplantation often presents the only chance for cure in a number of malignant and nonmalignant hematologic diseases. However, its beneficial effects are counterweighed by the development of potentially lethal complications, most importantly the development of acute and chronic graft-vs.-host disease (GVHD). Alloantigen-reactive immune responses mediate injury and destruction of GVHD target organs, including the gastrointestinal tract, the liver, the skin, and the lung. Donor leukocyte infiltration into the respective tissues is orchestrated by interactions between chemokines and chemokine receptors, which will be reviewed using a basic science - clinical comparative approach.
Collapse
Affiliation(s)
- Nicolai A Kittan
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA 71130, USA
| | | |
Collapse
|
41
|
Maghazachi AA. Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 2010; 341:37-58. [PMID: 20369317 DOI: 10.1007/82_2010_20] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells represent a major subpopulation of lymphocytes. These cells have effector functions as they recognize and kill transformed cells as well as microbially infected cells. In addition, alloreactive NK cells have been successfully used to treat patients with acute myeloid leukemia and other hematological malignancies. NK cells are also endowed with immunoregulatory functions since they secrete cytokines such as IFN-γ, which favor the development of T helper 1 (Th1) cells, and chemokines such as CCL3/MIP-1α and CCL4/MIP-1β, which recruit various inflammatory cells into sites of inflammation. In human blood, NK cells are divided into CD56(bright) CD16(dim) and CD56(dim) CD16(bright) subsets. These subsets have different phenotypic expression and may have different functions; the former subset is more immunoregulatory and the latter is more cytolytic. The CD56(bright)CD16(dim) NK cells home into tissues such as the peripheral lymph nodes (LNs) under physiological conditions because they express the LN homing receptor CCR7 and they respond to CCL19/MIP-3β and CCL21/SLC chemokines. They also distribute into adenoid tissues or decidual uterus following the CXCR3/CXCL10 or CXCR4/CXCL12 axis. On the other hand, both NK cell subsets migrate into inflammatory sites, with more CD56(dim)CD16(bright) NK cells distributing into inflamed liver and lungs. CCR5/CCL5 axis plays an important role in the accumulation of NK cells in virally infected sites as well as during parasitic infections. CD56(bright)CD16(dim) cells also migrate into autoimmune sites such as inflamed synovial fluids in patients having rheumatoid arthritis facilitated by the CCR5/CCL3/CCL4/CCL5 axis, whereas they distribute into inflamed brains aided by the CX₃CR1/CX₃CL1 axis. On the other hand, CD56(dim)CD16(bright) NK cells accumulate in the liver of patients with primary biliary disease aided by the CXCR1/CXCL8 axis. However, the types of chemokines that contribute to their accumulation in target organs during graft vs. host (GvH) disease are not known. Further, chemokines activate NK cells to become highly cytolytic cells known as CC chemokine-activated killer (CHAK) cells that kill tumor cells. In summary, chemokines whether secreted in an autocrine or paracrine fashion regulate various biological functions of NK cells. Depending on the tissue and the chemokine secreted, NK cells may ameliorate the disease such as their roles in combating tumors or virally infected cells, and their therapeutic potentials in treating leukemias and other hematological malignancies, as well as reducing the incidence of GvH disease. In contrast, they may exacerbate the disease by damaging the affected tissues through direct cytotoxicity or by the release of multiple inflammatory cytokines and chemokines. Examples are their deleterious roles in autoimmune diseases such as rheumatoid arthritis and primary biliary cirrhosis.
Collapse
Affiliation(s)
- Azzam A Maghazachi
- Department of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, Blindern, 0317 Oslo, Norway.
| |
Collapse
|
42
|
Abstract
During the past decade, progress in basic immunology has been impressive. In parallel, whereas our understanding of the pathophysiology of acute graft-versus-host disease (GVHD) has greatly improved, so has our knowledge of the complexities of the immune system. Much of the immunobiology of acute GVHD has been gleaned from preclinical models and far less from correlations with clinical observations or therapeutic interventions. In this review, we summarize some of the major advances in GVHD pathophysiology, including the translation of these from the bench to the bedside, and discuss preclinical approaches that warrant further exploration in the clinic.
Collapse
|